ON AN INVERSION OPERATOR
FOR THE FOURIER TRANSFORMATION
P.G. Rooney
(received September 9" 1959)

1. Introduction. In an earlier paper [l] we presented
a representation theory for the Fourier transformation defined

by
(1.1) F(x) = d (27)-% /°° ( (el*Y-1)/iy) f(y)dy,
dx - J o

for functions f in certain function spaces. This theory made
use of an operator

(e ]
(1.2) Fy ¢ [F] = (-ik/t)k+! (27)"% /w (x-ik/t)~ (K+1) F(x)dx,

where k= 1,2,..., and it was stated without proof that this
operator is an inversion operator for the Fourier transforma-
tion; that is, that under certain conditions

(1.3) limyg 50 Fy,¢ [F] = £(t).

Here we propose to investigate the circumstances under which
(1.3) is true, the limit in (1l.3) being taken in various senses
of convergence.

The derivation of the inversion operator (1.2) is outlined
in [2] , where it is shown that a certain operator applied to the
Fourier transformation changes. it into the Laplace transforma-
tion. Then an application of the Widder-Post inversion operator
for the Laplace transformation yields (1.2).

As k > o, the operator (1.2) tends formally to the
classical inversion operator for the Fourier transform,

w .
/ e~ 1Xp(x)dx ,

- =0

[

(1.4) f(t) = (277)"

since
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Limg o o (-ik/t)KF L(x-ik/t)=(K+1) = g-itx

but actually (1. 3) has somewhat greater utility than (1.4) since
the integral in (1.4) fails to exist, in the Lebesgue sense,
unless F e Lj(-® ,® ), while the integral in (1.2) exists, for
example, if F € Lp(<0 , ») foranyp, 1<p<ow

It is known that the Fourier transform F of f, defined by
(1. 1), exists if f e L (-oo o ) where 1 «s p<2, orif
[x|1 Z/qf(x)ELq( co,oo),where q>2. WhenfeLj(-® ,o),
the differentiation indicated in (1.1) can be carried under the
integral sign. We shall show in section 2 that under any of
these circumstances just mentioned, (l.3) holds in the sense
of pointwise convergence almost everywhere, and in section 4
we shall show that, under the same hypotheses, (l.3) holds in
the sense of mean convergence. Section 3 is given over to two
lemmas needed in section 4.

A word about notation. Throughout this paper, p will
stand for a fixed but arbitrary number satisfying 1l <« p= 2,
while g will stand for a fixed but arbitrary number satisfying
qz2. Also, if a number r > 1 is given, we shall understand by
r' the number defined by

1/r+ 1/ =1,

2. Pointwise convergence. The following theorem shows
the pointwise convergence.

THEOREM 1. If F is defined by (1.1), where either
(a) £ ELP(—d) 1),
or
(b) |x]| l'Z/qf(x) € Lg(-o ,),
then at every point t # 0 in the Lebesgue set of {

Umyg 50 Fk,t [F] =1(t) .

Proof. Lett # 0 and let k be an arbitrary positive integer.
Then, as a function of x,

(x-ik/t)-(k+1) e Lp(-o ,0) .

Also, an easy application of the residue calculus shows that
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(27)3 /_: (x-ik/t)~(k+1)e-1xydx
( (2 n)%(-i)kﬂykeky/t/k‘., y>0, t<0,
= —(2m)z(-i)ktlykeky/t Kt yeO0, t>0,
0 - yt>0 .
Hence by [4, theorem 35 if f ¢ L{(~® ,0 ), theorem 75 if

f eLP(-oo ,0 ), l<p<2, theorem 49 if f ¢ L(-0 ,o ), and
theorem 81 if |x]1-2/qf(x) ¢ Lg(-®,), q>2],

(2.1) Fy,t [F] (-ik/t)k+1(2 7)-% /m (x-ik/t)-{(k+1) F(x)dx

-0

[e o}

(k/t) ¥ Lkt )-1 / e-ky/t yKf(y)dy, t>0,
(o]

it

o
- (k/ )% L) -1 / e XY/t yk(y)dy, t<0.

