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Abstract

For 2 ≤ d ≤ 5, we show that the class of the Hurwitz space of smooth degree d, genus g
covers of P1 stabilizes in the Grothendieck ring of stacks as g →∞, and we give a
formula for the limit. We also verify this stabilization when one imposes ramification
conditions on the covers, and obtain a particularly simple answer for this limit when
one restricts to simply branched covers.

1. Introduction

The main results of this paper are Grothendieck ring analogs of classical theorems on the density
of discriminants of number fields of degree at most 5 (see [DH69, Bha05, Bha10]). Let Hurd,g,k

be the moduli stack of degree d covers of P1 with Galois group Sd by smooth geometrically
connected genus g curves over a field k, see Definition 5.3. Let Hurs

d,g,k be the open substack
of Hurd,g,k corresponding to simply branched covers, i.e. the open subset where the map to
P1 has geometric fibers with at least d− 1 points. The main results of this paper are that for
each d ≤ 5, the classes of these moduli spaces converge in the Grothendieck ring as g →∞, to
particularly nice limits. More precisely, we work in a suitably defined Grothendieck ring of stackŝ̃
K0(Stacksk), see Definition 2.6, where as usual L := {A1} is the class of the affine line.

Theorem 1.1 (Theorem A). Suppose 2 ≤ d ≤ 5 and k is a field of characteristic not dividing d!.

In
̂̃
K0(Stacksk),

lim
g→∞

{Hurs
d,g,k}

Ldim Hurd,g,k
= 1− L−2.

Theorem 1.2 (Theorem B). Suppose 2 ≤ d ≤ 5 and k is a field of characteristic not dividing d!.

In
̂̃
K0(Stacksk),

lim
g→∞

{Hurd,g,k}
Ldim Hurd,g,k

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1− L−2 if d = 2,
(1 + L−1)(1− L−3) if d = 3,

1
(1− L−1)

∏
x∈P1

k

(1 + L−2 − L−3 − L−4) if d = 4,

1
(1− L−1)

∏
x∈P1

k

(1 + L−2 − L−4 − L−5) if d = 5.
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Low-degree Hurwitz stacks in the Grothendieck ring

The products on the right in the cases d = 4 and d = 5 are motivic Euler products in the
sense of Bilu [Bil17, BH21]. Alternatively, these can be viewed as powers in the sense of power
structures, as introduced by Gusein-Zade, Luengo, and Melle-Hernàndez [GLM04], see § 2.10.

Theorem 1.1 is a special case of Corollary 10.6 whereas Theorem 1.2 is a special case of
Corollary 10.7. Both are consequences of Theorem 10.5, describing the limits of branched covers
with specified ramification, along with rates of convergence. These results lead to conjectures in
higher degree, see § 1.5.

Remark 1.3. The results Theorems 1.1 and 1.2 of this paper are stated above with the restriction
that the Galois group of the cover is Sd. These results continue to hold when one removes this
restriction, except that when d = 4, covers with Galois group D4 must be removed. One can
deduce these claims from Lemma 9.6.

1.4 Motivation
Motivations for Theorems 1.1 and 1.2 come from number theory, topology, and algebraic
geometry.

1.4.1 Arithmetic motivation. One can also view results relating to counting number fields
of bounded discriminant as ‘point counting analogs’ of the stabilization of Hurwitz spaces. To
spell this out, our main results on stabilization of the classes of Hurwitz spaces suggest the
number of Fq points of these Hurwitz spaces also stabilize in g. (This is not actually implied
by our results, because we work in the dimension filtration of the Grothendieck ring, and
so it is possible that high codimension substacks of these Hurwitz spaces contain many Fq

points which could potentially alter the g →∞ limiting behavior of the Fq point counts.) In
the degree 3 case, stabilization of the number of Fq points was shown by Datskovsky and
Wright in [DW88]. Their results actually count S3 covers of any global field using Shintani
zeta functions. However, a more geometric proof counting S3 covers of any curve over a finite
field has also been given by J. Gunther (‘Counting cubic curve covers over finite fields’, pri-
vate communication). These results have also been generalized to work in degrees 4 and 5 by
Bhargava, Shankar, and Wang in [BSW15]. Analogs over Q were known much earlier than these
results over global function fields. That is, instead of counting Fq points of Hurwitz spaces,
corresponding to Sd covers of P1

Fq
, the arithmetic analog is to count Sd extensions of Q. When

d = 3, these counts were carried out by Davenport and Heilbronn [DH69, DH71]. When d = 4
and d = 5, the number field counting was done by Bhargava in [Bha05, Bha10, Bha14]. Our the-
orems can thus be viewed as Grothendieck ring analogs of these number field counting results.
Indeed, the ‘Euler products’ occurring in Theorem 1.2 with L replaced by p are exactly those
that occur in the densities of discriminants of Sd-number fields of degree d ≤ 5 (see [DH69,
Bha05, Bha10]), which demonstrates, in particular, the great success of the notion of motivic
Euler products. Similarly to our methods, the methods behind the number field counting results
only apply when d ≤ 5 because they rely on specific parametrizations [DF64, Bha04, Bha08] of
low-degree covers of Spec Z.

1.4.2 Topological motivation. We now describe topological results demonstrating sta-
bilization of Hurwitz spaces. One striking result is due to Ellenberg, Venkatesh, and
Westerland [EVW16], which has deep applications to number theory. Their result [EVW16,
Theorem p. 732] implies that the dimension of the ith homology hi(Hurs

3,g,C,Q) stabilizes as
g →∞. Unfortunately, although their methods apply in the case of degree 3 covers, they already
fail to apply when d = 4, see the remarks in [EVW16, p. 732].
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If, instead of working with covers of P1, one works with the full moduli stack of curves with
marked points, Mg,n, then these stacks satisfy certain homological stabilities, due to Harer,
Madsen-Weiss, and others. See, for example, [MW07] and the survey article [Hat11].

1.4.3 Algebrogeometric motivation. Finally, from an algebraic geometric viewpoint, there are
some further related unirationality results on objects of low degree and genus. For degrees d ≤ 5
a simple parametrization of degree d covers was originally given in [Mir85, Theorem 1.1], [CE96,
Theorem 4.4], and [Cas96, Theorem 3.8], see also Theorems 3.13, 3.14, and 3.16 (as well as
[Poo08, Proposition 5.1] and [Woo11, Theorem 1.1]).

There have also been results proving stabilization of algebraic data relating to Hurd,g,k. The
rational Picard groups stabilize when d ≤ 5, due to Deopurkar and Patel [DP15, Theorem A].
Also, the rational Chow groups were fully determined for d = 3, and the rational Chow groups
were shown to stabilize for d = 4 and d = 5 (removing D4 covers when d = 4), in [CL22,
Theorem 1.1].

There have also been some related stabilization results working in the Grothendieck ring.
For example, the class of smooth hypersurfaces of degree d in Pn stabilizes as d→∞ in the
Grothendieck ring. This, and various related results are shown by the second and third authors
in [VW15]. Building on this, Bilu and Howe prove more general stabilization results for sections
of vector bundles in the Grothendieck ring [BH21, Theorem A]. The use of these results will be
crucial in the present paper.

1.5 Conjectures and questions motivated by Theorems A and B
The most natural question following Theorem 1.1 is whether the pattern continues for higher d.
The continuation of analogies of this pattern have been conjectured in several different domains.

1.6 Arithmetic conjectures
In the context of counting degree d number fields whose Galois closure has Galois group Sd,
Bhargava [Bha07, Conjecture 1.2] has conjectured that an analog of Theorem 1.2 holds for all
d (which, as mentioned above, is known for d ≤ 5). Bhargava has given a specific conjectural
expression for the Euler factors. It is natural to ask whether Theorem 1.2 holds for d ≥ 6 using
the analogous Euler factors. That is, one may ask whether Theorem 10.5 holds for d ≥ 6 when
all types of ramification are allowed. Further, the heuristics of [Bha07] also predict the analog
of Theorem 1.1 in the number field counting setting for all d (which again is a theorem for
d ≤ 5; see [Bha14, Theorem 1.1]). Bhargava’s heuristics more generally apply to give a conjecture
for counting Sd degree d fields with various ramification restrictions, and the analogy in the
Grothendieck ring setting would be to conjecture that Theorem 10.5 holds for d ≥ 6.

The heuristics above are based on a mass formula proven by Bhargava [Bha07, Theorem 1.1].
We prove an analogous mass formula in the Grothendieck ring in Theorem 8.3, which we now state
a consequence of. To make a precise statement, let Xd denote the stack over k whose T points are
finite locally free degree d Gorenstein covers Z of T ×Spec k Spec k[ε]/(ε2) so that for each geo-
metric point Specκ→ T , Z ×T×Spec k[ε]/(ε2) (Specκ× Spec k[ε]/(ε2)) has one-dimensional Zariski
tangent space at each point. We write R � d to mean that R is a partition of d. Given R � d
comprised of ti copies of ri for i = 1, . . . n, we define r(R) :=

∑n
i=1(ri − 1)ti to be its ramifica-

tion order. We can then deduce the following corollary of Theorem 8.3, also see Remark 8.8, by
summing over partitions of d in the same way that [Bha07, Proposition 2.3] was deduced from
[Bha07, Proposition 2.2].
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Corollary 1.7. For d ≥ 1 and k a field of characteristic not dividing d!, in
̂̃
K0(Stacksk),

{Xd} =
∑
R�d

L−r(R) =
d−1∑
j=0

q(d, d− j)L−j ,

where q(d, d− j) is the number of partitions of d into at exactly d− j parts.

The above heuristics can be expanded to make predictions when other finite groups
replace Sd. These expanded heuristics are often called the Malle–Bhargava principle (see
[Woo16]), though in complete generality the predictions are not always correct. This prin-
ciple, as long as one is imposing only geometric local conditions (i.e. only local conditions
on ramification) naturally extends to the Grothendieck ring setting. Then, one can ask in
what generality the predictions of the principle hold. Moreover, in the field counting setting,
one naturally counts extensions of global fields other than Q or Fq(t), and the analog here
would be replacing P1 with another fixed curve, which is another interesting direction to try to
understand.

In addition to the above conjectures on Sd extensions, there are also many open questions
about Grothendieck ring versions of other extension counting problems. One particularly acces-
sible problem may be that of counting D4 extensions. In [CDO02, Corollary 1.4], the number
of D4 extensions of Q was computed when counted by discriminant, though the answer does
not appear to have a simple closed form, and was expressed in terms of a sum over quadratic
extensions of Q. However, in [ASVW21, Theorem 1] these extensions were counted by conductor,
and there was a closed-form answer, expressed in terms of an Euler product.

Question 1.8. What is the asymptotic class of the locus of D4 covers of P1 in the Grothendieck

ring ̂̃
K0(Stacksk) when counted by discriminant or conductor?

Similarly, it would be interesting to compute the class of abelian covers of P1.

Question 1.9. Fix an abelian group G. What is the asymptotic class of the locus of G covers of

P1 in the Grothendieck ring ̂̃
K0(Stacksk) when counted by discriminant or conductor?

One way to approach this question could be to use that the moduli spaces of abelian covers
of P1 can be described in terms of certain configuration spaces of (colored) points on P1. The
classes of such configuration spaces can be extracted from [VW15, § 5].

1.10 Error terms and second-order terms
It would be interesting to understand the error terms in Theorem 10.5. More precisely, in
Theorem 10.5, we show the equalities of Theorems 1.1 and 1.2 hold not just in the limit, but
even hold for any fixed g up to codimension

rd,g := min

(
g + cd
κd

,
g + d− 1

d
− 4d−3

)
,

for c3 = 0, c4 = −2, c5 = −23, κ3 = 4, κ4 = 12, and κ5 = 40. We say two classes of dimension

d are equal modulo codimension r in ̂̃
K0(Stacksk) if their difference lies in filtered part of̂̃

K0(Stacksk) of dimension at most d− r. Concretely, in degree 3, a special case of Theorem 10.5
may be stated as follows.
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Corollary 1.11. Suppose k is a field of characteristic not dividing 6. Then

{Hur3,g,k}
Ldim Hur3,g,k

≡ (1 + L−1)(1− L−3)

modulo codimension g/4 in
̂̃
K0(Stacksk).

Focusing on the degree 3 case, Roberts’ conjecture [Rob01] states that the number of
degree 3 field extensions of Q of discriminant at most X is αX + βX5/6 + o(X5/6), for appropri-
ate constants α, β. This was proved in [BST13] and [TT13] independently. Moreover, the error
term was further improved to αX + βX5/6 +O(X2/3+ε) in [BTT21].

In the context of function fields, one might similarly expect αqq
dim Hur3,g,k +

βqq
5/6 dim Hur3,g,k + o(q5/6 dim Hur3,g,k) to count the number of degree 3 extensions of Fq(t) of

genus g, for some constants αq, βq. Progress towards this was made in [Zha13]. In the con-
text of the Grothendieck ring, as mentioned above, we were able to compute the class of the
Hurwitz stack up to codimension

r3,g := min

(
g

4
,
g + 2

3
− 1

)
= min

(
g

4
,
g − 1

3

)
.

Hence, once g ≥ 4, r3,g = g/4. Since dim Hur3,g,k = 2g + 4, we find 5
6 dim Hur3,g,k =

dim Hur3,g,k − (g + 2)/3, and so a weakened form of Roberts’ conjecture is the following.

Conjecture 1.12. Suppose k is a field of characteristic not dividing 6. Then

{Hur3,g,k}
Ldim Hur3,g,k

≡ (1 + L−1)(1− L−3)

modulo codimension (g − 1)/3 in ̂̃
K0(Stacksk).

Remark 1.13. Note that (g − 1)/3 is, in fact, the second term in the minimum defining r3,g.
There is only one step in our proof where the error term we introduce has codimension less than
(g − 1)/3, namely when we apply the sieve of [BH21] in Proposition 9.10 and Lemma 9.11. Thus,
if the sieving machinery could be improved, it may lead to a proof of Conjecture 1.12.

Remark 1.14. In the degree 3 case, it would be quite interesting to actually find the second-order
term, instead of just predicting the codimension of the error. The paper [BTT21] improves the
error term in Davenport–Heilbronn to O(X2/3+ε), where X is the discriminant of the relevant
cubic extension. Since X2/3 = X ·X−1/3, when one translates this to a codimension bound in the
Hurwitz stack, it suggests one might hope to determine an asymptotic expression for {Hur3,g,k}
up to codimension 1

3 dim Hur3,g,k. Such a computation would be extremely interesting to us, and
we expect it would require tools far beyond those of the current paper.

In addition, it would be interesting, though likely more difficult, to determine the codimension
of the error and the second-order terms in degrees 4 and 5.

1.15 Topological conjectures
If Confn denotes the configuration space of points on P1, i.e. the open subscheme of Symn

P1 param-
eterizing reduced degree n subschemes of P1, then, for n ≥ 3, we have {Confn}/Ldim Confn =
1− L−2 in the Grothendieck ring of varieties. This follows from [VW15, Lemma 5.9(a)] as we
explain further toward the end of § 11.3. There is a map Hurs

d,g,k → Conf2g−2+2d sending a
curve to its branch locus, see [FP02]. Using this, Theorem 1.1 and the explicit formula for

{Conf2g−2+2d} implies that the source and target of this map have classes in ̂̃
K0(Stacksk), defined

in Definition 2.6, which differ only by a class of high codimension.
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Corollary 1.16. For 2 ≤ d ≤ 5 and k a field of characteristic not dividing d!,

lim
g→∞

{Hurs
d,g,k}

Ldim Hurs
d,g,k

=
{Conf2g−2+2d}

Ldim Hurs
d,g,k

in
̂̃
K0(Stacksk).

It was also conjectured in [EVW16, Conjecture 1.5] that this map Hurs
d,g,C → Conf2g−2+2d

induces an isomorphism on ith homology for fixed d and sufficiently large g. (Technically a slight
variant was conjectured in [EVW16, Conjecture 1.5], with A1 base in place of P1.) This is, in
fact, open for d ≥ 3, though recent work of Zheng [Zhe24, Theorem 1.2] proves a closely related
result in the d = 3 case, by finding the stable cohomology of Hur3,g,C. Theorem 1.1 could be seen
as an additional motivation for this conjecture, especially for d ≤ 5.

1.17 Spelling out some questions
Despite the numerous parametrizations mentioned above, the question of whether there
exist simple parametrizations of covers of degree 6, or even whether the Hurwitz stack of
genus-g degree 6 covers (for large g) is unirational, remains wide open.

Returning to the simply branched case for simplicity, we have now seen several ways in which
we could ask whether the spaces Hurs

d,g,k and Conf2g−2+2d are similar as g →∞. The following
questions have been raised.

(1) Do they have the same points counts (asymptotically) over Fq?
(2) Do they have the same cohomology, in some stable limit?
(3) Do they have the same normalized limit in the Grothendieck ring?

We also include the following.

(4) Are they piecewise isomorphic up to pieces of codimension going to ∞?

Even though it is not technically about these spaces, in this sequence of questions one should
also include the following.

(1′) Are the asymptotic counts of Sd number fields as predicted by Bhargava in [Bha07]?

For d ≥ 6, it seems progressively harder to believe the questions (1) and (1′), (2), (3), and (4)
could have positive answers, though for d ≤ 5 the same parametrizations lead to positive answers
to questions (1), (1′), (3), and (4) (and nearly to question (2) for d = 3).

1.18 Idea of the proof
The idea of the proof of Theorems 1.1 and 1.2 is simplest to understand in the degree 3 case,
so we describe this first. Miranda [Mir85] gave a parametrization of degree 3 covers of a base
scheme, and we explain here how we can apply it for degree 3 covers of P1. Any degree 3 cover
of P1 has a canonical embedding into a P1-bundle PE over P1. We can write E � O(a)⊕ O(b)
where a+ b = g + 2 and a ≤ b. We can therefore stratify the Hurwitz space by the isomorphism
type of the bundle E . The degree 3 curves lie in a particular linear series on PE . The idea is
now to compute the locus of smooth curves in this linear system with particular ramification
conditions, and then sum over all splitting types of bundles E . The condition for a degree 3
cover of P1 to be smooth in a fiber over p can be checked over the preimage of the second-order
neighborhood of p in PE . We directly compute the classes of such curves in such an infinitesimal
neighborhood. Using the notion of motivic Euler products, we can ‘multiply’ these local classes
to obtain the global class of smooth curves in PE in the relevant linear system, at least up
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to high codimension. We then sum these resulting classes over allowed splitting types of E . It
turns out that we must have E � O(a)⊕ O(b) with a ≤ b, 2a ≥ b, and a general member of the
relevant linear system on any such bundle gives a smooth trigonal curve. Miraculously, in the
simply branched case, this motivic Euler product exactly cancels out with the sum over splitting
types of PE , weighted by their automorphisms. This follows from a motivic Tamagawa number
formula for SL2.

To generalize this idea to the cases of degrees 4 and 5 requires substantial additional work.
First, it is no longer the case that curves of degrees 4 and 5 are elements of linear systems
on a surface. Rather, there are parametrizations due to Casnati and Ekedahl [CE96, Cas96]
describing covers of degree d in terms of pairs of vector bundles E and F , where E has rank
d− 1 and F ⊂ Sym2 E corresponds to a certain family of quadrics determined by the curve. In
the d = 4 case, F has rank 2, corresponding to 4 points in P2 being a complete intersection of
two quadratics, whereas in the case d = 5, F has rank 5, corresponding to 5 points in P3 being
the vanishing locus of the five 4× 4 Pfaffians of a certain 5× 5 matrix of linear forms. As in the
degree 3 case, we can then stratify the Hurwitz stack in terms of the splitting types of E and
F , and compute the classes yielding curves of degree d as sections of a certain vector bundle
H (E ,F ) on P1, depending on E and F . It is significantly more difficult to calculate the relevant
local classes giving the smoothness conditions in fibers in degrees 4 and 5 than it is in degree 3.
Nevertheless, we are able to do so by reformulating the question in terms of computing classes of
certain classifying stacks for positive dimensional disconnected algebraic groups, and applying a
number of results of Ekedahl. The result is Theorem 8.3, which can be viewed as a motivic analog
of Bhargava’s mass formula [Bha07] counting extensions of local fields in arbitrary degree. The
specific splitting types of E and F which appear are not nearly so simple as in the degree 3 case,
but it turns out that the expressions work out modulo high codimension. For this it is important
not to count D4 covers, i.e. degree 4 covers which factor through a hyperelliptic curve. As in the
degree 3 case, it turns out that, at least in the simply branched case, the sum over splitting types
of E and F cancel out with the local conditions we impose, again by the Tamagawa number
formula.

