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Abstract
Let G be an almost simple group with socle 𝐺0. In this paper we prove that whenever 𝐺/𝐺0 is abelian, then there
exists an abelian subgroup A of G such that 𝐺 = 𝐴𝐺0. We propose a few applications of this structural property of
almost simple groups.

1. Introduction

The main result of this paper is the following consequence of the classification of the finite simple groups.

Theorem 1. Let G be an almost simple group with socle 𝐺0. If 𝐺/𝐺0 is abelian, then G contains an
abelian subgroup A such that 𝐺 = 𝐴𝐺0.

Notice that in general it is not true that if N is a normal subgroup of a finite group G and 𝐺/𝑁
is abelian, then N has an abelian supplement in 𝐺. For example, if G is a finite p-group and N is the
Frattini subgroup of 𝐺, then 𝐺/𝑁 is abelian, but G is the unique supplement of N, so the statement fails
whenever G is not abelian. However, Theorem 1 has also some consequences beyond almost simple
groups. In fact, we will prove the following corollary as well, on groups with 𝐹 (𝐺) = 1, where 𝐹 (𝐺) is
the Fitting subgroup of G.

Corollary 2. Let G be a finite group and suppose that 𝐹 (𝐺) = 1. Let 𝑁 = soc(𝐺). If 𝑎, 𝑏 are two
elements of G and [𝑎, 𝑏] ∈ 𝑁, then there exist 𝑛, 𝑚 ∈ 𝑁 such that [𝑎𝑛, 𝑏𝑚] = 1.

We now describe an application of the previous corollary that was our original motivation to look for
results in this direction. Let G be a finite noncyclic group and denote by 𝑑 (𝐺) the smallest cardinality of
a generating set of𝐺. The rank graph Γ(𝐺) associated to G is the graph whose vertices are the elements
of G and where x and y are adjacent vertices if there exists a generating set X of G of cardinality 𝑑 (𝐺)
such that {𝑥, 𝑦} is a subset of 𝑋. Moreover, we denote by Δ (𝐺) the subgraph of Γ(𝐺) induced by its
non-isolated vertices. When 𝑑 (𝐺) = 2, the graph Γ(𝐺) is known with the name of generating graph. It
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Table 1. The proof of Theorem 1 in the various cases. Notice that Alt6 � PSL2 (9) has
been considered in the linear one..

𝐺0 Reference

alternating Alt𝑛, 𝐺0 ≠ Alt6 Corollary 7

classical 𝐴𝑛−1 (𝑞) = PSL𝑛 (𝑞) Theorem 19
2𝐴𝑛−1 (𝑞) = PSU𝑛 (𝑞) Theorem 19
𝐵𝑛 (𝑞) , 𝐶𝑛 (𝑞) Theorem 21
𝐷𝑛 (𝑞) Theorem 25, 26
2𝐷𝑛 (𝑞) Theorem 24

exceptional 𝐸6 (𝑞) Theorem 22
2𝐸6 (𝑞) Theorem 23
𝐸7 (𝑞) Theorem 21
3𝐷4 (𝑞) , 𝐸8 (𝑞) , 𝐹4 (𝑞) , 𝐺2 (𝑞) , Corollary 7
2𝐵2 (2𝑟 ) , 2𝐺2 (3𝑟 ) , 2𝐹4 (2𝑟 )′

sporadic all Corollary 7

was defined by Liebeck and Shalev in [14], and it has been widely studied by several authors; as survey
references, we recommend [5] and [15]. Many strong structural results about Γ(𝐺) are known in the
case where G is simple, and this reflects the rich group theoretic structure of these groups. For example,
if G is a nonabelian simple group, then the only isolated vertex of Γ(𝐺) is the identity [13] and the graph
Δ (𝐺) is connected with diameter two [3], and if |𝐺 | is sufficiently large, it admits a Hamiltonian cycle
[4] (it is conjectured that the condition on |𝐺 | can be removed). Moreover, in recent years, there has been
considerable interest in attempting to classify the groups G for which Γ(𝐺) shares the strong properties
of the generating graphs of simple groups. Recently, a remarkable result has been proved – that the
identity is the unique isolated vertex of Γ(𝐺) if and only if all proper quotients of G are cyclic [6]. An
open question is whether Δ (𝐺) is connected for any finite group G with 𝑑 (𝐺) = 2. The answer is known
to be positive if G is soluble [9] (and in this case, the diameter of Δ (𝐺) is at most three [16]), if G is a
direct product of finite simple groups [10] (but examples in which the diameter is arbitrarily large can be
exhibited) or if G is a group whose proper quotients are all cyclic [6]. However, only partial results are
known for arbitrary finite groups. Clearly, the same question can be asked in the more general case when
𝑑 (𝐺) � 2. In a recent preprint [18], Corollary 2 plays a crucial role in the proof of the following result.

Theorem 3 [18]. If 𝑑 (𝐺) � 3, then Δ (𝐺) is connected.

When 𝑑 (𝐺) = 2, the techniques used to prove Theorem 3 encounter some obstacles, but they can
suggest a starting point for the case of the generating graph as well.

The proof of Theorem 1 strongly depends on the classification of the finite simple groups. It is
articulated in various cases which are proved separately along the paper. Table 1 contains, for every
non-abelian simple group 𝐺0, the location of the corresponding proof. The statement is clearly true if
𝐺/𝐺0 is cyclic: indeed, in this case, 〈𝑔〉 is an abelian supplement of 𝐺0 in G for every 𝑔 ∈ 𝐺 such that
𝐺 = 〈𝐺0, 𝑔〉. This implies in particular that Theorem 1 is true if 𝐺0 is an alternating group (with the
possible exception of Alt6) or a sporadic simple group (see Corollary 7), so we may restrict our attention
to the case when 𝐺0 is a simple group of Lie type. To explore the different possibilities that can arise
when𝐺0 is a simple group of Lie type, a detailed knowledge of the automorphism group of𝐺0 is needed.
Recall in particular that if 𝛼 ∈ Aut(𝐺0), then there exist inner, diagonal, field and graph automorphisms,
𝑔, 𝛿, 𝜙, 𝜌 such that 𝛼 = 𝑔𝛿𝜙𝜌. The easiest case is when all the diagonal automorphisms of G are inner.
In this case, Aut(𝐺0) splits over 𝐺0 so, in the assumption of Theorem 1, 𝐺0 certainly admits an abelian
complement in 𝐺. Clearly, the same argument can be applied whenever Aut(𝐺0) splits over 𝐺0. The
simple groups with this property have been classified in [17] (see Theorem 9). Unfortunately, in many
cases, Aut(𝐺0) does not split over 𝐺0. In these cases, the proof of Theorem 1 requires harder work that
goes by a case-by-case inspection. Roughly speaking, denoting by d the index of Inn(𝐺0) in the group

https://doi.org/10.1017/fms.2024.160 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2024.160


Forum of Mathematics, Sigma 3

Inndiag(𝐺0) of the inner-diagonal automorphisms of 𝐺0, the larger d is, the more situations arise in
which the proof of Theorem 1 requires greater care. Already when 𝐺0 = PSL2 (𝑞), although 𝑑 � 2 in
this case, the proof is not immediate. We discuss this case in Theorem 10, and we suggest the reader
to pay particular attention to the proof of this theorem, which is, up to some extent, representative of
the type of arguments needed in the general case. When 𝐺0 is a linear or a unitary group, we give
an explicit construction of an abelian supplement of 𝐺0 in G. This requires patient and tiring work to
cover the different possibilities, but it can be easily followed even by the reader less familiar with the
properties of simple groups since it is essentially based on elementary considerations of linear algebra.
As a by-product of our proof, a description of maximal abelian subgroups of Out(𝐺0) is obtained.

The analysis of the remaining simple groups of Lie type is somewhat facilitated by the fact that d is
at most 4, although a more detailed description of Aut(𝐺0) and its action on root subgroups is needed.
The arguments for the different families of simple groups of Lie type are similar, but each family has its
own peculiarities, so a case-by-case analysis is unavoidable.

We conclude this introduction by giving an outline of the structure of the paper. We begin with
Section 2 in which we set the stage with some notation and preliminary results. Then, invoking the
classification of the finite simple groups, we roughly classify the possibilities for G in Theorem 1. We
notice already in Section 2 that the alternating and sporadic groups can be easily ruled out. Thus, in the
following sections, we look at the different possibilities for the simple groups of Lie type. In Sections 3,
we deal with linear and unitary groups. After that, in Section 4, we give more details on groups of Lie
type, viewed as Chevalley groups, which will be the framework in which we deal with the remaining
cases.

◦ Section 5: groups of type 𝐶𝑛 (𝑞), 𝐵𝑛 (𝑞) and 𝐸7 (𝑞);
◦ Sections 6 and 7: groups of type 𝐸6(𝑞) and 2𝐸6(𝑞);
◦ Section 8: groups of type 2𝐷𝑛 (𝑞);
◦ Sections 10 and 11: groups of type 𝐷𝑛 (𝑞).

Finally, in Section 12, we conclude with the proof of Corollary 2.

2. Notation and preliminary results

In this section, we will present the main strategy for the proof of Theorem 1 and prove some preliminary
results which will also establish the main theorem for some families of almost simple groups. We fix
the notation we will use throughout all the paper.

As usual, if X is a subgroup of group Y, we will denote by 𝐶𝑋 (𝑌 ) and 𝑁𝑋 (𝑌 ) the centraliser and the
normaliser of Y in 𝑋, respectively. Moreover, if 𝑥1, 𝑥2 ∈ 𝑋, then [𝑥1, 𝑥2] = 𝑥−1

1 𝑥−1
2 𝑥1𝑥2.

If X is a matrix, we denote by 𝑡𝑋 the transpose of X.
For a finite group H, let

𝜐 : Aut(𝐻) → Out(𝐻) � Aut(𝐻)/Inn(𝐻)

be the canonical projection. If 𝐺0 is a finite non-abelian simple group, we identify 𝐺0 � Inn(𝐺0), and
from now on, 𝜐 will usually denote the above map for 𝐻 = 𝐺0.

Recall that a subgroup H of a finite group G is said to be a supplement for a normal subgroup N of G if
𝐻𝑁 = 𝐺. The following definition will provide the language we will use in the proof of our main result.

Definition 4. Let H be a finite group. If T is an abelian subgroup of Out(𝐻), we say that 𝑇 � Aut(𝐻)
is a T-abelian supplement if 𝑇 is abelian and surjects onto T in the quotient by Inn(𝐻). An almost
simple group G with socle 𝐺0 is said to be abelian supplemented if 𝑇 = 𝐺/𝐺0 is abelian and there is a
T-abelian supplement in Aut(𝐺0).

Notice in particular that if T and 𝑇 are as in the previous definition and 𝜐(𝐺) = 𝑇 , then 𝐺 = 𝑇𝐺0
with 𝑇 abelian. Therefore, proving Theorem 1 is equivalent to proving that for every non-abelian simple
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Table 2. Index d of 𝐺0 in Inndiag(𝐺0) ..

𝐺0 d

untwisted 𝐴𝑛−1 (𝑞) = PSL𝑛 (𝑞) (𝑛, 𝑞 − 1)
𝐵𝑛 (𝑞) , 𝐶𝑛 (𝑞) (2, 𝑞 − 1)
𝐷𝑛 (𝑞) (4, 𝑞𝑛 − 1)
𝐸6 (𝑞) (3, 𝑞 − 1)
𝐸7 (𝑞) (2, 𝑞 − 1)
𝐸8 (𝑞) , 𝐹4 (𝑞) , 𝐺2 (𝑞) 1

twisted 2𝐴𝑛−1 (𝑞) = PSU𝑛 (𝑞) (𝑛, 𝑞 + 1)
2𝐷𝑛 (𝑞) (4, 𝑞𝑛 + 1)
2𝐸6 (𝑞) (3, 𝑞 + 1)
2𝐵2 (2𝑟 ) , 3𝐷4 (𝑞) ,

2𝐺2 (3𝑟 ) , 2𝐹4 (2𝑟 ) 1

group𝐺0 and every abelian𝑇 � Out(𝐺0), there exists a T-abelian supplement. The strategy of the proof
of Theorem 1 is in fact the following: given 𝐺0, we analyse all the abelian subgroups T of Out(𝐺0)
and, by the classification of the finite simple groups, prove that there exists a T-abelian supplement in
a case-by-case inspection. Actually, it is not necessary to check each abelian subgroup of Out(𝐺0), but
only the maximal abelian ones, as it is shown by the following lemma.

Lemma 5. Let 𝑇 � 𝑆 � Out(𝐺0) with T and S abelian. If there exists an S-abelian supplement, then
there exists a T-abelian supplement as well.

Proof. Let 𝑆 be an S-abelian supplement. Let 𝑇 be the preimage of T by the map 𝜐 |�̃� . Then 𝑇 � 𝑆, and
so it is abelian; moreover, 𝜐(𝑇) = 𝜐 |�̃� (𝑇) = 𝑇 , and so 𝑇 is a T-abelian supplement. �

In particular, whenever Out(𝐺0) is abelian, to prove Theorem 1, it is enough to check that there exists
an Out(𝐺0)-abelian supplement.

Now we will establish some results that give sufficient conditions on Out(𝐺0) and an abelian subgroup
T for the existence of a T-abelian supplement.

Lemma 6. Let T be a cyclic subgroup of Out(𝐻), for a finite group 𝐻. Then there exists a T-abelian
supplement.

Proof. Let 𝑇 = 〈𝑡〉 and let 𝑡 ∈ Aut(𝐻) be a preimage of t under 𝜐. Then 𝑇 = 〈𝑡〉 is a T-abelian
supplement. �

The previous lemma, together with Lemma 5, shows the following.

Corollary 7. If 𝐺0 is a finite non-abelian simple group and Out(𝐺0) is cyclic, then every almost simple
group G with socle 𝐺0 is abelian supplemented. This holds for

◦ 𝐺0 = Alt𝑛, 𝑛 � 5, with 𝑛 ≠ 6;
◦ 𝐺0 = 3𝐷4 (𝑞), 𝐸8(𝑞), 𝐹4 (𝑞), 𝐺2(𝑞),

2𝐵2(2𝑟 ), 2𝐺2 (3𝑟 ), 2𝐹4 (2𝑟 )′;
◦ 𝐺0 is a sporadic simple group.

Noticing that Alt6 � PSL2(9), this corollary reduces our investigation to the groups of Lie type.
In what follows, 𝐺0 = 𝑠𝐿(𝑞) is a simple group of Lie type and 𝑞 = 𝑝𝑚, where p is a prime. The

list of finite simple groups of Lie type and a full explanation of the notation 𝑠𝐿(𝑞) may be found in
Section 4. We denote by d the index of 𝐺0 in Inndiag(𝐺0), the subgroup of Aut(𝐺0) generated by the
inner and diagonal automorphisms of 𝐺0 (see Section 4 or [7] for further details). We give the values of
d in Table 2 to provide a quick reference to look up, since such values play a central role in the proofs.

The Tits group 2𝐹4 (2)′, also considered as a group of Lie type, does not appear in Table 2. It is well
known that Aut(2𝐹4 (2)′) = 2𝐹4 (2), and the extension does not split. We are now able to state another
fundamental ingredient for the proof of Theorem 1.
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Lemma 8. If Aut(𝐻) splits over Inn(𝐻), then there exists a T-abelian supplement for every abelian
𝑇 � Out(𝐻).

Proof. Let K be a complement of Inn(𝐻) in Aut(𝐻). Then 𝐾 � Out(𝐻) and the subgroup of K
corresponding to T is a T-abelian supplement. �

In [17], Lucchini, Menegazzo and Morigi gave a complete classification of all simple groups of Lie
type 𝐺0 for which Aut(𝐺0) splits over 𝐺0. Their main result is the following.

Theorem 9. Let 𝐺0 = 𝑠𝐿𝑛 (𝑞) be a simple group of Lie type, 𝑞 = 𝑝𝑚. Then Aut(𝐺0) splits over 𝐺0 if
and only if one of the following conditions holds:

(1) 𝐺0 is untwisted, not of type 𝐷𝑛 (𝑞), and (
𝑞−1
𝑑 , 𝑑, 𝑚) = 1;

(2) 𝐺0 = 𝐷𝑛 (𝑞) and (
𝑞𝑛−1
𝑑 , 𝑑, 𝑚) = 1;

(3) 𝐺0 is twisted, not of type 2𝐷𝑛 (𝑞) or 2𝐹4 (2)′, and (
𝑞+1
𝑑 , 𝑑, 𝑚) = 1;

(4) 𝐺0 = 2𝐷𝑛 (𝑞), and either n is odd or 𝑝 = 2.

We are now ready to begin the investigation of the various types of almost simple groups, starting
with the ones with linear socle.

3. Linear amd unitary groups

In this section, we prove Theorem 1 in the linear case. We begin with the easiest case 𝑛 = 2, which is
better understood on its own and gives us an explicit model for the more general setting. Then we deal
with the case 𝑛 � 3. More specifically, we prove some technical lemmas and analyse all the different
types of maximal abelian subgroups T of the outer automorphism group, showing the existence of
T-abelian supplements in each case. Finally, the main result of this section is contained in Theorem 19.

We start by recalling the structure of the automorphism group of PSL𝑛 (𝑞) (a more detailed description
can be found in [23, 3.3.4]). The group PGL𝑛 (𝑞) acts as a group of automorphisms of PSL𝑛 (𝑞), and
the corresponding quotient group PGL𝑛 (𝑞)/PSL𝑛 (𝑞) is a cyclic group of order 𝑑 = (𝑛, 𝑞 − 1), called
the group of diagonal outer automorphisms. This group is generated by the element 𝛿 corresponding
to the automorphism of GL𝑛 (𝑞) induced by the conjugation with the diagonal matrix diag(𝜆, 1 . . . , 1),
being 𝜆 a generator of the multiplicative group F×𝑞 . The automorphism group of the field F𝑞 of order
𝑞 = 𝑝𝑚 is a cyclic group of order m generated by the Frobenius automorphism 𝑥 ↦→ 𝑥𝑝 . This induces
an automorphism 𝜙 of GL𝑛 (𝑞) by mapping each matrix entry to its p-th power. We denote by ΓL𝑛 (𝑞)
the semidirect product of GL𝑛 (𝑞) with this group of field automorphisms, and correspondingly the
extension of PGL𝑛 (𝑞) by the induced group of field automorphisms is denoted by PΓL𝑛 (𝑞). The duality
automorphism of GL𝑛 (𝑞) is the map that takes a matrix to the transpose of its inverse. For 𝑛 = 2, this
duality map is an inner automorphism of SL2 (𝑞). For 𝑛 > 2, the duality automorphism induces an
automorphism 𝛾 of PSL𝑛 (𝑞) of order 2 that spans Aut(PSL𝑛 (𝑞))/PΓL𝑛 (𝑞). We shall identify field and
graph automorphisms with their corresponding images in Out(PSL𝑛 (𝑞)). They generate a subgroup
〈𝜙, 𝛾〉 which is isomorphic to the direct product of a cyclic group of order m with a cyclic group of
order 2. It can be easily seen that 𝛿𝜙 = 𝛿𝑝 and 𝛿𝛾 = 𝛿−1.