=c0

For s >0, let
[o0]
g+(s) = /0 e~ SYV{(y)dy,
and
D
g-(s) = /0 e~ SY{(-y)dy.
These integrals are clearly finite. Also let
Li,t [g] = (-DXk/t)E1gN(Kk/t) / k1, k=1,2,... .
Then by [5, chapter 2, §5, theorem 5a], fort >0
[e ]
Ly, t [g+] = (&/t)RFl(e)-t f o e Wy/tyki(y)ay = Fy ¢ [F] ,
and fort <0,

(o2}
(-k/t)kt Lkt )- 1 / o, Y/ tyki(-y)dy

0]

Ly, -t [&]

(o]
~(k/t)k+1 (k'.)'l/w e kY /tyki(y)dy = Fy 4 [F] .
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Hence by [5, chapter 7, 86, theorem 6a], if t is in the
Lebesgue setof fand t # 0,

limg 0 Fk,t [F] = {(t).

3. Preliminary lemmas. Lemma. l is preliminary to
theorem 2 and lemma 2 to theorem 3.

LEMMA 1. Iffe€L,(0,®), where l<r « ®, then

limy | /:l f(yt)-£(t)[Tdt = 0 .
Proof. From [3, p. 397, ex. 19], if ge Ly(-c ,o ),
©
limp 5,0 [wlg(x+h)-g(x) |Tdx=0.
Let g(x) = ex/rf(ex). Then g € L (-, ), and hence
/ :l e(x+h)/T(exth) _ex/Tf(eX) ¥ dx=o(1)
as h-> 0,

h

But then, setting eX=1t, e = y, we obtain

_/ow | Y/ zi(yt)-£(t) [F dt = o(1)

as y->1. Butthen, as y—1,

s}
RIS

© <o)
< 2T {/; |Y1/rf(yt)-f(t)|rdt+ |Y1/r-1|r /0 If(W)Irdt}

® [se]
2* {./o |y TE(yt)-£(t)|F dt + |1-y-1/T|T / | £(t) dt}

o

o(1)

LEMMA 2. If t1-2/7(t) e L (0, ®), for some r,
l<r «w, then

[ o]
limy 1 fo t7°2 [ £(yt)-£(1) [T at = 0 .

Proof. An application of the previous lemma to tl-2/rf(t)
gives us
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[e o]
limy_, | /o tT-2| yl-2/Tg(yt) - £(t)] Tdt = 0 .

But then, as y —1

(e e]
/ tT-2 | f(yt)-£(t) | Tdt

[o]

oo . o]
<27 {[O t7-2 |yl-2/xf(yt)-£(t) | Tdt + |yl-2/T-1] r/O t7-2|f(yt)] Tdt §

® ©
2T {/ tT=2 |yl-2/7f(yt)-£(t) | Tdt+ [yl‘Z/r-l ‘r/yr-l /O tT-2]£(t)| Ty
o

o(l).

4, Mean convergence. Theorem 2 deals with the case
fe Lp(-,® ), and theorem 3 with the case |x|1=2/4 f(x) ¢ Lg(<0 ).

THEOREM 2. Iffe LP(-oo ,° ), and F is defined by (1.1),
then

o
limy | o / |Fk,¢ [F] - f(t)[P dt=0.
- ©
Proof. Suppose first thatt > 0. Then using (2.1) and the
fact that
©
(k/t)ktL(k1)-1 /o e-ky/tykdy = 1,

we deduce

. o]
(4.1) |Fk,[F] - f(t)ls(k/t)k“(k'.)-l/o e-ky/tyk | f(y)-£(t) | dy.

Then an application of HBlder's inequality to (4.1), if p>1,
yields

(4.2) | Fy ; [F] - £(0)]

e
< aoRrlpl {7 etk gy s pay } 1/

. {/: eky/tykqy J1/P

[ee]
= {(x/ )k Lwer)- L /o e-ky/tyk | f(y)-£(t) | Pay } /P,

and this inequality remains true if p = 1, since then it reduces
to (4.1).
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Similarly, ift < 0,
(4.3) |Fy,¢ [F]-£(t)] < {-(e/t)f+? / ° e-ky/tyk|g(y)-f(t)| Pay}l/P.
: -0

Now

[ee) [o2] o )
/_co [Fy, ¢ [F] -£(t)] Pat = (/o + /_m) |Fi ¢ [F1 -£(t) Pdt=1; +1; .