1.19 Outline of the paper
The structure of the remainder of the paper is as follows. In § 2, we give background on the
Grothendieck ring of stacks, set up the precise variant we will work in, and recall the notion
of motivic Euler products. Then, in § 3 we prove generalizations of parametrizations due to
Miranda, Casnati–Ekedahl, and Casnati regarding Gorenstein covers of degree d ≤ 5. In degrees 3
and 4, generalizations to arbitrary covers of an arbitrary base have been previous shown by
Poonen [Poo08, Proposition 5.1] and the third author [Woo11, Theorem 1.1], but in degree 5
we require new arguments, and here we present a (mostly) uniform argument for degrees 3,
4, and 5. In § 4 we upgrade the above-mentioned parametrizations for d ≤ 5 to describe simple
presentations of the stack of degree d Gorenstein covers as a global quotient stack. Having settled
the above preliminaries, we define the Hurwitz stacks we will work with in § 5 and prove they
are algebraic. We then describe natural stratifications of these Hurwitz stacks that arise from
the structure of the parametrizations in § 6. Using these parametrizations, we give descriptions
of these strata as quotient stacks in § 7. We next begin our proof of the main theorem by
computing the local conditions in the Grothendieck ring corresponding to a cover being smooth
with specified ramification conditions in § 8. In § 9 we establish bounds on the codimension of
the contributions to the Hurwitz stack from various strata, which will enable us to prove our
main result in § 10. The proof for the case of degree 2 is slightly different from that in degrees
3 ≤ d ≤ 5, and we complete this in § 11.
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1.20 Notation
Let XZ denote the fibered product X ×Y Z of schemes, when Y is clear from context. Similarly
define XR := X ×Y SpecR. For X an integral variety, we use K(X) to denote its function field.

Recall that for G a group, the wreath product G � Sn is the semidirect product Gn � Sn

where Sn acts on Gn by the permutation action on the n copies of G. More generally, for E a
category, let E �BSj denote the corresponding wreath product of categories (see [Eke09b, p. 5])
so that, in particular, BG �BSj = B(G � Sj).

For X a stack, and G a group scheme acting on X , we use [X /G] to denote the quotient
stack. To avoid confusion with this notation, for X a stack, we use {X } to denote its class in
the Grothendieck ring of stacks, see Definition 2.6.

We call an algebraic group G over a field k special if every G-torsor over a k-scheme X is
trivial Zariski locally on X.

When working in ̂̃
K0(Spacesk), defined in Definition 2.6, we say two classes A,B ∈̂̃

K0(Spacesk) of dimension d are equal modulo codimension n to mean A−B lies in the dimension

d− n filtered part of ̂̃
K0(Spacesk).

Let D := Spec k[ε]/(ε2) be the dual numbers. For X a projective scheme over Y , let Hilbd
X/Y

denote the Hilbert scheme parameterizing degree d dimension 0 subschemes of X over Y .
ForX → Y a finite locally free map, and Z anX-scheme, let ResX/Y (Z)→ Y denote the Weil

restriction. Recall (e.g. [BLR90, § 7.6]) that the Weil restriction is the functor defined on T points
by ResX/Y (Z)(T ) = Z(T ×Y X). For Z quasi-projective over X, ResX/Y (Z) is representable
[BLR90, § 7.6, Theorem 4].

2. Background: the Grothendieck ring of stacks and motivic Euler products

In this section, we begin by defining useful variants of the Grothendieck ring. Ultimately, we will

compute the classes of Hurwitz stacks in a ring we call ̂̃
K0(Spacesk), obtained from the usual

Grothendieck ring of varieties by quotienting by universally bijective (i.e. bijective on topological
spaces after any base change or, equivalently, radicial surjective) morphisms, inverting L = {A1},
and then completing with respect to the dimension filtration. Following this, we recall basic
definitions associated to motivic Euler products, following [Bil17] and [BH21]. We also prove
these Euler products satisfy a multiplicativity property (Lemma 2.14).

2.1 Variations of the Grothendieck ring
Recall that we are working over a fixed field k. We begin by introducing the Grothendieck ring
of algebraic spaces.

Definition 2.2. Let K0(Spacesk) denote the Grothendieck ring of algebraic spaces over k. This
is the ring generated by classes {X} of algebraic spaces X of finite type over k with relations
given by {X} = {Y } if there is an isomorphism X � Y over k and {X} = {Z}+ {X − Z} for
any closed sub-algebraic space Z ⊂ X. Let Xred denote the reduction of X. Applying this in the
case Z = Xred, we have {X} = {Xred}. Multiplication is given by {X} · {Y } = {X ×k Y }.

More generally, if S is a finite-type algebraic space over k we can define K0(Spacesk /S)
as the free abelian group generated by classes of morphisms X → S with relations {X/S} =
{Z/S}+ {X − Z/S} for any closed sub-algebraic space Z ⊂ X, where the implicit maps
f |Z : Z → S, f |X−Z : X − Z → S are obtained by restricting the map f : X → S. Multiplication
is given by {X/S} · {Y/S} = {X ×S Y }.
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We use a k-variety to mean a reduced, separated, finite-type k-scheme. We let Vark denote
the category of k-varieties. One can similarly define K0(Vark), see [BH21, § 2]. Similarly, for S a
k-variety, one can analogously define K0(Vark /S), see [BH21, § 2].

Proposition 2.3. Let S be k-variety. The natural map φ : K0(Vark /S)→ K0(Spacesk /S),
sending {X/S} viewed as a k-variety to the same {X/S} viewed as a finite type k-space, is an
isomorphism.

Proof. We first show that for any finite-type k-space X, there is a finite collection X1, . . . , Xn

of locally closed k-subspaces isomorphic to schemes, forming a stratification of X. Here, a strat-
ification means that a k point of X factors through some Xi. The key input we will need is
that finite-type spaces are quasi-separated, and so they contain a dense open isomorphic to a
scheme [Ols16, Theorem 6.4.1]. This, together with the facts that {X/S} = {Xred/S} and that
any finite-type k-scheme has a stratification by separated finite-type k-schemes shows that any
finite type k-space X has a stratification by locally closed subschemes.

Next, let us show φ is surjective. For this, if {X/S} is any finite-type algebraic space, we can
use the above stratification to write {X/S} =

∑n
i=1{Xi/S}, for Xi varieties over S, implying φ

is surjective.
We conclude the proof by showing that φ is injective. In order to show this, it is enough

to show that any single relation in K0(Spacesk /S) is expressible in terms of relations from
K0(Vark /S). More precisely, if {X/S} ∈ K0(Spacesk /S) and Z is a closed subspace Z ⊂ X, it
suffices to show that the relation {X/S} = {Z/S}+ {X − Z/S} can be expressed as the image
under φ of a sum of relations from K0(Vark). To see this is the case, write {X/S} =

∑n
i=1{Xi/S}

and where X1, . . . , Xn are k-varieties. Then, let Zi be the reduction of Xi ×X Z. Note that Zi is a
scheme from the definition of algebraic space because Xi and Z are both schemes. In addition, Zi

is separated since it is a closed subscheme of the separated scheme Xi. Hence, Zi is a variety. We
can also write {Z/S}+ {X − Z/S} =

∑n
i=1{Zi/S}+

∑n
i=1{Xi − Zi/S}. Therefore, it suffices to

verify that
n∑

i=1

{Xi/S} =
n∑

i=1

{Zi/S}+
n∑

i=1

{Xi − Zi/S}

is the image under φ of a sum of relations in the Grothendieck ring of varieties. Indeed, it is the
sum over i of the relations {Xi/S} = {Zi/S}+ {Xi − Zi/S}. �

We next introduce the Grothendieck ring of algebraic stacks.

Definition 2.4. The Grothendieck ring of algebraic stacks (over k) is the ring K0(Stacksk)
generated by classes of algebraic stacks {X } of finite type over k with affine diagonal, with the
three relations:

(1) {X } = {Y } if there is an isomorphism X � Y over k;
(2) {X } = {Z }+ {U } for any closed substack Z ⊂X with open complement U ⊂X ;
(3) {SpecX (Sym•

X E )} = {X ×k An} for E any locally free sheaf on X of rank n.

Multiplication in this ring is given by {X } · {Y } = {X ×k Y }.
Note that condition (3) above follows from the first two in the case of schemes, because

vector bundles on schemes are Zariski locally trivial. However, vector bundles over stacks may
fail to be Zariski locally trivial, as is the case for nontrivial vector bundles on BG.
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Remark 2.5. Let L := {A1
k} denote the class of the affine line. The natural map K0(Spacesk)→

K0(Stacksk) induces an isomorphism

K0(Spacesk)[L
−1, (Ln − 1)−1

n≥1]
∼−→ K0(Stacksk)

[Eke09a, Theorem 1.2]. Here K0(Spacesk)[L−1, (Ln − 1)−1] denotes the ring obtained from
K0(Spacesk) by inverting L, as well as Ln − 1 for all positive integers n. This isomorphism
is motivated by Definition 2.4(3) and the fact that inverting the classes of L and Ln − 1 for all
n is equivalent to inverting the classes of GLn for all n.

In order to apply the results of [BH21] to sieve out smooth covers from all covers, we will need
to work in a slight modification of the Grothendieck ring of stacks where we invert universally
bijective (i.e. radicial surjective) morphisms and then complete along the dimension filtration.

Definition 2.6. Let k be a field and let K0(Spacesk) denote the Grothendieck ring of algebraic

spaces over k from Definition 2.2. FromK0(Spacesk), we will construct another ring, ̂̃K0(Spacesk),
in three steps.

(1) For any universally bijective map f : X → Y of finite-type algebraic spaces over k, we
impose the additional relation that {X} = {Y }. Call the result (only for the next paragraph)
K0(Spacesk)RS.

(2) Define K̃0(Spacesk) := K0(Spacesk)RS[L−1]. LikeK0(Stacksk), the ring K̃0(Spacesk) has a fil-
tration given by dimension with the ith filtered part F iK̃0(Spacesk) ⊂ K̃0(Spacesk) denoting
the subset of K̃0(Spacesk) spanned by classes of dimension at most −i.

(3) Finally, let ̂̃
K0(Spacesk) := lim←−

i≥0

K̃0(Spacesk)/F
iK̃0(Spacesk)

be the completion along the dimension filtration.

Similarly, for K0(Stacksk) the Grothendieck ring of algebraic stacks over k of Definition 2.4, we

analogously define ̂̃
K0(Stacksk) in the same three steps, replacing the word ‘spaces’ above by

‘stacks’.

(1) We first impose the relation {X} = {Y } for every universally bijective map of algebraic
stacks f : X → Y of finite type with affine diagonal, and denote the result K0(Stacksk)RS.

(2) Define K̃0(Stacksk) := K0(Stacksk)RS[L−1]. Like K0(Stacksk), the ring K̃0(Stacksk) has a fil-
tration given by dimension with the ith filtered part F iK̃0(Stacksk) ⊂ K̃0(Stacksk) denoting
the subset of K̃0(Stacksk) spanned by classes of dimension at most −i.

(3) Finally, let ̂̃
K0(Stacksk) := lim←−

i≥0

K̃0(Stacksk)/F iK̃0(Stacksk)

be the completion along the dimension filtration.

Remark 2.7. In characteristic 0, identifying classes along universally bijective morphisms does
not alter the Grothendieck ring. See [BH21, Remarks 2.0.2 and 7.3.2] for some justification of
why we are inverting universally bijective morphisms.

But we do not know if inverting universally bijective morphisms alters the Grothendieck ring
of spaces or stacks in positive characteristic.
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Since Hurwitz stacks are not, in general, algebraic spaces, but the results of [BH21] apply to

the completed Grothendieck ring of algebraic spaces ̂̃
K0(Spacesk), it will be useful to know that

one can also obtain ̂̃
K0(Spacesk) from K0(Stacksk) by inverting universally bijective maps and

completing along the dimension filtration, as we next verify.

Lemma 2.8. The natural map
̂̃
K0(Spacesk)→ ̂̃

K0(Stacksk) is an isomorphism.

Proof. First note that although we constructed ̂̃
K0(Spacesk) from K0(Spacesk) by first quoti-

enting by universally bijective morphisms and then inverting L, we could have equally well first
inverted L and then inverted universally bijective morphisms. Since localization commutes with
taking quotients, we obtain the same result by doing these steps in either order.

Since we can localize and take quotients in any order, using Remark 2.5, we can equivalently

obtain ̂̃
K0(Stacksk) by identifying universally bijective morphisms of spaces and then inverting

L,Ln − 1 and completing along the dimension filtration. To show ̂̃
K0(Spacesk)→ ̂̃

K0(Stacksk)
is an isomorphism, we wish to show that beginning with K̃0(Spacesk) and completing along
the dimension filtration is equivalent to first inverting Ln − 1 for all n ≥ 1 and then complet-

ing along the dimension filtration. Indeed, one may define a map ̂̃
K0(Stacksk)→ ̂̃

K0(Spacesk)

induced by the map K̃0(Spacesk)[(Ln − 1)−1
n≥0]→

̂̃
K0(Spacesk) extended by sending the class

of (Ln − 1)−1 �→∑
i≥1 L−in. Upon completing along the dimension filtration this defines the

desired isomorphism ̂̃
K0(Stacksk)→ ̂̃

K0(Spacesk) inverse to the natural map ̂̃
K0(Spacesk)→̂̃

K0(Stacksk) given above. �

Remark 2.9. Due to the equivalence of Lemma 2.8, in what follows, we will work in ̂̃
K0(Spacesk).

In particular, it makes sense to speak of classes of stacks with affine diagonal in ̂̃
K0(Spacesk) by

Lemma 2.8.

2.10 Motivic Euler products
We recall the notion of motivic Euler products in the Grothendieck ring, which is crucial in our
proof. See [Bil17] for an introduction to motivic Euler products, and [BH21, § 6] for more details.

We begin by introducing notation to give the definition of motivic Euler products in the
setting we will need. For a finite multiset μ, with underlying set I, we write μ = (mi)i∈I , where
mi is the number of copies of i in μ. LetX be a reduced, quasi-projective scheme over a field k. For
any finite multiset μ = (mi)i∈I , there is a finite surjective map p :

∏
i∈I X

mi →∏
i∈I Symmi X.

Let U denote the open subscheme of
∏

i∈I X
mi where no two coordinates agree and let Cμ(X)

denote the open subscheme p(U) ⊂∏
i∈I Symmi X. Informally speaking, Cμ(X) parameterizes

configurations of μ-labeled points on X.
More generally, for X = (Xi)i∈I a collection of reduced, quasi-projective schemes Xi

with morphisms to X, and μ = (mi)i∈I a multiset, define Cμ
X(X ) as the preimage of

Cμ(X) ⊂∏
i∈I Symmi X under the projection

∏
i∈I Symmi Xi →

∏
i∈I Symmi(X). As in [BH21,

Definition 6.1.8], one can extend this definition to make sense of Cμ
X(A) as an element of

K0(Spacesk) where A = (ai)i∈I with ai in K0(Spacesk /X).
Let N denote the positive integers. Let P be the set of non-empty finite multisets of positive

integers, and for such a multiset μ = (mi)i∈N, let |μ| := ∑
i i ·mi. Following [BDH22, § 2.2.2], for
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A = (ai)i∈N a collection of classes in K0(Spacesk /X), define the motivic Euler product∏
x∈X

(
1 +

∞∑
i=1

ai,xt
i

)
:= 1 +

∑
μ∈P

Cμ
X((ai)i∈N)t|μ| ∈ K0(Spacesk)[[t]]. (2.1)

Here, ai,x is formal notation to indicate the ai on which the definition depends. When we write
a class bi ∈ K0(Spacesk) in place of ai,x, it indicates that ai = [Yi ×X]− [Zi ×X], where Yi, Zi

are algebraic spaces of finite type over k such that bi = [Yi]− [Zi] and Yi ×X,Zi ×X have the
natural projection map to X.

Let r ∈ N, and let I be the set of r-tuples of non-negative integers, not all 0. Note that I is a
semigroup under coordinate-wise addition. Let Pr denote the set of non-empty finite multisets of
elements of I, and for μ ∈ Pr, let |μ| ∈ I denote the sum of the elements of μ. More generally, for
indeterminates t1, . . . , tr one can define, forA = (ai)i∈I , a collection of classes inK0(Spacesk /X),∏

x∈X

(
1 +

∑
i∈I

ai,xt
i

)
:= 1 +

∑
μ∈Pr

Cμ
X((ai)i∈I)t|μ| ∈ K0(Spacesk)[[t1, . . . , tr]], (2.2)

where for i = (i1, . . . , ir) ∈ I, we write ti for ti11 · · · tirr .

Warning 2.11. The left-hand side of (2.1) is merely (evocative) notation, and has no intrinsic
meaning beyond the right-hand side.

In the special cases that we will use them in, motivic Euler products are the same as the
power structures of Gusein-Zade, Luengo, and Melle-Hernàndez [GLM04]. We now specialize to
the one variable case.

In good circumstances, there is an evaluation map at t = 1 sending a motivic Euler prod-

uct, viewed as an element of K0(Spacesk)[[t]] to an element of ̂̃
K0(Spacesk), as in [BH21,

Definition 6.4.1 and Notation 6.4.2]. This makes sense whenever the motivic Euler product
‘converges at t = 1’, meaning there are only finitely many terms μ so that Cμ

X/S(a) is outside
any given piece of the dimension filtration.

Notation 2.12. For a motivic Euler product
∏

x∈X(1 + axt) which converges at t = 1, we use∏
x∈X

(1 + axt)|t=1

to denote the evaluation at t = 1 in ̂̃
K0(Spacesk).

We will often also write
∏

x∈X(1 + ax) to also denote the evaluation of the motivic

Euler product
∏

x∈X(1 + axt) at t = 1 in ̂̃
K0(Spacesk), in order to shorten notation, but see

Warning 2.13.

Warning 2.13. Due to the extreme care with which one must handle motivic Euler products,
we acknowledge that Notation 2.12 is not very good notation. It is likely best to think of motivic
Euler products as power series in t which are being evaluated at values of t, rather then actual

elements in ̂̃
K0(Spacesk), as the manipulations one wants to make have only primarily been

established in terms of the power series, and not in terms of their evaluations in ̂̃
K0(Spacesk).

We choose to use this convention so as to shorten unwieldy formulas.
In particular, one must be careful that the two expressions

∏
x∈X/S(1 +

∑
i∈I ai,xpi((sj)j∈J))

and
∏

x∈X/S(1 +
∑

i∈I ai,xti)|ti=pi(s) do not necessarily agree. However, when these sets indexing
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the variables ti and sj are finite, and all pi((sj)j∈J) are monomials, these two expressions do
agree by [BH21, Lemma 6.5.1].

An important lemma will be that these Euler products in ̂̃
K0(Spacesk) are multiplicative.

We now verify this, the key input being multiplicativity of motivic Euler products in
K0(Spacesk)[[t1, t2]].

Lemma 2.14. Suppose a and b are two classes in K0(Spacesk) such that the Euler products∏
x∈X(1 + axt) and

∏
x∈X(1 + bxt) converge at t = 1 in K0(Spacesk). Then,∏
x∈X

(1 + ax) ·
∏
x∈X

(1 + bx) =
∏
x∈X

((1 + ax)(1 + bx)) (2.3)

in
̂̃
K0(Spacesk).

Proof. We would like to say this follows from multiplicativity of Euler products [Bil17,
Proposition 3.9.2.4], but the issue is that when we apply [Bil17, Proposition 3.9.2.4] the left-hand
side of (2.3) is equal to( ∏

x∈X

(1 + axt) ·
∏
x∈X

(1 + bxt)
)∣∣∣∣

t=1

=
( ∏

x∈X

(1 + axt) · (1 + bxt)
)∣∣∣∣

t=1

=
( ∏

x∈X

(1 + axt+ bxt+ axbxt
2)
)∣∣∣∣

t=1

. (2.4)

On the other hand, the right-hand side of (2.3) is, by definition,( ∏
x∈X

(1 + axt+ bxt+ axbxt)
)∣∣∣∣

t=1

. (2.5)

The lemma follows because∏
x∈X

(1 + axt+ bxt+ axbxs)|s=t=1 =
∏
x∈X

(1 + axt+ bxt+ axbxt)|t=1

and also ∏
x∈X

(1 + axt+ bxt+ axbxs)|s=t=1 =
∏
x∈X

(1 + axt+ bxt+ axbxt
2)|t=1

by [BH21, Lemma 6.5.1]. �

3. Parametrizations of low-degree covers

The key to computing the class of Hurwitz stacks of low-degree covers of P1 is the parametrization
of covers of degree d ≤ 5 of a general base scheme. In the case d = 3, the first such parametrization
was given by Miranda [Mir85, Theorem 1.1], for arbitrary degree 3 covers of an irreducible scheme
over an algebraically closed field of characteristic not equal to 2 or 3. Pardini [Par89] later
generalized Miranda’s result to characteristic 3, and Casnati and Ekedahl [CE96, Theorem 3.4]
generalized the result to Gorenstein degree 3 covers of an integral noetherian scheme. Poonen
[Poo08, Proposition 5.1] gave a complete parametrization of degree 3 covers of an arbitrary base
scheme (see also [Woo11, Theorem 2.1]). When d = 4, Casnati and Ekedahl [CE96, Theorem 4.4]
gave a parametrization of Gorenstein degree 4 covers of an integral noetherian scheme. The third
author [Woo11, Theorem 1.1] generalized this to a parametrization of arbitrary degree 4 covers
along with the data of a cubic resolvent cover (which is unique in the Gorenstein case) over
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an arbitrary base scheme. When d = 5, Casnati [Cas96, Theorem 3.8] gave a parametrization
of degree 5 covers, satisfying a certainly ‘regularity’ condition (see Remark 3.7), of an integral
noetherian scheme. (We also note that Wright and Yukie [WY92] gave these parametrizations
for a covers of a field, and Delone and Faddeev [DF64] and Bhargava [Bha04, Bha08] gave these
parametrizations for covers of Spec Z. Bhargava’s parametrizations require additional resolvent
data for non-Gorenstein covers. Bhargava, Shankar, and Wang [BSW15, § 3] have refined Wright
and Yukie’s work for covers of global fields.)