We identify the general unitary group GU𝑛 (𝑞) as the subgroup of the unitary matrices of GL𝑛 (𝑞
2).

Let 𝐺0 := PSU𝑛 (𝑞). The quotient PGU𝑛 (𝑞)/PSU𝑛 (𝑞) is cyclic of order 𝑑 = (𝑛, 𝑞 + 1), generated by
the automorphism 𝛿 induced by the conjugation with the diagonal matrix diag(𝜆, 1, . . . , 1), denoting by
𝜆 and element of the field F𝑞2 of order 𝑞 + 1. The outer automorphism group of 𝐺0 is described in [23,
3.6.3]. We have

Out(𝐺0) = 〈𝛿〉 � 〈𝜙〉,

where 𝜙 is the field automorphism which raises the coefficients of every matrix to the power p. In
particular, we have |𝜙| = 2𝑚 and 𝛿𝜙 = 𝛿𝑝 .
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Theorem 10. Let G be a finite almost simple group with socle 𝐺0 = PSL2 (𝑞). Then G contains an
abelian subgroup H such that 𝐺 = 𝐻𝐺0.

Proof. Let 𝑍 := Z(GL2(𝑞)). We can suppose that q is odd; otherwise, 𝑑 = 1 and Aut(𝐺0) splits over
𝐺0. In this case, Out(𝐺0) = 〈𝛿〉 × 〈𝜙〉, with |𝛿 | = 2, |𝜙| = 𝑚 and [𝛿, 𝜙] = 1. So Out(𝐺0) is abelian, and
by Lemma 5, it is enough to prove the case 𝐺 = Aut(𝐺0).

Let

𝐴 :=
(
0 −𝜆
1 0

)
. 𝐵 :=

(
𝜆

𝑝−1
2 0

0 1

)
.

We have

𝐴𝜙𝐵 =

(
𝜆

1−𝑝
2 0

0 1

) (
0 −𝜆𝑝

1 0

) (
𝜆

𝑝−1
2 0

0 1

)
=

(
0 −𝜆

𝑝+1
2

𝜆
𝑝−1

2 0

)
= 𝜆

𝑝−1
2 𝐴.

Therefore,

[𝐴, 𝜙𝐵] ∈ 𝑍,

𝜐(𝐴𝑍) = 𝛿, and 𝜐(𝜙𝐵𝑍) can be 𝜙𝛿 or 𝜙. In any case,

𝜐(〈𝐴𝑍, 𝜙𝐵𝑍〉) = Out(𝐺0),

and therefore,

〈𝐴, 𝜙𝐵〉𝑍/𝑍

is an Out(𝐺0)-abelian supplement. �

From now on, 𝐺0 ∈ {PSL𝑛 (𝑞), PSU𝑛 (𝑞)} with 𝑛 � 3, so 𝑑 = (𝑛, 𝑞 + 𝑒), with 𝑒 = −1 in the linear
case, 𝑒 = 1 in the unitary case. We write also Z for the center of GL𝑛 (𝑞) or GU𝑛 (𝑞), respectively. If
𝐺0 = PSL𝑛 (𝑞), then Out(𝐺0) = 〈𝛿〉 � 〈𝜙, 𝛾〉, with |𝜙| = 𝑚, |𝛾 | = 2, [𝜙, 𝛾] = 1, 𝛿𝜙 = 𝛿𝑝 and 𝛿𝛾 = 𝛿−1.
If 𝐺0 = PSU𝑛 (𝑞), then Out(𝐺0) = 〈𝛿〉 � 〈𝜙〉, with |𝜙| = 2𝑚 and 𝛿𝜙 = 𝛿𝑝 .

The following lemma shows that in order to prove Theorem 1 in the linear and unitary cases when
𝑛 � 3, it is sufficient to investigate only two cases, which we will deal with in Propositions 15 and 18,
respectively.

Lemma 11. To prove Theorem 1 in the linear and unitary case when 𝑛 � 3, we can reduce our
investigation to finding abelian supplements for the abelian subgroups 𝑇 � Out(𝐺0) of the following
form:

(1) 𝑇 =
〈
𝛿𝑘 , 𝜙𝑠𝛾𝜀𝛿 𝑗

〉
with 𝜀 ∈ {0, 1}, 𝑘 | 𝑑 and 𝑘 ≠ 𝑑;

(2) 𝑇 =
〈
𝛿𝑑/2, 𝜙𝑠𝛿 𝑗 , 𝛾𝛿𝑘

〉
with d even.

Notice that for unitary groups, case (2) does not occur, and in case (1), 𝜀 = 0.

Proof. Proving Theorem 1 for an almost simple group𝐺0 is equivalent to finding a T-abelian supplement
for every abelian 𝑇 � Out(𝐺0). By Corollary 7, we can assume that T is not cyclic. Let 𝜋 : Out(𝐺0) →
Out(𝐺0)/〈𝛿〉 = 〈𝜙, 𝛾〉. If 𝜋(𝑇) = 〈𝜙𝑠𝛾𝜀〉 is cyclic, then T is of the form 𝑇 =

〈
𝛿𝑘 , 𝜙𝑠𝛾𝜀𝛿 𝑗

〉
with 𝑘 | 𝑑,

and we are in case (1). If 𝜋(𝑇) is not cyclic, then 𝜋(𝑇) = 〈𝜙𝑠 , 𝛾〉. Suppose d is odd. Then T is 2-
generated and of the form 𝑇 =

〈
𝜙𝑠𝛿 𝑗 , 𝛾𝛿𝑘

〉
. Since d is odd, 𝛾𝛿𝑘 is conjugate to 𝛾 in 〈𝛿, 𝛾〉, so up to

conjugation, we can assume 𝑘 = 0 and therefore 𝛿 𝑗 = 1, since [𝜙𝑠𝛿 𝑗 , 𝛾] = 1; therefore, 𝑇 := 𝑇 is a T-
abelian supplement. Suppose d is even. If T is 2-generated, it is of the form 𝑇 =

〈
𝜙𝑠𝛿 𝑗 , 𝛾𝛿𝑘

〉
, and since

𝛿𝑑/2 ∈ Z(Out(𝐺0)), T is contained in an abelian subgroup of Out(𝐺0) of the form
〈
𝛿𝑑/2, 𝜙𝑠𝛿 𝑗 , 𝛾𝛿𝑘

〉
,
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and we are in case (2). If it is 3-generated, it is of the form 𝑇 =
〈
𝛿𝑙 , 𝜙𝑠𝛿 𝑗 , 𝛾𝛿𝑘

〉
, and in order to be

abelian, we should have [𝛿𝑙 , 𝛾𝛿𝑘 ] = 1; therefore, 𝑙 = 𝑑/2, and again we are in case (2). �

In the sequel, we will use a lot the following special matrices defined from some integers 𝑤, 𝑙, 𝑐 ∈ Z
with 𝑤 � 2 (we choose to define such matrices only for 𝑤 � 2 to avoid ambiguity in the definition and
behaviour when 𝑤 = 1; this choice is irrelevant in the proofs). Let F be the algebraic closure of the field
with p elements and 𝜆 be an element of F of order 𝑞 + 𝑒, with 𝑒 ∈ {−1, 1}. Then we define

𝐴𝑤,𝑙 :=

�						


0 0 . . . 0 (−1)𝑤−1𝜆𝑙

1 0 . . . 0 0
0 1 . . . 0 0
...
...
. . .

...
...

0 0 . . . 1 0

�������
∈ GL𝑤 (F)

and

𝑋𝑤,𝑐 :=

�						


𝜆𝑐 (𝑤−1) 0 · · · 0 0
0 𝜆𝑐 (𝑤−2) · · · 0 0
...

...
. . .

...
...

0 0 · · · 𝜆𝑐 0
0 0 · · · 0 1

�������
∈ GL𝑤 (F).

Notice that

det 𝐴𝑤,𝑙 = 𝜆
𝑙 .

Remark 12. Notice that 𝐴𝑤,𝑙 and 𝑋𝑤,𝑐 can be viewed as elements of GL𝑛 (𝑞) if 𝑒 = −1 and as elements
of GU𝑛 (𝑞) if 𝑒 = 1.

We now introduce a technical lemma which is the key ingredient of the proofs in this section.

Lemma 13. Let 𝑤, 𝑙, 𝑐 ∈ Z be integers with 𝑤 � 2 and

𝐴 := 𝐴𝑤,𝑙 (𝜆) 𝑋 := 𝑋𝑤,𝑐 (𝜆).

If

𝑐𝑤 ≡ 𝑙 𝑝𝑠 (−1) 𝜀 − 𝑙 mod 𝑞 + 𝑒,

then we have

𝐴𝜙
𝑠𝛾𝜀𝑋 = 𝜆𝑐𝐴.

Proof. First, notice that

𝐴𝛾 =

�						


0 0 . . . 0 (−1)𝑤−1𝜆−𝑙

1 0 . . . 0 0
0 1 . . . 0 0
...
...
. . .

...
...

0 0 . . . 1 0

�������
,
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and therefore,

𝐴𝜙
𝑠𝛾𝜀

=

�						


0 0 . . . 0 (−1)𝑤−1𝜆𝑙 𝑝
𝑠 (−1) 𝜀

1 0 . . . 0 0
0 1 . . . 0 0
...
...
. . .

...
...

0 0 . . . 1 0

�������
.

The statement follows by computing the action of 𝐴𝜙𝑠𝛾𝜀𝑋 and 𝜆𝑐𝐴 on the canonical basis. �

We show now the existence of T-abelian supplements for T of type (1). We start with the following
lemma.

Lemma 14. Let 𝑛, 𝑚 � 1, and 𝑑 = (𝑛, 𝑚). Then there exists an integer y such that 𝑦𝑛 ≡ 𝑑 mod 𝑚 and
(𝑦, 𝑑) = 1. In particular, we find an integer y such that 𝑦𝑛 ≡ 𝑑 mod 𝑞 + 𝑒 and (𝑦, 𝑑) = 1.

Proof. Since
(
𝑛
𝑑 ,

𝑚
𝑑

)
= 1, there exists 𝑦 ∈ Z such that 𝑦 𝑛𝑑 ≡ 1 mod 𝑚

𝑑 . Now let

𝑑 = 𝑝𝛼1
1 . . . 𝑝

𝛼𝑙

𝑙
𝑝
𝛼𝑙+1
𝑙+1

. . . 𝑝𝛼𝑙

𝑙

be its prime factorisation, where we have ordered the primes in a way such that 𝑝𝑖 divides 𝑦 if and only
if 1 � 𝑖 � 𝑙.

Let

𝑦 = 𝑦 + 𝑝𝑙+1 · · · 𝑝𝑙
𝑚

𝑑
.

For every 𝑝𝑖 , we have that 𝑝𝑖 does not divide y because if 1 � 𝑖 � 𝑙, then 𝑦 is divisible by 𝑝𝑖 while
𝑝𝑙+1 · · · 𝑝𝑙

𝑚
𝑑 is not (since (𝑦, 𝑚𝑑 ) = 1), and if 𝑙 < 𝑖 � 𝑙, 𝑝𝑖 divides 𝑝𝑙+1 · · · 𝑝𝑙

𝑚
𝑑 but not 𝑦. Therefore,

(𝑦, 𝑑) = 1; moreover, 𝑦 ≡ 𝑦 mod 𝑚
𝑑 and 𝑦𝑛 ≡ 𝑑 mod 𝑚. �

Proposition 15. Let 𝑇 =
〈
𝛿𝑘 , 𝜙𝑠𝛾𝜀𝛿 𝑗

〉
be abelian with 𝑘 | 𝑑 and 𝑘 ≠ 𝑑. Then there exists a T-abelian

supplement.

Proof. By Lemma 14, there exists 𝑦 ∈ Z such that 𝑦𝑛 ≡ 𝑑 mod 𝑞 + 𝑒 and (𝑦, 𝑑) = 1. Since T is abelian,

𝛿𝑘 = (𝛿𝑘 )𝜙
𝑠𝛾𝜀 𝛿 𝑗

= 𝛿𝑘 𝑝
𝑠 (−1) 𝜀 ,

which means 𝑑 | 𝑘 ((−1) 𝜀 𝑝𝑠 − 1) or, equivalently,

𝑡 | (−1) 𝜀 𝑝𝑠 − 1, 𝑡 := 𝑑/𝑘.

First, suppose 𝑡 = 𝑛, so 𝑡 = 𝑑 = 𝑛 and 𝑘 = 1. In this case, 𝑇 = 〈𝛿, 𝜙𝑠𝛾𝜀〉 and

𝑇 :=
〈
𝐴𝑛,1, 𝜙

𝑠𝛾𝜀𝑋
𝑛, (−1) 𝜀 𝑝𝑠−1

𝑛

〉
𝑍/𝑍

is a T-abelian supplement since 𝜐(𝐴𝑛,1𝑍) = 𝛿 and by applying Lemma 13 with

(𝑤, 𝑙, 𝑐) =

(
𝑛, 1,

(−1) 𝜀 𝑝𝑠 − 1
𝑛

)
,

we have [
𝐴𝑛,1, 𝜙

𝑠𝛾𝜀𝑋
𝑛, (−1) 𝜀 𝑝𝑠−1

𝑛

]
∈ 𝑍.

So in the sequel, we can suppose 𝑡 ≠ 𝑛.
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Step 1. We construct matrices 𝐴, 𝑋 such that det 𝐴 = 𝜆𝑘 and [𝐴, 𝜙𝑠𝛾𝜀𝑋] ∈ 𝑍 .

Since 𝑡 | 𝑛 and 𝑡 ≠ 1, 𝑛, we have that both 𝑡 � 2 and 𝑛 − 𝑡 � 2, and so we can define

𝐴 :=
(
𝐴𝑡 ,𝑦 0

0 𝐴𝑛−𝑡 ,𝑘−𝑦

)
.

First, notice that

det 𝐴 = det 𝐴𝑡 ,𝑦 det 𝐴𝑛−𝑡 ,𝑘−𝑦 = 𝜆𝑦𝜆𝑘−𝑦 = 𝜆𝑘 ;

therefore 𝜐(𝐴𝑍) = 𝛿𝑘 .
Let 𝑟 := ((−1) 𝜀 𝑝𝑠 − 1)/𝑡 and define

𝑋 :=
(
𝑋𝑡 ,𝑦𝑟 0

0 𝑋𝑛−𝑡 ,𝑦𝑟

)
.

We have that

𝑦(𝑝𝑠 (−1) 𝜀 − 1) = 𝑦𝑟𝑡 mod 𝑞 + 𝑒,

so applying Lemma 13 with (𝑤, 𝑙, 𝑐) = (𝑡, 𝑦, 𝑦𝑟), we get

𝐴
𝜙𝑠𝛾𝜀𝑋𝑡,𝑦𝑟

𝑡 ,𝑦 = 𝜆𝑦𝑟 𝐴𝑡 ,𝑦 .

Moreover, recalling that 𝑘𝑡 = 𝑑 ≡ 𝑛𝑦 mod 𝑞 + 𝑒, we have that

(𝑘 − 𝑦) (𝑝𝑠 (−1) 𝜀 − 1) = (𝑘 − 𝑦)𝑟𝑡 = 𝑘𝑟𝑡 − 𝑦𝑟𝑡 = 𝑦𝑟 (𝑛 − 𝑡) mod 𝑞 + 𝑒,

so applying Lemma 13 with (𝑤, 𝑙, 𝑐) = (𝑛 − 𝑡, 𝑘 − 𝑦, 𝑦𝑟), we get

𝐴
𝜙𝑠𝛾𝜀𝑋𝑛−𝑡,𝑦𝑟

𝑛−𝑡 ,𝑘−𝑦 = 𝜆𝑦𝑟 𝐴𝑛−𝑡 ,𝑘−𝑦 .

Therefore, we have

𝐴𝜙
𝑠𝛾𝜀𝑋 = 𝜆𝑦𝑟 𝐴

or, equivalently,

[𝐴, 𝜙𝑠𝛾𝜀𝑋] ∈ 𝑍.

Step 2. We find a matrix C such that [𝐴,𝐶] = 1 with det𝐶 = 𝜆. Moreover, 𝐶 ∈ GL𝑛 (𝑞) if 𝑒 = −1,
𝐶 ∈ GU𝑛 (𝑞) if 𝑒 = 1.

Recall that (𝑦, 𝑡) = 1, so there exist 𝑎, 𝑏 ∈ Z such that 𝑎𝑦 + 𝑏𝑡 = 1. Let

𝐶0 := 𝜆𝑏𝐴𝑎𝑡,𝑦 .

We have that [𝐴𝑡 ,𝑦 , 𝐶0] = 1 and

det𝐶0 = det 𝐴𝑡 ,𝑦 𝑎𝜆𝑏𝑡 = 𝜆𝑎𝑦+𝑏𝑡 = 𝜆.
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10 M. Costantini, A. Lucchini and D. Nemmi

Let

𝐶 :=
(
𝐶0 0
0 1

)
.

We have [𝐴,𝐶] = 1 and det𝐶 = det𝐶0 = 𝜆.

Step 3. We complete the proof by constructing a T-abelian supplement.

Let 𝑢 ∈ Z such that 𝜐(𝑋𝑍) = 𝛿𝑢 . Combining Steps 1 and 2, we get

[𝐴, 𝜙𝑠𝛾𝜀𝑋𝐶 𝑗−𝑢] ∈ 𝑍,

with 𝜐(𝐴𝑍) = 𝛿𝑘 and 𝜐(𝑋𝐶 𝑗−𝑢𝑍) = 𝛿𝑢𝛿 𝑗−𝑢 = 𝛿 𝑗 . Therefore,

𝑇 :=
〈
𝐴, 𝜙𝑠𝛾𝜀𝑋𝐶 𝑗−𝑢

〉
𝑍/𝑍

is a T-abelian supplement. �

To continue our investigation, we need a few more lemmas.

Lemma 16. Let 𝐴, 𝐵 ∈ GL𝑛 (𝑞). Then

[𝜙𝑠𝐴, 𝛾𝐵] = 1

if and only if

𝐵 = 𝐴𝑇 𝐵𝜙𝑠
𝐴.

Proof. Easy computation. �

Lemma 17. Assume that we are in linear case, so 𝑒 = −1 and 𝜆 is an element of order 𝑞 − 1 in F𝑞 . If
𝛼, 𝛽 ∈ Z are such that

𝛽 ≡ 2𝛼 + 𝑝𝑠𝛽 mod 𝑞 − 1,

then

[𝜙𝑠𝑋𝑤,𝛼, 𝛾𝑋𝑤,𝛽] = 1.

