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Abstract 

The luminosity function of galaxies and clusters as well as their 
correlations can be calculated assuming the many-body correlation functions 
are scale invariant. The same hypothesis leads to predictions on the 
fractal dimension of the galaxy distribution. The latter is found to be 
bifractal that is characterized by two dimensions ϋ=3-Ύ in the cluster 
region, and D = (3~Ύ)(2+α) in the nearly empty regions, α being the index 
introduced by Schechter for the galaxy luminosity function. Finally, the 
same models lead to predictions for the evolution of the cluster and x-ray 
luminosity functions, as well as for the Sunyaev-Zeldovich effect due to 
all virialized clusters, which is found to be large and to produce 
fluctuations of order 10"5 at sub-arc minute scalar in the microwave 
background. 

I. GALAXY AND MATTER CORRELATIONS 

It is well-known that galaxies are strongly correlated at scales 
below 8 or 10 h _ 1Mpc. Their observed correlation function can be fitted by 
a power law (Davis and Peebles 1983) · ~ r"T . At least in an Ω=1 
universe, such a scale invariant correlation function is expected (Peebles 
1980) from theory, and the same argument can give its time (redshift) 
dependence (Peebles 1980) : £ « (1+z) T " 3 , and predict that the N-body 
correlation function scales as 

£ N( r i,...,r N) = λ ^ ( Ν - 1 ) ξ Ν ( λ Γ 1 , . . . , λ Γ η ) (1) 

Within this model, scaling laws can be established. The probability to find 
no galaxy within a given volume V, P 0(V) has the form (White 1979» Sharp 
I 9 8 I , Fry 1984, Schaeffer 1984, 1987, Balian and Schaeffer 1987) 

P0(V) = exp - nV cr(q) (2) 

where η is the number density of galaxies, and 

nV 
f ^ r , 

^ ( r 1 2 ) = nVS. (3) 
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is the scaling variable. The function a(q) is arbitrary. 

Once a specific hierarchical model is chosen, assuming it holds 
for the matter distribution, the probability of having Ν objects in a 
volume V, and whence a given total mass within V, can be calculated leading 
to a prediction for the galaxy luminosity function. For the model ( 6 ) , the 
galaxy luminosity function is approximately (Schaeffer 19Ö7) 

p(L)dL « L0/L j^jy [ln(l +L 0/L)]
v + 1 e' L / L° PLdL/L* (k) 

with L 0 = aq, where a is a numerical factor and q is to be calculated for a 
volume corresponding to galaxies. A reasonable choice is a sphere of 
~ 0.1 Mpc radius, that is seen to produce a luminosity function quite' close 
to the observations as compiled by Bahcall (1979)· More recently, it has 

ιβ» w" *" w° w11 

L<h 2 l 0 ) 

Fig. 1: Cluster luminosity function (Schaeffer 19Ô7). The full lines are 
the predictions of the hierarchical clustering model for the non-linear 
matter distribution. The data result from a compilation by Bahcall (1979) 
of the luminosity distribution of Turner-Gott groups and Abel clusters. 
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been shown (Balian and Schaeffer 1987) that 

*(q) ~ q - w (0 < ω < 1) ( 5 ) 

for large q implies 

<p(L)dL ~ ( L / L 0 )
w - 2 dL (6 ) 

at small L. These two limits are similar simply because the limit of small 
L / L 0 is formally equivalent to the limit of large q in ( 1 1 ) . They provide a 
relation between the large scale behaviour of the probability of holes and 
the divergence of the galaxy luminosity function at the faint end 

ω = 2 + α (7 ) 

Note that current values of α » - 1 . 2 imply ω ~ 0 . 8 . But the model 
of Schaeffer (1984) leads to a(q) ~ q _ 1(^n q ) v + 2 , that is ω « 1, and 
reproduces the data nearly as well as the Schechter parametrization. 

In a similar way, the cluster distribution can be calculated, by 
assuming that either the galaxy or the matter distribution is given by ( 4 ) . 
Both assumptions lead to the same result in the limit where clusters are 
much larger than galaxies. The predictions (Schaeffer 1987) using the model 
( 6 ) are given by eq . ( 9 ) » but for a value of q adapted to clusters (e.q. 
calculated within a sphere of radius 1.5h" 1Mpc for Abell clusters, or 
imposing some density contrast for Turner-Gott groups). It can be seen that 
the same value ν ~ 1 reproduces the data (Fig. 1 ) . 