In this section, we will prove similar parametrizations, but suited for our particular
application. For our purposes, we would like to parametrize only Gorenstein covers, but
over an arbitrary base. For d = 3, 4, such a result could be deduced directly from [Poo08,
Proposition 5.1] and [Woo11, Theorem 1.1] by specializing to Gorenstein covers. However, for the
case d = 5 some new arguments are required both to obtain all Gorenstein covers and to gener-
alize to an arbitrary base. For uniformity of exposition, we show how all of the parametrizations
of Gorenstein covers can be obtained from the approach of Casnati and Ekedahl.

Casnati and Ekedahl [CE96] prove a structure theorem [CE96, Theorem 2.1] (a reformulation
of [CE96, Theorem 1.3]), which describes a minimal resolution of covers of arbitrary degree of an
integral scheme. We will need to extend this structure theorem from integral schemes to arbitrary
(including non-reduced) bases. Essentially the same proof given in [CE96, Theorem 2.1] applies,
suitably replacing Grauert’s theorem with cohomology and base change. We thank Gianfranco
Casnati for helpful conversations confirming this. We will then apply this structure theorem to
obtain our desired parametrizations of covers in degrees 3, 4, and 5, analogously to how it was
done by Casnati and Ekedahl in [CE96, Theorems 3.4, 4.4] and [Cas96, Theorem 3.8].

We also upgrade Casnati’s result in degree 5 in an additional way to deal with all Gorenstein
covers, see Remark 3.7.

3.1 The main structure theorem from Casnati and Ekedahl
We next recall the main structure theorem and give its proof in the more general setting. In
essence, it says that degree d Gorenstein covers are classified by linear-algebraic data. It is
convenient to describe this as saying that a number of moduli stacks are isomorphic.

We first recall some terminology. We will consider degree d covers which are finite locally
free. A finite locally free degree d cover is Gorenstein if the scheme-theoretic fiber Xy over κ(y)
is Gorenstein for every y ∈ Y . For k a field, a subscheme X ⊂ Pn

k is arithmetically Gorenstein if
the affine cone over X, viewed as a subscheme of An+1

k , is Gorenstein. For E a rank d− 1 locally
free sheaf of OY -modules on Y , let π : PE → Y denote the corresponding projective bundle
PE := Proj Sym• E . We use the term projective bundle to describe the projectivization of a vector
bundle. For G a sheaf of OZ-modules on a scheme or stack Z, we use G ∨ := HomOZ

(G ,OZ) to
denote its dual. Finally, for κ a field, a subscheme of Pn

κ is nondegenerate if it is not contained
in any hyperplane H ⊂ Pn

κ.

Theorem 3.2 (Generalization of [CE96, Theorem 2.1], see also [CN07, Theorem 2.2]). Let
X and Y be schemes and let ρ : X → Y be a finite locally free Gorenstein map of degree d,
for d ≥ 3. Fix a vector bundle E ′ of rank d− 1 on Y with corresponding projective bundle
π : P := PE ′ → Y , and fix an embedding i : X → P such that ρ = π ◦ i. We further require that
ρ−1(y) ⊂ π−1(y) � Pd−2

κ(y) is a nondegenerate subscheme for each point y ∈ Y . A bundle E ′ and

map i satisfying the above properties exists. Any two such triples (P, π, i) and (P2, π2, i2) are
uniquely isomorphic, meaning there is a unique isomorphism ψ : P � P2 such that π2 ◦ ψ = π and
ψ ◦ i = i2. Moreover, for any such triple (P, π, i) with ρ = π ◦ i, the following properties hold.
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(i) Let ρ# : OY → ρ∗OX denote the map defining ρ : X → Y and let E := (coker ρ#)∨. Then,
P � PE .

(ii) The composition φ : ρ∗E → ρ∗ρ∗ωX/Y → ωX/Y is surjective, and so induces a map j : X →
PE , and (PE , σ : PE → Y, j) is a triple satisfying the properties above. The ramification
divisor R ⊂ X of ρ satisfies OX(R) � ωX/Y � j∗OPE (1).

(iii) There is a sequence N0,N1, . . . ,Nd−2 of finite locally free OPE ′ sheaves on PE ′ with N0 :=
OPE ′ and an exact sequence

(3.1)

such that the restriction of (3.1) to the fiber (PE ′)y := π−1(y) over y is a minimal free reso-
lution of the structure sheaf of Xy := ρ−1(y) for every point y ∈ Y . Given ρ,E ′, i as above,
the exact sequence (3.1) is unique up to unique isomorphism, such that the isomorphism
restricts to the identity map on the final nonzero term OX , among all sequences with
the above-listed properties. The locally free sheaves Fi := π∗Ni on Y satisfy π∗Fi � Ni.
Further Nd−2 is invertible, and, for i = 1, . . . , d− 3, one has

βi := rkNi = rkFi =
i(d− 2− i)

d− 1

(
d

i+ 1

)
. (3.2)

Moreover, Xy ⊂ Py is a nondegenerate arithmetically Gorenstein subscheme, π∗π∗Ni � Ni

for 0 ≤ i ≤ d− 2, and H omO
PE ′ (N•,Nd−2(−d)) � N•. In addition, the formation of π∗N•

commutes with base change on Y .
(iv) For Nd−2 as in (3.1), we have E ′ � E if and only if Nd−2 � π∗ det E ′.
(v) The pushforward of the map α1 : N1(−2)→ OP along π induces an injection F1 → Sym2 E

and for d− 3 ≥ i ≥ 2, the pushforward αi : Ni(−i− 1)→ Ni−1(−i) along π induces an
injection Fi → Fi−1 ⊗ E .

(vi) For any point y ∈ Y , no subscheme X ′
y ⊂ Xy of degree d− 1 is sent under ρ to a hyperplane

of π−1(y).

Remark 3.3. The statement of Theorem 3.2 differs in several ways from the original statement
[CE96, Theorem 2.1].

(1) As pointed out in [CN07, Theorem 2.2], it is necessary to add a nondegenerate hypothesis
to the statement (which was an oversight in the original result).

(2) We do not require our base Y to be noetherian.
(3) We do not require our base Y to be integral.
(4) We show that given any two triples (P, π, i) there is a unique isomorphism between them,

as in the sense of the statement of Theorem 3.2. In [CE96, Theorem 2.1], it is only shown
that the bundle P is unique.

(5) In property (ii), we additionally show that (PE , σ : PE → Y, j) is one of the unique above-
mentioned triples.

(6) In property (iii), we show the formation of π∗N• commutes with base change.
(7) In property (iii), we include the requirement that the isomorphism is unique among iso-

morphisms restricting to the identity on OX . This assumption was also needed in [CE96],
but not explicitly stated there.

(8) We have also added property (v).
(9) We have added property (vi).
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Proof. As a first step, we reduce the proof to the case X and Y are noetherian.

Removing noetherian hypotheses. In view of the asserted uniqueness, by Zariski descent, we
may reduce to the case that Y is affine. Because ρ : X → Y is locally finitely presented as it
is finite locally free, we will next show we can spread out all of the above data to a finite-
type scheme Y0. More precisely, as a first step, by [Gro66, Proposition 8.9.1], we can find some
finite-type schemes Y0 and X0, a map ρ0 : X0 → Y0 and a map Y → Y0 so that ρ is the base
change of ρ0 along Y → Y0. By the various spreading out results in [Gro66, § 8] after possibly
replacing Y0 with another finite-type scheme, we may additionally assume ρ0 is Gorenstein, E ′ is
the pullback of a vector bundle E ′

0 on Y0, and the triples (P, π, i) and (P2, π2, i2) are base changes
of corresponding triples on Y0. Nearly all parts of the theorem, except the unique isomorphism
of two triples (P, π, i) and (P2, π2, i2) and the unique isomorphism in property (iii), follow from
the corresponding statement over Y0. However, if these isomorphisms are not unique, there will
be some noetherian scheme to which two different such isomorphisms descend and, hence, this
claim can be verified after replacing Y0 with another noetherian scheme. In particular, it suffices
to prove the theorem in the case Y and X are noetherian, and even finite type over Spec Z. This
removes the noetherian hypothesis, addressing Remark 3.3(2).

For the remainder of the proof, we assume X and Y are noetherian. The proof given in
[CE96, Theorem 2.1] is broken up into steps A, B, C, and D. Step A has a minor inaccuracy
which we next address. The only generalization needed occurs in step B, while steps C and D
go through without change.

Addressing step A. We next explain the proof of step A, though we make the additional assump-
tion that the field k is infinite. Before explaining this proof, we remark on an error in the proof
of step A from [CE96, Step A, p. 443] when k is finite.

Remark 3.4. Let A be a finite k-algebra A with maximal ideals m1, . . . ,mp. Let η : A→ k, be a
generalized trace map, i.e. a surjection of k-vector spaces such that the only ideal contained in
the kernel is the 0 ideal. It is then claimed that there exists a ∈ ker η −⋃p

i=1 mi.
This is not always true over finite fields, such as when k = Spec F2 and A = F5

2 and η : A→ k
is the map given by summing the five coordinates. Indeed, the oversight in [CE96, Step A, p. 443]
is that while over infinite fields, ker η ⊂ ⋃p

i=1 mi implies ker η ⊂ mi for a single i, this does not
always hold over finite fields. It is straightforward to check that this claim holds over an infinite
field. Since we cannot have ker η ⊂ mi by the definition of a generalized trace map, over infinite
fields we conclude that ker η �

⋃p
i=1 mi.

Having explained the error when k is finite, we now conclude our commentary on the proof
of step A. As mentioned above, the proof still works correctly in the case k is infinite. We also
note that in the statement of [Sch86, Lemma, p. 119] which is cited in [CE96, Step A, p. 443],
the subscheme D there should have degree d and lie in Pd−2, as opposed to degree d− 2 in Pd−1.
Note that in order to apply [Sch86, Lemma, p. 119], it is necessary to use the hypothesis that
X ⊂ PE is nondegenerate, a hypothesis which was omitted in [CE96, Theorem 2.1], addressing
Remark 3.3(1). At this point, property (vi) follows from [Sch86, Lemma, p. 119], addressing
Remark 3.3(8).

Addressing step B. Having established the result when Y = Spec k, it remains to carry out the
proof for general bases following [CE96, Steps B, C, and D, p. 445–447]. In what follows, we next
recapitulate the argument for step B [CE96, p. 445], modifying the application of Grauert’s
theorem to one of cohomology and base change, which allows us to remove the integrality
hypothesis on Y , as in Remark 3.3(3).
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Recall the statement of step B.

Step B: Suppose there is a factorization ρ = π ◦ i, for π : P→ Y a projective Pd−2 bundle and
i : X → P an embedding with Xy a nondegenerate arithmetically Gorenstein subscheme
of Py for each y ∈ Y . Then, (3.1) exists, is unique up to unique isomorphisms, restricts
to a minimal free resolution of OXy over each point y ∈ Y , and π∗π∗N• � N•.

Note that when it is written the resolution is unique up to unique isomorphism in step B, the
statement implicitly means such an isomorphism is unique up to those restricting to the identity
on OX , as if such a specification were not given, we could compose with multiplication by a unit.
This is the reason for the modification from Remark 3.3(7).

We next observe that it suffices to prove a version of step B where we replace Y with a
geometric point over y. To be more precise, in order to verify step B, it suffices to verify step B′,
given as follows.

Step B′: Suppose there is a factorization ρ = π ◦ i, for π : P→ Y a projective Pd−2 bundle and
i : X → P an embedding with Xy a nondegenerate arithmetically Gorenstein subscheme
of Py for each geometric point y of Y . Then, (3.1) exists, is unique up to unique iso-
morphisms, restricts to a minimal free resolution of OXy over each geometric point y of
Y and π∗π∗N• � N•.

We now explain why step B′ implies step B. Indeed, the conditions of Xy being a nonde-
generate arithmetically Gorenstein subscheme and for a resolution of OXy being a minimal free
resolution may be verified after replacing y with a geometric point y mapping to y. Therefore,
step B′ implies step B.

We next verify step B′. In what follows, we therefore use y to denote a geometric point of
Y , as opposed to a point of the underlying topological space whose with scheme structure given
as the spectrum of the residue field at that point.

For the remainder of the verification of step B′, we only handle the case d ≥ 4. The case d = 3
is quite analogous to the case d ≥ 4, though significantly easier as the resolution has length 2.

Define maps jy, iy as in the following diagram.

(3.3)

Letting I denote the ideal sheaf of X in P, we claim that j∗yI is the ideal sheaf of Xy in Py. To
see this, we only need to verify that j∗yI → j∗yOP → j∗yOX is exact. Since OX is flat over Y , we
will verify more generally that for H ,G ,F three sheaves on X with F flat over Y , and an exact
sequence 0→H → G → F → 0, the pullback sequence 0→ j∗yH → j∗yG → j∗yF → 0 is exact.
Indeed, this holds because R1j∗yF = T orOP

1 (F ,OPy) = T orOY
1 (F , κ(y)) = 0. Here we are using

that F is flat over Y for the final vanishing and F ⊗OP
OPy � F ⊗OY

κ(y) for the equality of
T or sheaves.

Next, [CE96, Step A, p. 443] provides a resolution of IXy/Py
= j∗yI of the following form.

(3.4)
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Note here that we have only verified step A in the case y is the spectrum of an algebraically
closed field, but at this point we are assuming that y is a geometric point, as we are verifying
step B′.

We claim j∗yI is 3-regular, in the sense of Castelnuovo–Mumford regularity, i.e.
H i(Py, j

∗
yI (3− i)) = 0 for i ≥ 1. To verify this, it follows from the definition of regularity

that for an exact sequence 0→ F ′ → F → F ′′ → 0 of sheaves with F ′ m+ 1-regular and F
m-regular, F ′′ is also m regular. Using this and the fact that OPy(−k) is k-regular (and, hence,
it is also k + 1 regular by [FGI+05, Lemma 5.1(b)]), it follows by induction that imαd−i,y is
d− i+ 2 regular. Therefore, j∗yI = imα1,y is 3-regular. By [FGI+05, Lemma 5.1(b)], we obtain
H1(Py, j

∗
yI (n)) = 0 for n ≥ 2. Hence, by cohomology and base change, R1π∗I (n) = 0 for n ≥ 2.

Note that, often, cohomology and base change is only stated in the case y is a point (as opposed
to a geometric point) but the case that y is a point follows from the case that y is a geometric
point since the vanishing of cohomology groups can be verified after base change to an algebraic
closure, using flat base change.

For our next step, we verify that π∗I (n) commutes with base change on Y for n ≥ 2. For
F a sheaf, let us denote by φi

y(F ) : Riπ∗F ⊗ κ(y)→ H i(Xy,F |Xy) the natural base change
map. Then we have seen above that, for n ≥ 2, φ1

y(I (n)) is an isomorphism at all y. Further,
R1π∗I (n) is locally free (and, in fact, equal to 0) which implies by cohomology and base change
that φ0

y(I (n)) is an isomorphism for all n ≥ 2. In other words, the formation of π∗I (n) then
commutes with base change on Y . Further, again by cohomology and base change, π∗I (n) is
a locally free sheaf when n ≥ 2 (since the condition from the theorem on cohomology and base
change that φ−1

y be an isomorphism is vacuously satisfied).
Set F1 := π∗I (2) and N1 := π∗F1. Let α1 : N1(−2)→ I denote the evaluation map com-

ing from the adjunction π∗π∗I (2)⊗ OP(−2)→ I (2)⊗ OP(−2)→ I . As we have shown above,
the formation of F1, and hence N1, commutes with base change. Further, naturality of the map
α1, coming from the adjunction, also implies j∗y(α1) = α1,y. Therefore, α1 is surjective, as its
cokernel has empty support.

We next construct sheaves Fi and Ni inductively, with Ni = π∗Fi, for 2 ≤ i ≤ d− 3. Let
A1 := I . For i ≥ 2, assume inductively we have constructed the map αi−1 and define Ai :=
kerαi−1. Analogously to the above verification that j∗yI is 3-regular, it follows that j∗yAi is i+ 2
regular. Therefore, by [FGI+05, Lemma 5.1(b)], H1(Py, j

∗
yAi(k)) = 0 for k ≥ (i+ 2)− 1 = i+ 1.

Analogously to the above case when i = 1, it follows from cohomology and base change that
R1π∗Ai(k) = 0 for k ≥ i+ 1, π∗Ai(k) is locally free for k ≥ i+ 1, and the formation of π∗Ai(k)
commutes with base change for k ≥ i+ 1. Then, set Fi := π∗Ai(i+ 1) and Ni := π∗Fi.

We next construct the map αi : Ni → Ni−1. Begin with the inclusion Ai(i+ 1)→ Ni−1(1)
(obtained by twisting the inclusion Ai → Ni−1(−i), coming from the definition of Ai, by i+ 1).
Apply π∗π∗ to obtain a map π∗π∗Ai(i+ 1)→ π∗π∗Ni−1(1). Twist by −i− 1 which yields the
composite map

Ni(−i− 1) = (π∗π∗Ai(i+ 1))(−i− 1)

→ (π∗π∗Ni−1(1))(−i− 1)

� (Ni−1 ⊗ π∗π∗O(1))(−i− 1)

→ Ni−1(−i), (3.5)

which we call αi. Since Ni commutes with base change, and this map is obtained from adjunction,
the formation of αi also commutes with base change. Also, since pushforward is left exact, we
obtain condition (v) in the theorem from the above construction of Fi, provided we show the
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above construction is the unique such one as in the statement (which will be done later in the
proof). This addresses Remark 3.3(9).

Finally, we similarly construct Fd−2, Nd−2, and αd−2, assuming we have constructed αd−3.
Let Ad−2 := kerαd−3. By cohomology and base change, we find j∗yAd−2 is, in fact, d-regular (as
opposed to only d− 1 regular, as was the case for Ai with i < d− 2). Therefore, by cohomol-
ogy and base change, we find R1π∗Ad−2(−d) = 0 and also that π∗Ad−2(−d) is locally free and
commutes with base change. We set Fd−2 := π∗Ad−2(−d) and Nd−2 := π∗Fd−2. Analogously
to (3.5), there is a canonical map αd−2 : Nd−2(−d)→ Nd−3(−d+ 2) coming from adjunction
which commutes with base change. Altogether, we have constructed a complex as in (3.1) which
commutes with base change on Y and restricts to the minimal free resolution (3.4) on each fiber
y ∈ Y . It follows from Nakayama’s lemma that the complex (3.1) is exact, because it is exact
when restricted to each fiber over y ∈ Y .

Further, because Ni = π∗Fi, it follows from the projection formula that π∗Ni � π∗(OP ⊗
π∗Fi) � π∗OP ⊗Fi � Fi, and so π∗π∗Ni � Ni.

We next verify uniqueness of our constructed resolution N•, up to unique isomorphism,
in the sense claimed in property (iii). Suppose M• is another such resolution which restricts
to a minimal free resolution over each geometric fiber over y ∈ Y . Over any local scheme
Spec Oy,Y ⊂ Y , there is an isomorphism φU : N•|Spec Oy,Y

�M•|Spec Oy,Y
by a sheafified version

of [Eis95, Theorem 20.2]. Such an isomorphism spreads out to an isomorphism over some affine
open U ⊂ Y . Further, this isomorphism is unique up to homotopy by a sheafified version of
[Eis95, Lemma 20.3]. We claim there are no nonzero homotopies s : N•|U →M•|U . Indeed, such
an homotopy would yield a map si : Ni|U →Mi+1|U . We wish to show this map is 0. To check
it is 0, it suffices to show it is 0 over each y ∈ Y . Over a point y ∈ Y , this corresponds to a
map OPy(a)

⊕b → OPy(c)
⊕d with c < a. It follows that there are no nonzero such maps, so the

isomorphism φU is unique. Hence, by this uniqueness, we obtain via Zariski descent an iso-
morphism φ : N• �M•. This isomorphism is unique because it is unique when restricted to each
member of an open cover.

Addressing steps C and D. We have completed the verification of [CE96, Theorem 2.1, Step B]
and now note that steps C and D given in the proof of [CE96, Theorem 2.1] go through without
change. Recall that step D states that the factorization ρ = π ◦ i exists. However, the proof shows
more: it shows that the triple (PE , σ, j) gives such a triple, where σ : PE → Y is the structure
map. This concludes the verification of part (ii), as mentioned in Remark 3.3(5).

Addressing uniqueness of the triples. At this point, we have proved everything except the unique-
ness of the triple (P, π, i). We conclude the proof by verifying this statement, which will complete
the verification of the modification noted in Remark 3.3(4). We have shown so far in part (i)
that if (P1, π1, i1) and (P2, π2, i2) are two triples as in the statement of Theorem 3.2, then there
is an isomorphism μ : P1 � P2. Since μ is an isomorphism of projective bundles over Y , we have
π1 ◦ μ � π2. Using this and property (ii), we can reduce to the case that P1 � P2 � PE : it suf-
fices to find an automorphism ψ : P→ P over Y so that ψ ◦ i = i2 and, moreover, show this
automorphism ψ is the unique one with this property.