Proof. Since 𝑋𝑤,𝛼, 𝑋𝑤,𝛽 are diagonal, for Lemma 16, we just need to check that

𝑋𝑤,𝛽 = 𝑋𝑤,𝛼𝑋
𝑝𝑠

𝑤,𝛽𝑋𝑤,𝛼 .

By inspecting the coefficients on the diagonal, for every 1 � 𝑖 � 𝑤, we have

𝜆𝛽 (𝑤−𝑖) = 𝜆 (2𝛼+𝑝
𝑠𝛽) (𝑤−𝑖) = 𝜆𝛼(𝑤−𝑖)𝜆𝑝

𝑠𝛽 (𝑤−𝑖)𝜆𝛼(𝑤−𝑖) ,

by the hypothesis on 𝛼 and 𝛽. �

We show now the existence of T-abelian supplements for T of type (2). Remember that this case
occurs only when T is linear.

Proposition 18. Let d be even and suppose T is abelian of the form 𝑇 =
〈
𝛿𝑑/2, 𝜙𝑠𝛿 𝑗 , 𝛾𝛿𝑘

〉
. Then we can

find a T-abelian supplement.
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Proof. As in the previous case, this proof is articulated in different steps.

Step 1. We find an integer 𝑦 ∈ Z such that 𝑦𝑛 ≡ 𝑑 mod 𝑞 − 1 and y is odd.

This follows from Lemma 14 and the fact that 𝑑 = (𝑛, 𝑞 − 1) is assumed to be even.

Step 2. We construct matrices 𝐴, 𝑋𝜙 , 𝑋𝛾 ∈ GL𝑛 (𝑞) such that det 𝐴 = 𝜆𝑑/2 and 𝑇1 :=〈
𝐴, 𝜙𝑠𝑋𝜙 , 𝛾𝑋𝛾

〉
𝑍/𝑍 is abelian.

Since 𝑛 − 2 � 2, we can define

𝐴 :=
(
𝐴2,𝑦 0

0 𝐴𝑛−2,𝑑/2−𝑦

)
,

so that 𝜐(𝐴𝑍) = 𝛿𝑑/2 since

det 𝐴 = det 𝐴2,𝑦 det 𝐴𝑛−2,𝑑/2−𝑦 = 𝜆𝑦𝜆𝑑/2−𝑦 = 𝜆𝑑/2.

Let 𝑟 := (𝑝𝑠 − 1)/2. Considering the automorphisms 𝜙𝑠 and 𝛾, let us now argue as in Step 1 of
Proposition 15 and construct

𝑋𝜙 :=
(
𝑋2,𝑦𝑟 0

0 𝑋𝑛−2,𝑦𝑟

)
,

so that

𝐴𝜙
𝑠𝑋𝜙 = 𝜆𝑦𝑟 𝐴,

and

𝑋𝛾 :=
(
𝑋2,−𝑦 0

0 𝑋𝑛−2,−𝑦

)
,

so that

𝐴𝛾𝑋𝛾 = 𝜆−𝑦𝐴.

Since

−𝑦 ≡ 2𝑦𝑟 − 𝑦𝑝𝑠 mod 𝑞 − 1,

by Lemma 17, we have [
𝜙𝑠𝑋2,𝑦𝑟 , 𝛾𝑋2,−𝑦

]
=

[
𝜙𝑠𝑋𝑛−2,𝑦𝑟 , 𝛾𝑋𝑛−2,−𝑦

]
= 1,

and therefore, [
𝜙𝑠𝑋𝜙 , 𝛾𝑋𝛾

]
= 1.

From this, we obtain that

𝑇1 :=
〈
𝐴, 𝜙𝑠𝑋𝜙 , 𝛾𝑋𝛾

〉
𝑍/𝑍

is abelian.

Step 3. We construct matrices 𝑋 ′
𝜙 , 𝑋

′
𝛾 ∈ GL𝑛 (𝑞) such that det 𝑋 ′

𝛾 = 𝜆𝑦 det 𝑋𝛾 and 𝑇2 :=〈
𝐴, 𝜙𝑠𝑋 ′

𝜙 , 𝛾𝑋
′
𝛾

〉
𝑍/𝑍 is abelian.
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Let us define

𝐶𝜙 :=
(
𝐴−𝑟

2,𝑦 0
0 1

)
∈ GL𝑛 (𝑞), 𝐶𝛾 :=

(
𝐴2,𝑦 0

0 1

)
∈ GL𝑛 (𝑞),

and

𝑋 ′
𝜙 := 𝑋𝜙𝐶𝜙 , 𝑋 ′

𝛾 := 𝑋𝛾𝐶𝛾 .

Since 𝐶𝜙 , 𝐶𝛾 ∈ 𝐶GL𝑛 (𝑞) (𝐴), we have

𝐴𝜙
𝑠𝑋 ′

𝜙 = 𝜆𝑦𝑟 𝐴, 𝐴𝛾𝑋
′
𝛾 = 𝜆−𝑦𝐴.

A straightforward computation shows also that[
𝜙𝑠𝑋 ′

𝜙 , 𝛾𝑋
′
𝛾

]
= 1.

Therefore,

det 𝑋 ′
𝛾 = det 𝑋𝛾 det𝐶𝛾 = det 𝑋𝛾 det 𝐴2,𝑦 = 𝜆𝑦 det 𝑋𝛾 ,

and

𝑇2 :=
〈
𝐴, 𝜙𝑠𝑋 ′

𝜙 , 𝛾𝑋
′
𝛾

〉
𝑍/𝑍

is abelian.

Step 4. We complete the proof by constructing a T-abelian supplement.

Let 𝜐(𝑋𝛾𝑍) = 𝛿𝑢 for some 𝑢 ∈ Z, so 𝜐(𝑋 ′
𝛾𝑍) = 𝛿

𝑦+𝑢 . Given that y is odd, one of 𝑢 − 𝑘 or 𝑦 + 𝑢 − 𝑘 is
even. Since 𝛾𝛿𝑥 is conjugate to 𝛾𝛿𝑦 in 〈𝛿, 𝛾〉 if 𝑦 − 𝑥 is even, one of 𝛾𝛿𝑢 or 𝛾𝛿𝑢+𝑦 is conjugate to 𝛾𝛿𝑘 .

Let

𝑇 :=

{
𝑇1 if 𝑢 − 𝑘 is even
𝑇2 if 𝑢 + 𝑦 − 𝑘 is even

,

so that there exists a matrix 𝑅 ∈ GL𝑛 (𝑞) such that 𝜐(𝑇𝑅) =
〈
𝛿𝑑/2, 𝜙𝑠𝛿𝑙 , 𝛾𝛿𝑘

〉
for some 𝑙 ∈ Z. Notice that

this group being abelian means 2𝑙 ≡ −𝑘 (𝑝𝑠 − 1) mod 𝑑. In the same way, since 𝑇 =
〈
𝛿𝑑/2, 𝜙𝑠𝛿 𝑗 , 𝛾𝛿𝑘

〉
is abelian, it means that 2 𝑗 ≡ −𝑘 (𝑝𝑠 − 1) mod 𝑑, but then 2𝑙 ≡ 2 𝑗 mod 𝑑, which means 𝑙 ≡ 𝑗 mod 𝑑/2
and 𝜐(𝑇𝑅) = 𝑇 . Therefore, 𝑇 := 𝑇𝑅 is a T-abelian supplement. �

We have therefore proved Theorem 1 in the linear and unitary cases.

Theorem 19. Let G be an almost simple group with socle 𝐺0 ∈ {PSL𝑛 (𝑞), PSU𝑛 (𝑞)}. If 𝐺/𝐺0 is
abelian, then G contains an abelian subgroup H such that 𝐺 = 𝐻𝐺0.

4. Notation for groups of Lie type

By Theorem 9 and Table 2, to prove Theorem 1, we are left to deal with the following cases:

𝐵𝑛 (𝑞), 𝐶𝑛 (𝑞), 𝐷𝑛 (𝑞), 𝐸7 (𝑞), 𝑞 = 𝑝𝑚, 𝑝 ≠ 2,
2𝐷𝑛 (𝑞), 𝑞 = 𝑝𝑚, 𝑝 ≠ 2, 𝑛 even,

𝐸6(𝑞), 𝑞 = 𝑝𝑚, 𝑞 ≡ 1 mod 3,
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and

2𝐸6(𝑞), 𝑞 = 𝑝𝑚, 𝑞 ≡ −1 mod 3.

We give a brief introduction of the tools that we are going to use.
For the definitions and automorphisms of simple groups of Lie type, we refer to [7] (see also [20]).

The automorphism groups of the finite simple groups of Lie type (untwisted and twisted) have been
determined by Steinberg in [19] and by Griess, Lyons in [12]. We denote by F𝑞 the field with 𝑞 = 𝑝𝑚

elements, where p is a prime. We briefly recall that the Chevalley group (or untwisted group of Lie type)
𝐿(𝑞), viewed as a group of automorphisms of a Lie algebra 𝐿F𝑞 over F𝑞 , obtained from a complex finite
dimensional simple Lie algebra L, is the group generated by certain automorphisms 𝑥𝛼 (𝑡), where t runs
over F𝑞 and 𝛼 runs over the root system Φ associated to L. The finite untwisted groups of Lie type 𝐿(𝑞)
are

𝐴𝑛 (𝑞), 𝑛 � 1, 𝐵𝑛 (𝑞), 𝐶𝑛 (𝑞), 𝑛 � 2, 𝐷𝑛 (𝑞), 𝑛 � 4, 𝐸6 (𝑞), 𝐸7(𝑞), 𝐸8 (𝑞), 𝐹4 (𝑞), 𝐺2(𝑞).

It is well known that 𝐿(𝑞) is simple, except in the case 𝐿(𝑞) = 𝐴1(2), 𝐴1(3), 𝐵2(2),𝐺2(2) ([7, Theorem
11.1.2]). The groups 𝐴1 (2), 𝐴1 (3) are soluble. The group 𝐵2 (2) is isomorphic to 𝑆6. The derived group
of 𝐺2 (2) is isomorphic to PSU3(3).

For every 𝛼 ∈ Φ, 𝑡 ∈ F×𝑞 , one defines 𝑛𝛼 (𝑡) = 𝑥𝛼 (𝑡)𝑥−𝛼 (−𝑡−1)𝑥𝛼 (𝑡), 𝑛𝛼 = 𝑛𝛼 (1) and the subgroup
𝑁 = 〈𝑛𝛼 (𝑡) | 𝛼 ∈ Φ, 𝑡 ∈ F×𝑞〉 of 𝐿(𝑞).

Let Δ = {𝛼1, . . . , 𝛼𝑛} be a system of simple roots of Φ. We shall use the numbering and the
description of the simple roots in terms of the canonical basis (𝑒1, . . . , 𝑒𝑟 ) of an appropriate R𝑟 as in
[1], Planches I-IX. We denote by Q the root lattice, by P the weight lattice and by W the Weyl group; 𝑠𝑖
is the simple reflection associated to 𝛼𝑖 , {𝜔1, . . . , 𝜔𝑛} are the fundamental weights, 𝑤0 is the longest
element of W, and 𝐴 = (𝑎𝑖 𝑗 ) is the Cartan matrix (hence, 𝛼𝑖 =

∑
𝑗 𝑎𝑖 𝑗𝜔 𝑗 ).

Let Hom(𝑄, F×𝑞) be the group of F𝑞-characters of Q (i.e., group homomorphisms from Q to
F
×
𝑞). For any 𝜒 ∈ Hom(𝑄, F×𝑞), one defines the automorphism ℎ(𝜒) of 𝐿F𝑞 ([7, p. 98]). Let
�̂� = {ℎ(𝜒) | 𝜒 ∈ Hom(𝑄, F×𝑞)}. The map 𝜒 ↦→ ℎ(𝜒) is an isomorphism of Hom(𝑄, F×𝑞) onto
�̂�. We have �̂� � 𝑁Aut𝐿F𝑞 (𝐿(𝑞)). The automorphism of 𝐿(𝑞) induced by ℎ(𝜒) maps 𝑥𝛼 (𝑡) to
ℎ(𝜒)𝑥𝛼 (𝑡)ℎ(𝜒)

−1 = 𝑥𝛼 (𝜒(𝛼)𝑡) ([7, p. 100]). Let 𝐻 = �̂� ∩ 𝐿(𝑞). Then ℎ(𝜒) lies in H if and only
if 𝜒 can be extended to an F𝑞-character of P. The number d in Table 2 relative to the untwisted case
is the order of �̂�/𝐻. We denote by Inndiag(𝐿(𝑞)) the group 𝐿(𝑞)�̂�, the group of inner-diagonal au-
tomorphisms of 𝐿(𝑞). Any automorphism 𝜙 of F𝑞 induces a field automorphism, still denoted by 𝜙, of
𝐿(𝑞), which is defined by 𝑥𝛼 (𝑡)𝜙 = 𝑥𝛼 (𝑡

𝜙). In particular, the automorphism 𝑥 ↦→ 𝑥𝑝 of F𝑞 induces
the field automorphism denoted by 𝑔 ↦→ 𝑔 [𝑝] of 𝐿(𝑞). Note that ℎ(𝜒) [𝑝] = ℎ(𝜒) 𝑝 = ℎ(𝑝𝜒) for every
F𝑞-character 𝜒 of Q.

We recall that a symmetry of the Dynkin diagram of 𝐿(𝑞) is a permutation 𝜌 of the nodes of the
diagram, such that the number of bonds joining nodes i, j is the same as the number of bonds joining
nodes 𝜌(𝑖), 𝜌( 𝑗), for any 𝑖 ≠ 𝑗 . A nontrivial symmetry 𝜌 of the Dynkin diagram can be extended to
a map of the space 𝐸 = R𝑃 into itself (an isometry if 𝐿 = 𝐴𝑛, 𝐷𝑛, 𝐸6), still denoted by 𝜌. This map
yields an outer automorphism, again denoted by 𝜌, of 𝐿(𝑞); 𝜌 is said to be a graph automorphism of
𝐿(𝑞) (see [7, p. 200–210] for the detailed description). It is defined as follows.

(a) If 𝐿(𝑞) = 𝐴𝑛 (𝑞), 𝑛 � 2, 𝐷𝑛 (𝑞), 𝐸6 (𝑞)

𝑥𝛼 (𝑡)
𝜌 = 𝑥𝜌(𝛼) (𝛾𝛼𝑡),

where 𝛼 ∈ Φ, 𝑡 ∈ F𝑞 , 𝛾𝛼 ∈ Z; the 𝛾𝛼 can be chosen so that 𝛾𝛼 = 1 if 𝛼 ∈ ±Δ .
(b) If 𝐿(𝑞) = 𝐵2 (𝑞), 𝐹4 (𝑞) and 𝑞 = 2𝑚

𝑥𝛼 (𝑡)
𝜌 = 𝑥𝜌(𝛼) (𝑡

𝜆(𝜌(𝛼)) ),
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where 𝛼 ∈ Φ, 𝑡 ∈ F𝑞 , 𝜆(𝛼) = 1 if 𝛼 is short, 𝜆(𝛼) = 2 if 𝛼 is long. Note that 𝜌2 is the field
automorphism 𝑥𝛼 (𝑡) ↦→ 𝑥𝛼 (𝑡

2), so 𝜌 has order 2𝑚.
(c) If 𝐿(𝑞) = 𝐺2 (𝑞) and 𝑞 = 3𝑚

𝑥𝛼 (𝑡)
𝜌 = 𝑥𝜌(𝛼) (𝑡

𝜆(𝜌(𝛼)) ),

where 𝛼 ∈ Φ, 𝑡 ∈ F𝑞 , 𝜆(𝛼) = 1 if 𝛼 is short, 𝜆(𝛼) = 3 if 𝛼 is long. Note that 𝜌2 is the field
automorphism 𝑥𝛼 (𝑡) ↦→ 𝑥𝛼 (𝑡

3), so 𝜌 has order 2𝑚.

Graph and field automorphisms commute; the subgroup R they generate (denoted by Φ𝐾Γ𝐾 in [11,
Theorem 2.5.12]) normalises Inndiag(𝐿(𝑞)). We have

𝐿(𝑞) � 𝐿(𝑞)�̂� = Inndiag(𝐿(𝑞)) � Inndiag(𝐿(𝑞)) : 𝑅 = Aut(𝐿(𝑞)).

We shall identify field and graph automorphisms with their corresponding images in Out(𝐿(𝑞)). The
action of Out(𝐿(𝑞))/Outdiag(𝐿(𝑞)) on Outdiag(𝐿(𝑞)) is described in [2, §1.7.2] and [11, Theorem
2.5.12].

We have 𝐻 ⊳ 𝑁 and 𝑁/𝐻 � 𝑊 . For 𝑤 ∈ 𝑊 , we denote by 
𝑤 a representative of w in N; for each
𝑖 = 1, . . . , 𝑛, 𝑛𝛼𝑖 is a representative of 𝑠𝑖 in N. For short, we denote 𝑛𝛼𝑖 by 𝑛𝑖 . Note that 𝑛𝑖 lies in 𝐿(𝑝),
so that it is fixed by field automorphisms of 𝐿(𝑞).

Next, we consider the finite twisted groups. These are defined as certain subgroups of appropriate
untwisted groups 𝐿(𝑞𝑠) over the field F𝑞𝑠 with 𝑞𝑠 elements, 𝑞 = 𝑝𝑚 as usual (the list may be found in
[7, p. 251]):

2𝐴𝑛 (𝑞), 𝑛 � 2, 2𝐷𝑛 (𝑞), 𝑛 � 4, 3𝐷4 (𝑞),
2𝐸6(𝑞),

2𝐵2(22𝑚+1), 2𝐹4 (22𝑚+1), 2𝐺2 (32𝑚+1).