II. FRACTAL DIMENSION OF THE GALAXY DISTRIBUTION 

We present here the predictions that can be made (Balian and 
Schaeffer 1987) under the sole assumption, eq.(l), that the galaxy correla-
tion functions are scale invariant, with a unique power law index Ύ, As in 
any fractal system, there is a lbwer scale as well as an upper scale at 
which the scale invariance breaks down. For the galaxy distribution, the 
lower scale can be set as being the average distance t c between galaxies 
within a cluster. The largest possible scale where scale invariance is to 
be expected is ZQf the diameter of a sphere whose radius is the correlation 

length r 0 ~ 5h _ 1Mpc that is lQ ~ 10h"1Mpc. For η ~ 2 10~ 2h 3Mpc" 3, that is 

counting only the bright galaxies, we have t c ~ 0 .5h" 1Mpc. For larger va-
lues of n, Zc may be much smaller. The question is then whether or not in 
the limits i c < t < t 0 (8 ) 

the galaxy distribution is, under the assumption ( 1 ) , a fractal charac-
terized by a unique fractal dimension D = 3~Ύ· The answer is rather sur-
prising, as can already be seen by calculating the Hausdorff dimension that 
is obtained by considering boxes of size I and counting all occupied boxes. 

The number of the latter scales as I 0, where D Q is the Hausdorff 
dimension. Despite the scale invariance of the correlation function, we 
find 

D 0 = (3-Ύ)ω ( 9 ) 

where ω has been considered in the previous section and reflects the sca-
ling of the probability of holes at large scales. So, unless ω = 1, D Q is 
different from the naive conclusion drawn from the observation of the 
power-law behaviour of the correlation function. The result (20 ) is valid 
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at scales much larger than the distance i c of galaxies in a c lus ter , and 
much smaller than iw , the typical void s i z e , defined as the scale at which 
the probabi l i ty of holes s tar t s to get s izeably below 1. 

This resul t can be understood provided we get some deeper insight 
into the problem. Instead of counting a l l occupied boxes, l e t us separate 
them into subclasses. We dist inguish the boxes by the scal ing of the number 
of galaxies they contain. I t happens that i t scales as a power-law 

N U ) - A r a (10) 

but, depending on the region of space we consider, α may take di f ferent 
values. Defining the number of baxes that scale as £ " a , we find that the 
l a t t e r , as for the Hausdorff dimension, scales as a power-low of the box 
s i ze 

J t ~ * - , ( o t ) . (11) 

but the power i s d i f ferent for di f ferent values of a. The model ( 3 ) for the 
correlat ion functions shows there are two very d i s t inc t populations of 
ga lax ies . F i r s t l y those for which the number of galaxies within an occupied 
c e l l i s a constant independent of the box s i ze (α = 0 ) , This corresponds to 
isolated galaxies or groups. And secondly those for which the number of 
galaxies scales as & ~ Ύ with the box s i z e (α = 3 - Ύ ) , corresponding to 
sampling boxes that are s ituated within a cluster. The dimension of these 
two regions can be found by counting the number of boxes of each kind, and 
i t s scal ing, eq. 2 3 , with the box s i z e . We find that the volume occupied by 
i so la ted galaxies scales with a dimension 

f l 8 0 ~ (3-·Υ)ω 
(12) 

whereas the volume occupied by c lusters scales às 

f c i ~ 3 - y 
(13) 

a d ~ 3 - y 

This analysis was motivated by the conclusions drawn by Jones et 
a l . ( 19δ7) from the CfA sample. The conclusions obtained here d i f f er 
considerably from the irs . For a galaxy d is tr ibut ion that leads to a 
s u f f i c i e n t l y large probabi l i ty of holes (ω ~ 1 ) at large sca les in order 
that the scal ing region ZQ < t < i v e x i s t s , i t can be shown that the 
standard procedure for calculat ing α and f ( a ) does not lead to values that 
correspond to the def ini t ions (10 ) and ( 1 1 ) . This i s discussed at length in 
Balian and Schaeffer ( 1 9 8 7 ) . I f within our scal ing model we nevertheless 
use the standard procedure (that i s incorrect in our case) we get a whole 
spectrum of values of α and f (a ) that are in a range compatible with the 
resul t s of Jones et a l (1987) instead of the two values (12 ) and (13 ) ob-
tained with the new procedure. The analysis of the CfA sample with this new 
procedure (that i s always va l id and garanties that the scal ing laws (10) 
and (11 ) are ver i f i ed by the values of α and f that are obtained) remains 
to be done. 