To verify existence and uniqueness of ψ, we first reduce to the case Y is the spectrum of a
local ring. We know that both i∗1OP(E )(1) � ωX/Y and i∗2OP(E )(1) � ωX/Y , by Theorem 3.2(ii).
Hence, we obtain that the automorphism ψ is induced by some automorphism φ of π∗ωX/Y ,
determined up to unit. The maps i1 and i2 induce two surjections q1, q2 : π∗ωX/Y → OY with
the maps i1 and i2 coming via the linear subsystems ker(q1) and ker(q2). To show we have an
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induced map between ker(q1) and ker(q2), which are both abstractly isomorphic to E , it is enough
to show that, up to unit, q1 = q2 ◦ φ. We may verify this locally and, hence, assume Y is the
spectrum of a local ring.

We conclude by verifying existence and uniqueness of ψ in the case Y is the spectrum of a
local ring. Using Theorem 3.2(vi), in both of the maps i1 and i2, there is no subscheme of degree
d− 1 on the closed fiber contained in a hyperplane, and hence the same holds over the whole
local scheme Y . We may rephrase this as the condition that the two relative hyperplane sections
of PE associated to q1 and q2 do not meet i1(X) and i2(X). Equivalently, the two hyperplane
sections associated to q1 and q2 are nowhere vanishing on X and, therefore, related by a unit. By
modifying φ by this unit, we may assume q1 = q2 ◦ φ. This verifies that φ is unique up to unit and,
hence, that ψ is unique. Under the above identifications, the image of E → π∗ωX/Y is identified
with the kernel of the natural map π∗ωX/Y → OX dual to ρ#. Since this map is also fixed by
the resulting automorphism φ, the automorphism φ of π∗ωX/Y restricts to an automorphism of
E which induces the desired automorphism ψ : PE → PE . �

The following useful corollary tells us that any two ‘canonical embeddings’ of a Gorenstein
cover are related by an automorphism of PE coming from E . A special case of this was stated
in [CN07, Corollary 2.3], though the proof there seems quite terse, as it omits the verification of
uniqueness of the triple (PE ′, π, i) which we carry out in Theorem 3.2.

Corollary 3.5. With notation as in Theorem 3.2, suppose we are given ρ : X → Y and two
embeddings i1 : X → PE and i2 : X → PE so that ρ = π ◦ i1 = π ◦ i2 and ρ−1(y) is arithmetically
Gorenstein and nondegenerate under both embeddings i1 and i2. Then, the unique isomorphism
ψ : PE → PE taking i1(X) to i2(X) is induced by an automorphism of E .

Proof. This is a direct consequence of the uniqueness property for triples (P, π, i) as stated in
Theorem 3.2, applied to two triples (PE , π, i1) and (PE , π, i2). �

3.6 Low-degree parametrizations
We now apply Theorem 3.2, as in the work of Casnati and Ekedahl, to obtain parametrizations
of Gorenstein covers of degrees 3, 4, and 5.

Remark 3.7. Our parametrization in degree 5, Theorem 3.16, is stronger than previous work in
several ways. The similar result in degree 5 proven in [Cas96, Theorem 3.8] has certain additional
restrictions on the covers and sections that Casnati refers to as being ‘regular’. This regularity
condition amounts to the assumption that the map ∧2F∨ ⊗ det E → E associated to a section
η ∈H (E ,F ) is surjective. In addition, [Cas96, Theorem 3.8] does not claim there is a bijection
between covers and sections up to automorphisms of E and F , but only gives constructions of
maps in both directions. Further, [Cas96, Theorem 3.8] is stated for degree 5 finite flat surjective
maps X → Y with Y integral and noetherian, whereas ours hold for arbitrary schemes Y .

To introduce notation simultaneously in the cases of degrees 3, 4, and 5, we use the following
notation.

Notation 3.8. Let d ∈ {3, 4, 5}. Let Y be a scheme. Fix a locally free sheaf E on Y of rank d− 1.
If d = 4, let F be a locally free sheaf on Y of rank 2 and if d = 5, let F be a locally free sheaf
on Y of rank 5. We use the tuple (E ,F•) to denote the pair (E ,F ) when d = 4 or d = 5 and to
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denote E when d = 3. Define the associated sheaf

H (E ,F•) :=

⎧⎪⎨⎪⎩
Sym3 E ⊗ det E ∨ if d = 3,
F∨ ⊗ Sym2 E if d = 4,
∧2F ⊗ E ⊗ det E ∨ if d = 5.

(3.6)

We will often use H to denote H (E ,F•) when the data (E ,F•) is clear from context. We
will see that sections of the above sheaf H define subschemes of PE . When these subschemes have
dimension 0 in fibers, we will see they induce degree d locally free covers. The parametrizations
for degrees 3, 4, and 5 essentially say that the resulting covers are in bijection with such sections,
up to automorphisms of (E ,F•).

3.9 The resolutions in low degree
In order to state the parametrizations in degrees 3, 4, and 5, we now want a way of associating
a subscheme of PE to a section. We will give a description of this association separately in the
cases that d = 3, 4, and 5.

Renaming the sheaf E ′ appearing in (3.1) as E and renaming F1 as F , in the cases d = 3,
4, and 5, (3.1) becomes respectively

(3.7)

(3.8)

(3.9)

with the rank of the locally free sheaves E and F in the degree 3, degree 4, and degree 5 cases
given in Notation 3.8.

3.10 The maps Φd in low degree
In the above three cases, corresponding to degrees 3, 4, and 5, respectively, we have isomorphisms

Φ3 : H0(Y,Sym3 E ⊗ det E ∨) ∼−→ H0(PE , π∗ det E ∨(3)), (3.10)

Φ4 : H0(Y,Sym2 E ⊗F∨) ∼−→ H0(PE , π∗F∨(2)), (3.11)

Φ5 : H0(Y,∧2F ⊗ E ⊗ det E ∨) ∼−→ H0(PE ,∧2π∗F ⊗ π∗ det E ∨(1)). (3.12)

3.11 The maps Ψd in low degree
For ρ : X → Y a finite locally free surjective Gorenstein map of degree d, we will use E X to
denote the Tschirnhausen bundle coker(OY → ρ∗OX)∨ and FX to denote the bundle F1 in the
case we take E ′ in Theorem 3.2(iii) to be the Tschirnhausen bundle E X .

Next, for 3 ≤ d ≤ 5, given a section η ∈ H0(Y,H (E ,F•)), we define an associated scheme
Ψd(η) over Y .

When d = 3, we begin with a section η ∈ H0(Y,Sym3 E ⊗ det E ∨), which, via Φ3, can be
viewed as an element of H0(PE , π∗ det E ∨(3)). Such a section corresponds to a map OPE →
π∗ det E ∨(3) or, equivalently, a map π∗ det E (−3)→ OPE . We let Ψ3(η) denote the support of
the cokernel of this map. That is, we define Ψ3(η) ⊂ PE so that on PE we have the following
exact sequence.

(3.13)
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When d = 4, given η ∈ H0(Y,F∨ ⊗ Sym2 E ), define Ψ4(η) to be the subscheme of PE ,
considered as the support of the cokernel of the map π∗F (−2)→ OP(E ) corresponding to Ψ4(η).

Finally, when d = 5, given η ∈ H0(Y,∧2F ⊗ π∗ det E ∨ ⊗ E ), from Φ5(η) we obtain a cor-
responding alternating map π∗F∨ ⊗ π∗ det E (−3)→ π∗F (−2). The five 4× 4 Pfaffians of this
map determine a map of sheaves π∗F (−2)→ OP(E ), as may be computed locally. Define Ψ5(η)
as the support of the cokernel of the map π∗F (−2)→ OP(E ) in PE .

Definition 3.12. Let d ∈ {3, 4, 5}, Y be a scheme, and (E ,F•),H (E ,F•) be sheaves on Y
as in Notation 3.8. We say η ∈ H0(Y,H (E ,F•)) has the right Hilbert polynomial at a point
y ∈ Y if the fiber of Ψd(η) over y has dimension 0 and degree d. We say η has the right Hilbert
polynomial if it has the right Hilbert polynomial at every y ∈ Y .

Finally, we are ready to state the low-degree parametrizations. The parametrization in
degree 3 is as follows.

Theorem 3.13 (Generalization of [CE96, Theorem 3.4], specialization of [Poo08,
Proposition 5.1]). Fix a scheme Y and a rank-2 locally free sheaf E on Y . The map η �→ Ψ3(η)
induces a bijection between:

(1) sections η ∈ H0(Y,Sym3 E ⊗ det E ∨) having the right Hilbert polynomial at every y ∈ Y , up
to automorphisms of E ; and

(2) finite locally free Gorenstein covers ρ : X → Y of degree 3 such that E ∨ � coker ρ#.

The following proof extends that given in [CE96, Theorem 3.4]. We note that there the base
is assumed to be reduced and noetherian, and the bijection is not stated explicitly. We outline
the proof for the reader’s convenience.

Proof. We start by constructing the map from (2) to (1). Given such a ρ : X → Y , we obtain
from Theorem 3.2, a resolution of OPE as in (3.7), unique up to unique isomorphism. The map
σ in (3.7) can be viewed as a section σ ∈ H0(PE , π∗ det E ∨(3)). For Φ3 as defined in (3.10), we
obtain a section η := Φ−1

3 (σ) ∈ H0(Y,Sym3 E ⊗ det E ∨). Note that the resulting η has the right
Hilbert polynomial at every y ∈ Y because X → Y is finite by assumption.

We next show the map η �→ Ψ3(η) indeed defines a map from (1) to (2). Given η of the right
Hilbert polynomial at every y ∈ Y , we obtain a right exact sequence (3.13). The assumption that
η has the right Hilbert polynomial yields that the first map in this sequence is injective and,
hence, X → PE has a resolution of the form (3.7). This resolution shows X is locally finitely
presented over Y . Further, X is finite as it is locally of finite presentation, proper, and quasi-finite
[Gro66, 8.11.1]. Flatness of X → Y may be verified locally, in which case it holds as X is cut out
of P1

Y by a single equation of degree 3 not vanishing on any fibers. Therefore, X is a finite locally
free degree 3 cover of Y . Finally, exactness of (3.7) implies E ∨ � coker ρ# from Theorem 3.2(iii)
and (iv).

It remains to see that these two maps we have defined establish a bijection. For this, we
show the compositions of these maps in both orders are equivalent to the identity map. If we
begin with a cover ρ : X → Y , (3.7) defines a resolution of X → PE giving X as the vanish-
ing locus Ψ3(η) ⊂ PE . To show the other composition is equivalent to the identity, begin with
some η ∈ H0(Y,Sym3 E ⊗ det E ∨), and let X denote the associated cover Ψ3(η). The Tschirn-
hausen bundle E X as in § 3.11 associated to X from Theorem 3.2 is then isomorphic to E using
Theorem 3.2(iv), as we may view η as a map π∗ det E (−3)→ OPE . Upon choosing such an iso-
morphism E � E X , we obtain a section ηX ∈ H0(Y,Sym3 E X ⊗ det(E X)∨) � H0(Y,Sym3 E ⊗
det E ∨). Using Theorem 3.2(iv), there is an automorphism of PE taking Ψ3(η) to Ψ3(ηX).
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From Theorem 3.2(iv) and the fact that the leftmost term of the resolution (3.7) is π∗ det E (−3),
we find E is isomorphic to ker(ρ∗ωX/Y → OY). By Corollary 3.5, this automorphism of PE is
induced by an automorphism of E . Hence, after composing with the automorphism of E , we can
assume η and ηX define isomorphic subschemes of PE , and so are related via multiplication by
a global section s−1 ∈ OY (Y ). By composing with an automorphism of E multiplying by s−1, η
and ηX are identified. �

We next verify the parametrization in degree 4.

Theorem 3.14 (Generalization of [CE96, Theorem 4.4], specialization of [Woo11, Theorem 1.1]).
Fix a scheme Y , a rank-3 locally free sheaf E on Y , and a rank-2 locally free sheaf F on Y such
that there exists an unspecified isomorphism det E � det F . The map η �→ Ψ4(η) induces a
bijection between:

(1) sections η ∈ H0(Y,F∨ ⊗ Sym2 E ) having the right Hilbert polynomial at every y ∈ Y , up
to automorphisms of E and F ; and

(2) finite locally free Gorenstein maps ρ : X → Y of degree 4 with associated sheaves E X ,FX

as in § 3.11 which are isomorphic to E and F .

Proof. First we construct the map from (2) to (1). Beginning with a cover X → Y , we obtain
a resolution (3.8) and, upon choosing isomorphisms E X � E and FX � F , we obtain a section
η ∈ H0(Y,F∨ ⊗ Sym2 E ) having the right Hilbert polynomial at every y ∈ Y .

To construct the map from (1) to (2), we must show Ψ4(η) satisfies the prop-
erties listed in (2). We first verify Ψ4(η) is a finitely presented Gorenstein cover
of Y . On fibers, Ψ4(η) is described as a dimension-0 intersection of two quadrics. Since η has
the right Hilbert polynomial at y ∈ Y , it has degree 4 over y. (We parenthetically note that
by Bezout’s theorem, having the right Hilbert polynomial is equivalent to having dimension 0,
which then matches with Casnati and Ekedahl’s notion of having ‘the right codimension’ from
[CE96, Definition 4.2].) Gorensteinness follows because Ψ4(η) is a local complete intersection.

We next deduce flatness of Ψ4(η) over Y . We first explain how to reduce to the case that Y
is smooth. Let Z denote the moduli space parameterizing pairs of quadrics in P2 which comes
with a universal π : U → Z whose fiber over a pair [(Q1, Q2)] is Q1 ∩Q2. There is an open locus
Z◦ ⊂ Z where the intersection of these quadrics is zero-dimensional, and hence has constant
degree 4 by Bezout’s theorem. Let U◦ := π−1(Z◦). Since Z is a product of projective spaces, Z◦

is an open in a product of projective spaces, hence, in particular, smooth. Working fppf locally
on Y , we can express X → Y as an intersection of relative quadrics in P2, in which case X → Y
is pulled back from U◦ → Z◦ via a map Y → Z◦. Hence, it suffices to show that U◦ → Z◦ itself
is flat. In this case, since Z◦ is reduced, flatness follows from constancy of the degree.

To conclude the construction of the map from (1) to (2), we will show it is possible to choose
identifications E X � E ,FX � F so that we obtain an associated section ηX ∈ H0(Y,F∨ ⊗
Sym2 E ) � H0(Y, (FX)∨ ⊗ Sym2 E X).

First we show E X � E . Indeed, there is the following Koszul complex.

(3.14)

It also follows from [Eis95, Theorem 20.15] (using the comments on [Eis95, p. 503] and the fact
that Gorenstein schemes are Cohen–Macaulay) that (3.14) yields a minimal free resolution of Xy

in PEy for every y ∈ Y . Because det F � det E by assumption, Theorem 3.2(iv) implies E � E X .
Using the isomorphism E � E X , we also verify F � FX . Let i : X → PE and iX : X →

PE X denote the two embeddings. By pushing forward the twist of (3.14) by OPE (2) along π,
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we find FX � ker(Sym2 E X → π∗(iX∗ OX ⊗ OPE X (2))). Similarly, the analogous resolution from
Theorem 3.2 for X in terms of E X and FX yields F � ker(Sym2 E → π∗(i∗OX ⊗ OPE (2))).
Hence, the isomorphism E � E X induces the desired isomorphism F � FX .

The isomorphism E � E X is compatible with the above restriction map, and so induces an
isomorphism F � FX . This concludes the verification that the map we have produced indeed
goes from (1) to (2).

It remains to prove the compositions of the above maps in both directions are equivalent to
the identity. As in the degree 3 case, if we start with a cover, and produce the associated section
ηX , Ψ4(ηX) is isomorphic to X via the construction. For showing the reverse composition is
equivalent to the identity, start with some section η. Let X denote the resulting cover Ψ4(η).

Given the above identifications E X � E ,FX � F , we wish to show ηX is related to η by
automorphisms of E and F . Note also here that any automorphism of E and F sends η to
another section defining an isomorphic cover. Using Theorem 3.2, there is an automorphism of
PE taking the subscheme Ψ4(ηX) to Ψ4(η). From Theorem 3.2(iv) and the fact that the leftmost
term of the resolution (3.8) is π∗ det E (−4), we find E is isomorphic to ker(ρ∗ωX/Y → OY ). By
Corollary 3.5, the above automorphism of PE is induced by an automorphism of E . By composing
with the inverse of this automorphism, we may assume the resulting map is the identity on PE ,
and so the automorphism of PE is then induced by some automorphism of E via multiplication
by a section s ∈ OY (Y ). After composing with multiplication by s−1, we may reduce to the case
s is the identity. Since F is a subsheaf of Sym2 E by Theorem 3.2(v), the image of the induced
map F → Sym2 E is uniquely determined by X, but the precise map is only determined up to
automorphism of F . Upon composing with such an automorphism, we may identify not just the
images of F in Sym2 E , but further we may identify the maps. Under these identifications, η
agrees with ηX , when viewed as maps F → Sym2 E . �

We next state and prove the analogous parametrization in degree 5. As preparation, we will
need the following application of the structure theorem for codimension-3 Gorenstein algebras
due to Buchsbaum and Eisenbud.

Lemma 3.15. Let Y be a scheme, and let E and F be locally free sheaves on Y of ranks 3
and 5. A finite locally free Gorenstein map ρ : X → Y of degree 5, described as Ψ5(η) for η ∈
H0(Y,∧2F ⊗ E ⊗ det E ∨), has a resolution of the form

(3.15)

which restricts to a minimal free resolution over each y ∈ Y , where β2 is alternating and β3 is
identified with the dual of β1 tensored with π∗ det E ∨ ⊗ π∗ det F (−5).

Proof. In (3.15), the map β2 is obtained from η, interpreted as a section of H0(Y,∧2F ⊗ E ⊗
det E ∨) � H0(PE , π∗(∧2F det E ∨)(1)). The map β3 is obtained by taking five 4× 4 Pfaffians
of β2. To make sense of this, one may first construct β3 locally upon choosing trivializations of
F and E . One then obtains a global map F (−2)→ OPE because the formation of the Pfaffians
are compatible with restriction to an open subscheme of Y . Finally, β1 is obtained as the dual
to β3, tensored with π∗ det E ∨ ⊗ π∗ det F (−5).

Since we have constructed the maps in (3.15) globally over PE , it is enough to verify they
furnish a minimal free resolution on geometric fibers. To this end, we may work locally on Y and
choose a trivialization u : det E � OY . Upon choosing this trivialization and composing with the
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isomorphism u for the two left nonzero sheaves in (3.15), we obtain a sequence

(3.16)

where β′2 is still alternating, i.e. it corresponds to an element of H0(Y,∧2F ⊗ E ), and β′3 remains
identified with the dual of β′1, now tensored with π∗ det F (−5). Since the sequence (3.16) com-
mutes with base change on Y , we may further restrict to a geometric point y ∈ Y and, hence,
assume Y is the spectrum of an algebraically closed field.

We wish to show (3.16) is a minimal locally free resolution. To do so, we wish to apply
[BE77], and so we translate the above to the setting of commutative algebra. By Theorem 3.2(iii),
X → PE is an arithmetically Gorenstein subscheme. Writing PE = Projκ(y)[x0, x1, x2, x3], the
cone overX defines a Gorenstein subscheme of Specκ(y)[x0, x1, x2, x3](x0,x1,x2,x3), the localization
of A4

κ(y) at the origin. Taking R := κ(y)[x0, x1, x2, x3](x0,x1,x2,x3), we can identify π∗F with a
rank 5 free R-module F . Let J denote the ideal of the cone over X in R. The resolution (3.16)
can then be reexpressed in the form

(3.17)

with β′′2 ∈ ∧2F alternating and β′′3 the dual of β′′1 . By the definition of Ψ5(η) this sequence is
exact at R, so J is the image of β′′1 . Since X has codimension 3 in PE by assumption, J is of
grade 3. Hence, (3.17) satisfies the hypotheses of [BE77, Theorem 2.1(1)]. It is stated that any
such resolution satisfying these hypotheses is a minimal free resolution of R/JR in the bottom
paragraph of [BE77, p. 463] and the proof is given in [BE77, p. 464]. �
Theorem 3.16 (Generalization of [Cas96, Theorem 3.8]). Fix a scheme Y , a rank-4 locally free
sheaf E on Y , and a rank-5 locally free sheaf F on Y such that there exists an unspecified
isomorphism det F � (detE )⊗2. The map η �→ Ψ5(η) induces a bijection between:

(1) sections η ∈ H0(Y,∧2F ⊗ E ⊗ det E ∨) having the right Hilbert polynomial at every y ∈ Y ,
up to automorphisms of E and F ; and

(2) finite locally free Gorenstein maps ρ : X → Y of degree 5 with associated sheaves E X ,FX

as in § 3.11 which are isomorphic to E and F .

Proof. To start, we construct the map from (2) to (1). Beginning with a cover X → Y , we obtain
a resolution (3.9). Upon choosing isomorphisms E X � E and FX � F we obtain a section
η ∈ H0(Y,F⊗2 ⊗ E ⊗ det E ∨) having the right Hilbert polynomial at every y ∈ Y . We wish to
check next that this section actually lies in H0(Y,∧2F ⊗ E ⊗ det E ∨). Viewing this as a map
π∗F∨ ⊗ π∗ det E → π∗F (1) via (3.9), it is enough to verify the map is alternating locally on
the base. Therefore, for this verification, we may assume Y is the spectrum of a local ring
and E is trivial. After this reduction, X ⊂ PE is codimension 3 and arithmetically Gorenstein,
and so the Buchsbaum–Eisenbud parametrization for codimension-3 Gorenstein schemes [BE77,
Theorem 2.1(2)] applies. This produces a resolution ofX ⊂ PE as in (3.15) which by Theorem 3.2
must agree with (3.9). Since the map corresponding to π∗F∨ ⊗ π∗ det E → π∗F (1) is alternating
in the resolution of [BE77, Theorem 2.1(2)] it follows that π∗F∨ ⊗ π∗ det E → π∗F (1) is also
alternating.