Note that for the types 𝐴𝑛, 𝐷𝑛, 𝐸6, we have used the notation 𝑠𝐿(𝑞) instead of 𝑠𝐿(𝑞𝑠) (used in [7, p.
251]) to stick with the notation in [17]. They are all simple, except for the groups 2𝐴2 (2), 2𝐵2 (2), 2𝐹4 (2)
and 2𝐺2 (3) ([7, Theorem 14.4.1]). The groups 2𝐴2 (2), 2𝐵2(2) are soluble. The derived subgroup of
2𝐺2(3) is isomorphic to the simple group PSL2 (8). The derived subgroup 2𝐹4 (2)′ of 2𝐹4 (2) has index
2 in 2𝐹4 (2), and it is a simple group called the Tits group. For the simple groups 𝐺0 of type 3𝐷4 (𝑞),
2𝐵2 (22𝑚+1), 2𝐹4 (22𝑚+1), 2𝐺2 (32𝑚+1), 2𝐹4 (2)′, the group Out(𝐺0) is cyclic ([11, Theorem 2.5.12, 12]).
Therefore, every almost simple group G with socle𝐺0 is abelian supplemented (Corollary 7). Moreover,
we have 2𝐴𝑛 (𝑞) � PSU𝑛 (𝑞), so we are left to deal with 2𝐷𝑛 (𝑞) and 2𝐸6(𝑞). We observe that if n is odd or
𝑝 = 2, then Aut(2𝐷𝑛 (𝑞)) splits over 2𝐷𝑛 (𝑞) (Theorem 9), so that there exists a T-abelian supplement for
every abelian 𝑇 � Out(2𝐷𝑛 (𝑞)) (Lemma 8). In view of this discussion, we shall deal with the remaining
cases. Below, we give a short description of these groups

So, let us assume that L is of type 𝐷𝑛 or 𝐸6, and 𝜏 is an order 2 symmetry of the Dynkin diagram.
The twisted group 2𝐿(𝑞) is a certain subgroup of the Chevalley group 𝐿(𝑞2) ([7, Definition 13.4.2]).
Let E be the real vector space spanned by the roots (or the weights). Then 𝜏 induces an automorphism
(in fact an isometry), still denoted by 𝜏, of E fixing both Q and P. Let 𝜒 be an F𝑞2 -character of
Q (or P). We say that 𝜒 is self-conjugate if 𝜒(𝜏(𝑥)) = 𝜒(𝑥)𝑞 for every x in Q (or P). Let �̂�1 =
{ℎ(𝜒) | 𝜒 : 𝑄 → F

×
𝑞2 is a self-conjugate character of 𝑄}. We have �̂�1 � 𝑁Aut𝐿F

𝑞2
(2𝐿(𝑞)). Let

𝐻1 = �̂�1 ∩ 2𝐿(𝑞). Then ℎ(𝜒) lies in 𝐻1 if and only if 𝜒 can be extended to a self-conjugate F𝑞2 -
character of P. The number d in Table 2 relative to the twisted case is the order of �̂�1/𝐻1. We denote
by Inndiag(2𝐿(𝑞)) the group 2𝐿(𝑞)�̂�1 of inner-diagonal automorphisms of 2𝐿(𝑞). Any automorphism
𝜙 of F𝑞2 induces the field automorphism 𝜙 of 𝐿(𝑞2), which leaves 2𝐿(𝑞) invariant and therefore induces
an automorphism of 2𝐿(𝑞) (also called a field automorphism). If 𝑅1 is the group of field automorphisms
of 2𝐿(𝑞), we have

2𝐿(𝑞) � 2𝐿(𝑞)�̂�1 = Inndiag(2𝐿(𝑞)) � Inndiag(2𝐿(𝑞)) : 𝑅1 = Aut(2𝐿(𝑞)).
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In general, we have (1 − 𝑧)𝑃 � 𝑄 for every 𝑧 ∈ 𝑊 . For Coxeter elements, equality holds:

Lemma 20. Let 𝛼1, . . . , 𝛼𝑛 be the simple roots (in any fixed order), 𝜔1, . . . , 𝜔𝑛 the corresponding
fundamental weights. Then

(1 − 𝑠1 · · · 𝑠𝑛)𝜔𝑖 = 𝛼𝑖 + 𝑧1𝛼1 + · · · + 𝑧𝑖−1𝛼𝑖−1

with 𝑧1, . . . , 𝑧𝑖−1 ∈ Z. In particular, (1 − 𝑠1 · · · 𝑠𝑛)𝑃 = 𝑄.

Proof. We have 𝑠𝑖 (𝜔 𝑗 ) = 𝜔 𝑗 − 𝛿𝑖 𝑗𝛼𝑖 for every i, j. For 𝑖 = 1, we have 𝑠1 · · · 𝑠𝑛𝜔1 = 𝑠1𝜔1 = 𝜔1 − 𝛼1;
hence, (1 − 𝑠1 · · · 𝑠𝑛)𝜔1 = 𝛼1. Let 1 < 𝑖 � 𝑛. Then 𝑠1 · · · 𝑠𝑖−1(𝛼𝑖) = 𝛼𝑖 + 𝑧1𝛼1 + · · · + 𝑧𝑖−1𝛼𝑖−1, with
𝑧𝑢 ∈ Z for 𝑢 = 1, . . . , 𝑖 − 1. Then

(1 − 𝑠1 · · · 𝑠𝑛)𝜔𝑖 = 𝜔𝑖 − 𝑠1 · · · 𝑠𝑖𝜔𝑖 = 𝜔𝑖 − 𝑠1 · · · 𝑠𝑖−1(𝜔𝑖 − 𝛼𝑖)

= 𝜔𝑖 − (𝜔𝑖 − 𝑠1 · · · 𝑠𝑖−1𝛼𝑖) = 𝑠1 · · · 𝑠𝑖−1𝛼𝑖 = 𝛼𝑖 + 𝑧1𝛼1 + · · · + 𝑧𝑖−1𝛼𝑖−1.

�

Let 𝜒 be a character of Q, w in W. We define the character 𝑤𝜒 in the following way. For 𝑥 ∈ 𝑄, we
put 𝑤𝜒(𝑥) := 𝜒(𝑤−1𝑥) (i.e., 𝑤𝜒 = 𝜒 ◦ 𝑤−1). We also define 𝜏𝜒, where 𝜏 is a graph automorphism, by
(𝜏𝜒)𝑥 := 𝜒(𝜏−1𝑥) for 𝑥 ∈ 𝑄 (hence, 𝜏𝜒 = 𝜒 ◦ 𝜏−1). Note that for 𝑤 ∈ 𝑊 , we have ([7, Theorem 7.2.2])


𝑤ℎ(𝜒) 
𝑤−1 = ℎ(𝑤𝜒).

Since we are assuming Φ of type 𝐷𝑛 or 𝐸6, there is a Coxeter element w in W fixed by 𝜏. We may
choose a representative 
𝑤 of w in N over the prime field and fixed by 𝜏. Let 𝐹 = 𝜙 𝑗 or 𝜙 𝑗𝜏, for some
integer j. Then F fixes 
𝑤 and acts on �̂�; hence, it induces an automorphism g of Hom(𝑄, F×𝑞) given by
𝐹 (ℎ(𝜒)) = ℎ(𝑔(𝜒)). Let 𝜒 : 𝑄 → F×𝑞 be a fixed character, 𝑥 = 
𝑤ℎ(𝜒). We shall look for an element
𝑦 = ℎ(𝜒′) ∈ �̂� such that [𝑥, 𝐹𝑦] = 1; that is,

𝑥𝐹𝑦 = 𝐹𝑦𝑥 ⇐⇒ 𝑦−1𝐹−1𝑥𝐹𝑦 = 𝑥 ⇐⇒ 𝑦−1𝐹 (𝑥)𝑦 = 𝑥

so that

ℎ(𝜒′)−1 
𝑤ℎ(𝑔(𝜒))ℎ(𝜒′) = 
𝑤ℎ(𝜒).

We have ℎ(𝜒′)−1 
𝑤 = 
𝑤 
𝑤−1ℎ(𝜒′)−1 
𝑤 = 
𝑤ℎ(𝑤−1𝜒′)−1 = 
𝑤ℎ(−𝑤−1𝜒′); hence,


𝑤ℎ(−𝑤−1𝜒′)ℎ(𝑔(𝜒))ℎ(𝜒′) = 
𝑤ℎ(𝜒),

ℎ(−𝑤−1𝜒′)ℎ(𝑔(𝜒))ℎ(𝜒′) = ℎ(𝜒),

and finally,

ℎ((1 − 𝑤−1)𝜒′) = ℎ((1 − 𝑔)𝜒), (1 − 𝑤−1)𝜒′ = (1 − 𝑔)𝜒,

𝜒′ ◦ (1 − 𝑤) = (1 − 𝑔)𝜒.

We shall be interested in the following cases:
𝐹 : 𝑠 ↦→ 𝑠 [𝑝

𝑖 ] , then

𝜒′ ◦ (1 − 𝑤) = (1 − 𝑝𝑖)𝜒,

𝐹 : 𝑠 ↦→ 𝑠 [𝑝]𝜏 , then

𝜒′ ◦ (1 − 𝑤) = (1 − 𝑝𝜏)𝜒.
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By Lemma 20, we have (1−𝑤)−1𝑄 = 𝑃. Let Δ = |𝑃/𝑄 | = det 𝐴. Then Δ𝑃 � 𝑄. Note that if Φ = 𝐷𝑛

with n even, then 2𝑃 � 𝑄 since 𝑃/𝑄 � 𝐶2 × 𝐶2 (the inverses of the Cartan matrices may be explicitly
found in [22]). We put Δ1 = |𝑃/𝑄 | unless Φ = 𝐷𝑛, n even, in which case we put Δ1 = 2. Then

Δ1 (1 − 𝑤)−1𝑄 � 𝑄,

and we may define the character

𝜁𝜒 = 𝜒 ◦ Δ1 (1 − 𝑤)−1 : 𝑄 → F×𝑞

and ℎ(𝜁𝜒) ∈ �̂�.
We start with the cases 𝐵𝑛 (𝑞), 𝐶𝑛 (𝑞), 𝐸7(𝑞).

5. 𝐶𝑛 (𝑞), 𝐵𝑛 (𝑞), 𝑛 � 2, 𝐸7 (𝑞)

Here, L is of type 𝐶𝑛, 𝐵𝑛 or 𝐸7, 𝐺0 = 𝐿(𝑞), 𝑞 = 𝑝𝑚, 𝑑 = (𝑞 − 1, 2), and we assume that Aut(𝐺0) does
not split over 𝐺0, so (

𝑞−1
𝑑 , 𝑑, 𝑚) ≠ 1. Therefore, 𝑑 = 2 and p is odd:

Out(𝐺0) = 〈𝛿〉 × 〈𝜙〉,

| 𝛿 | = 2, |𝜙 | = 𝑚. We fix an F𝑞-character 𝜒 of Q which cannot be extended to a character of P, so that
ℎ(𝜒) induces 𝛿 in Out(𝐺0). We look for an F𝑞-character 𝜒′ so that [ 
𝑤ℎ(𝜒), 𝜙ℎ(𝜒′)] = 1; that is,

𝜒′ ◦ (1 − 𝑤) = (1 − 𝑝)𝜒.

We have Δ1 = 2, so 𝜁𝜒 = 𝜒 ◦ 2(1 − 𝑤)−1. We take

𝜒′ =
1 − 𝑝

2
𝜁𝜒

so ℎ(𝜒′) = ℎ(𝜁𝜒)
1−𝑝

2 . Therefore,

𝑇 = 〈 
𝑤ℎ(𝜒), 𝜙ℎ(𝜒′)〉

is an Out(𝐺0)-abelian supplement (arguing as in the PSL2(𝑞) case).
We have proved the following.

Theorem 21. Let G be a finite almost simple group with socle 𝐺0 = 𝐶𝑛 (𝑞), 𝐵𝑛 (𝑞) or 𝐸7(𝑞). Then G
contains an abelian subgroup A such that 𝐺 = 𝐴𝐺0.

6. 𝐸6 (𝑞)

Here, L is of type 𝐸6, 𝐺0 = 𝐿(𝑞), 𝑞 = 𝑝𝑚, 𝑑 = (𝑞 − 1, 3), and we assume that Aut(𝐺0) does not split
over 𝐺0, so (

𝑞−1
𝑑 , 𝑑, 𝑚) ≠ 1. Therefore, 𝑑 = 3 and 𝑝 ≠ 3:

Out(𝐺0) = 〈𝛿〉 � 〈𝜙, 𝜏〉,

where | 𝛿 | = 3, | 𝜙 | = 𝑚, 𝛿𝜙 = 𝛿𝑝 , 𝛿𝜏 = 𝛿−1 and [𝜙, 𝜏] = 1. We fix an F𝑞-character 𝜒 of Q which can
not be extended to a character of P.

Let 𝜋 : Out(𝐺0) → Out(𝐺0)/〈𝛿〉 = 〈𝜙, 𝜏〉. Let T be a noncyclic abelian subgroup of Out(𝐺0). If
𝜋(𝑇) is not cyclic, then 𝜋(𝑇) = 〈𝜙𝑠 , 𝜏〉. Therefore, 𝑇 = 〈𝜙𝑠𝛿𝑖 , 𝜏𝛿𝑘〉. But 𝜏𝛿𝑘 is conjugate to 𝜏 under 〈𝛿〉;
hence, we may assume𝑇 = 〈𝜙𝑠𝛿𝑖 , 𝜏〉, so𝑇 = 〈𝜙𝑠 , 𝜏〉 � 〈𝜙, 𝜏〉 and𝑇 = 〈𝜙𝑠 , 𝜏〉 is a T-abelian supplement.

We are left with the case where 𝜋(𝑇) is cyclic; that is, 𝜋(𝑇) = 〈𝜙𝑠𝜏 𝜖 〉. Then 𝑇 = 〈𝛿, 𝜙𝑠𝜏𝜀〉. Since
𝑝 ≠ 3, we have 𝑝 ≡ 1 or −1 mod 3.
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Let 𝑝 ≡ 1 mod 3. Then [𝛿, 𝜙] = 1, and we get 𝜀 = 0, 𝑇 � 〈𝛿, 𝜙〉, so by Lemma 5, it is enough to
consider the case

𝑝 ≡ 1 mod 3 , 𝑇 = 〈𝛿, 𝜙〉 (case 1).

Let 𝑝 ≡ −1 mod 3. Then 𝛿𝜙 = 𝛿−1. If 𝜀 = 1, 𝑇 = 〈𝛿, 𝜙𝑠𝜏〉. Since [𝛿, 𝜙𝑠𝜏] = 1, s must be odd.
Therefore,𝑇 � 〈𝛿, 𝜙𝜏, 𝜙2〉 = 〈𝛿, 𝜙𝜏〉. If 𝜀 = 0,𝑇 = 〈𝛿, 𝜙𝑠〉, so s is even, and again,𝑇 � 〈𝛿, 𝜙2〉 < 〈𝛿, 𝜙𝜏〉.
Therefore, it is enough to consider

𝑝 ≡ −1 mod 3 , 𝑇 = 〈𝛿, 𝜙𝜏〉 (case 2).

Summarising, we only have to deal with cases 1, 2.
We consider the Coxeter element 𝑤 = 𝑠1𝑠4𝑠6𝑠3𝑠2𝑠5, fixed by the graph automorphism 𝜏. In fact, we

have

𝜏(𝛼1) = 𝛼6, 𝜏(𝛼2) = 𝛼2, 𝜏(𝛼3) = 𝛼5, 𝜏(𝛼4) = 𝛼4, 𝜏(𝛼5) = 𝛼3, 𝜏(𝛼6) = 𝛼1.

We choose a representative 
𝑤 of w in N over the prime field and fixed by 𝜏, 
𝑤 = 𝑛1𝑛4𝑛6𝑛3𝑛2𝑛5, for
instance. Hence, 𝜏 
𝑤 = 
𝑤𝜏, 
𝑤𝜙 = 𝜙 
𝑤. Here, 𝜙 is the field automorphism of 𝐺0 sending x to 𝑥 [𝑝] . We
use the notation 𝜙−1𝑥𝜙 = 𝑥 [𝑝] . We have Δ1 = 3, so 𝜁𝜒 = 𝜒 ◦ 3(1 − 𝑤)−1.

Case 1: 𝑝 ≡ 1 mod 3, 𝑇 = 〈𝛿, 𝜙〉.
We take

𝜒′ =
1 − 𝑝

3
𝜁𝜒

so ℎ(𝜒′) = ℎ(𝜁𝜒)
1−𝑝

3 . Therefore,

𝑇 = 〈 
𝑤ℎ(𝜒), 𝜙ℎ(𝜒′)〉

is a T-abelian supplement.

Case 2: 𝑝 ≡ −1 mod 3, 𝑇 = 〈𝛿, 𝜙𝜏〉.
Since 𝜏𝑤0 = −1, we have

(1 + 𝜏)𝑃 = (1 + 𝜏)𝑤0𝑃 = (𝑤0 + 𝜏𝑤0)𝑃 = (𝑤0 − 1)𝑃 = (1 − 𝑤0)𝑃 � 𝑄.

Hence, by Lemma 20,

(1 + 𝜏) (1 − 𝑤)−1𝑄 = (1 + 𝜏)𝑃 � 𝑄,

so 𝜒◦(1+𝜏) (1−𝑤)−1 is anF𝑞-character of Q. We look for anF𝑞-character 𝜒′ so that [ 
𝑤ℎ(𝜒), 𝜙𝜏ℎ(𝜒′)] =
1; that is,

𝜒′ ◦ (1 − 𝑤) = (1 − 𝑝𝜏)𝜒.

We have 1 − 𝑝𝜏 = 1 + 𝑝 − 𝑝 − 𝑝𝜏 = 1 + 𝑝 − 𝑝(1 + 𝜏), and we may define

𝜒′ =
1 + 𝑝

3
𝜁𝜒 − 𝑝 𝜒 ◦ (1 + 𝜏) (1 − 𝑤)−1,

https://doi.org/10.1017/fms.2024.160 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2024.160


18 M. Costantini, A. Lucchini and D. Nemmi

obtaining a character which satisfies 𝜒′ ◦ (1 − 𝑤) = (1 − 𝑝𝜏)𝜒. Therefore,

𝑇 = 〈 
𝑤ℎ(𝜒), 𝜙𝜏ℎ(𝜒′)〉

is a T-abelian supplement.
We have proved the following.

Theorem 22. Let G be a finite almost simple group with socle 𝐺0 = 𝐸6 (𝑞). If 𝐺/𝐺0 is abelian, then G
contains an abelian subgroup A such that 𝐺 = 𝐴𝐺0.

7. 2𝐸6 (𝑞)

Here, L is of type 𝐸6,𝐺0 = 2𝐸6 (𝑞) � 𝐸6(𝑞
2), 𝑞 = 𝑝𝑚, 𝑑 = (𝑞 + 1, 3), and we assume that Aut(𝐺0) does

not split over 𝐺0; that is, ( 𝑞+1
𝑑 , 𝑑, 𝑚) ≠ 1. Therefore, 𝑑 = 3 and 𝑞 ≡ −1 mod 3, so 𝑝 ≡ −1 mod 3 and m

is odd:

Out(𝐺0) = 〈𝛿〉 � 〈𝜙〉,

where |𝛿 | = 3, |𝜙 | = 2𝑚, 𝛿𝜙 = 𝛿−1.
It is enough to consider the case 𝑇 = 〈𝛿, 𝜙2〉. We fix a self-conjugate F𝑞2 -character 𝜒 of Q which can

not be extended to a self-conjugate F𝑞2 -character of P (so that ℎ(𝜒) ∈ �̂�1 \ 𝐻1).
We consider the same Coxeter element 𝑤 = 𝑠1𝑠4𝑠6𝑠3𝑠2𝑠5 as in the previuos section, and the same

representative 
𝑤 = 𝑛1𝑛4𝑛6𝑛3𝑛2𝑛5, which lies in 𝐺0.
We look for an element ℎ(𝜒′) ∈ �̂�1 so that [ 
𝑤ℎ(𝜒), 𝜙2ℎ(𝜒′)] = 1; that is,

𝜒′ ◦ (1 − 𝑤) = (1 − 𝑝2)𝜒.