Consider first I;. By lemma 1, given a positive number ¢,
there is a positive number & so that if |y-1] < §,

o0
/ | f(yt)-£(t)] Pdt < ¢.
o

Clearly we may assume 8< 1. Then from (4.2),

_ (o]
I = /0 |Fi,¢ [F] - £(t)[P dt
o] ¢ o]
< (KKt 1/ky) /o t-(k+1)d¢ _/o e-ky/tyk () -£(t) P dy
© ©
= (kK+1/Kk!) /0 dt /0 e KYyK | f(ty)-£(t) P dy
® A
= (KXT1/k1) /o e~kyykdy /: [£(yt)-£(t)[P dt

-8 1+8 © ®©
(kk+ l/k'. ) ( /01 + ,[1 s + /1+8) e—kYy-kdy/ !f(Yt)-f(t) | Pdt
. - [o]

1]

=J’1+J’Z+J3.
But

k+l,0y (1% ok ®
= (K57 /kY) /0 e-kyykdy /o [£(yt)-£(t)|P dt

[
—
1

k+1 1-8 1y .k *
< 2P/ [ 70 eTyRdy (Hynlp + [£(t)[P )ae
K+l 1-8 kv, k-1 ®
= Zp(k + /k'.)/ e T (y™T +yk)dy / tf(t)lP dt
o) o

1-8
« M (kKt1l/kt) / e kyyk-lgy
o
where

[s ]
M = 2P+l / l£(t)|P dt.
[o]
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But if k> 1, e'(k"l)yyk'1 steadily increases on the interval
0<y<l, sothat

T = M (KL ke (k-1) (1-8) (1 g)k-1 /;s e-Vdy

1 1
<M el-® (1 Ze-k/k)k3(ed(1-8) )X > o
as k —» © on using Stirling's formula and the fact that e$ (1-§) < 1.

Similarly J3 — 0 as k >, and also

1+ ®
Iy = (kk+1/k'.)/1 ; e~kyykdy f |£(yt)-£(t)|P dt
} = (o)

‘ 1+8
< ‘s(kk“/k‘.)/1 5 e kyykay

Hence,

limp 5wl s ¢,
and thus since ¢ is arbitrary,

lmy , ,I;=0.
Similarly,

limp .ol =0,
and thus

©
limy _, /_w ]Fk’t[F] -f(t)|P at = 0.

THEOREM 3. If |x|'"2/9f(x) e Ly(-», @), and F is
defined by (1,.1), then

[e o)
limyg _, o /wltl q-2 |Fy, ¢ [F] -£(t)|%dt = 0 .

Proof. As inthe proof of theorem 2, but with p replaced
by q, we have, ifk>q - 2, ' '
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|Fy ¢ [F] - £(8)]

((x/t)k+ 1)~ 1 / ® e-ky/tyk |f(y)-£(t)[a dy }1/q, t> 0,
. o

=

el t [, etk gy aolay} Va e <o,
Now

) @ o;
/_wlt]q'z |Fy, ([F1-£(t)|9dt = (/o +/_w)|Fk,t[F] -£(t)d dt

=I3+I4.

Consider first I3. By lemma 2, given a positive number &,
there is a positive number § so that if ly-ll < &,

/°° t2-2 | f(yt)-£(t) |2 dt < € .

[e]

Clearly we may assume &< 1. But then,

o0}
I3 = / t9°2 |Fy ¢ [F] - £(t)[Tae
o ,

@ [e o]
< (kKK 1/kt) / £Q-k-3q¢ / e-ky/tyk | f(y)-£(t)| 2 dy
o) (o]

" © @
= (kKT L7k /O tq‘-’-dt/ e kv K | f(ty)-£(t)]q dy
[e]

[oe]
= (kK+1/kt) /w e-kyyKdy / t272 |f(yt)-£(t)|q dt
o] [o]
1-8 1+8 «© ©
= (KKKt f + / + / ) e"kYykay / t9-2 1 f(yt)~£(t)[q dt
o 1-8 1+8 °
= J4 + J5 + Jé .

J4 and J6 tend to zero as k —- «, in much the same manner as
J1 and J3 of theorem 2, and as in that theorem, Jg = €. Hence

rl?nk_)wl3 < €,

so that since ¢ is arbitrary,
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limy _, I3=0.
Similarly
limy | ,I14=0,

and thus
[e o)

limy , o /w |t]972 |Fy  [F] -£(t)] 9dt=0 .
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