We next construct the map from (1) to (2). This map will send η to Ψ5(η). To show this
is indeed a well-defined map, we wish to verify Ψ5(η) is a finitely presented Gorenstein cover
of Y . The finite presentation condition follows from the resolution given in (3.9). We may check
the remaining conditions locally on Y , and hence assume Y is the spectrum of a local ring.
Observe that X → PE is arithmetically Gorenstein and of codimension 3, using the assumption
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that η has the right Hilbert polynomial at each y ∈ Y . Using [BE77, Theorem 2.1(1)], we find that
X is Gorenstein and is cut out scheme theoretically by the five 4× 4 Pfaffians associated to η,
thought of as a map π∗F∨ ⊗ π∗ det E → π∗F (1). On fibers, Ψ5(η) is described as the vanishing
of the five 4× 4 Pfaffians of an alternating linear map. The resolution [BE77, Theorem 2.1(1)],
can be identified with one of the form (3.9), from which one may calculate that the Hilbert
polynomial of every fiber is 5. Therefore, the resulting scheme Φ5(η) is finite and each fiber has
degree 5.

We next deduce flatness of Ψ5(η) over Y . The idea is to reduce to the universal case, where
we can verify flatness using constancy of Hilbert polynomial. Let Z � A40 denote the affine
space parameterizing alternating 5× 5 matrices of linear forms in P3. Let π : U → Z denote
the universal family of intersections of the five 4× 4 Pfaffians of the corresponding matrix, so
that the fiber of π over a point [M ] ∈ Z is the intersection of the five 4× 4 Pfaffians of the
alternating matrix of linear forms M . There is an open subset Z◦ ⊂ Z parameterizing the locus
where the fiber of π is zero-dimensional and degree at most 5. One may verify that every fiber
of π has degree at least 5, and so this open Z◦ parameterizes subschemes of degree exactly 5.
Let U◦ := π−1(Z◦). Since Z is smooth Z◦ is as well. Working fppf locally on Y , we can assume
X → Y is a pullback of U◦ → Z◦ along a map Y → Z. Hence, it suffices to show that U◦ → Z◦

itself is flat. In this case, since Z is reduced, flatness follows from constancy of the degree.
In order to show the above constructed map indeed takes (1) to (2), we must demonstrate

identifications E X � E and FX � F . To obtain the first identification, we use Lemma 3.15.
Since detE ⊗2 � det F , the leftmost nonzero term of the resolution in Lemma 3.15 becomes
detπ∗E ∨ ⊗ π∗ det F (−5) � π∗ det E (−5). Hence, Theorem 3.2(iv) implies E � E X . Let i : X →
PE , iX : X → PE X denote the inclusions. By twisting (3.15) by OPE (2) and pushing forward, we
find F � ker(Sym2 E → π∗(i∗OX ⊗ OPE (2))). The analogous resolution from Theorem 3.2 for X
in terms of E X and FX yields FX � ker(Sym2 E X → π∗(iX∗ OX ⊗ OPE X (2))). Hence, the iso-
morphism E � E X induces the desired identification F � FX . This completes the construction
of the map from (1) to (2).

It remains to prove the compositions of the above maps between (1) and (2) are equivalent
to the identity. As in the degree 3 case, if we start with a cover, produce the associated section
ηX , Ψ5(ηX) is isomorphic to X via the construction.

For the reverse composition, start with some section η and let X denote the resulting cover
Ψ5(η). Now, choose identifications E X � E ,FX � F as above so that we obtain an associated
section ηX ∈ H0(Y,∧2F∨ ⊗ det E → E ) � H0(Y,∧2(FX)∨ ⊗ det E X → E X). We wish to show
ηX is related to η by automorphisms of E and F . Note also here that any automorphism of E
and F sends η to another section defining an isomorphic cover. Using Theorem 3.2, there is an
automorphism of PE taking Ψ5(ηX) to Ψ5(η). From Theorem 3.2(iv) and the fact that the left-
most term of the resolution (3.8) is π∗ det E (−5), we find E is isomorphic to ker(ρ∗ωX/Y → OY ).
By Corollary 3.5, this automorphism of PE is induced by an automorphism of E . By composing
with the inverse of this automorphism, we may assume η and ηX define the same subscheme
of PE . Hence we may assume the automorphism of PE is then induced by multiplication by a
section s ∈ OY (Y ). After composing with multiplication by s−1, we may therefore reduce to the
case that s is the identity section. By Theorem 3.2(iii), we obtain a unique isomorphism between
the two resolutions of X in PE (3.9) determined by η and ηX . This isomorphism can be specified
as a tuple of 5 maps between the nonzero terms of (3.9).

We next show we can apply an automorphism of F so as to assume the map π∗F (−2)→
π∗F (−2) is the identity. Since F is a subsheaf of Sym2 E by Theorem 3.2(v), the image of the
induced map F → Sym2 E coming from the Pfaffians associated to η is uniquely determined by
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X, but the precise map is only determined up to automorphism of F . Upon composing with
such an automorphism, we may identify not just the images of F in Sym2 E , but further we
may identify the maps. Under these identifications, η agrees with ηX , when viewed as maps
F → Sym2 E .

So far, we have constructed a map of the two resolutions (3.9) associated to η and ηX .
Upon choosing identifications E � E X and F � FX as above, we have enforced that the map of
resolutions is given by the identity on the terms OX → OX ,OP → OP, and π∗F (−2)→ π∗F (−2).
When we write the second nonzero term of (3.9) as π∗F∨ ⊗ π∗ det E (−3), we have identified
it via Grothendieck duality as pairing with the third nonzero term π∗F (−3) into π∗E (−5),
and therefore the induced automorphism of π∗F∨ ⊗ π∗ det E (−3) must respect this duality.
In particular, since we have reduced to the case where the automorphism of π∗F (−2) is the
identity, we also obtain the induced automorphism of π∗F∨ ⊗ π∗ det E (−3) is the identity. Using
Theorem 3.2(v) to guarantee that the maps η and ηX from F∨ ⊗ det E → F ⊗ E are injective,
we obtain the desired identification of η with ηX . �

Finally, we recall a rather elementary criterion for when Ψd(η) is geometrically connected.

Theorem 3.17 (Part of [CE96, Theorem 3.6], [CE96, Theorem 4.5], and [Cas96, Theorem 4.4]).
Keeping notation as in Notation 3.8, assume that Y is a geometrically connected and geomet-
rically reduced projective scheme over a field k. If h0(Y,E ∨) = 0, then Ψd(η) is geometrically
connected.

Proof. The proof is essentially given in [CE96, Theorem 3.6], and we repeat it for the reader’s
convenience. Let X := Ψd(η). If h0(Y,E ∨) = 0 the exact sequence

(3.18)

induces an isomorphism H0(Y,OY) � H0(Y, ρ∗OX) = H0(X,OX). Since Y is geometrically con-
nected and geometrically reduced, we have h0(Y,OY) = 1. From this we find H0(X,OX) = 1 as
well, and therefore X is necessarily geometrically connected. �

4. Describing stacks of low-degree covers as quotients

In this section, we give a description of the stack of degree d Gorenstein covers as a global
quotient stack for 3 ≤ d ≤ 5. We now introduce the groups we will be quotienting by. Since the
Hurwitz stack is closely related to the Weil restriction of the stack of degree d covers along
P1 → Spec k, we will simultaneously define these automorphism groups along Weil restrictions.

Remark 4.1. We are about to define an automorphism sheaf AutY/B
E ,F• for Y → B a morphism

of schemes and E ,F• locally free sheaves on Y . Before giving the formal definition, we give an
intuitive description.

Consider first the case that d = 4, or d = 5, Y = B = Spec k, and additionally assume there
is an isomorphism det E ⊗d−3 � det F1. Then, the points of AutSpec k/ Spec k

E ,F• corresponds to auto-
morphisms of E and F1 which preserve the above isomorphism. However, in what follows we
do not require such an isomorphism detE ⊗d−3 � det F1 exists, and so the definition we give is
somewhat more general. Namely, we instead work with automorphisms (M,N) ∈ AutE ×AutF1

so that detMd−3 = detN .
Another important case is that where Y = D,B = Spec k, and again d = 4 or 5. If, in

addition, there is an isomorphism det(E ⊗d−3)D � (det F1)D, AutD/ Spec k
E ,F• can be thought of

as parameterizing automorphisms of E and F1 over D which preserve the isomorphism

1810

https://doi.org/10.1112/S0010437X24007206 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X24007206


Low-degree Hurwitz stacks in the Grothendieck ring

det(E ⊗d−3)D � (det F1)D. Again, we have the caveat that this is only correct when such an
isomorphism exists.

Definition 4.2. Given a scheme Y over a base B and an integer d, let resolution data for Y
and d denote a tuple of locally free sheaves (E ,F•) on Y , where E is a locally free sheaf of
rank d− 1 and F• denotes the sequence F1, . . . ,F�(d−2)/2� where rkFi = βi as in (3.2). Let
3 ≤ d ≤ 5, fix a scheme Y over a field, and fix resolution data (E ,F•) for a degree d cover of Y .
For G a locally free sheaf on Y , let ΔY/B

G := Gm → ResY/B(AutG /Y) denote the map adjoint

to the central inclusion (Gm ×B Y )→ AutG /Y on Y . We denote by
(
ΔY/B

G

)i the composition

Gm
x �→xi−−−→ Gm

Δ
Y/B
G−−−→ ResY/B(AutG /Y) and define

((ΔY/B
E )i, (ΔY/B

F1
)j) : Gm → ResY/B(AutE /Y)× ResY/B(AutF1/Y)

x �→ (ΔY/B
E (xi),ΔY/B

E (xj)).

Finally, we use

coker((ΔY/B
E )i, (ΔY/B

F1
)j) :=

(ResY/B(AutE /Y)× ResY/B(AutF1/Y))

((ΔY/B
E )i, (ΔY/B

F1
)j)(Gm)

.

Then, define the automorphism sheaf of this resolution data to be the B-scheme

AutY/B
E ,F• :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
ResY/B(AutE /Y) if d = 3,

coker(ΔY/B
E , (ΔY/B

F1
)2) if d = 4,

coker((ΔY/B
E )2, (ΔY/B

F1
)3) if d = 5.

(4.1)

In the case Y = B, we notate AutB/B
E ,F• simply by AutE ,F• . When d = 4 or 5, we will often denote

F1 by F .

Throughout much of the remainder of the paper, we will typically work over the base B =
Spec k for k a field. There are notable exceptions, such as Proposition 4.8, where we take B =
Spec Z.

Remark 4.3. Concretely, E and F• in Definition 4.2 are (sequences of) sheaves of the following
ranks. For d = 3, E is locally free of rank 2 and F• is trivial (i.e. the sequence of sheaves has
length 0). When d = 4, E is locally free of rank 3 and F• = F is locally free of rank 2. When
d = 5, E is locally free of rank 4 and F• = F is locally free of rank 5.

In order be able to calculate the class of quotients by the groups of Definition 4.2 in the
Grothendieck ring, it will be useful to know these groups are often special. The following descrip-
tion of these quotients will allow us later, in Lemma 7.12, to easily deduce these groups are
special.

Lemma 4.4. Maintaining the notation of Definition 4.2, we have an isomorphism of functors

AutY/B
E ,F• �

{
ker(det,det−1) : ResY/B(AutE /Y)× ResY/B(AutF/Y)→ ResY/B(Gm) if d = 4,
ker(det2,det−1) : ResY/B(AutE /Y)× ResY/B(AutF/Y)→ ResY/B(Gm) if d = 5.

(4.2)

Here, by determinant we mean the map adjoint to the corresponding determinant map on Y .
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Proof. We produce the claimed isomorphisms by constructing a section to the quotient map
q : ResY/B(AutE /Y)× ResY/B(AutF/Y)→ AutY/B

E ,F• defining AutY/B
E ,F• .

To start, we cover the case d = 4. Given (M,N) ∈ ResY/B(AutE /Y)× ResY/B(AutF/Y),
for λ ∈ Gm, we can identify q(M,N) = q(λM, λ2N). For any such (M,N) the key observa-
tion is that there is a unique λ ∈ Gm such that det(λM) = det(λ2N). Indeed, det(λM) =
λ3 detM while det(λ2N) = λ4 detN and so the unique such λ is λ = detM/detN . This gives
the desired splitting realizing AutY/B

E ,F• as a subgroup of ResY/B(AutE /Y)× ResY/B(AutF/Y)
because the composition ker(det,det−1)→ ResY/B(AutE /Y)× ResY/B(AutF/Y)→ AutE ,F• is an
isomorphism.

The d = 5 case is quite similar to the d = 4 case. Namely, in this case, for (M,N) ∈
ResY/B(AutE /Y)× ResY/B(AutF/Y), there is again a unique λ ∈ Gm so that (det(λ2M))2 =
det(λ3N). Indeed, (det(λ2M))2 = λ16 detM2 and det(λ3N) = λ15 detN , so the unique desired
λ is detN/(detM)2. As in the d = 4 case, this provides a section to the given quotient map
realizing AutY/B

E ,F• as the subgroup of ResY/B(AutE /Y)× ResY/B(AutF/Y) given as those (M,N)
with (detM)2 = detN . �

We next describe a presentation of the stack parameterizing degree d Gorenstein covers for
3 ≤ d ≤ 5. To make our next definition, we will need to know the Gorenstein locus of a finite
locally free map is open.

Lemma 4.5. Let f : X → Y be a finite locally free morphism of schemes. The locus of points of
Y on which the fiber of f is Gorenstein is an open subscheme of Y .

Proof. First, by [Sta, Tag 00RH], the condition that the fiber be Cohen–Macaulay is an open
condition. After restricting to such an open subscheme, by [Con00, Theorem 3.5.1], a dualizing
sheaf exists, and the Gorenstein locus is then the locus where this dualizing sheaf is locally free,
which again defines an open subscheme. �

We are now ready to define the relevant Gorenstein loci. With notation as in Definition 4.2,
we work over B = Spec Z.

Definition 4.6. For each 3 ≤ d ≤ 5, fix free sheaves on Y = B = Spec Z, E and F• as in
Definition 4.2 and Remark 4.3. Let Ud ⊂ Spec(Sym•H0(Spec Z,H (E ,F•))∨) denote the open
subscheme (using Lemma 4.5) functorially parameterizing those sections η so that Ψd(η) defines
a degree d locally free Gorenstein cover, for Ψd the maps (depending on 3 ≤ d ≤ 5) defined in
§ 3.6.

In what follows, we use Coversd to denote the fibered category whose S points are finite
locally free covers X → S of degree d with Gorenstein fibers.

Definition 4.7. For 3 ≤ d ≤ 5, the map Ψd over B = Spec Z induces a map μd : Ud → Coversd,
with Coversd as defined above. There is a natural action of AutE ,F• on Ud, induced by the action
of AutE ×AutF• on Ud. The map μd is invariant under this action, since the resulting abstract
degree d cover is unchanged by such re-coordinatizations. We now define the induced map from
the quotient stack φd : [Ud/AutE ,F• ]→ Coversd.

Proposition 4.8. For 3 ≤ d ≤ 5, the map φd defined in Definition 4.7 over B = Spec Z is an
isomorphism.

When d = 3, 4, Proposition 4.8 is the specialization of the isomorphisms of moduli stacks
given in [Poo08, Proposition 5.1] and [Woo11, Theorem 1.1] to Gorenstein covers.
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Proof. We will construct an inverse map using Theorem 3.2. Using Theorem 3.2, there is an
AutE ×AutF• torsor Td over Coversd whose S-points parameterize covers X → S together with
specified trivializations E X � E ,FX• � F• of the sheaves E X and FX• associated to X coming
from Theorem 3.2. Note here that Td maps surjectively to Coversd because for any S point, there
is an open cover of S on which these vector bundles become isomorphic to trivial bundles. The
parametrizations Theorems 3.13, 3.14, and 3.16 then give a section η ∈H (E ,F•). This induces
a map Td → Ud.

We wish to show this induced map Td → Ud is an isomorphism in degree 3 and a Gm torsor
in degrees 4 and 5, where Gm is the copy of Gm ⊂ AutE ×AutF as in Definition 4.2 whose
quotient yields AutE ,F• . Once we verify this, the parametrizations Theorems 3.13, 3.14, and 3.16

imply that the composition Td → Ud → [Ud/AutE ,F• ]
φd−→ Coversd is the structure map for the

torsor Td → Coversd. From this, it follows that the resulting isomorphism [Td/AutE ×AutF• ]→
Coversd factors through an isomorphism [Td/AutE ×AutF• ]→ [Ud/AutE ,F• ] and, hence, φd :
[Ud/AutE ,F• ]→ Coversd is an isomorphism.

First, we verify the map Td → Ud is invariant under the above mentioned Gm action in the
cases that d = 4 and 5. In the degree 4 case, scaling E by λ and F by λ2 scales F∨ ⊗ Sym2 E
by λ−2 · λ2 = 1. In the degree 5 case, scaling E by λ2 and F by λ3 scales ∧2F ⊗ E ⊗ det E ∨ by
λ6 · λ2 · λ2·(−4) = 1.

Therefore, to conclude the verification, it is enough to show the only elements of
AutE ×AutF• fixing a given section are trivial when d = 3 and lie in Gm when d = 4 or 5.
To start, the map X → PE realizes X as a nondegenerate subscheme of PE and, therefore, only
the trivial element of PGLE fixes X as a subscheme of PE . In the degree 3 case, scaling by λ
in the central Gm ⊂ AutE scales the resulting section by λ, and so only the identity element of
AutE preserves the section. This establishes the claim when d = 3.

We now consider the cases d = 4 and d = 5. We are seeking automorphisms of E and F
preserving a given section η ∈ Ud. We have seen above that any such automorphism must act
on E by some element λ in the central Gm ⊂ AutE . Since we are quotienting by a copy of
Gm ⊂ AutE ×AutF which maps surjectively to the central Gm in AutE , we may modify our
given automorphism so as to assume it is trivial in AutE . Note that when d = 5, we may have to
pass to an fppf cover so as to extract a square root of λ. We may now assume the automorphism
is trivial on E and wish to show it is also trivial on F . However, the given section η induces an
injective map F → Sym2 E , realizing F as a subsheaf of Sym2 E by Theorem 3.2(v). Since we
are assuming the automorphism acts as the identity on E and it preserves this inclusion, it must
also act as the identity on F . �

5. Defining our Hurwitz stacks

In this section, we construct and define the Hurwitz spaces we will be working with. We will
ultimately be interested in the Hurwitz space whose geometric points parameterize degree d Sd

covers of P1 which are smooth and connected. When one restricts to simply branched covers,
such a Hurwitz scheme was constructed by Fulton [Ful69]. Another good reference is [Deo14,
Theorem A], though this reference assumes characteristic 0. Another excellent reference is [BR11,
Theorem 6.6.6], which constructs the Hurwitz stacks in the case that the cover is not Galois,
but has a fixed Galois closure G, which is invertible on the base. Although we are ultimately
primarily interested in counting Sd covers, we will do so by realizing them as a certain proportion
of the space of all degree d covers, so this reference again does not quite suffice for our purposes.
We were unable to find a reference that allows arbitrary branching and non-Galois covers in

1813

https://doi.org/10.1112/S0010437X24007206 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X24007206


A. Landesman, R. Vakil and M. M. Wood

arbitrary characteristic, and so we give the construction here. To begin, we define a certain
Hurwitz stack parameterizing covers of P1 which are not necessarily Sd covers.

Definition 5.1. For S a base scheme, and d ≥ 0 an integer, let Hurd,S denote the category
fibered in groups over S-schemes whose T points over a given map of schemes T → S consists of
(T,X, h : X → T, f : X → P1

T )

(5.1)

where X is a scheme, f is a finite locally free map of degree d and h is a smooth proper relative
curve. A map (T,X, h, f)→ (T,X ′, h′, f ′) consists of a T -isomorphism α : X → X ′ such that the
following commutes.

(5.2)

For g ≥ 0 an integer, let Hurd,g,S denote the substack parameterizing those T -points of Hurd,S

such that X → T has arithmetic genus g.

Lemma 5.2. For S a scheme, Hurd,S and Hurd,g,S are algebraic stacks.

Proof. First, we show Hurd,S is an algebraic stack. It is enough to establish this in the universal
case S = Spec Z. Observe that Hurd,Z is a stack because descent for finite degree d locally free
morphisms is effective. To see it is algebraic, we construct it as a hom stack. Let Ad denote the
stack parameterizing finite locally free degree d covers, as constructed in [Poo08, Definition 3.2].