We have Δ1 = 3, so 𝜁𝜒 = 𝜒 ◦ 3(1 − 𝑤)−1. We take

𝜒′ =
1 − 𝑝2

3
𝜁𝜒,

so ℎ(𝜒′) = ℎ(𝜁𝜒)
1−𝑝2

3 .
Note that since 𝜒 is self-conjugate and 𝜏𝑤 = 𝑤𝜏, 𝜁𝜒 and 𝜒′ are self-conjugate, so ℎ(𝜒′) lies in �̂�1.

Therefore,

𝑇 =
〈

𝑤ℎ(𝜒), 𝜙2ℎ(𝜒′)

〉
is a T-abelian supplement.

We have proved the following.
Theorem 23. Let G be a finite almost simple group with socle 𝐺0 = 2𝐸6 (𝑞). If 𝐺/𝐺0 is abelian, then G
contains an abelian subgroup A such that 𝐺 = 𝐴𝐺0.

8. 2𝐷𝑛 (𝑞), n even

Here, L is of type 𝐷𝑛, n even, 𝐺0 = 2𝐷𝑛 (𝑞) � 𝐷𝑛 (𝑞
2), 𝑞 = 𝑝𝑚, 𝑑 = (𝑞 + 1, 2), and we assume that

Aut(𝐺0) does not split over 𝐺0. Therefore, 𝑑 = 2, 𝑝 ≠ 2, and

Out(𝐺0) = 〈𝛿〉 × 〈𝜙〉,

where |𝛿 | = 2, |𝜙 | = 2𝑚.
It is enough to consider the case 𝑇 = Out(𝐺0). We fix a self-conjugate F𝑞2 -character 𝜒 of Q which

can not be extended to a self-conjugate F𝑞2 -character of P (so that ℎ(𝜒) ∈ �̂�1 \ 𝐻1).
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We consider the Coxeter element 𝑤 = 𝑠1𝑠2 · · · 𝑠𝑛−1𝑠𝑛, fixed by 𝜏 (which exchanges 𝛼𝑛−1 and 𝛼𝑛),
and the representative 
𝑤 = 𝑛1𝑛2 · · · 𝑛𝑛−1𝑛𝑛, which lies in 𝐺0. We look for an element ℎ(𝜒′) ∈ �̂�1 so
that [ 
𝑤ℎ(𝜒), 𝜙ℎ(𝜒′)] = 1; that is,

𝜒′ ◦ (1 − 𝑤) = (1 − 𝑝)𝜒.

We have Δ1 = 2 (since n is even), so 𝜁𝜒 = 𝜒 ◦ 2(1 − 𝑤)−1. We take

𝜒′ =
1 − 𝑝

2
𝜁𝜒,

so ℎ(𝜒′) = ℎ(𝜁𝜒)
1−𝑝

2 .
Since 𝜒 is self-conjugate and 𝜏𝑤 = 𝑤𝜏, 𝜁𝜒 and 𝜒′ are self-conjugate, so ℎ(𝜒′) lies in �̂�1. Therefore,

𝑇 = 〈 
𝑤ℎ(𝜒), 𝜙ℎ(𝜒′)〉

is an Out(𝐺0)-abelian supplement.
We have proved the following.

Theorem 24. Let G be a finite almost simple group with socle𝐺0 = 2𝐷𝑛 (𝑞). Then G contains an abelian
subgroup A such that 𝐺 = 𝐴𝐺0.

9. The remaining case

In the next sections, we shall deal with the remaining case: 𝐷𝑛 (𝑞), 𝑞 = 𝑝𝑚. We shall use the identifica-
tions with classical groups as in [7, Theorem 11.3.2] and [8, 1.11, 1.19]. Here, 𝜆 is a generator of F×𝑞 .

We have 𝐺0 = 𝑃Ω+
2𝑛 (𝑞), Inndiag(𝐺0) = 𝑃(𝐶𝑂2𝑛 (𝑞)

◦), where 𝐶𝑂2𝑛 (𝑞) if the conformal orthogonal
group; that is, the group of orthogonal similitudes of F2𝑛

𝑞 ; 𝐶𝑂2𝑛 (𝑞)
◦ is the subgroup of index 2 of

𝐶𝑂2𝑛 (𝑞) of elements which do not interchange the two families of maximal isotropic subspaces of F2𝑛
𝑞 .

If (𝑒1, . . . , 𝑒𝑛, 𝑓1, . . . , 𝑓𝑛) is the canonical basis of F2𝑛
𝑞 , the bilinear form on F2𝑛

𝑞 corresponds to the
matrix

𝐾𝑛 =

(
0𝑛 𝐼𝑛
𝐼𝑛 0𝑛

)
.

We define the homomorphism 𝜂 : 𝐶𝑂2𝑛 (𝑞)
◦ → F×𝑞 by

𝜂(𝑋) = 𝜇 if 𝑡𝑋𝐾𝑛𝑋 = 𝜇𝐾𝑛.

For 𝜇 ∈ F×𝑞 , let 𝑜𝜇 =
(
𝐼𝑛 0
0 𝜇𝐼𝑛

)
, so that 𝜂(𝑜𝜇) = 𝜇.

The graph automorphism 𝜏 of 𝐷𝑛 exchanging 𝛼𝑛−1 and 𝛼𝑛 is induced by conjugation with

𝜏𝑛 =
�			

𝐼𝑛−1 0 0𝑛−1 0

0 0 0 1
0𝑛−1 0 𝐼𝑛−1 0

0 1 0 0

���� ∈ 𝑂2𝑛 (𝑞),

𝜏2
𝑛 = 1, 𝑥𝜏 = 𝜏𝑛𝑥𝜏𝑛.

𝑥𝛼𝑖 (𝑧)
𝜏 = 𝑥𝛼𝑖 (𝑧), 𝑖 = 1, . . . , 𝑛 − 2, 𝑥𝛼𝑛−1 (𝑧)

𝜏 = 𝑥𝛼𝑛 (𝑧), 𝑥𝛼𝑛 (𝑧)
𝜏 = 𝑥𝛼𝑛−1 (𝑧).

We shall deal with the cases n odd and even separately.
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10. 𝐷𝑛 (𝑞), 𝑛 � 3, n odd

Here, L is of type 𝐷𝑛, n odd, 𝐺0 = 𝐷𝑛 (𝑞), 𝑞 = 𝑝𝑚, 𝑑 = (4, 𝑞 − 1), and we assume that Aut(𝐺0) does
not split over 𝐺0; hence, ( 𝑞

𝑛−1
𝑑 , 𝑑, 𝑚) ≠ 1. In particular, 𝑑 = 2 or 4, and p is odd. Moreover, m is even;

hence, 4 divides 𝑞 − 1. Therefore, 𝑑 = 4.

Out(𝐺0) = 〈𝛿, 𝜏, 𝜙 | 𝛿4 = 𝜏2 = 1, 𝛿𝜏 = 𝛿−1, 𝜙𝑚 = [𝜏, 𝜙] = 1, 𝛿𝜙 = 𝛿𝑝〉.

In Ω+
2𝑛 (𝑞), we choose


𝑤0 =
�			


0𝑛−1 0 𝐼𝑛−1 0
0 1 0 0
𝐼𝑛−1 0 0𝑛−1 0

0 0 0 1

����,
a representative of the longest element 𝑤0 of the Weyl group. We have 
𝑤2

0 = 1, 
𝑤0𝜏𝑛 = 𝜏𝑛 
𝑤0 = 𝐾𝑛. Let
𝑋 ∈ 𝐶𝑂2𝑛 (𝑞)

◦, 𝜂(𝑋) = 𝜇 (i.e., 𝑡𝑋𝐾𝑛𝑋 = 𝜇𝐾𝑛). Then 𝑡𝑋 = 𝜇𝐾𝑛𝑋
−1𝐾𝑛, so that

𝑡𝑋−1 = 𝜂(𝑋)−1 
𝑤0𝜏𝑛𝑋𝜏𝑛 
𝑤0 = 𝜂(𝑋)−1 
𝑤0𝑋
𝜏 
𝑤0. (10.1)

We start with 𝐷3, exploiting the fact that 𝐷3 = 𝐴3. Let 𝑉 = F4
𝑞 with canonical basis B = (𝑣1, . . . , 𝑣4)

over F𝑞 , 𝑉 = F
4
𝑞 with the same basis over F𝑞 . Let

𝜎 : 𝐺𝐿(𝑉) → 𝐺𝐿(∧2𝑉), 𝑓 ↦→ ∧2 𝑓 .

We choose the basis B for𝑉 , and the basis C = (𝑣12, 𝑣13, 𝑣23, 𝑣34, 𝑣42, 𝑣14), where 𝑣𝑖 𝑗 = 𝑣𝑖 ∧ 𝑣 𝑗 , for ∧2𝑉 .
We endow ∧2𝑉 with the symmetric bilinear form with matrix 𝐾3 with respect to C. Then 𝜎(𝐺𝐿(𝑉)) �
𝐶𝑂 (∧2𝑉)◦, 𝜎(𝐺𝐿(𝑉)) � 𝐶𝑂 (∧2𝑉)◦, and, by considering bases, we obtain the homomorphism 𝜎 :
𝐺𝐿4 (𝑞) → 𝐶𝑂6 (𝑞)

◦. We have

𝜎 :
(
𝐼3 0
0 𝜇

)
↦→

(
𝐼3 03
03 𝜇𝐼3

)
= 𝑜𝜇;

in particular,

det
(
𝐼3 0
0 𝜇

)
= 𝜇 = 𝜂(𝑜𝜇).

Moreover, 𝜎 : 𝜇𝐼4 ↦→ 𝜇2𝐼6. If 𝑋 ∈ 𝐺𝐿4 (𝑞), det 𝑋 = 𝜇, then 𝑋 = 𝑌
(
𝐼3 0
0 𝜇

)
with 𝑌 ∈ 𝑆𝐿4 (𝑞), 𝜎(𝑋) =

𝜎(𝑌 )𝑜𝜇 with 𝜎(𝑌 ) ∈ Ω+
6 (𝑞) ([21, Theorem 12.20]); hence,

𝜂(𝜎(𝑋)) = 𝜇 = det 𝑋. (10.2)

From (10.1) and (10.2), we get

𝜎(𝑡𝑋−1) = 𝑡(𝜎(𝑋))−1 = (det 𝑋)−1 
𝑤0𝜎(𝑋)
𝜏 
𝑤0. (10.3)
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For X, 𝑌 ∈ 𝐺𝐿4 (𝑞), 𝑧 ∈ F×𝑞 , we get

𝑌−1𝑋 [𝑝]𝑌 = 𝑧𝑋 ⇒ 𝜎(𝑌 )−1𝜎(𝑋) [𝑝]𝜎(𝑌 ) = 𝑧2𝜎(𝑋)

𝑌−1 (𝑡𝑋−1)𝑌 = 𝑧𝑋 ⇒ 𝑍−1𝜎(𝑋)𝜏𝑍 = 𝑧2 det(𝑋)𝜎(𝑋) , 𝑍 = 
𝑤0𝜎(𝑌 )

𝑡𝑋−1𝑌 = 𝑧𝑌 [𝑝]𝑋 ⇒ 𝜎(𝑋)𝜏𝑍 = 𝑧2 det(𝑋)𝑍 [𝑝]𝜎(𝑋) , 𝑍 = 
𝑤0𝜎(𝑌 )

(10.4)

since 
𝑤 [𝑝]
0 = 
𝑤0.

In Section 3, for a given abelian subgroup T of Out(PSL4 (𝑞)), we have exhibited a T-abelian supple-
ment𝑇 by giving matrices in GL4 (𝑞): the map𝜎 allows to solve the problem for𝐺0 = 𝑃Ω+

6 (𝑞), by giving
matrices in 𝐶𝑂6(𝑞)

◦. Now we consider 𝐷𝑛, n odd, 𝑛 = 1 + 2𝑚, 𝑛 > 3. The space F2𝑛
𝑞 is the orthogonal

direct sum F2𝑛
𝑞 = 𝑈⊕𝑈⊥, where𝑈 = 〈𝑒1, . . . , 𝑒𝑛−3, 𝑓1, . . . , 𝑓𝑛−3〉,𝑈⊥ = 〈𝑒𝑛−2, 𝑒𝑛−1, 𝑒𝑛, 𝑓𝑛−2, 𝑓𝑛−1, 𝑓𝑛〉,

with dim𝑈 = 2𝑛−6 = 4(𝑚−1). Moreover, U is the direct orthogonal sum of subspaces of dimension 4:

𝑈1 = 〈𝑒1, 𝑒2, 𝑓1, 𝑓2〉, . . . ,𝑈𝑚−1 = 〈𝑒𝑛−4, 𝑒𝑛−3, 𝑓𝑛−4, 𝑓𝑛−3〉.

To define an isometry or more generally an orthogonal similitude of F2𝑛
𝑞 , we may give matrices 𝑋𝑖 ∈

𝐶𝑂4 (𝑞)
◦, 𝜂(𝑋𝑖) = 𝜇, 𝑖 = 1, . . . , 𝑚 − 1, 𝑋 ∈ 𝐶𝑂6(𝑞)

◦, 𝜂(𝑋) = 𝜇 and define Y in GL2𝑛 (𝑞) by

𝑌 = 𝑋1 ⊕ · · · ⊕ 𝑋𝑚−1 ⊕ 𝑋.

Then 𝑌 ∈ 𝐶𝑂2𝑛 (𝑞)
◦, with 𝜂(𝑌 ) = 𝜇. If 𝑌 ∈ 𝐶𝑂2𝑛 (𝑞)

◦ fixes 𝑈⊥, then it fixes U, and if we write
𝑌 = 𝑋 ⊕ 𝑍 , with 𝑋 ∈ 𝐶𝑂6 (𝑞)

◦, 𝑍 ∈ 𝐶𝑂2𝑛−6 (𝑞)
◦, and consider the action of 𝜙 and 𝜏, we get

𝑌 [𝑝] = 𝑋 [𝑝] ⊕ 𝑍 [𝑝] , 𝑌 𝜏 = 𝑋 𝜏 ⊕ 𝑍

since 𝜏𝑛 acts on the basis (𝑒1, . . . , 𝑒𝑛, 𝑓1, . . . , 𝑓𝑛) just by switching 𝑒𝑛 and 𝑓𝑛 (here, 𝑌 𝜏 = 𝜏𝑛𝑌𝜏𝑛,
𝑋 𝜏 = 𝜏3𝑋𝜏3).

We shall proceed as follows. Assume T is an abelian subgroup of Out(𝐺0). We consider the analogous
subgroup T of Out(PSL4 (𝑞)). From the PSL4(𝑞) case, we have an abelian subgroup of Aut(PSL4(𝑞))
given by explicit matrices in GL4 (𝑞). By using 𝜎, we obtain corresponding matrices in 𝐶𝑂6(𝑞)

◦

satisfying certain relations. For each such matrix X, we define a matrix 𝑋1 ∈ 𝐶𝑂4 (𝑞)
◦ and finally define

the matrix 𝑌 = 𝑋1 ⊕ · · · ⊕ 𝑋1 ⊕ 𝑋 in 𝐶𝑂2𝑛 (𝑞)
◦ (𝑚 − 1 copies of 𝑋1). We shall then obtain a T-abelian

supplement 𝑇 in Aut(𝐺0).
Let A, 𝐵 ∈ 𝐺𝐿2 (𝑞) with

𝐵−1𝐴 [𝑝]𝐵 = 𝑧𝐴, det 𝐴 = 𝜇, 𝑧 = 𝜇
1
2 (𝑝−1)

and let 𝜈 ∈ F×𝑞 . Our aim is to define orthogonal similitudes of F4
𝑞 (with respect to the form given by 𝐾2).

We put

𝑎 = 𝑎(𝐴) =

(
𝐴 02
02

𝑡𝐴−1

) (
𝐼2 02
02 (det 𝐴)𝐼2

)
∈ 𝐶𝑂4(𝑞)

◦, 𝜂(𝑎) = det 𝐴

𝑏 = 𝑏(𝐵, 𝜈) =

(
𝐵 02
02

𝑡𝐵−1

) (
𝐼2 02
02 𝜈𝐼2

)
∈ 𝐶𝑂4 (𝑞)

◦, 𝜂(𝑏) = 𝜈.

From 𝐵−1𝐴 [𝑝]𝐵 = 𝜇
1
2 (𝑝−1)𝐴, we get

𝑏−1𝑎 [𝑝]𝑏 = 𝜇
1
2 (𝑝−1)𝑎, 𝜂(𝑎) = det 𝐴 = 𝜇, 𝜂(𝑏) = 𝜈.
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We shall take

𝐴 =

(
0 −𝜇
1 0

)
, 𝐵 =

(
𝜇

1
2 (𝑝−1) 0

0 1

)
, 𝐵−1𝐴 [𝑝]𝐵 = 𝜇

1
2 (𝑝−1)𝐴,

𝑎 = 𝑎(𝐴) = 𝑎(𝜇) =
�			


0 −𝜇 0 0
1 0 0 0
0 0 0 −1
0 0 𝜇 0

���� , 𝜂(𝑎) = 𝜇, (10.5)

𝑏 = 𝑏(𝐵, 𝜈) = 𝑏(𝜇, 𝜈) =
�			

𝜇

1
2 (𝑝−1) 0 0 0

0 1 0 0
0 0 𝜇−

1
2 (𝑝−1) 0

0 0 0 1

����
�			


1 0 0 0
0 1 0 0
0 0 𝜈 0
0 0 0 𝜈

���� , 𝜂(𝑏) = 𝜈. (10.6)

Then

𝑏−1𝑎 [𝑝]𝑏 = 𝜇
1
2 (𝑝−1)𝑎, 𝜂(𝑎(𝜇)) = 𝜇, 𝜂(𝑏(𝜇, 𝜈)) = 𝜈.

Note that for any 𝑖 ∈ Z, we have

𝐵−1(𝐴𝑖) [𝑝]𝐵 = 𝜇
1
2 𝑖 (𝑝−1)𝐴𝑖 , det 𝐴𝑖 = 𝜇𝑖 ,

𝑏(det 𝐴, 𝜈)−1𝑎(𝐴𝑖) [𝑝] 𝑏(det 𝐴, 𝜈) = 𝜇
1
2 𝑖 (𝑝−1)𝑎(𝐴𝑖), 𝜂(𝑎(𝐴𝑖)) = det 𝐴𝑖 = 𝜇𝑖 , 𝜂(𝑏) = 𝜈.

We shall make use of the explicit matrices in GL4 (𝑞) from Section 3.