I I I . CLUSTER EVOLUTION 

I t i s poss ible from a model of the high order correlat ion function to cons-
truct a c luster luminosity function, e q . ( 4 ) ( that reproduces the observa-
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tions. The prediction of the theory is not only the shape of the luminosity 
function, but also the value of L 0 is related, to the luminosity density P L, 
the volume V of the cluster and the average correlation function within 
that volume. It happens that the evolution with redshift of all these quan-
tities is known. It is thus possible to infer (Schaeffer and Silk 1987) the 
evolution of the cluster luminosity function with redshift, at least for 
the model (6). 

The luminosity function virialized clusters is readily deduced 
from eq . ( 4 ) . Virialized clusters must have a radius R such as 

R < ( L / L )!/3 - J — h " 1 Mpc (14) 
v 1 + z 

with L V ~ 2.5 1 0 1 1 h"2 Lq. We then get from eq.(8) the luminosity function 
for virialized clusters 

<p(L)dL = <p0 [^n(l+x)]
v+1/x dL 

χ = 0.4(l+z)3-r 

(15) 

It shows a considerable spread in luminosities, with a large number of 
small objects of low luminosity. At large luminosities there is an 
exponential cut at 

U ~ 1.2 1 0 1 2 ( l + z ) - 3 < 3 - T ) / T h - 3 (16) 

Despite it is weaker than predicted by linear theory (Kaiser 1986), this 
evolution is fairly strong since L # « (1+z)" 2. Despite the large spreading 
of L, it might be measurable. Expressions (15-16) are valid up to a red-
shift Z m a x at which the scales (14J turn non-linear. 

The Sunyaev-Zeldovich (1981) effect for one cluster depends on the 
cluster temperature, luminosity and radius ΔΤ/Τ ~ TLR"2 assuming that the 
gaz density scales as the ratio of optical luminosity to cluster volume. 
The form (4) can then be used to compute the average y of ΔΤ/Τ along a 
lign of sight and its fluctuations. From the redshift dependence of L 0 it 
can be seen that numerous clusters are expected even at a fairly high red-
shift. A straighforward calculation then shows that there are usually seve-
ral clusters contributing to y which is predicted to be fairly large 

y ~ 0.7b-J l + z m a x )
3 ( 3 T - 4 ) / 4 (17) 

The typical size of the clusters that contribute to the counts is 
fairly small, much smaller than the size of Abell clusters or Turner-Gott 
groups. For z m a x ~ 5 . R is of the order of O.lMpc The typical angular 
scale associated to these clusters is a fraction of an arc-minute. This is 
why the fluctuation below this angular scale are rather large, of the order 
of a few times the ΔΤ/Τ of Coma. The X-ray luminosity can be computed in a 
similar way, to get the cluster contribution from their mass function ex-
trapolated at non-zero ζ for times where clustering is still strong and 
cannot be calculated within linear theory. 
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I V . CONCLUSION 

The description of the galaxy and cluster distribution as they are 
at the present epoch requires statistics where the correlation functions 
are strong to all orders. The simple assumption that the many-body 
correlation functions are scale invariant allows to reproduce many observed 
properties of galaxies. Their luminosity function and its power-law 
behaviour at the faint end can be obtained. It is intimately (and 
surprisingly : this is one of the musteries of scale invariance) related to 
the presence of holes at large scales. This power-law behaviour is also 
related to the Hausdorff dimension of the galaxy distribution. Similarly 
the cluster luminosity function can be constructed, and especially the 
exponential fall-off at large luminosities is obtained. The scale-invariant 
model for the galaxy correlation functions thus represents a good 
description of galaxy clustering. It is only a model, since the derivation 
of the many-body galaxy correlation function from first principle is, 
despite valuable efforts, still a problem. This description can 
nevertheless be used to predict the evolution of clusters, to calculate the 
x-ray background and the contribution of the Sunyaev-Zeldovich effect to 
the microwave background fluctuations, with a degree of confidence that 
could never be achieved before. 

The fractal dimensions of the galaxy distribution were calculated 
with R. Balian. Also, the prediction for x-ray background and the microwave 
fluctuations were obtained in collaboration with J. Silk. I would like to 
thank them for many discussions. 
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