Next, we claim the mapping stack Hom(P1,Ad) is algebraic. This would follow from [Aok06a,
Theorem 1.1], except the theorem there is not stated correctly, as mentioned in the erra-
tum [Aok06b]. This erratum asserts that we only need verify the additional condition that for
any complete local noetherian ring A with maximal ideal m and An := A/mn, a collection of
compatible maps Hom(P1

An
, (Ad)An) for each n lifts to a map Hom(P1

A, (Ad)A). In our setting,
this condition is indeed satisfied because specifying such maps over An corresponds to specifying
degree d locally free covers Xn → P1

An
over An for each n. Then, by Grothendieck’s algebraization

theorem [FGI+05, Theorem 8.4.10] such a family algebraizes to a family X → P1
A over SpecA,

using the pullback of OP1(1) to X as the relevant ample line bundle on X.
The stack Hurd,S is then the open substack of the mapping stack Hom(P1,Ad) corresponding

to those finite locally free covers X → P1 which are smooth over the base.
Finally, Hurd,g,S is an open and closed substack of Hurd,S because the genus is locally constant

in flat families. �
Having constructed the Hurwitz stack parameterizing all degree d covers of P1, we next

construct an open substack parameterizing Sd covers, over geometric fibers. For the following
definition, recall that Bn, the nth Bell number, is the number of ways to partition a set of n
elements into subsets. Thus, for example, B1 = 1, B2 = 2, B3 = 5 and B4 = 15.
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Definition 5.3. Let S be a scheme with d! invertible on S. Let Hurd,g,S denote
the substack of Hurd,g,S parameterizing those (T,X, h : X → T, f : X → P1

T ) such that
Xd := X ×P1

T
X ×P1

T
· · · ×P1

T
X︸ ︷︷ ︸

d times

has Bd irreducible components in each geometric fiber over T ,

where Bd is the dth Bell number.

The above definition is a bit opaque, but the point is that it parameterizes degree d covers
X → P1 so that the Galois closure of K(X)← K(P1) is an Sd Galois extension, as we now verify.

Lemma 5.4. The fiber product Xd as in Definition 5.3 always has at least Bd irreducible
components in each geometric fiber over T .

Further, it has exactly Bd components if and only if X → P1
T is a degree d cover whose Galois

closure has Galois group Sd on geometric fibers over T .

Proof. We may reduce to the case T is a geometric point. First, we check Xd has at least Bd

irreducible components. To see this, for any partition U = {S1, . . . , S#U} of {1, . . . , d} into #U
many subsets, let XU ⊂ Xd denote the subscheme of Xd given as the image X#U → Xd sending
the ith copy of X via the identity to those copies of X indexed by elements of Si. For each
partition V of {1, . . . , d} such that U refines V , the closure of XU −⋃

V,U refines V X
V defines a

nonempty union of irreducible components of Xd. We have therefore produced Bd irreducible
components of Xd, showing there are always at least Bd irreducible components.

Conversely, Xd has exactly Bd geometric components if and only if each of the Bd sub-
schemes described in the previous paragraph are irreducible. Let us focus on the subscheme Y
corresponding to the partition U = {{1}, {2}, . . . , {d}} into singletons, which has degree d! over
P1 and is the closure of the complement of the ‘fat diagonal’ in Xd. Observe that X → P1 is
generically étale because X is smooth and we are assuming the characteristic of T does not
divide d!. Therefore, Y → P1 is also generically étale, and contains a component whose function
field is the Galois closure of the extension of function fields K(X)← K(P1). Therefore, Y is irre-
ducible if and only if K(Y ) is the Galois closure of K(X)← K(P1). As Y → P1 has degree d!,
this, in turn, is equivalent to X → P1 having Galois closure with Galois group Sd. In particular,
for any cover X → P1 whose Galois closure is smaller than Sd X

d has strictly more than Bd

irreducible components.
Finally, we check that for any Sd cover, each of the Bd components described above are

irreducible. As we have shown, even the component Y of degree d! over P1 is irreducible. Because
all the other components correspond to intermediate extensions between Y and P1, they are also
irreducible. �

We next carry out the surprisingly tricky verification that Hurd,g,S is an open substack of
Hurd,g,S .

Proposition 5.5. For any integers d, g ≥ 0, and d! invertible on S, Hurd,g,S is an open sub-
stack of Hurd,g,S , hence an algebraic stack. Further, if we have a family of curves X → P1

T → T
corresponding to a T -point of Hurd,g,S , all fibers of X over T are geometrically irreducible.

Proof. It is enough to demonstrate Hurd,g,S is an open substack of Hurd,g,S . Let X → P1
T → T

be a family of smooth curves, corresponding to a point of Hurd,g,S . Let Xd denote the d-fold
fiber product of X over P1

T . By Lemma 5.4, any such point corresponds to an Sd cover of
P1 on geometric fibers, and therefore these geometric fibers are irreducible, verifying the final
statement.
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It remains to show that the locus where Xd has Bd irreducible fibers in geometric fibers
is open on T . First, we will see in Lemma 5.7 that the geometric fibers of Xd over T have no
embedded points.

Because the fibers have no embedded points, we may apply [Gro66, 12.2.1(xi)], which says
that the total multiplicity (in the sense defined in [Gro65, p. 77], following [Gro65, 4.7.4], where
total multiplicity is defined for integral schemes) is upper semicontinuous. From this, we conclude
that the locus of geometric points in T where the total multiplicity of Xd is at most Bd is open.
By Lemma 5.4, the total multiplicity of any geometric fiber is always at least Bd and, hence, the
locus where the total multiplicity is exactly Bd is also open. To conclude, it remains to verify
the total multiplicity of any geometric fiber is equal to the number of its irreducible components.
Note that the radicial multiplicity of any fiber is 1 because Xd is generically reduced, since it
has a generically separable map to P1 by assumption that d! � char(k). It follows that the total
multiplicity is equal to the separable multiplicity. By definition, the separable multiplicity of a
finite-type scheme over a field is equal to 1 if and only if the scheme is geometrically irreducible,
as desired. �
Remark 5.6. Later, in Lemma 9.6, we will appeal to [Wew98] to construct substacks of Hurd,g,S

parameterizing covers with specified Galois group G ⊂ Sd. One can also see using the method of
proof of Proposition 5.5 that these form locally closed substacks, with partial ordering given by
the partial ordering along inclusion of subgroups in Sd.

Lemma 5.7. Let X → P1 be a degree d map of smooth proper curves over an algebraically
closed field k. If the characteristic of k does not divide d!, then Xd := X ×P1 X ×P1 · · · ×P1 X︸ ︷︷ ︸

d times

is

Cohen–Macaulay and, hence, has no embedded points.

Proof. It is enough to showXd is Cohen–Macaulay, as one-dimensional Cohen–Macaulay schemes
have no embedded points. To verify Xd is Cohen–Macaulay, we may do so étale locally on P1

and, hence, we may freely base change to the strict henselization of P1 at any given closed
point. Using the assumption on the characteristic of k and the classification of prime to char(k)
covers of the strict henselization of k[t], we may assume our cover is given by extracting
roots of the uniformizer. Equivalently, it is enough to verify Cohen–Macaulayness in the case
Xd is locally described as a localization of k[x1]⊗k[t] k[x2]⊗k[t] · · · ⊗k[t] k[xm] where the maps
k[t]→ k[xi] are given by t �→ xsi

i , for si ≤ d. We can equivalently write this tensor product as
k[x1]⊗k[t] k[x2]⊗k[t] · · · ⊗k[t] k[xm] � k[x1, x2, . . . , xm]/(xs1

1 − xs2
2 , . . . , x

s1
1 − xsm

m ) =: R. We wish
to verify R is Cohen–Macaulay. Observe that R is a one-dimensional scheme, being a finite cover
of k[t]. Since it is defined by m− 1 equations in Am, it is a complete intersection and, therefore,
Cohen–Macaulay. �

The following remark will not be used in the remainder of the paper, but may be nice for
the reader to keep in mind.

Remark 5.8. For d > 2 and g ≥ 1, Hurd,g,S is a scheme when d! is invertible on S. We have seen
above it is an algebraic stack. In order to see it is a scheme, one may first verify it is an algebraic
space by checking any degree d cover of P1 with Galois group Sd for d > 2 has no nontrivial
automorphisms [Sta, Tag 04SZ]. Indeed, if such a cover did have automorphisms, it would factor
through an intermediate cover obtained by quotienting by some such nontrivial automorphism,
forcing the Galois group to be smaller than Sd.

Having established Hurd,g,S is an algebraic space, we next wish to explain why it is a scheme.
Observe this Hurwitz space has a map to the symmetric power Sym2g−2+2d

P1 of 2g − 2 + 2d
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points on P1 given by ‘taking the branch locus’. This uses that d! is invertible on S and
Riemann–Hurwitz. One may verify this map is separated (for example, using the valuative cri-
terion) and quasi-finite (since the inertia data around the branch points determines the cover),
hence quasi-affine [Sta, Tag 082J]. Therefore, it is quasi-affine over a scheme, and therefore a
scheme.

6. Defining the Casnati–Ekedahl stratification of Hurwitz stacks

For this section, we now fix a positive integer d and a base field k with d! invertible on k.
We parenthetically note that much of the following can be generalized to work over arbitrary
base schemes. For T a k-scheme, given a Gorenstein finite locally free degree d cover X → P1

T ,
from Theorem 3.2, we obtain a canonical sequence of vector bundles (E X ,FX

1 ,F
X
2 , . . . ,F

X
d−2)

on P1
T . We next aim to define certain locally closed substacks of Hurd,g,S corresponding to

those covers X → P1
T whose associated vector bundles are isomorphic to some specified sequence

(E ,F1,F2, . . . ,Fd−2). To define this substack, we first define the corresponding stack of these
vector bundles.

Recall that the stack of locally free rank-n sheaves on P1
k is an algebraic stack, as is well

known; see, for example, [Beh91, Proposition 4.4.6].

Definition 6.1. Let Vectn
P1

k
denote the moduli stack of locally free rank-n sheaves on P1

k. For

�a = (a1, a2, . . . , an), with ai ∈ Z, let OP1
k
(�a) :=

⊕n
i=1 OP1

k
(ai) and let Vect�a

P1
k

denote the residual
gerbe at the point corresponding to the vector bundle OP1

k
(�a).

Remark 6.2. Note that this residual gerbe is indeed a locally closed substack by [Ryd11,
Theorem B.2]. Alternatively, the residual gerbe is given concretely as the quotient stack
B(ResP1

k/k(AutO
P1
k
(�a))).

In order to relate the genus of a cover of P1 to the associated vector bundle E we need the
following standard lemma.

Lemma 6.3. Suppose ρ : X → P1
k is a degree d Gorenstein finite locally free cover and let E :=

ker(ρ∗ωX → OP1
k
). If h0(X,OX) = 1, such as in the case that X is smooth and geometrically

connected, then deg(det E ) = g + d− 1.

Proof. First, we claim ρ∗OX � OP1
k
⊕ E ∨. Indeed, by duality, we have a short exact sequence

OP1
k
→ ρ∗OX → E ∨. Because all vector bundles on P1 split, and h0(P1

k, ρ∗OX) = h0(X,OX) = 1,

we find that E ∨ �⊕d−1
i=1 OP1

k
(−ai) for ai > 0. Because there are no extensions of OP1

k
(−ai)

by OP1
k
, the above exact sequence splits, yielding ρ∗OX � OP1

k
⊕ E ∨ � OP1

k
⊕⊕d−1

i=1 OP1
k
(−ai).

Then, for n sufficiently large and L a degree n line bundle on P1
k, Riemann Roch on the

curve X implies h0(P1
k,OP1

k
(n)⊕⊕d−1

i=1 OP1
k
(−ai + n)) = h0(P1

k, ρ∗OX ⊗L ) = h0(X, ρ∗L ) =
dn− g + 1. For n larger than the maximum of the ai, the left-hand side is equal to dn+ d−∑d−1

i=1 ai, and so we obtain −∑d−1
i=1 ai = −g − d+ 1. Therefore, deg(detE ) = −deg(det E ∨) =∑d−1

i=1 ai = g + d− 1. �

With the relation between g and E of Lemma 6.3 established, we are ready to define the
Casnati–Ekedahl strata. For the next definition, we will fix vectors �aE ,�aF1 , . . . ,�aFd−2 and vec-
tor bundles E ,F1, . . . ,F�(d−2)/2� on P1 given by E � OP1

k
(�aE ) and Fi � OP1

k
(�aFi). Note that

although d− 2 vector bundles appear in Theorem 3.2, the isomorphism classes of vector bundles
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Fi for i > �(d− 2)/2� are, in fact, determined by those with i ≤ �(d− 2)/2� because duality
enforces the relation Fd−2 � det E and for 1 ≤ i ≤ d− 3, Fd−2−i � det E ⊗F∨

i .

Definition 6.4. Let k be a field with d! invertible on k, and fix a tuple of vectors
(�aE ,�aF1 , . . . ,�aF�(d−2)/2�). Let g := 1− d+

∑d−1
i=1 a

E
i and define the Casnati–Ekedahl stratum

M (�aE ,�aF1 , . . . ,�aF�(d−2)/2�) as the locally closed substack of Hurd,g,k given as the fiber product

Hurd,g,k ×Vectd−1

P1
k

×∏�(d−2)/2�
i=1 Vect

βi
P1
k

Vect�a
E

P1
k
×

�(d−2)/2�∏
i=1

Vect�a
Fi

P1
k
.

Here, βi are as in Theorem 3.2, and the map Hurd,g,k → Vectd−1
P1

k
×∏�(d−2)/2�

i=1 Vectβi

P1
k

is induced

by Theorem 3.2. In other words, M (�aE ,�aF1 , . . . ,�aF�(d−2)/2�) is the locally closed substack of
the Hurwitz stack such that the associated morphism T → Vectd−1

P1
k
×∏�(d−2)/2�

i=1 Vectβi

P1
k

factors

through a map T → Vect�a
E

P1
k
×∏�(d−2)/2�

i=1 Vect�a
Fi

P1
k

.

Remark 6.5. There is a natural generalization of the construction of Casnati–Ekedahl strata of
covers of P1 to a version for covers of genus-g curves C in place of the genus-0 curve P1. Namely,
given a finite locally free cover C ′ → C over a base T , using Theorem 3.2, one can associate
a sequence of vector bundles on the relative curve C → T . A given Casnati–Ekedahl stratum
would naturally be defined as the locus where these bundles have specific Harder–Narasimhan
filtration, generalizing the notion of splitting type.

Remark 6.6. Since the substacks Vect�a
P1

k
form a stratification of Vectn

P1
k
, it follows that the

Casnati–Ekedahl strata, varying over all tuples (�aE ,�aF1 , . . . ,�aF�(d−2)/2�) form a stratification
of Hurd,g,k. This will enable us to write the class of Hurd,g,k in the Grothendieck ring as the sum
of the classes of M (�aE ,�aF1 , . . . ,�aF�(d−2)/2�) for (�aE ,�aF1 , . . . ,�aF�(d−2)/2�) varying over all integer
tuples of vectors.

To conclude this section, we introduce some notation for objects we will associate with a
Casnati–Ekedahl stratum of the Hurwitz stack.

Notation 6.7. For 3 ≤ d ≤ 5, M (�aE ,�aF1 , . . . ,�aF�(d−2)/2�) ⊂ Hurd,g,k a Casnati–Ekedahl stratum,

for E :=
⊕

j O(�aE
i ),F• :=

⊕
j O(�aF•

j ), define AutM := AutP1
k/k

E ,F• , as defined in Definition 4.2,

depending on the value of d. In addition, for f : T → P1
k denote Autf∗M := AutT/k

f∗E ,f∗F• . When
the map f is understood, we also use AutM |T as notation for Autf∗M .

Remark 6.8. The construction AutM |T at the end of Notation 6.7 will primarily be used when
T = D, the dual numbers, mapping to a point of P1

k. Note that, in this case E |D and F•|T are
free vector bundles because all locally free bundles over D are free.

We conclude this section with a general discussion about the moduli stack of vector bundles
on P1

k. This will be useful in later sections, specifically in Lemma 9.11.

6.9 Discussion of the moduli stack of vector bundles on P1
k

Recall that, for k a field, every vector bundle V on P1
k of rank r and degree δ can be written as

V �⊕r
i=1 OP1

k
(ai) where

∑r
i=1 ai = δ. The moduli stack of vector bundles of rank r and degree δ

on P1
k is smooth and connected. The generic point of this moduli stack is given by a balanced

bundle. Formally, a vector bundle V on P1 is balanced if it can be written as V �⊕r
i=1 O(ai)

with |ai − aj | ≤ 1 for all 1 ≤ i ≤ j ≤ r.
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We can now describe when one degree δ, rank-r vector bundle V , viewed as a point
on the moduli stack, lies in the closure of a point corresponding to another degree δ,
rank-r vector bundle W . See [EH16, Theorem 14.7(a)] for a proof of the following description.
Suppose V �⊕r

i=1 OP1
k
(ai) = OP1

k
(�a), and there are some ai, aj with ai ≤ aj − 2. Let σi,j(�a) :=

(a1, . . . , ai + 1, . . . , aj − 1, . . . , ar) so that σi,j(�a) agrees with �a except in positions i and j. Then
OP1

k
(σi,j(�a)) lies in the closure of OP1

k
(�a). Informally, one bundle lies in the closure of another if

one can find a sequence of moves as above relating one to the other. More precisely, OP1
k
(�b) lies

in the closure of OP1
k
(�a) if we can write �b = σi1,j1 ◦ σi2,j2 · · · ◦ σim,jm(�a) for some non-negative

integer m and integers i1, . . . , im, j1, . . . , jm. In particular, if one starts with any vector bundle
of rank r and degree δ, one can sequentially move the entries of �a closer together, which shows
that a balanced bundle correspond to the generic point of the moduli stack.

7. Presentations of the Casnati–Ekedahl strata

We next aim to use the parametrizations from § 3 in order to describe each of the M (E ,F•) for
3 ≤ d ≤ 5 as the quotient of an open in affine space by an appropriate group action. Because we
will also want to parameterize simply branched covers, it will be useful to restrict the possible
ramification types of these covers. We now introduce the notion of ramification profile, which
describes the possible ramification types of a finite cover of P1 by a smooth curve.

Definition 7.1 (Ramification profile). Fix a positive integer d and let R = (rt1
1 , r

t2
2 , . . . , r

tn
n )

denote a partition of d, i.e. a collection of integers with t1, . . . , tn ≥ 1 so that
∑n

i=1 tiri = d.
Here, we think of ri as the part sizes appearing in the partition and ti as the corresponding
multiplicity. A ramification profile of degree d is a partition of d. For X → S a scheme, we say
X has ramification profile R if for every geometric point Spec k ∈ S, the base change Xk :=
X ×S Spec k is isomorphic to

∐n
i=1(

∐ti
j=1 Spec k[x]/(xri)). We let r(R) :=

∑n
i=1(ri − 1)ti denote

the associated ramification order.

One way to think about ramification profiles as defined above is to think of each fiber Xk

of X → S having a partition into curvilinear schemes (i.e. schemes with cotangent spaces of
dimension at most 1 at every point) of degrees determined by the partition R.

We next introduce the notion of an allowable collection of ramification profiles. The point of
allowable collections is that covers of P1 whose ramification profiles lie in an allowable collection
define an open substack of the Hurwitz stack with closed complement of high codimension. We
use the notation λ � n to indicate that λ is a partition of n.

Definition 7.2. Fix an integer d. Let R denote a collection of ramification profiles of degree d.
We say R is an allowable collection of ramification profiles of degree d if:

(1) R includes (1d) and (2, 1d−2);
(2) whenever λ � d lies in R, and λ′ � d is a partition refining λ, then λ′ also lies in R.

In the remainder of this section, we first define certain open substacks of Hurwitz stacks with
restricted ramification, lying in an allowable collectionR. Following this, we define a certain space
of sections of a vector bundle on P1 parameterizing smooth degree d covers (for 3 ≤ d ≤ 5) with
specified ramification profiles in an allowable collection.

Definition 7.3. Suppose k is a field with d! invertible on k. For R an allowable collection of
ramification profiles of degree d, let HurRd,g,k ⊂ Hurd,g,k denote the open substack of Hurd,g,k (we
prove it is open in Lemma 7.5) whose T points parameterize smooth curves X → P1

T over T
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so that for each geometric point Specκ→ P1
T , Xκ has ramification profile in R. Let HurRd,g,k ⊂

Hurd,g,k denote the restriction of HurRd,g,k along Hurd,g,k ⊂ Hurd,g,k.
Similarly, for M ⊂ Hurd,g,k a Casnati–Ekedahl stratum, let MR ⊂M denote the open

substack M ×Hurd,g,k
HurRd,g,k ⊂M . We use MR,Sd to denote the pullback of MR along

HurRd,g,k ⊂ HurRd,g,k.

Remark 7.4. In the case d = 2, the only allowable R is R = {(12), (2)} and in this case HurR2,g,k =
Hur2,g,k.

We now verify that the locus of HurRd,g,k ⊂ Hurd,g,k is an open substack.

Lemma 7.5. With notation as in Definition 7.3, HurRd,g,k ⊂ Hurd,g,k is an open substack.

Proof. As a first step, we will show this is a constructible subset. To do so, we can define
certain substacks of Hurd,g,k parameterizing covers f : C → P1

k so that the multiset of ramification
profiles over the geometric branch points of f is equal to some fixed multiset S, which we call
(Hurd,g,k)S . One can show (Hurd,g,k)S is an algebraic stack. (See [BR11, Theorem 6.6.6] for a
very closely related construction.) Therefore, the image of any of these stacks in Hurd,g,k is
constructible. Since the underlying set of HurRd,g,k is a finite union

∐
S(Hurd,g,k)S for all possible

multisets S producing genus-g covers which only include ramification lying in R, we obtain that
HurRd,g,k is a constructible subset of Hurd,g,k.