10.1. 𝑝 ≡ 1 mod 4

By Lemma 11, in the case when 𝑝 ≡ 1 mod 4, the maximal abelian subgroups of Out(𝐷3 (𝑞)) �
Out(PSL4(𝑞)) are 〈𝛿, 𝜙〉,

〈
𝛿2, 𝜙, 𝜏

〉
and

〈
𝛿2, 𝜙, 𝜏𝛿

〉
. We are therefore going through such cases.

Case 𝑇 = 〈𝛿, 𝜙〉. In the PSL4(𝑞) case, we took

𝐿 =
�			

0 0 0 −𝜆
1 0 0 0
0 1 0 0
0 0 1 0

����, 𝑀 =

�				

𝜆

3(𝑝−1)
4 0 0 0

0 𝜆
2(𝑝−1)

4 0 0
0 0 𝜆

𝑝−1
4 0

0 0 0 1

�����
,

𝑇 = 〈𝐿, 𝜙𝑀〉𝑍 (GL4 (𝑞))/𝑍 (GL4(𝑞))

We have 𝑀−1𝐿 [𝑝]𝑀 = 𝜆
𝑝−1

4 𝐿, hence in 𝐶𝑂6(𝑞)
◦, with ℓ = 𝜎(𝐿), 𝑚 = 𝜎(𝑀), by (10.2), (10.4),

𝑚−1ℓ [𝑝]𝑚 = 𝜆
𝑝−1

2 ℓ,

𝜂(ℓ) = det 𝐿 = 𝜆, 𝜂(𝑚) = det𝑀 = 𝜆
3(𝑝−1)

2 .

We look for a, 𝑏 ∈ 𝐶𝑂4 (𝑞)
◦ satisfying the same relations using the above procedure. We take 𝜇 = 𝜆,

𝜈 = 𝜆
3(𝑝−1)

2 , 𝑎 = 𝑎(𝜆), 𝑏 = 𝑏(𝜆, 𝜆
3(𝑝−1)

2 ): if we put 𝐴1 = 𝑎 ⊕ · · · ⊕ 𝑎 ⊕ ℓ, 𝐵1 = 𝑏 ⊕ · · · ⊕ 𝑏 ⊕ 𝑚, then

𝐴1, 𝐵1 ∈ 𝐶𝑂2𝑛 (𝑞)
◦, 𝐵−1

1 𝐴 [𝑝]
1 𝐵1 = 𝜆

𝑝−1
2 𝐴1
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and

𝑇 = 〈𝐴1, 𝜙𝐵1〉𝑍 (𝐶𝑂2𝑛 (𝑞)
◦)/𝑍 (𝐶𝑂2𝑛 (𝑞)

◦)

is a T-abelian supplement.

Case 𝑇 =
〈
𝛿2, 𝜙, 𝜏

〉
.

In the PSL4 (𝑞) case for
〈
𝛿2, 𝜙, 𝛾

〉
, we took

𝐿 =
�			

0 −𝜆 0 0
1 0 0 0
0 0 0 −𝜆
0 0 1 0

����, 𝑀 =

�				

𝜆

𝑝−1
2 0 0 0

0 1 0 0
0 0 𝜆

𝑝−1
2 0

0 0 0 1

�����
, 𝑁 =

�			

𝜆−1 0 0 0
0 1 0 0
0 0 𝜆−1 0
0 0 0 1

����,
𝑇 = 〈𝐿, 𝜙𝑀, 𝛾𝑁〉𝑍/𝑍,

with

𝑀−1𝐿 [𝑝]𝑀 = 𝑧1𝐿 , 𝑁
−1 (𝑡𝐿−1)𝑁 = 𝑧2𝐿 , (

𝑡𝑀−1)𝑁 = 𝑧3𝑁
[𝑝]𝑀,

𝑧1 = 𝜆
1
2 (𝑝−1) , 𝑧2 = 𝜆−1, 𝑧3 = 1, det 𝐿 = 𝜆2, det𝑀 = 𝜆𝑝−1, det 𝑁 = 𝜆−2.

Hence, in 𝐶𝑂6(𝑞)
◦, with ℓ = 𝜎(𝐿), 𝑚 = 𝜎(𝑀), 𝑛 = 
𝑤0𝜎(𝑁),

𝑚−1ℓ [𝑝]𝑚 = 𝜆𝑝−1ℓ , 𝑛−1ℓ𝜏𝑛 = ℓ , 𝑚𝜏𝑛 = 𝜆𝑝−1𝑛 [𝑝]𝑚,

𝜂(ℓ) = det 𝐿 = 𝜆2, 𝜂(𝑚) = det𝑀 = 𝜆𝑝−1, 𝜂(𝑛) = 𝜂( 
𝑤0)𝜂(𝜎(𝑁)) = det 𝑁 = 𝜆−2.

Recall that 𝜏𝑛 acts trivially on U; hence, we have to define matrices a, b, 𝑐 ∈ 𝐶𝑂4 (𝑞)
◦ such that

𝑏−1𝑎 [𝑝]𝑏 = 𝜆𝑝−1𝑎 , 𝑐−1𝑎𝑐 = 𝑎 , 𝑏𝑐 = 𝜆𝑝−1𝑐 [𝑝]𝑏, that is, 𝑏−1𝑐 [𝑝]𝑏 = 𝜆−(𝑝−1)𝑐,

𝜂(𝑎) = 𝜆2, 𝜂(𝑏) = 𝜆𝑝−1, 𝜂(𝑐) = 𝜆−2.

Once we have solved 𝑏−1𝑎 [𝑝]𝑏 = 𝜆𝑝−1𝑎, we may take 𝑐 = 𝑎−1. We take

𝑎 = 𝑎(𝜆2), 𝑏 = 𝑏(𝜆2, 𝜆𝑝−1), 𝑐 = 𝑎−1.

If we put 𝐴1 = 𝑎⊕· · ·⊕𝑎⊕ℓ, 𝐵1 = 𝑏⊕· · ·⊕𝑏⊕𝑚,𝐶1 = 𝑐⊕· · ·⊕𝑐⊕𝑛, then 𝐴1, 𝐵1, 𝐶1 ∈ 𝐶𝑂2𝑛 (𝑞)
◦,with

𝐵−1
1 𝐴 [𝑝]

1 𝐵1 = 𝜆𝑝−1𝐴1 , 𝐶
−1
1 𝐴𝜏1𝐶1 = 𝐴1 , 𝐵

𝜏
1𝐶1 = 𝜆𝑝−1𝐶 [𝑝]

1 𝐵1,

𝜂(𝐴1) = 𝜆
2, 𝜂(𝐵1) = 𝜆

𝑝−1, 𝜂(𝐶1) = 𝜆
−2,

so that

𝑇 = 〈𝐴1, 𝜙𝐵1, 𝜏𝐶1〉𝑍/𝑍

is a T-abelian supplement.
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Case 𝑇 =
〈
𝛿2, 𝜙, 𝜏𝛿

〉
. In the PSL4 (𝑞) case for

〈
𝛿2, 𝜙, 𝛾𝛿

〉
, we took

𝐿 =
�			

0 −𝜆 0 0
1 0 0 0
0 0 0 −𝜆
0 0 1 0

����, 𝑀 =

�				

𝜆

𝑝−1
2 0 0 0

0 1 0 0
0 0 𝜆

𝑝−1
2 0

0 0 0 1

�����
�			

0 −𝜆 0 0
1 0 0 0
0 0 1 0
0 0 0 1

����
1−𝑝

2

, 𝑁 =
�			

0 −1 0 0
1 0 0 0
0 0 𝜆−1 0
0 0 0 1

����,
𝑇 = 〈𝐿, 𝜙𝑀, 𝛾𝑁〉𝑍/𝑍,

with

𝑀−1𝐿 [𝑝]𝑀 = 𝑧1𝐿 , 𝑁
−1 (𝑡𝐿−1)𝑁 = 𝑧2𝐿 , (

𝑡𝑀−1)𝑁 = 𝑧3𝑁
[𝑝]𝑀,

𝑧1 = 𝜆
1
2 (𝑝−1) , 𝑧2 = 𝜆−1, 𝑧3 = 1, det 𝐿 = 𝜆2, det𝑀 = 𝜆

1
2 (𝑝−1) , det 𝑁 = 𝜆−1.

Hence, in 𝐶𝑂6 (𝑞)
◦, with ℓ = 𝜎(𝐿), 𝑚 = 𝜎(𝑀), 𝑛 = 
𝑤0𝜎(𝑁),

𝑚−1ℓ [𝑝]𝑚 = 𝜆𝑝−1ℓ , 𝑛−1ℓ𝜏𝑛 = ℓ , 𝑚𝜏𝑛 = 𝜆
1
2 (𝑝−1)𝑛 [𝑝]𝑚,

𝜂(ℓ) = det 𝐿 = 𝜆2, 𝜂(𝑚) = det𝑀 = 𝜆
1
2 (𝑝−1) , 𝜂(𝑛) = 𝜂( 
𝑤0)𝜂(𝜎(𝑁)) = det 𝑁 = 𝜆−1.

We have to define matrices a, b, 𝑐 ∈ 𝐶𝑂4 (𝑞)
◦ such that

𝑏−1𝑎 [𝑝]𝑏 = 𝜆𝑝−1𝑎 , 𝑐−1𝑎𝑐 = 𝑎 , 𝑏𝑐 = 𝜆
1
2 (𝑝−1)𝑐 [𝑝]𝑏, that is, 𝑏−1𝑐 [𝑝]𝑏 = 𝜆−

1
2 (𝑝−1)𝑐,

𝜂(𝑎) = 𝜆2, 𝜂(𝑏) = 𝜆
1
2 (𝑝−1) , 𝜂(𝑐) = 𝜆−1.

Once we have solved 𝑏−1𝑐 [𝑝]𝑏 = 𝜆−
1
2 (𝑝−1)𝑐, we may take 𝑎 = 𝑐−2. We take

𝑐 = 𝑎(𝜆−1), 𝑏 = 𝑏(𝜆−1, 𝜆
1
2 (𝑝−1) ), 𝑎 = 𝑐−2.

If we put 𝐴1 = 𝑎⊕· · ·⊕𝑎⊕ℓ, 𝐵1 = 𝑏⊕· · ·⊕𝑏⊕𝑚,𝐶1 = 𝑐⊕· · ·⊕𝑐⊕𝑛, then 𝐴1, 𝐵1, 𝐶1 ∈ 𝐶𝑂2𝑛 (𝑞)
◦,with

𝐵−1
1 𝐴 [𝑝]

1 𝐵1 = 𝜆𝑝−1𝐴1 , 𝐶
−1
1 𝐴𝜏1𝐶1 = 𝐴1 , 𝐵

𝜏
1𝐶1 = 𝜆

1
2 (𝑝−1)𝐶 [𝑝]

1 𝐵1,

𝜂(𝐴1) = 𝜆
2, 𝜂(𝐵1) = 𝜆

1
2 (𝑝−1) , 𝜂(𝐶1) = 𝜆

−1,

so that

𝑇 = 〈𝐴1, 𝜙𝐵1, 𝜏𝐶1〉𝑍/𝑍

is a T-abelian supplement.
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10.2. 𝑝 ≡ −1 mod 4

By Lemma 11, in the case when 𝑝 ≡ −1 mod 4, the maximal abelian subgroups of Out(𝐷3 (𝑞)) �
Out(PSL4 (𝑞)) are 〈𝛿, 𝜙𝜏〉,

〈
𝛿2, 𝜙, 𝜏

〉
and

〈
𝛿2, 𝜙𝛿, 𝜏𝛿

〉
. We are therefore going through such cases.

Case 𝑇 = 〈𝛿, 𝜙𝜏〉. In the PSL4(𝑞) case for 〈𝛿, 𝜙𝛾〉, we took

𝐿 =
�			

0 0 0 −𝜆
1 0 0 0
0 1 0 0
0 0 1 0

����, 𝑀 =

�				

𝜆

3(−𝑝−1)
4 0 0 0

0 𝜆
2(−𝑝−1)

4 0 0
0 0 𝜆

−𝑝−1
4 0

0 0 0 1

�����
,

𝑇 = 〈𝐿, 𝜙𝛾𝑀〉𝑍/𝑍,

with

𝑀−1 (𝑡(𝐿 [𝑝] )−1)𝑀 = 𝜆−
𝑝+1

4 𝐿, det 𝐿 = 𝜆, det𝑀 = 𝜆−
3
2 (𝑝+1) .

Hence, in 𝐶𝑂6(𝑞)
◦, with ℓ = 𝜎(𝐿), 𝑚 = 
𝑤0𝜎(𝑀),

𝑚−1(ℓ [𝑝] )𝜏𝑚 = 𝜆
1
2 (𝑝−1)ℓ,

𝜂(ℓ) = det 𝐿 = 𝜆, 𝜂(𝑚) = 𝜂( 
𝑤0)𝜂(𝜎(𝑀)) = det𝑀 = 𝜆−
3
2 (𝑝+1) .

We have to define matrices a, 𝑏 ∈ 𝐶𝑂4(𝑞)
◦ such that

𝑏−1𝑎 [𝑝]𝑏 = 𝜆
1
2 (𝑝−1)𝑎, 𝜂(𝑎) = 𝜆, 𝜂(𝑏) = 𝜆−

3
2 (𝑝+1) .

We take

𝑎 = 𝑎(𝜆), 𝑏 = 𝑏(𝜆, 𝜆−
3
2 (𝑝+1) ).

If we put 𝐴1 = 𝑎 ⊕ · · · ⊕ 𝑎 ⊕ ℓ, 𝐵1 = 𝑏 ⊕ · · · ⊕ 𝑏 ⊕ 𝑚, then 𝐴1, 𝐵1 ∈ 𝐶𝑂2𝑛 (𝑞)
◦, with

𝐵−1
1 (𝐴 [𝑝]

1 )𝜏𝐵1 = 𝜆
1
2 (𝑝−1)𝐴1, 𝜂(𝐴1) = 𝜆, 𝜂(𝐵1) = 𝜆

− 3
2 (𝑝+1) ,

so that

𝑇 = 〈𝐴1, 𝜙𝜏𝐵1〉𝑍/𝑍

is a T-abelian supplement.

Case 𝑇 =
〈
𝛿2, 𝜙, 𝜏

〉
. In the PSL4(𝑞) case for

〈
𝛿2, 𝜙, 𝛾

〉
, we took

𝑇 = 〈𝐿, 𝜙𝑀, 𝛾𝑁〉𝑍/𝑍,

with the same L, M, N as in the case 𝑝 ≡ 1 mod 4, 𝑇 =
〈
𝛿2, 𝜙, 𝛾

〉
. We define 𝐴1, 𝐵1, 𝐶1 ∈ 𝐶𝑂2𝑛 (𝑞)

◦ as
in this case, and 𝑇 = 〈𝐴1, 𝜙𝐵1, 𝜏𝐶1〉𝑍/𝑍 is a T-abelian supplement.

Case 𝑇 =
〈
𝛿2, 𝜙𝛿, 𝜏𝛿

〉
. In the PSL4(𝑞) case for

〈
𝛿2, 𝜙𝛿, 𝛾𝛿

〉
, we took

𝑇 = 〈𝐿, 𝜙𝑀, 𝛾𝑁〉𝑍/𝑍,

with the same L, M, N as in the case 𝑝 ≡ 1 mod 4, 𝑇 =
〈
𝛿2, 𝜙, 𝛾𝛿

〉
. Again, we define 𝐴1, 𝐵1, 𝐶1 ∈

𝐶𝑂2𝑛 (𝑞)
◦ in the same way, and 𝑇 = 〈𝐴1, 𝜙𝐵1, 𝜏𝐶1〉𝑍/𝑍 is a T-abelian supplement.
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We have proved the following.

Theorem 25. Let G be an almost simple group with socle 𝐺0 = 𝐷𝑛 (𝑞), n odd. If 𝐺/𝐺0 is abelian, then
there exists an abelian subgroup A such that 𝐺 = 𝐴𝐺0.

11. 𝐷𝑛 (𝑞), n even

Here, L is of type 𝐷𝑛, n even, 𝐺0 = 𝐷𝑛 (𝑞), 𝑞 = 𝑝𝑚, 𝑑 = (2, 𝑞 − 1)2, and we assume that Aut(𝐺0) does
not split over 𝐺0; hence, ( 𝑞

𝑛−1
𝑑 , 𝑑, 𝑚) ≠ 1. In particular, 𝑑 ≠ 1; hence, p is odd, m is even and 𝑑 = 4,

�̂�/𝐻 � 𝐶2 × 𝐶2.
If 𝑛 = 4, then

Out(𝐺0) = (〈𝛿1, 𝛿2, 𝛿3〉 × 〈𝜙〉) : 𝑆3,

where 𝑆3 = 〈𝜌, 𝜏〉, 𝜏2 = 1, 𝜌3 = 1, 𝛿1𝛿2 = 𝛿3, 𝛿2
𝑖 = 𝜙

𝑚 = [𝜌, 𝜙] = [𝜏, 𝜙] = 1, 𝛿𝜏1 = 𝛿2, 𝛿𝜏3 = 𝛿3, 𝛿𝜌1 = 𝛿2,
𝛿
𝜌
2 = 𝛿3, 𝛿𝜌3 = 𝛿1.

If 𝑛 ≠ 4, then

Out(𝐺0) = (〈𝛿1, 𝛿2, 𝛿3〉 × 〈𝜙〉) : 〈𝜏〉,

where 𝜏2 = 1, 𝛿1𝛿2 = 𝛿3, 𝛿2
𝑖 = 𝜙

𝑚 = [𝜏, 𝜙] = 1, 𝛿𝜏1 = 𝛿2, 𝛿𝜏3 = 𝛿3.
Note that (𝜏𝛿1)

2 = 𝜏𝛿1𝜏𝛿1 = 𝛿2𝛿1 = 𝛿3, (𝜏𝛿2)
2 = 𝛿3; hence,

〈𝛿3, 𝜙, 𝜏𝛿1〉 = 〈𝜙, 𝜏𝛿1〉 = 〈𝜙, 𝜏𝛿2〉.

We have to consider the following cases. Assume T is an abelian, noncyclic subgroup of 〈𝛿1, 𝛿2, 𝜙, 𝜏〉
(which is Out(𝐺0) if 𝑛 ≠ 4).

Let 𝐷 = 〈𝛿1, 𝛿2〉, 𝜋 : Out(𝐺0) → Out(𝐺0)/𝐷 = 〈𝜙, 𝜏〉. If 𝜋(𝑇) is cyclic, then 𝜋(𝑇) = 〈𝜙𝑠𝜏 𝜖 〉. If
𝜀 = 0, 𝑇 � 〈𝐷, 𝜙𝑠〉, so

𝑇 � 〈𝛿1, 𝛿2, 𝜙〉.