To conclude, we wish to show this constructible subset is in fact an open subset. To do so, we
only need show it is closed under generization. However, if a point of (Hurd,g,k)S has a generization
which is a point of (Hurd,g,k)S′

then all ramification profiles appearing in S′ must be refinements
of those appearing in S. Therefore, condition (2) from the definition of allowable collection of
ramification profiles, Definition 7.2, shows that HurRd,g,k is indeed closed under generization, and
so defines an open substack of Hurd,g,k. �

We next give analogs of the restricted ramification loci above for spaces of sections.

Definition 7.6. For 3 ≤ d ≤ 5, suppose d! is invertible on k. Fix a choice of Casnati–Ekedahl
stratum M := M (�aE ,�aF1 , . . . ,�aF�(d−2)/2�), with associated locally free sheaves on P1

k given by
EM :=

⊕
O(�aE

i ), and, if 4 ≤ d ≤ 5, FM :=
⊕

O(�aF1
j ). Let g := deg det EM − d+ 1. Let HM

denote the associated locally free sheaf on P1 defined in (3.6). Let R denote an allowable col-
lection of ramification profiles. Then, define UR

M to be the open subscheme (we prove openness
in Lemma 7.7) of Spec Sym•H0(P1

k,HM )∨ parameterizing T -points η so that Ψd(η) defines a
smooth proper curve over T with geometrically connected fibers such that over each geometric
point Specκ→ P1

T , the pullback of Φd(η) ⊂ PE → P1
T along Specκ→ P1

T has ramification profile
lying in R.

In addition, define UR,Sd
M ⊂ UR

M as the open subscheme parameterizing those sections η for
which Ψd(η) is a smooth curve X with geometrically connected fibers, such that over each fiber,
the cover X → P1 of degree d has Galois closure which is an Sd cover. In other words, UR,Sd

M is
the subset of UR

M for which the map Ψd defines a point of Hurd,g,k.

In the above definition, we claimed UR
M ⊂ Spec Sym•H0(P1

k,HM )∨ is an open subscheme.
We now justify this.

Lemma 7.7. The subset UR
M ⊂ Spec Sym•H0(P1

k,HM )∨ naturally has the structure of an open
subscheme.
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Proof. Let Wd ⊂ Spec Sym•H0(P1
k,HM )∨ denote the open subscheme parameterizing those sec-

tions η for which Ψd(η) has degree d on all fibers. There is a map Wd → Hurd,g,k, induced by Ψd

sending η �→ Ψd(η). Under this map, UR
M is the preimage of HurRd,g,k, which is open by Lemma 7.5.

Hence, UR
M ⊂ Spec Sym•H0(P1

k,HM )∨ is open. �
Example 7.8. If we take R in Definition 7.6 to range over all possible ramification profiles (i.e. all
partitions of d) then UR

M corresponds to all sections η as in Definition 7.6 with Φd(η) a smooth
geometrically connected degree d cover of P1

k.
On the other hand, if we take R to be the union of two ramification profiles, the first given by

1d and the second given by (2, 1d−2), we obtain all sections η with Φd(η) a smooth geometrically
connected curve which is simply branched over P1.

7.9 Writing the class as a sum over Casnati–Ekedahl strata
Our goal for the remainder of the section is to express the class of the Hurwitz stack as a sum over
the Casnati–Ekedahl strata, which will be somewhat more manageable due to their descriptions
as quotients of opens in affine spaces by relatively simple algebraic groups.

Proposition 7.10. For 3 ≤ d ≤ 5, and R an allowable collection of ramification profiles of
degree d, we have an equality in K0(Stacksk)

{HurRd,g,k} =
∑

Casnati–Ekedahl strata M

{UR,Sd
M }

{AutM } .

Proof assuming Proposition 7.11 and Lemma 7.12. We claim

{HurRd,g,k} =
∑

Casnati–Ekedahl strata M

{MR,Sd}

=
∑

Casnati–Ekedahl strata M

{[
UR,Sd

M

AutM

]}

=
∑

Casnati–Ekedahl strata M

{UR,Sd
M }

{AutM } .

The first equality holds because the Casnati–Ekedahl strata form a stratification of Hurd,g,k

by locally closed substacks. The second holds by Proposition 7.11. The final equality holds by
Lemma 7.12, using both that AutM is special so {AutM }{[UR,Sd

M /AutM ]} = {UR,Sd
M } by [Eke09a,

Proposition 1.4(i)], and that {AutM } is invertible. �
To conclude our proof of Proposition 7.10, we need to verify Proposition 7.11 and

Lemma 7.12. We omit the proof of Proposition 7.11 since it is analogous to Proposition 4.8,
where we additionally fix isomorphisms to fixed bundles E ,F• on P1

k (as opposed to trivial bun-
dles on Spec Z) and add in conditions associated to the ramification profiles in R and lying in
Hurd,g,k appropriately.

Proposition 7.11. For 3 ≤ d ≤ 5, fix a choice of Casnati–Ekedahl stratum M :=
M (�aE ,�aF1 , . . . ,�aF�(d−2)/2�) with associated sheaves EM and, if 4 ≤ d ≤ 5, FM as in
Definition 7.6. There are isomorphisms [UR

M /AutM ] �MR and [UR,Sd
M /AutM ] �MR,Sd .

We now verify the relevant automorphism groups are special. Because later we will have to
deal with an analogous construction over the dual numbers D, we include that setting in the
following lemma as well.
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Lemma 7.12. For V any vector bundle on Y , for Y = P1
k or Y = D, ResY/k(AutV ) and

ResY/k(ker(det : AutE → Gm)) are special and their classes are invertible in K0(Stacksk).
When Y = P1 or Y = D, the three group schemes appearing in (4.1) in the cases d = 3, 4,

and 5 are special. Further, the classes of these groups are invertible in K0(Stacksk).

Proof. We only explicate the proof in the case Y = P1
k, since the proof when Y = D is analogous

but simpler (noting that all vector bundles are trivial over D).
First we show that for any vector bundle G on P1

k, ResP1
k/k(AutG ) is special.

The reason for this is as follows. Write G =
⊕m

i=1 OP1
k
(ai)ni with a1 ≤ · · · ≤ am. We

can express ResP1
k/k(AutG ) �∏

i GLni �
∏

i<j Vij where Vij is the vector group Vij =

ResP1
k/k(Hom(OP1

k
(ai)ni ,OP1

k
(aj)nj )) � G(aj−ai+1)ninj

a . It will also be useful to note that ker(det) :
ResP1

k/k(AutG )→ ResP1
k/k(Gm) is special, since it can be expressed as an extension of a power

of Gm by
∏

i SLni �
∏

i<j Vij , both of which are special. These statements imply the first part
of the lemma.

We now check the groups AutP1
k/k

E ,F• are special when d = 3, 4, and 5. The above obser-
vations immediately implies the claim when d = 3. To deal with the cases d = 4 and d = 5,
we use Lemma 4.4. In both cases, the composition coming from Lemma 4.4 AutP1

k/k

E ,F →
ResP1

k/k(AutE /P1
k
)× ResP1

k/k(AutF/P1
k
)→ ResP1

k/k(AutE /P1
k
) is surjective. From the description in

Lemma 4.4, the kernel of this composition is identified with ker(det) : ResP1
k/k(AutF/P1

k
)→ Gm.

As mentioned above, this is special, and so AutP1
k/k

E ,F• is an extension of special group schemes,
hence special.

By the above explicit description of AutP1
k/k

E ,F• in terms of classes of special linear groups,

general linear groups, and vector groups, we conclude that AutP1
k/k

E ,F• has class which is a product

of powers of L, and expressions of the form Ls − 1 for varying s. Therefore, AutP1
k/k

E ,F• is invertible
in K0(Stacksk). �

8. Computing the local classes

The goal of this section is to compute the classes of sections over the dual numbers in Theorem 8.9.
These classes can be thought of as describing the ‘probability’ that a curve is smooth at a point
and has a certain ramification profile. We will then use these classes to sieve for smoothness and
ramification conditions by employing the work of Bilu and Howe [BH21] in Proposition 9.10. The
condition of smoothness can be rephrased as a local condition over an infinitesimal neighborhood
of the point in P1. We will first prove Theorem 8.3 which computes this ‘probability’ for abstract
covers, and from this deduce Theorem 8.9, which computes this ‘probability’ for sections of
H (E ,F•). Theorem 8.3 can be thought of as a motivic analog of Bhargava’s mass formulas for
counting local fields [Bha07], though we note that the interesting part of [Bha07] is when there
is wild ramification, and our hypothesis eliminates that possibility. On the other hand, it is still
interesting to upgrade even the (much easier) tame mass formula to a motivic statement.

The idea for computing these local classes seems one of the main new insights of this paper.
In the arithmetic analogs of this work, one is able to directly count the number of sections over
Z/p2Z, see [BST13, Lemma 18] for the degree 3 case, [Bha04, Lemma 23] for the degree 4 case,
and [Bha08, Lemma 20] for the degree 5 case. In the Grothendieck ring, when working over infinite
fields, there are infinitely many sections, and so to determine the relevant class, direct counting
is no longer possible. We relate computing the classes of these sections to computing the classes
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of the classifying stacks of abstract automorphism groups of the corresponding schemes. These
classes can, in turn, be computed using stacky symmetric powers Symmn (see Definition 8.15)
and the class of BSn. An observation which is the key to the proof of Theorem 8.9 is that for G
a group scheme, we have an isomorphism of stacks Symmn(BG) � B(G � Sn).

Throughout this section, we fix d ∈ Z≥1 an integer and let k be a field with char(k) � d!. For
later explicit calculations, it will be convenient to work with the following explicit scheme X(R)

over D which has ramification profile R = (rt1
1 , . . . , r

tn
n ), with

∑n
i=1 riti = d, over the closed point

of D. Define

X(R) :=
n∐

i=1

( ti∐
j=1

Spec k[x, ε]/(xri − ε, ε2)
)
. (8.1)

Thus, X(R) is a disjoint union of curvilinear schemes flat over the dual numbers, which have
degrees over the dual numbers corresponding to elements of the partition. In particular, the
total degree of X(R) over the dual numbers is d. We use the parentheses around R in X(R) to
distinguish it from the base change of X to R.

Recall we defined Coversd prior to Definition 4.7 as the algebraic stack parameterizing
degree d finite locally free covers over a base field k.

Definition 8.1. We let XR,d ⊂ ResD/k(Coversd ×Spec k D) denote the residual gerbe at the
k-point of ResD/k(Coversd ×Spec k D) corresponding to the D-point of Coversd given by X(R).

Remark 8.2. Since we have an induced monomorphism B(ResD/k(AutX(R)/D))→ Coversd

and an epimorphism Spec k → B(ResD/k(AutX(R)/D)), it follows that XR,d is equivalent to
B(ResD/k(AutX(R)/D)) from the universal property for residual gerbes.

Our main result of this section is to compute the class of XR,d in K0(Stacksk), and we
complete the proof at the end of the section in § 8.17.

Theorem 8.3. Let R be a ramification profile which is a partition of d. Let r(R) be the ram-
ification order associated to the ramification profile R, as defined in Definition 7.1. Then, for k
a field with char(k) � d!, we have

{XR,d} = L−r(R)

in K0(Stacksk).

The plan for the rest of the section is to first use Theorem 8.3 to deduce the local condi-
tion for a section of H (E ,F•) to be smooth in Theorem 8.9. Following this, we devote the
remainder of the section to proving Theorem 8.3. The main idea is to directly compute the auto-
morphism group of X(R) in terms of its combinatorial data starting in § 8.10 and culminating
in Corollary 8.12. Using this, we will then be able to compute the class of the classifying stack
of the resulting affine (but typically quite disconnected) group scheme in § 8.13. For this, we
appeal to a result of Ekedahl on stacky symmetric powers and another result of Ekedahl showing
{BSd} = 1. We complete the proof of Theorem 8.3 in § 8.17.

Remark 8.4. With some additional work, one can also prove a variant of Theorem 8.3 which
computes the class of the locally closed subscheme ZR,d of the Hilbert scheme ResD/k(Hilbd

P
d−2
D /D

)
parameterizing curvilinear nondegenerate subschemes with ramification profile R so that on
any geometric fiber, no degree-(d− 1) subscheme is contained in a hyperplane. One can show,
{ZR,d} = {PGLd−1}Ldim PGLd−1 −r(R). Note there is some subtlety in verifying this because this
Hilbert scheme is naturally a ResD/k(PGLd−1) torsor over Coversd, and PGLd−1 is not a special
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group. Nevertheless, one may prove this by ‘linearizing the action’ so as to construct this as a
quotient of a ResD/k(GLd−1) torsor by ResD/k(Gm), both of which are special.

8.5 Using Theorem 8.3 to compute smooth sections
Before proving Theorem 8.3, we will see how it can be used to determine local conditions for
a section in a given Casnati–Ekedahl stratum to be smooth. In order to apply Theorem 8.3
to our problem of computing the classes of Hurwitz stacks we want to relate it to sections
of the sheaf H (E ,F•) on D (for E and F• trivial sheaves on D of appropriate ranks as in
Notation 3.8, depending on d with 3 ≤ d ≤ 5). For this we need a generalization of Proposition 4.8
where we take a Weil restriction from the dual numbers. More precisely, for 3 ≤ d ≤ 5, the
map μd : Ud → Coversd defined in Definition 4.7 induces a map ResD/k(μd) : ResD/k((Ud)D)→
ResD/k((Coversd)D). Since μd is invariant for the action of AutE ,F• as in Definition 4.7, we obtain

a map φD/k
d : [ResD/k((Ud)D)/ResD/k(AutE |D,F•|D)]→ ResD/k((Coversd)D) induced by sending

a section to its vanishing locus.

Lemma 8.6. For 3 ≤ d ≤ 5, the map φ
D/k
d : [ResD/k((Ud)D)/ResD/k(AutE |D,F•|D)]→ ResD/k

((Coversd)D) is an isomorphism.

This is proven via a nearly identical argument to Proposition 4.8 and we omit the proof. The
one minor difference one must note is that, in order to show φ

D/k
d is surjective, for any T → Spec k

and any vector bundle on T ×k D, one may replace T by an open cover which trivializes the
bundle.

Definition 8.7. Let YR,d ⊂ ResD/k((Ud)D) denote the preimage under the composition

ResD/k((Ud)D)→ [ResD/k((Ud)D)/ResD/k(AutE |D,F•|D)]
φ

D/k
d−−−→ ResD/k((Coversd)D)

of XR,d ⊂ ResD/k((Coversd)D).

Remark 8.8. We will implicitly use the following geometric description of the residual gerbe XR,d

and its preimage YR,d in ResD/k((Ud)D). As a fibered category, XR,d has T points given by finite
locally free degree d Gorenstein covers Z → T ×k D satisfying the following properties:

(1) Z has ramification profile R over each geometric point Specκ→ TD;
(2) Z is curvilinear in the sense that for each geometric point Specκ→ T , the resulting scheme

Z ×T Specκ has 1-dimensional Zariski tangent space at each point.

Similarly, when 3 ≤ d ≤ 5, we can describe YR,d as those sections η ∈ ResD/k((Ud)D)(T )
for which the associated degree d cover of T ×k D, Ψd(η) (as defined in § 3.11) has the above
properties. We note that YR,d is a locally closed subscheme of ResD/k((Ud)D) since the same
holds for the residual gerbe XR,d in ResD/k(Coversd) (see [Ryd11, Theorem B.2]). One may also
deduce this is locally closed directly from the above functorial description.

By combining Theorem 8.3 with Lemma 8.6, we can easily deduce the following.

Theorem 8.9. Let R be a ramification profile which is a partition of d and let YR,d be the
scheme defined in Definition 8.7 (with associated free sheaves E ,F• on D). Let r(R) denote the
ramification order associated to the ramification profile R, as defined in Definition 7.1. Then,

{YR,d} = {AutD/k
E ,F•}L−r(R).
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Proof of Theorem 8.9 assuming Theorem 8.3. Using Lemma 8.6 and Remark 8.2,

{[YR,d/AutD/k
E ,F• ]} = {B(ResD/k(AutX(R)/D))} = XR,d.

Since AutD/k
E ,F• is special and has invertible class in K0(Stacksk) by Lemma 7.12, [Eke09a,

Propositions 1.4(i), 1.1(ix)] implies that

{[YR,d/AutD/k
E ,F• ]} =

{YR,d}
{AutD/k

E ,F•}
.

Then, by Theorem 8.3,

{YR,d} = {AutD/k
E ,F•} · {XR,d} = {AutD/k

E ,F•} · L−r(R). (8.2)

�

8.10 Computing the algebraic group ResD/k(AutX(R)/D)
Let X(R) denote the scheme as defined in (8.1). Our next goal is to compute the group scheme
ResD/k(AutX(R)/D), which we will carry out in Corollary 8.12. In order to do so, we first deal
with the case that X(R) is connected.

Lemma 8.10. Let d ∈ Z≥1, and let k be a field with char(k) � d!. Let W := Spec k[y, ε]/
(ε2, ε− yd). For AutW/D the automorphism scheme of W over D, we have ResD/k(AutW/D) �
Gd−1

a � μd, explicitly given by α ∈ μd sending y �→ αy and (a1, . . . , ad−1) ∈ Gd−1
a sending y �→

y +
∑d−1

i=1 aiy
d+i.

Proof. For T a k algebra, a functorial T point of ResD/k(AutW/D) corresponds (upon taking
global sections) to an isomorphism of T algebras

φ : T [y, ε]/(ε2, ε− yd) � T [y, ε]/(ε2, ε− yd)

over T [ε]/(ε2). Such an automorphism is uniquely determined by where it sends y. To conclude
the proof, it suffices to verify that any such φ is of the form y �→ αy +

∑d−1
i=1 aiy

d+i for α ∈ μd(T )
and ai ∈ Ga(T ), and conversely that any map of this form determines an automorphism.

Let φα,a1,...,ad−1
denote the map of T algebras sending y �→ αy +

∑d−1
i=1 aiy

d+i as above.
Under the isomorphism T [y, ε]/(ε2, ε− yd) � T [y]/y2d, any automorphism φ must induce an iso-
morphism on cotangent spaces, and hence send y to some polynomial pφ(y) = b1y + b2y

2 + · · ·+
b2d−1y

2d−1, with b1 �= 0 and bi ∈ T . The condition that φ determines a map of T [ε]/(ε2) algebras
precisely corresponds to yd = pφ(y)d. Comparing the coefficients of yd in this equation implies
b1 ∈ μd(T ). Since char(k) � d!, comparing the coefficients of yd+1, . . . , y2d−1 in the equation
yd = pφ(y)d implies b2 = b3 = · · · = bd = 0. However, the coefficients bd+1, . . . , b2d−1 can be arbi-
trary and yd = pφ(y)d will be satisfied. So, any automorphism φ must be of the form φα,a1,...,ad−1

(where we take ai = bd+i in the above notation).
To see any map φα,a1,...,ad−1

determines an automorphism of T algebras, note first that it is
well defined, because (αy +

∑d−1
i=1 aiy

d+i)d = yd, using that y2d = 0. It is an automorphism as its
inverse is explicitly given by φ(α−1,−α−2a1,−α−3a2,...,−α−dad−1) �

Corollary 8.12. Choose a partition (rt1
1 , . . . , r

tn
n ) of d, i.e. d =

∑n
i=1 ti · ri. For i = 1, . . . , n, let

Wi := Spec
∏ti

j=1 k[y, ε]/(ε
2, ε− yri). Let W :=

∐n
i=1Wi, so that W � X(R) when R is the ram-

ification profile associated to the above partition. We have an isomorphism ResD/k(AutW/D) �∏n
i=1(G

ri−1
a � μri) � Sti , where each Gri−1

a � μri is explicitly realized acting on each component
of Wi as in Lemma 8.11, and the action of the wreath product with Sti is obtained by permuting
the ti components of Wi.
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Proof. To compute the automorphism group of W , first observe that any automorphism must
permute all connected components of a fixed degree, and therefore AutW/D =

∏n
i=1 AutWi/D

and, consequently,

ResD/k(AutW/D) = ResD/k

( n∏
i=1

AutWi/D

)
=

n∏
i=1

ResD/k(AutWi/D).

It therefore suffices to show ResD/k(AutWi/D) � (Gri−1
a � μri) � Sti . As all connected com-

ponents of Wi are isomorphic, any automorphism is realized as the composition of an automor-
phism preserving each connected component, followed by some permutation of the connected
components. Since there are ti connected components, the group of permutations of the com-
ponents is the symmetric group Sti , while for Zi a connected component of Wi, we established
ResD/k AutZi/D � Gri−1

a � μri in Lemma 8.11. It follows that

ResD/k(AutWi/D) = (ResD/k(AutZi/D)) � Sti = (Gri−1
a � μri) � Sti . �

8.13 Computing {B ResD/k(AutX(R)/D)}
Our next goal is to prove Theorem 8.3 by computing the class of {BResD/k(AutX(R)/D)} in
K0(Stacksk), which we carry out at the end of this section in § 8.17. Of course, we will use our
computation of ResD/k(AutX(R)/D) from Corollary 8.12. In order to set up our computation we
need the following lemma.