If 𝜀 = 1, 𝑇 � 〈𝐷, 𝜙𝑠𝜏〉, and T contains an element 𝛼 = 𝜙𝑠𝜏𝛿, 𝛿 ∈ 𝐷, 𝛿 ≠ 1, so either 𝑇 = 〈𝛿3, 𝜙
𝑠𝜏〉 or

𝑇 = 〈𝛿3, 𝜙
𝑠𝜏𝛿1〉 = 〈𝛿3, 𝜙

𝑠𝜏𝛿2〉. In the first case,

𝑇 � 〈𝛿3, 𝜙, 𝜏〉.

In the second case,

𝑇 � 〈𝜙, 𝜏𝛿1〉 = 〈𝜙, 𝜏𝛿2〉.

If 𝜋(𝑇) is not cyclic, then 𝜋(𝑇) = 〈𝜙𝑠 , 𝜏〉. Therefore, either

𝑇 � 〈𝛿3, 𝜙, 𝜏〉

or

𝑇 � 〈𝛿3, 𝜙, 𝜏𝛿1〉 = 〈𝜙, 𝜏𝛿1〉 = 〈𝜙, 𝜏𝛿2〉.

Therefore, if 𝑇 � 〈𝛿1, 𝛿2, 𝜙, 𝜏〉, by Lemma 5, we only have to deal with the following cases:

case 1: 𝑇 = 〈𝛿1, 𝛿2, 𝜙〉,

case 2: 𝑇 = 〈𝛿3, 𝜙, 𝜏〉,

case 3: 𝑇 = 〈𝜙, 𝜏𝛿1〉 = 〈𝜙, 𝜏𝛿2〉.
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Assume 𝑛 = 4. Let 𝑀 = 〈𝛿1, 𝛿2, 𝜙〉, 𝜁 : Out(𝐺0) → Out(𝐺0)/𝑀 = 〈𝜌, 𝜏〉, and T a noncyclic abelian
subgroup of Out(𝐺0) not contained in 〈𝜙, 𝜌, 𝜏〉. Hence, 𝜁 (𝑇) = {1}, 〈𝜌𝑖𝜏〉 or 〈𝜌〉. However, 𝜌𝑖𝜏 is
conjugate to 𝜏; therefore, we may assume 𝜁 (𝑇) = {1}, 〈𝜏〉 or 〈𝜌〉.

If 𝜁 (𝑇) = {1} or 〈𝜏〉, we are in the previous case 𝑇 � 〈𝛿1, 𝛿2, 𝜙, 𝜏〉. We are left with 𝜁 (𝑇) = 〈𝜌〉,
𝑇 � 〈𝛿1, 𝛿2, 𝜙, 𝜌〉, so 𝑇 = 〈𝜙𝑠 , 𝜙𝑡 𝜌𝛿〉, 𝛿 ∈ 𝐷, 𝛿 ≠ 1 since T is abelian and not contained in 〈𝜙, 𝜌, 𝜏〉. It
follows that 𝑇 � 〈𝜙, 𝜌𝛿〉. Moreover, since 〈𝜌〉 acts transitively on {𝛿1, 𝛿2, 𝛿3} and [𝜌, 𝜙] = 1, we may
assume

case 4: 𝑇 = 〈𝜙, 𝜌𝛿2〉 only for 𝐷4.

We use the same procedure used to deal with the odd n case. It is convenient to start with𝐺0 = 𝐷2 (𝑞) =
𝑃Ω+

4 (𝑞) � PSL2(𝑞) × PSL2(𝑞).
We have

𝑛1 =

( 0 1 0 0
−1 0 0 0
0 0 0 1
0 0 −1 0

)
, 𝑛2 =

( 0 0 0 1
0 0 −1 0
0 1 0 0
−1 0 0 0

)
in Ω+

4 (𝑞).

Note that 𝑛2 = 𝜏2𝑛1𝜏2 and 𝑛1𝑛2 = 𝑛2𝑛1. If

𝑔 =
�	

𝑓1 0 0 0
0 𝑓2 0 0
0 0 𝜇

𝑓1
0

0 0 0 𝜇
𝑓2

��
is a diagonal matrix in 𝐶𝑂4(𝑞)

◦, then 𝛼1 (𝑔) =
𝑓1
𝑓2

, 𝛼2(𝑔) =
𝑓1 𝑓2
𝜇 . We define 𝛿1, 𝛿2, 𝛿3. Let

ℎ1 =

( 1 0 0 0
0 𝜆 0 0
0 0 𝜆 0
0 0 0 1

)
in 𝐶𝑂4(𝑞)

◦. Then 𝛼1 (ℎ1) = 𝜆−1, 𝛼2(ℎ1) = 1. We write for short ℎ1 ↦→ ℎ(𝜒1) ∈ �̂�, where 𝜒1 = (𝜆−1, 1)
is the F𝑞-character of Q with 𝜒1(𝛼1) = 𝜆−1, 𝜒1(𝛼2) = 1. We define 𝛿1 := ℎ(𝜒1)𝐺0. Moreover,
𝜒2 := 𝜒1 ◦ 𝜏 = (1, 𝜆−1), ℎ2 := ℎ𝜏1 , ℎ2 ↦→ ℎ(𝜒2) ∈ �̂�, 𝛿2 := ℎ(𝜒2)𝐺0; finally, ℎ3 := ℎ1ℎ2, and hence,
ℎ3 ↦→ ℎ(𝜒3), 𝜒3 = 𝜒1 + 𝜒2 = (𝜆−1, 𝜆−1), 𝛿3 := ℎ(𝜒3)𝐺0, so 𝛿3 = 𝛿1𝛿2.

Let

𝑥1 = 𝑛1ℎ1 =

( 0 𝜆 0 0
−1 0 0 0
0 0 0 1
0 0 −𝜆 0

)
, 𝑦 =

�	

𝜆𝑝−1 0 0 0

0 𝜆
𝑝−1

2 0 0
0 0 1 0
0 0 0 𝜆

𝑝−1
2

��.
Then 𝑥1, y are in 𝐶𝑂4(𝑞)

◦ with

𝜂(𝑥1) = 𝜂(ℎ1) = 𝜆 , 𝜂(𝑦) = 𝜆
𝑝−1 , 𝑦−1𝑥 [𝑝]1 𝑦 = 𝜆

𝑝−1
2 𝑥1 , 𝑦

𝜏 = 𝑦.

We take 𝑥2 := 𝑥𝜏1 = 𝑛2ℎ2, Then

𝜂(𝑥2) = 𝜂(ℎ2) = 𝜆 , 𝑦
−1𝑥 [𝑝]2 𝑦 = 𝜆

𝑝−1
2 𝑥2 , 𝑥1𝑥2 = 𝑥2𝑥1.

We put 𝑥3 := 𝑥1𝑥2. We have 𝑥𝜏3 = 𝑥3, 𝜂(𝑥3) = 𝜆2. Since 𝑛1, 𝑛2 are in Ω+
4 (𝑞), 𝑥𝑖 induces 𝛿𝑖 for 𝑖 = 1, 2, 3.

However, we have 𝑦 ↦→ ℎ(𝜒), 𝜒 = (𝜆
𝑝−1

2 , 𝜆
𝑝−1

2 ), so y induces 𝛿3 if 𝑝 ≡ −1 mod 4 and the identity if
𝑝 ≡ 1 mod 4.

We are in a position to deal with the 3 cases for 𝐷2:
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Case 1: 𝑇 = 〈𝛿1, 𝛿2〉 × 〈𝜙〉. From the above discussion, we have

𝑥1𝑥2 = 𝑥2𝑥1, 𝑦−1𝑥 [𝑝]1 𝑦 = 𝜆
𝑝−1

2 𝑥1, 𝑦−1𝑥 [𝑝]2 𝑦 = 𝜆
𝑝−1

2 𝑥2;

hence,

𝑇 = 〈𝑥1, 𝑥2, 𝜙𝑦〉𝑍/𝑍

is a T-abelian supplement.

Case 2: 𝑇 = 〈𝛿3〉 × 〈𝜙〉 × 〈𝜏〉. We have

𝑥𝜏3 = 𝑥3, 𝑦𝜏 = 𝑦, 𝑦−1𝑥 [𝑝]3 𝑦 = 𝜆𝑝−1𝑥3 ;

hence,

𝑇 = 〈𝑥3, 𝜙𝑦, 𝜏〉𝑍/𝑍

is a T-abelian supplement.

Case 3: 𝑇 = 〈𝜏𝛿1, 𝜙〉. We have

𝑦𝜏 = 𝑦, 𝑦−1𝑥 [𝑝]1 𝑦 = 𝜆
1
2 (𝑝−1)𝑥1;

hence,

𝑇 = 〈𝜏𝑥1, 𝜙𝑦〉𝑍/𝑍

is a T-abelian supplement. Note that y induces the identity if 𝑝 ≡ 1 mod 4 and 𝛿3 if 𝑝 ≡ −1 mod 4, but
𝑥3 = (𝜏𝑥1)

2.
We now deal with 𝐺0 = 𝐷𝑛 (𝑞), n even, 𝑛 = 2𝑚, 𝑛 � 4. Let 𝑐𝑖 = 𝛼𝑖 , 𝑖 = 1, . . . , 𝑛 − 2, and

𝑐𝑛−1 = 𝛼𝑛−1 − (𝛼1 + 𝛼3 + · · · + 𝛼𝑛−3), 𝑐𝑛 = 𝛼𝑛 − (𝛼1 + 𝛼3 + · · · + 𝛼𝑛−3).

Then 1
2𝑐𝑛−1, 1

2𝑐𝑛 are in 𝑃, and so (𝑐1, . . . , 𝑐𝑛) is a Z-basis of Q and (𝑐1, . . . , 𝑐𝑛−2,
1
2𝑐𝑛−1,

1
2𝑐𝑛) is a

Z-basis of P. If 𝜒 : 𝑄 → F
×
𝑞 is a character, then 𝜒 can be extended to a character of P if and only if

𝜒(𝑐𝑛−1) and 𝜒(𝑐𝑛) are in (F×𝑞)
2.

We define the characters 𝜓1, 𝜓2, 𝜓3 : 𝑄 → F×𝑞 . As usual, 𝜆 is a generator of F×𝑞 . We have

𝜓1 (𝛼𝑖) = 1, 𝑖 = 1, . . . , 𝑛 − 2 , 𝜓1 (𝛼𝑛−1) = 𝜆 , 𝜓1 (𝛼𝑛) = 1;

hence, 𝜓1 (𝑐𝑛−1) = 𝜆, 𝜓1(𝑐𝑛) = 1. Then we put 𝜓2 = 𝜓1 ◦ 𝜏, so 𝜓2(𝑐𝑛−1) = 1, 𝜓2(𝑐𝑛) = 𝜆, and
𝜓3 = 𝜓1 + 𝜓2, so 𝜓3 (𝑐𝑛−1) = 𝜓3 (𝑐𝑛) = 𝜆. Finally 𝛿1 := ℎ(𝜓1)𝐺0, 𝛿2 := ℎ(𝜓2)𝐺0, 𝛿3 := ℎ(𝜓3)𝐺0;
hence, 𝛿3 = 𝛿1𝛿2. Each 𝛿𝑖 induces the corresponding diagonal automorphism of 𝐷2 (𝑞) relative to 𝛼𝑛−1,
𝛼𝑛 (denoted above with the same symbols).

Let 𝑈 = 〈𝑒1, . . . , 𝑒𝑛−2, 𝑓1, . . . , 𝑓𝑛−2〉. Then F2𝑛
𝑞 is the orthogonal direct sum F2𝑛

𝑞 = 𝑈 ⊕ 𝑈⊥, 𝑈⊥ =
〈𝑒𝑛−1, 𝑒𝑛, 𝑓𝑛−1, 𝑓𝑛〉, with dim𝑈 = 2𝑛 − 4 = 4(𝑚 − 1). Moreover, U is the direct orthogonal sum of
subspaces of dimension 4:

𝑈1 = 〈𝑒1, 𝑒2, 𝑓1, 𝑓2〉, . . . ,𝑈𝑚−1 = 〈𝑒𝑛−3, 𝑒𝑛−2, 𝑓𝑛−3, 𝑓𝑛−2〉.
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To define an isometry or more generally an orthogonal similitude ofF2𝑛
𝑞 , we give matrices 𝑋𝑖 ∈ 𝐶𝑂4(𝑞)

◦,
𝜂(𝑋𝑖) = 𝜇, 𝑖 = 1, . . . , 𝑚 − 1, 𝑋 ∈ 𝐶𝑂4 (𝑞)

◦, 𝜂(𝑋) = 𝜇 and define Y in GL2𝑛 (𝑞) by

𝑌 = 𝑋1 ⊕ · · · ⊕ 𝑋𝑚−1 ⊕ 𝑋.

Then 𝑌 ∈ 𝐶𝑂2𝑛 (𝑞)
◦, with 𝜂(𝑌 ) = 𝜇. If 𝑌 ∈ 𝐶𝑂2𝑛 (𝑞)

◦ fixes 𝑈⊥, then it fixes U, and if we write
𝑌 = 𝑋 ⊕ 𝑍 , with 𝑋 ∈ 𝐶𝑂4 (𝑞)

◦, 𝑍 ∈ 𝐶𝑂2𝑛−4 (𝑞)
◦, and consider the action of 𝜙 and 𝜏, we get

𝑌 [𝑝] = 𝑋 [𝑝] ⊕ 𝑍 [𝑝] , 𝑌 𝜏 = 𝑋 𝜏 ⊕ 𝑍,

since 𝜏 acts on the basis (𝑒1, . . . , 𝑒𝑛, 𝑓1, . . . , 𝑓𝑛) just switching 𝑒𝑛 and 𝑓𝑛 (here, 𝑌 𝜏 = 𝜏𝑛𝑌𝜏𝑛, 𝑋 𝜏 =
𝜏2𝑋𝜏2).

We shall proceed as follows. Assume T is an abelian subgroup of Out(𝐺0), 𝐺0 of type 𝐷𝑛 (𝑇 �
〈𝛿1, 𝛿2, 𝜙, 𝜏〉 if 𝐺0 = 𝐷4 (𝑞)). We consider the analogous subgroup T of Out(𝐷2 (𝑞)). From the 𝐷2
case, we have an abelian subgroup of Aut(𝐷2 (𝑞)) given by explicit matrices in 𝐶𝑂4(𝑞)

◦. For each such
matrix X, we define matrices 𝑋1 ∈ 𝐶𝑂4(𝑞)

◦ and 𝑌 = 𝑋1 ⊕ · · · ⊕ 𝑋1 ⊕ 𝑋 in 𝐶𝑂2𝑛 (𝑞)
◦ (𝑚 − 1 copies of

𝑋1). We shall then obtain a T-abelian supplement 𝑇 in Aut(𝐺0).
Recall the matrices 𝑎(𝜇), 𝑏(𝜇, 𝜈) in 𝐶𝑂4 (𝑞)

◦ defined in (10.5), (10.6) and the matrices 𝑥1, 𝑥2, 𝑥3,
𝑦 ∈ 𝐶𝑂4(𝑞)

◦ defined to deal with 𝐷2. We have

𝑥1𝑥2 = 𝑥2𝑥1, 𝑦−1𝑥 [𝑝]1 𝑦 = 𝜆
𝑝−1

2 𝑥1, 𝑦−1𝑥 [𝑝]2 𝑦 = 𝜆
𝑝−1

2 𝑥2,

𝜂(𝑥1) = 𝜂(𝑥2) = 𝜆, 𝜂(𝑦) = 𝜆𝑝−1, and also

𝑥𝜏3 = 𝑥3, 𝑦𝜏 = 𝑦, 𝑦−1𝑥 [𝑝]3 𝑦 = 𝜆𝑝−1𝑥3, 𝜂(𝑥3) = 𝜆
2.

We take 𝜇 = 𝜆, 𝜈 = 𝜆𝑝−1; that is,

𝑎 = 𝑎(𝜆) =
�			


0 𝜆 0 0
−1 0 0 0
0 0 0 1
0 0 −𝜆 0

����(= 𝑥1) , 𝜂(𝑎) = 𝜆,

𝑏 = 𝑏(𝜆, 𝜆𝑝−1) =
�			

𝜆

1
2 (𝑝−1) 0 0 0

0 1 0 0
0 0 𝜆 1

2 (𝑝−1) 0
0 0 0 𝜆𝑝−1

�����
, 𝜂(𝑏) = 𝜆𝑝−1,

so 𝑏−1𝑎 [𝑝]𝑏 = 𝜆
1
2 (𝑝−1)𝑎. We put

𝐴1 = 𝑎 ⊕ · · · ⊕ 𝑎︸�������︷︷�������︸
𝑚−1

⊕𝑥1, 𝐴2 = 𝐴𝜏1 = 𝑎 ⊕ · · · ⊕ 𝑎︸�������︷︷�������︸
𝑚−1

⊕𝑥2, 𝐵 = 𝑏 ⊕ · · · ⊕ 𝑏︸�������︷︷�������︸
𝑚−1

⊕𝑦.

Then 𝐴1, 𝐴2, 𝐵 ∈ 𝐶𝑂2𝑛 (𝑞)
◦, 𝜂(𝐴1) = 𝜂(𝐴2) = 𝜆, 𝜂(𝐵) = 𝜆𝑝−1 and

𝐴1𝐴2 = 𝐴2𝐴1, 𝐵−1𝐴 [𝑝]
1 𝐵 = 𝜆

1
2 (𝑝−1)𝐴1, 𝐵−1𝐴 [𝑝]

2 𝐵 = 𝜆
1
2 (𝑝−1)𝐴2.

If, moreover, 𝐴3 = 𝐴1𝐴2, then

𝐴𝜏3 = 𝐴3, 𝐵𝜏 = 𝐵, 𝐵−1𝐴 [𝑝]
3 𝐵 = 𝜆𝑝−1𝐴3,

and 𝜂(𝐴3) = 𝜆2. Also, (𝜏𝐴1)
2 = 𝐴𝜏1 𝐴1 = 𝐴2𝐴1 = 𝐴3.
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For 𝛾 = 𝜆
1
2 (𝑝−1) , we have

(𝛼𝑖 (𝐵))𝑖=1,...,𝑛 = (𝛾, 𝛾−1, . . . , 𝛾, 𝛾−1︸����������������︷︷����������������︸
𝑛−4

, 𝛾, 𝛾−2, 𝛾, 𝛾),

and

𝑐𝑛−1 (𝐵) = 𝑐𝑛 (𝐵) = 𝛾
2−𝑚 = 𝜆

1
2 (𝑝−1) (2−𝑚) ,

so B induces 𝛿3 if m is odd and 𝑝 ≡ −1 mod 4, and the identity otherwise.
For 𝜇 ∈ F×𝑞 , let

ℎ(𝜇) =
�			


1 0 0 0
0 𝜇 0 0
0 0 1 0
0 0 0 𝜇−1

����
�			


1 0 0 0
0 1 0 0
0 0 𝜇 0
0 0 0 𝜇

���� =
�			


1 0 0 0
0 𝜇 0 0
0 0 𝜇 0
0 0 0 1

���� and 𝜂(ℎ(𝜇)) = 𝜇.

If 𝐻 (𝜇) = ℎ(𝜇) ⊕ · · · ⊕ ℎ(𝜇)︸�����������������︷︷�����������������︸
𝑚

in 𝐶𝑂2𝑛 (𝑞)
◦, then

(𝛼𝑖 (𝐻 (𝜇)))𝑖=1,...,𝑛 = (𝜇−1, 𝜇, . . . , 𝜇−1, 𝜇︸�����������������︷︷�����������������︸
𝑛−2

, 𝜇−1, 1),

𝑐𝑛−1 (𝐻 (𝜇)) = 𝜇𝑚−2, 𝑐𝑛 (𝐻 (𝜇)) = 𝜇𝑚−1.

Note that 𝐴1 induces the same diagonal automorphism in Out(𝐺0) as 𝐻 (𝜆) since 𝐴1𝐻 (𝜆)−1 ∈ 𝑁 .
Therefore, 𝐴1 induces 𝛿1 if m is odd, and 𝛿2 if m is even. Hence, 𝐴2 induces 𝛿2 if m is odd, 𝛿1 if m is
even. It follows that 𝐴3 induces 𝛿3.

Case 1: 𝑇 = 〈𝛿1, 𝛿2〉 × 〈𝜙〉. In the 𝐷2 (𝑞) case, we took

𝑇 = 〈𝑥1, 𝑥2, 𝜙𝑦〉𝑍 (𝐶𝑂4 (𝑞)
◦)/𝑍 (𝐶𝑂4(𝑞)

◦).

Then

𝑇 = 〈𝐴1, 𝐴2, 𝜙𝐵〉𝑍 (𝐶𝑂2𝑛 (𝑞)
◦)/𝑍 (𝐶𝑂2𝑛 (𝑞)

◦)

is a T-abelian supplement in Aut(𝐺0).

Case 2: 𝑇 = 〈𝛿3〉 × 〈𝜙〉 × 〈𝜏〉. In the 𝐷2 (𝑞) case, we took 𝑇 = 〈𝑥3, 𝜙𝑦, 𝜏〉𝑍/𝑍 . Then

𝑇 = 〈𝐴3, 𝜙𝐵, 𝜏〉𝑍/𝑍

is a T-abelian supplement in Aut(𝐺0).

Case 3: 𝑇 = 〈𝜏𝛿1, 𝜙〉. In the 𝐷2 (𝑞) case we took 𝑇 = 〈𝜏𝑥1, 𝜙𝑦〉𝑍/𝑍 . Then

𝑇 = 〈𝜏𝐴1, 𝜙𝐵〉𝑍/𝑍

is a T-abelian supplement in Aut(𝐺0).
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We finally deal with the last case.

Case 4: 𝑇 = 〈𝜙, 𝜌𝛿2〉, only for 𝐷4 (𝑞). We have defined the matrices 𝐴1, B in 𝐶𝑂2𝑛 (𝑞)
◦: in the case

𝑛 = 4, they are

𝐴1 =
�			


0 𝜆 0 0 0 0 0 0
−1 0 0 0 0 0 0 0
0 0 0 𝜆 0 0 0 0
0 0 −1 0 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 −𝜆 0 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 −𝜆 0

���� , 𝐵 =

�							


𝜆
𝑝−1

2 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 𝜆𝑝−1 0 0 0 0 0
0 0 0 𝜆

𝑝−1
2 0 0 0 0

0 0 0 0 𝜆
𝑝−1

2 0 0 0
0 0 0 0 0 𝜆𝑝−1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 𝜆

𝑝−1
2

��������
.

We have

𝐴1 = 𝑛1𝑛3

�					

1 0 0 0 0 0 0 0
0 𝜆 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 𝜆 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1

𝜆 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

𝜆

������
�			


1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 𝜆 0 0 0
0 0 0 0 0 𝜆 0 0
0 0 0 0 0 0 𝜆 0
0 0 0 0 0 0 0 𝜆

���� = 𝑛1𝑛3𝐻 (𝜆).

In 𝑃(𝐶𝑂8 (𝑞)
◦) = 𝐺0�̂�, we obtain the elements

𝐴1 ↦→ 𝑛1𝑛3ℎ(𝜉1) ∈ 𝐺0�̂� , 𝐵 ↦→ ℎ(𝜉) ∈ �̂�,

where 𝜉1 is the F𝑞-character of Q

𝛼1 ↦→ 𝜆−1, 𝛼2 ↦→ 𝜆, 𝛼3 ↦→ 𝜆−1, 𝛼4 ↦→ 1.

In particular, 𝑐3 ↦→ 1, 𝑐4 ↦→ 𝜆 so that 𝑛1𝑛3ℎ(𝜉1) induces 𝛿2 in Out𝐺0, while 𝜉 is the F𝑞-character of Q

𝛼1 ↦→ 𝜆
𝑝−1

2 , 𝛼2 ↦→ 𝜆1−𝑝, 𝛼3 ↦→ 𝜆
𝑝−1

2 , 𝛼4 ↦→ 𝜆
𝑝−1

2 .

In particular, 𝑐3 ↦→ 1, 𝑐4 ↦→ 1, so 𝜉 can be extended to a character of P; hence, ℎ(𝜉) ∈ 𝐻. From
𝐵−1𝐴 [𝑝]

1 𝐵 = 𝜆
1
2 (𝑝−1)𝐴1, we get [𝜙ℎ(𝜉), 𝑛1𝑛3ℎ(𝜉1)] = 1. Moreover, ℎ(𝜉)𝜌 = ℎ(𝜉); hence,

𝑇 = 〈𝜙ℎ(𝜉), 𝜌𝑛1𝑛3ℎ(𝜉1)〉

is a T-abelian supplement in Aut(𝐺0).
We have proved the following.

Theorem 26. Let G be an almost simple group with socle𝐺0 = 𝐷𝑛 (𝑞), n even. If𝐺/𝐺0 is abelian, then
there exists an abelian subgroup A such that 𝐺 = 𝐴𝐺0.

This completes the proof of Theorem 1.

12. Proof of Corollary 2

In the following, we will denote by 𝐹 (𝐺) and 𝐹∗(𝐺), respectively, the Fitting subgroup and the
generalized Fitting subgroup of 𝐺.

Proof of Corollary 2. Notice that 𝐹 (𝐺) = 1 implies 𝑁 = soc(𝐺) = 𝐹∗(𝐺). Let 𝐻 = 〈𝑎, 𝑏, 𝑁〉. If
M is a minimal normal subgroup of 𝐻, then either 𝑀 � 𝑁 or 𝑀 ∩ 𝑁 = 1. However, in the second
case, we would have 𝑀 � 𝐶𝐺 (𝑁) = 𝐶𝐺 (𝐹∗(𝐺)) = 𝑍 (𝐹∗(𝐺)) = 1, a contradiction. This implies
𝑁 = soc(𝐻) = 𝐹∗(𝐻), and therefore, it is not restrictive to assume 𝐺 = 〈𝑎, 𝑏, 𝑁〉.
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We decompose 𝑁 = 𝑁1 × · · · × 𝑁𝑡 as a product of minimal normal subgroups of G. For 1 � 𝑖 � 𝑡,
we denote by 𝜉𝑖 : 𝐺 → Aut(𝑁𝑖) the map induced by the conjugation action of G on 𝑁𝑖 . The map
𝜉 : 𝐺 →

∏
1�𝑖�𝑡 Aut(𝑁𝑖) which sends g to (𝑔 𝜉1 , . . . , 𝑔 𝜉𝑡 ), is an injective homomorphism since

ker 𝜉 =
⋂

1�𝑖�𝑡 𝐶𝐺 (𝑁𝑖) = 𝐶𝐺 (𝑁) = 1. If 𝑡 ≠ 1, then by induction, there exist 𝑛𝑖 , 𝑚𝑖 ∈ 𝑁𝑖 such
that [(𝑎𝑛𝑖) 𝜉𝑖 , (𝑏𝑚𝑖)

𝜉𝑖 ] = 1. But then, setting 𝑛 = (𝑛1, . . . , 𝑛𝑡 ) and 𝑚 = (𝑚1, . . . , 𝑚𝑡 ), we have that
[(𝑎𝑛) 𝜉 , (𝑏𝑚) 𝜉 ] = 1, and consequently, since 𝜉 is injective, [𝑎𝑛, 𝑏𝑚] = 1.

Hence, it is not restrictive to assume that N is a minimal normal subgroup of𝐺 = 〈𝑎, 𝑏, 𝑁〉.Write 𝑁 =
𝑆1×· · ·×𝑆𝑢 ,where 𝑆1, . . . , 𝑆𝑢 are isomorphic non-abelian simple groups, and let 𝑋 = 𝑁𝐺 (𝑆1)/𝐶𝐺 (𝑆1).
We may identify G with a subgroup of 𝑋 � Sym(𝑢), so 𝑎 = 𝑥𝜎, 𝑏 = 𝑦𝜏, with 𝑥, 𝑦 ∈ 𝑋𝑢 and 〈𝜎, 𝜏〉 is an
abelian regular subgroup of Sym(𝑢). Notice that

𝑋

𝑆1
�

𝑁𝐺 (𝑆1)/𝐶𝐺 (𝑆1)

𝑆1𝐶𝐺 (𝑆1)/𝐶𝐺 (𝑆1)
�

𝑁𝐺 (𝑆1)

𝑆1𝐶𝐺 (𝑆1)
.

Since 𝑆1𝐶𝐺 (𝑆1) � 𝑁, it follows that 𝑋/𝑆1 is isomorphic to a section of 𝐺/𝑁. Since 𝐺/𝑁 is an abelian
group, 𝑋/𝑆1 is abelian, and therefore by Theorem 1, there exists an abelian subgroup Y of X such that
𝑋 = 𝑌𝑆1. Then it is not restrictive to assume 〈𝑎, 𝑏〉 � 𝑌 � 〈𝜎, 𝜏〉. Let 𝐾 = 〈𝑎, 𝑏〉 and 𝑍 = 𝑌 ∩ 𝑆1. The
group 𝐾𝑍𝑢/𝑍𝑢 is abelian, and we have reduced our problem to finding 𝑛, 𝑚 ∈ 𝑍𝑢 such that 〈𝑥𝑛𝜎, 𝑦𝑚𝜏〉
is abelian. We have

[𝑥𝑛𝜎, 𝑦𝑚𝜏] = [𝑥𝑛𝜎, 𝜏] [𝑥𝑛𝜎, 𝑦𝑚]𝜏 = [𝑥𝑛, 𝜏]𝜎 [𝜎, 𝜏] [𝑥𝑛, 𝑦𝑚]𝜎𝜏 [𝜎, 𝑦𝑚]𝜏

= [𝑥𝑛, 𝜏]𝜎 [𝜎, 𝑦𝑚]𝜏 = [𝑥, 𝜏]𝜎 [𝜎, 𝑦]𝜏 [𝑛, 𝜏]𝜎 [𝜎, 𝑚]𝜏 .

Since [𝑛, 𝜏]𝜎 [𝜎, 𝑚]𝜏 = [𝑛𝜎 , 𝜏] [𝜎, 𝑚𝜏], we are looking for 𝑛, 𝑚 ∈ 𝑍𝑢 such that

[𝑥, 𝜏]𝜎 [𝜎, 𝑦]𝜏 = [𝑥𝜎, 𝑦𝜏] = [𝜏, 𝑛𝜎] [𝑚𝜏 , 𝜎] .

Notice that [𝑥𝜎, 𝑦𝜏] = (𝑧1, . . . , 𝑧𝑢) ∈ 𝑍
𝑢 , with 𝑧1𝑧2 · · · 𝑧𝑢 = 1. Let

Λ := {(𝑧1, . . . , 𝑧𝑢) ∈ 𝑍
𝑢 | 𝑧1𝑧2 · · · 𝑧𝑢 = 1}.

In order to conclude our proof, it suffices to prove that for every (𝑧1, . . . , 𝑧𝑢) ∈ Λ, there exist �̃�, �̃� ∈ 𝑍𝑢

such that (𝑧1, . . . , 𝑧𝑢) = [𝜏, �̃�] [�̃�, 𝜎] .
Since 〈𝜎, 𝜏〉 is a regular subgroup of Sym(𝑢), 𝜎 = 𝜎1 · · ·𝜎𝑟 is the product of r disjoint cycles of

the same length s, with 𝑟𝑠 = 𝑢. First, assume 𝑟 = 1. In that case, for every 𝜆 ∈ Λ, there exists �̃� ∈ 𝑍𝑢

such that [�̃�, 𝜎] = 𝜆, and our conclusion follows by taking �̃� = 1. Finally, assume 𝑟 ≠ 1. In this case,
𝜏 = 𝜏1 · · · 𝜏𝑤 is the product of w disjoint cycles of the same length, and 𝜏 must permute cyclically the
orbits Σ1, . . . , Σ𝑟 of 𝜎. It is not restrictive to assume that 𝑖 ∈ Σ𝑖 for 1 � 𝑖 � 𝑟 and that 𝜏1( 𝑗) = 𝑗 + 1 for
1 � 𝑗 � 𝑟 −1. Notice that [𝑍𝑢 , 𝜎] consists of the elements (𝑘1, . . . , 𝑘𝑢) ∈ 𝑍

𝑢 with the property that, for
any 1 � 𝑖 � 𝑟 ,

∏
𝜔∈Σ𝑖

𝑘𝜔 = 1. Given 𝜆 ∈ Λ, we may choose �̃� so that 𝜆[�̃�, 𝜎]−1 = (𝑣1, . . . , 𝑣𝑢) ∈ 𝑍
𝑢

with 𝑣1 · · · 𝑣𝑟 = 1 and 𝑣 𝑗 = 1 if 𝑗 > 𝑟. But then we may find �̃� = (𝑤1, . . . , 𝑤𝑟 , 1, . . . , 1) so that
[𝜏, �̃�] = [𝜏1, �̃�] = (𝑣1, . . . , 𝑣𝑢), and therefore, 𝜆 = [𝜏, �̃�] [�̃�, 𝜎] . �

Competing interest. The authors have no competing interest to declare.

References

[1] N. Bourbaki, Éléments de Mathématique. Groupes et Algèbres de Lie, Chapitres 4, 5, et 6 (Masson, Paris, 1981).
[2] J. N. Bray, D. F. Holt and C. M. Roney-Dougal, The Maximal Subgroups of the Low-Dimensional Finite Classical Groups

(London Mathematical Society Lecture Note Series) vol. 407 (Cambridge University Press, Cambridge, 2013).
[3] T. Breuer, R. M. Guralnick and W. M. Kantor, ‘Probabilistic generation of finite simple groups, II’, J. Algebra 320 (2008),

443–494.
[4] T. Breuer, R. M. Guralnick, A. Lucchini, A. Maróti and G. P. Nagy, ‘Hamiltonian cycles in the generating graph of finite

groups’, Bull. London Math. Soc. 42 (2010), 621–633.

https://doi.org/10.1017/fms.2024.160 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2024.160


Forum of Mathematics, Sigma 33

[5] T. C. Burness, ‘Simple groups, generation and probabilistic methods’, in Groups St Andrews 2017 in Birmingham
vol. 455 (2019), 200–229.

[6] T. Burness, R. Guralnick and S. Harper, ‘The spread of a finite group’, Ann. of Math. 193(2) (2021), 619–687.
[7] R. W. Carter, Simple Groups of Lie Type (Wiley Classics Library) (John Wiley & Sons, Inc., New York, 1989). Reprint of

the 1972 original.
[8] R. W. Carter, Finite Groups of Lie Type: Conjugacy Classes and Complex Characters (Pure and Applied Mathematics)

(John Wiley & Sons, Inc., New York, 1985).
[9] E. Crestani and A. Lucchini, ‘The generating graph of finite soluble groups’, Israel J. Math. 198(1) (2013), 63–74.

[10] E. Crestani and A. Lucchini, ‘The non-isolated vertices in the generating graph of a direct powers of simple groups’, J.
Algebraic Combin. 37(2) (2013), 249–263.

[11] D. Gorenstein, R. Lyons and R. Solomon, The Classification of the Finite Simple Groups, Number 3, Part I, Chapter A,
Almost Simple K-groups (Mathematical Surveys and Mono- graphs) vol. 40 (American Mathematical Society, Providence,
RI, 1998).

[12] R. L. Griess and R. Lyons, ‘The automorphism group of the Tits simple group 2F4(2)′’, Proc. Amer. Math. Soc. 52 (1975),
75–78.

[13] R. M. Guralnick and W. M. Kantor, ‘Probabilistic generation of finite simple groups’, J. Algebra 234 (2000), 743–792.
[14] M. Liebeck and A. Shalev, ‘Simple groups, probabilistic methods, and a conjecture of Kantor and Lubotzky’, J. Algebra

184(1) (1996), 31–57.
[15] S. Harper, ‘The spread of finite and infinite groups’, Preprint, 2022, arXiv:2210.09635.
[16] A. Lucchini, ‘The diameter of the generating graph of a finite soluble group’, J. Algebra 492 (2017), 28–43.
[17] A. Lucchini, F. Menegazzo and M. Morigi, ‘On the existence of a complement for a finite simple group in its automorphism

group. Special issue in honor of Reinhold Baer (1902–1979)’, Illinois J. Math. 47 (1–2) (2003), 395–418.
[18] A. Lucchini and D. Nemmi, ‘On the connectivity of the generating and rank graphs of finite groups’, J. Algebra 665 (2025),

131–144.
[19] R. Steinberg, ‘Automorphisms of finite linear groups’, Canadian J. Math. 12 (1960), 606–615.
[20] R. Steinberg, Lectures on Chevalley Groups (Mimeographed notes, Department of Math., Yale University, 1967. University

Lecture Series) vol. 66 (Amer. Math. Soc., Providence, RI, 2016).
[21] D. E. Taylor, The Geometry of the Classical Groups (Sigma Series in Pure Mathematics) vol. 9 (Heldermann Verlag, Berlin,

1992).
[22] Y. Wei and Y. M. Zou, ‘Inverses of Cartan matrices of Lie algebras and Lie superalgebras’, Linear Algebra Appl. 521 (2017),

283–298.
[23] R. A. Wilson, The Finite Simple Groups (Graduate Texts in Mathematics) vol. 251 (Springer-Verlag London, Ltd., London,

2009).

https://doi.org/10.1017/fms.2024.160 Published online by Cambridge University Press

https://arxiv.org/abs/2210.09635
https://doi.org/10.1017/fms.2024.160

	1 Introduction
	2 Notation and preliminary results
	3 Linear amd unitary groups
	4 Notation for groups of Lie type
	5 Cn(q), Bn(q), n2, E7(q)
	6 E6(q)
	7 2E6(q)
	8 2Dn(q), n even
	9 The remaining case
	10 Dn(q), n3, n odd
	10.1 p1 mod4
	10.2 p-1 mod4

	11 Dn(q), n even
	12 Proof of Corollary 2