Lemma 8.14. For x and y positive integers, {B(Gx
a � μy)} = {B(Gx

a)} = L−x, where μy acts on
Gx

a by the scaling action (α, (a1, . . . , ax)) �→ (αa1, . . . , αax).

Proof. Indeed, we have an inclusion

(Gx
a � μy) ↪→ (Gx

a � Gm),

where the semidirect product Gx
a � Gm is defined similarly to that in Lemma 8.11 so that Gm

acts on Gx
a by

Gm ×Gx
a → Gx

a

(α, (a1, . . . , ax)) �→ (αa1, . . . , αax).

The natural inclusion μy → Gm then respects the constructed group structures. For simplicity
of notation, temporarily define K := Gx

a � μy and L := Gx
a � Gm.

Since L is special, and special groups are closed under extensions, it follows from [Eke09a,
Proposition 1.1(ix)] that {BK} = {L/K}{BL}. However, since Gx

a is a normal subgroup of both
L and K, the quotient L/K is identified with

L/K � L/Gx
a

K/Gx
a

� Gm/μy � Gm.

Since L is special, using [Eke09a, Proposition 1.4(i)] and [Eke09a, Proposition 1.1(v)], we obtain
that {BL} = 1/{L} = L−x1/(L− 1). Therefore,

{BK} = {L/K}{BL} = (L− 1)L−x 1
L− 1

= L−x = {B(Gx
a)},

using again that L = Gx
a � Gm is special. �

Using Lemma 8.14, we next compute the class of BResD/k(AutX(R)/D) in the case that
the partition R has a single part. To continue our computation, we need the notion of stacky
symmetric powers.

1826

https://doi.org/10.1112/S0010437X24007206 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X24007206


Low-degree Hurwitz stacks in the Grothendieck ring

Definition 8.15. For X a stack, define the stacky symmetric power Symmn X := [X n/Sn]
(where [X n/Sn] denotes the stack quotient for Sn acting on X n by permuting the factors).

The key input to our next computation will be that taking the stacky symmetric powers is
a well-defined operation on the Grothendieck ring of stacks by [Eke09b, Proposition 2.5].

Lemma 8.16. For integers s and t,

B((Gs−1
a � μs) � St) = L−(s−1)·t ∈ K0(Stacksk).

Proof. By definition,

{B((Gs−1
a � μs) � St)} = {B(Gs−1

a � μs) �B(St)} = {Symmt(B(Gs−1
a � μs))}.

Having computed {B(Gs−1
a � μs)} = L−s+1 in Lemma 8.14, we therefore wish to next compute

{Symmt(B(Gs−1
a � μs))}. Since {Symmn X } only depends on {X } by [Eke09b, Proposition 2.5],

and we have shown {B(Gs−1
a � μs)} = {B(Gs−1

a )} in Lemma 8.14 it follows that

{Symmt(B(Gs−1
a � μs))} = {Symmt(BGs−1

a )}.
Next, by [Eke09b, Lemma 2.4], we have

{Symmt(As−1 ×BGs−1
a )} = {Symmt(BGs−1

a )× A(s−1)t}
= {Symmt(BGs−1

a )} · L(s−1)t.

However, since {As−1 ×BGs−1
a } = 1, and {Symmn X } only depends on {X } by [Eke09b,

Proposition 2.5], we obtain

{Symmt(BGs−1
a )} = {Symmt(As−1 ×BGs−1

a )}L−(s−1)t

= {Symmt(1)}L−(s−1)t

= {BSt}L−(s−1)t

= L−(s−1)t.

For the last step, we used Theorem A.1, which says that {BSt} = 1. �

8.17 Completing the calculation of the local class
We now complete the proof of Theorem 8.3.

Proof of Theorem 8.3. By Remark 8.2 {XR,d} = {B(ResD/k(AutX(R)/D))}, and so we will now
compute the latter. By Corollary 8.12 we equate

ResD/k(AutX(R)/D) =
n∏

i=1

(Gri−1
a � μri) � Sti .

Factoring this as a product, it suffices to compute the class of B(Gri−1
a � μri) � Sti . Using that∑n

i=1(ri − 1)ti = r(R), the result follows from Lemma 8.16. �

9. Codimension bounds for the main result

In this section, we establish various bounds on the codimension or certain bad loci we will want
to weed out when computing the class of Hurwitz stacks in the Grothendieck ring.
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9.1 Weeding out the strata of unexpected codimension
In order to compute the classes of Hurwitz stacks, we will stratify the Hurwitz stacks by
Casnati–Ekedahl strata. The following lemma computes the codimension of these loci in the
Hurwitz stack. For the following statement, recall our notation for H (E ,F•) from (3.6).

Lemma 9.2. Fix some d, resolution data (E ,F•), and define g by deg det E = g + d− 1. Letting
H := H (E ,F•), the codimension of M := M (E ,F•) in Hurd,g,k, assuming it is nonempty, is{

h1(P1
k,EndE ) if d = 3,

h1(P1
k,EndE ) + h1(P1

k,EndF )− h1(P1
k,H ) if d = 4 or 5.

Proof. The case d = 3 is proven in [Pat13, Proposition 1.4]. Therefore, for the remainder of the
proof, we assume d = 4 or d = 5, in which case we simply write (E ,F ) in place of (E ,F•). Let
M ◦ := M (E ◦,F ◦) denote the dense open stratum, corresponding to vector bundles E ◦ and F ◦

which are balanced (see § 6.9), subject to the conditions that detF ◦ � det E ◦ when d = 4 and
det F ◦ � det(E ◦)⊗2 when d = 5, coming from coming from Theorems 3.14 and 3.16. Similarly,
let H ◦ := H (E ◦,F ◦).

We are looking to compute the codimension of M in Hurd,g,k, or equivalently the difference of
dimensions dim M ◦ − dimM . Using the description of M from Proposition 7.11 as a quotient of
an open in the affine space associated to H0(P1

k,H ) by AutM , it follows that the codimension
of M in Hurd,g,k is dimM ◦ − dimM . Since dimM = h0(P1

k,H )− dim AutM , we are looking
to compute

(h0(P1
k,H

◦)− dim AutM ◦)− (h0(P1
k,H )− dim AutM )

= (h0(P1
k,H

◦)− h0(P1
k,H )) + (dim AutM −dim AutM ◦). (9.1)

We will first identify dim AutM −dim AutM ◦ with h1(P1
k,EndE ) + h1(P1

k,EndF ). Second,
we will show (h0(P1

k,H
◦)− h0(P1

k,H )) agrees with h1(P1
k,H ). Combining these with (9.1) will

complete the proof.
To identify dim AutM −dim AutM ◦ , we may identify dim AutM with the dimension of the

tangent space to AutM at the identity, which is given by H0(P1
k,EndE )×H0(P1

k,EndF ). It is
then enough to show that

h0(P1
k,EndE ◦)− h0(P1

k,EndE ) = h1(P1
k,EndE )

and

h0(P1
k,EndF ◦)− h0(P1

k,EndF ) = h1(P1
k,EndF ).

We focus on the case of E , as the case of F is completely analogous. By Riemann Roch, since
the degrees and ranks of E and E ◦ are the same, we find

h0(P1
k,EndE ◦)− h0(P1

k,EndE ) = h1(P1
k,EndE )− h1(P1

k,EndE ◦).

Because E ◦ is balanced, we find h1(P1
k,EndE ◦) = 0.

To complete the proof, it only remains to show (h0(P1
k,H

◦)− h0(P1
k,H )) agrees with

h1(P1
k,H ). Similarly to our computation above for h0(P1

k,EndE ◦)− h0(P1
k,EndE ), we find

h0(P1
k,H

◦)− h0(P1
k,H ) = h1(P1

k,H )− h1(P1
k,H

◦)

by Riemann Roch. To complete the proof, we only need verify h1(P1
k,H

◦) = 0. Indeed, by writing
out E ◦ and F ◦ as sums of line bundles on P1

k, and using the relation between detE and detF ,
the balancedness of E ◦ and F ◦ implies h1(P1

k,H
◦) = 0. �
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With the above lemma in hand, we may note that the codimension of the vector bun-
dles (E ,F•) in the stack of vector bundles is H1(P1,End(E )) +H1(P1,End(F )) (the latter
interpreted as 0 when d = 3).

Remark 9.3. We will think of a Casnati–Ekedahl stratum as having the ‘expected codimension’
when its codimension in the Hurwitz stack agrees with the corresponding codimension of (E ,F•)
in the stack of tuples of vector bundles. Using Lemma 9.2 and its proof, a stratum is of the
expected codimension precisely when H1(P1,H (E ,F•)) = 0.

The next lemma bounds the codimension of strata not having the expected codimension.

Lemma 9.4. Suppose 3 ≤ d ≤ 5 and M := M (E ,F•) is a Casnati–Ekedahl stratum containing
a curve C → P1 which does not factor through some intermediate cover C ′ → P1 of positive
degree. If H1(P1,H (E ,F•)) �= 0 or H0(P1,E ∨) �= 0, codimHurd,g,k

M ≥ (g + d− 1)/d− 4d−3.

Proof. If H1(P1,H (E ,F•)) �= 0, then we have codimHurd,g,k
M ≥ (g + d− 1)/d− 4d−3 by

[CL24, Lemma 5.8] when d = 4, [CL24, Lemma 5.12] when d = 5, and [Mir85, (6.2)] for
the cases that d = 3 (see also [BV12, Proposition 2.2]). It therefore remains to show that
if H1(P1,H (E ,F•)) = 0 but H0(P1,E ∨) �= 0, we will also have codimHurd,g,k

M ≥ (g + d−
1)/d− 4d−3. In the case H1(P1,H (E ,F•)) = 0, the codimension of M in Hurd,g,k is simply
h1(P1,End(E )) + h1(P1,End(F•)), by Lemma 9.2. We will only have H0(P1,E ∨) �= 0 when
some summand of E is non-positive. Recall from Lemma 6.3 deg E = g + d− 1. Therefore, if
E =

⊕d−1
i=1 O(ei) with e1 ≤ 0, then

∑d−1
i=2 (ei − e1) ≥ g + d− 1 and, hence,

h1(P1,End(E )) ≥ h1

(
P1,⊕

d−1⊕
i=2

OP1(e1 − ei)
)

≥ g + d− 1− (d− 2)

= g + 1

>
g + d− 1

d
− 4d−3. �

9.5 Weeding out covers with smaller Galois groups
In the next few results, culminating in Lemma 9.8, we establish bounds on the codimension of
degree d covers of P1 whose Galois closure has Galois group G strictly contained in Sd.

For a group G and a base S, with #G invertible on S, we use HurG,S to denote the stack
whose T -points are given by (T,X, h : X → T, f : X → P1

T ) where X is a scheme, h is a smooth
proper relative curve, f is a finite locally free map of degree #G so that G acts on X over P1

T ,
together with an isomorphism G � Aut f . Note that HurG,S is an algebraic stack with an étale
map to the configuration space of points in P1 given by taking the branch divisor, as follows
from [Wew98, Theorem 4], (the key point of the construction being the algebraicity criterion in
[Wew98, Theorem 1.3.3]). Upon specifying an embedding G ⊂ Sd for some d, there is a natural
map HurG,S → Hurd,S sending a given cover (T,X, h : X → T, f : X → P1

T ) to an associated
cover

∐
h∈G\Sd

(hX)/Sd−1 → P1
T where we take the disjoint union over cosets of G\Sd and then

quotienting the resulting Sd cover by Sd−1. The image of this map is a substack of Hurd,S

whose geometric points parameterize degree d covers whose Galois group is G with the specified
embedding G ⊂ Sd. We note that we could have alternatively constructed HurG,S directly, as
mentioned in Remark 5.6, without appealing to [Wew98].
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Lemma 9.6. Suppose G ⊂ Sd is a subgroup not containing a transposition. Then the closure of
the image (HurG,S → Hurd,S) ∩Hurd,g,S has dimension at most g − 1 + d.

Proof. By [Wew98, Theorem 4], if the image (HurG,S → Hurd,S) ∩Hurd,g,S parameterizes curves
with n branch points, it has dimension n. We therefore use n for the number of branch points.
It is possible this image has multiple components, but because the Galois closure of a genus g
degree d cover of P1

k is a curve of bounded genus, there can only be finitely many components.
We now fix one of these components and wish to show n ≤ g − 1 + d.

Let X → P1 be a degree d genus g cover corresponding to a point on this component with n
branch points. If G ⊂ Sd has no transpositions, the inertia at any point of P1, which is tame by
assumption, does not act as a transposition. Therefore, the cover is not simply branched over that
point, i.e. the ramification partition is not (1d) or (2, 1d−2). Hence, the fiber over that point has
total ramification degree at least 2. It follows from Riemann–Hurwitz that 2g − 2 ≥ −2d+ 2n
so n ≤ g − 1 + d. �
Corollary 9.7. Suppose 2 ≤ d ≤ 5 and G ⊂ Sd acts transitively on {1, . . . , d} with G not
isomorphic to D4. Then, the image (HurG,S → Hurd,S) ∩Hurd,g,S has dimension at most
g − 1 + d.

Proof. If 2 ≤ d ≤ 5, we claim the only proper conjugacy class of subgroups G ⊂ Sd acting tran-
sitively on {1, . . . , d} and containing a transposition is D4 ⊂ S4, the dihedral group of order 8.
Indeed, this claim follows by a straightforward check of all subgroups of Sd. The corollary then
follows from Lemma 9.6 �

The next lemma shows that in any Casnati–Ekedahl stratum having the expected codi-
mension (see Remark 9.3) the locus of non-Sd covers has high codimension in the Hurwitz
stack.

Lemma 9.8. Suppose 3 ≤ d ≤ 5 and M (E ,F•) is a Casnati–Ekedahl stratum with
H1(P1,H (E ,F•)) = 0. Suppose further that [UM (E ,F•)/AutM (E ,F•)] contains some geomet-

rically connected cover X → P1
k whose Galois closure is not Sd. Then the codimension of this

locus of covers in Hurd,g,k is at least (g + 3)/2.

Note that the space of D4 covers is typically of codimension 2 in Hurd,g,k, but these covers
will typically lie in a Casnati–Ekedahl stratum with H1(P1,H (E ,F•)) �= 0.

Proof. The most difficult case is when d = 4 and the Galois closure is D4, the dihedral group of
order 8, this was verified in [CL24, Lemma 5.5]. Note here we are using that whenever the Galois
group of a degree 4 cover is D4, C → P1 necessarily factors through an intermediate degree 2
cover.

It remains to verify that if we have a smooth geometrically connected curve C → P1 whose
Galois closure is not D4, the codimension of such curves is at least (g + 3)/2. The geometric
connectedness condition guarantees that the action of G on {1, . . . , d} is transitive. Note that
the dimension of such a stratum is at most g − 1 + d by Corollary 9.7, and hence also codimension
g − 1 + d in the (2g + 2d− 2)-dimensional stack Hurd,g,k. The lemma follows because g − 1 + d >
(g + 3)/2. �

9.9 Weeding out the singular sections
Our next goal is to show that for any given Casnati–Ekedahl stratum, the sections defining
smooth curves can be expressed in terms of a fairly simple motivic Euler product, away from
high codimension. This is, in some sense, the key input to our approach, and draws heavily on the
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work of [BH21] while also making use of our computations of classes associated to sections with
given ramification profiles over the dual numbers from § 8. It will turn out that this codimension
is the dominant term, in the sense that for large g, the codimension bound we obtain on these
singular sections agrees with the codimension bound we find in our main result Theorem 10.5.
At this point, it may be useful to recall notation for motivic Euler products from § 2.10.

Proposition 9.10. Let 3 ≤ d ≤ 5, and let R be an allowable collection of ramification pro-
files of degree d. Suppose s ≥ 0 and M := M (E ,F•) is a Casnati–Ekedahl stratum for which
H (E ,F•)(−s) is globally generated and each entry of �aE is positive. Then,

{UR
M } ≡ Ldim UR

M

∏
x∈P1

k

(
1−

(
1− (

∑
R∈R L−r(R)){AutM |D}
Lh0(D,H (E |D,F•|D))

)
t

)∣∣∣∣
t=1

(9.2)

modulo codimension �(s+ 1)/2� in
̂̃
K0(Spacesk).

In the above product, the restriction to D is understood to take place at any subscheme D ⊂
P1

k, noting that h0(D,H (E |D,F•|D)) and {AutM |D} are independent of the choice of such D.

Proof. We first explain the final statement that h0(D,H (E |D,F•|D)) and {AutM |D} are inde-
pendent of the choice of D. Indeed, h0(D,H (E |D,F•|D)) is independent of choice of D ⊂ P1

k

because it only depends on the rank of H (E ,F•). Similarly, {AutM |D} only depends on d and
the ranks of the sheaves E ,F•, and not the specific choice of D ⊂ P1

k. We therefore focus on
proving (9.2).

We will deduce (9.2) by applying [BH21, Theorem 9.3.1] with the local condition determined
by the ramification profile R, as determined in Theorem 8.9, as we next explain. In particular, in
applying [BH21, Theorem 9.3.1], we will take r = 1,m = �(s+ 1)/2�,M = 0 in their notation.

In some more detail, we take (f : X → S,F ,L, r,M) in [BH21, Theorem 9.3.1] to be
(P1

k → Spec k,H (E ,F•),OP1(1), 1, 0) and the constructible Taylor conditions T of [BH21,
Theorem 9.3.1] which we will define in the next paragraph.

For F a locally free sheaf on some scheme X, we use P1(F ) to denote the first-order sheaf
of principal parts. This is a locally free sheaf on X whose fiber over x ∈ X can be identified
with H0(X,F ⊗ OX,x/m

2
X,x). Thus, in the case X = P1

k is a curve and D is the copy of the
dual numbers whose closed point maps to x, the fiber of P1(F ) at x is H0(P1

k,F |D). For a
definition and standard background on bundles of principal parts, see [EH16, § 7.2]. Let T denote
the constructible subset of Spec(Sym• P1(H (E ,F•)))∨ defined as follows: upon identifying the
fiber of Spec(Sym• P1(H (E ,F•)))∨ at x with H0(P1

k,H (E ,F•)|D), we take the subset given by
those sections η ∈ H0(P1

k,H (E ,F•)|D) so that Ψd(η) defines a curvilinear scheme over D whose
ramification profile lies inR. Let T c denote the complement of T in Spec(Sym• P1(H (E ,F•)))∨.

In order to apply [BH21, Theorem 9.3.1], we need to verify the above conditions are indeed
admissible in the sense of [BH21, Definition 9.2.6]. Indeed, to see this, we need to check the Taylor
conditions imposed by being smooth with ramification profile lying in R are the complement of
a codimension 2 = 1 + dim P1

k subset of the fiber of the first sheaf of principal parts associated
to H (E ,F•) over a field valued point of P1

k. First, one can verify directly (for example, by
using an incidence correspondence) that those sections η for which Ψd(η) are not curvilinear
form a locus of codimension at least 2 in Spec(Sym•H0(D,H (E |D,F•|D))∨). (Note that non-
curvilinear sections also include sections with Ψd(η) of positive dimension.) It remains to show
those curvilinear sections having ramification profile not lying in R have codimension at least 2.
This follows from knowledge of their class in the Grothendieck ring Theorem 8.9, which shows,
in particular, the codimension of those sections having ramification profile R is r(R). Since the
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only ramification profiles with r(R) ≤ 1 are (1d) and (2, 1d−2), the claim follows from the first
constraint in the definition of allowable, Definition 7.2.

We next use [BH21, Ex. 5.4.6] to determine the value of m appearing in [BH21,
Theorem 9.3.1]. In place of the value D used in [BH21, Ex. 5.4.6], we use −s, since we are
reserving D for the dual numbers. Otherwise following the notation of [BH21, Ex. 5.4.6], since
O(1) = L is very ample and L⊗0 � OP1 globally generated, we may take A = 1 and B = 0. It fol-
lows that (in their notation except that we use δ in place of d) there is a surjection O(s)N → F ,
and so H0(X,F ⊗ O(δ)) (so, again, we are taking F to be H (E ,F•)) is 1-infinitesimally
m-generating whenever δ ≥ −s+ 0 + 1(1 + (m− 1) · (1 + 1)) = −s+ 1 + 2(m− 1). Therefore,
taking δ = 0, we find H0(X,F ) is 1-infinitesimally m-generating whenever s ≥ 1 + 2(m− 1) =
2m− 1. Therefore, we may take m = �(s+ 1)/2�.

Using that rkP1(H (E ,F•)) = h0(D,H (E |D,F•|D)), we obtain from [BH21, Theorem 9.3.1]
the congruence

{UR
M } ≡ Ldim UR

M

∏
x∈P1

k

(
1−

( {T c}x
LrkP1(H (E ,F•))

)
t

)∣∣∣∣
t=1

(9.3)

≡ Ldim UR
M

∏
x∈P1

k

(
1−

(
1− {T}x

Lh0(D,H (E |D,F•|D))

)
t

)∣∣∣∣
t=1

. (9.4)

In order to obtain (9.2), we need to identify (9.4) and the right-hand side of (9.2). By work-
ing Zariski locally on P1 so as to trivialize the bundle H (E ,F•), it is enough to identify the
fiber of T over x ∈ P1 with the class

∑
R∈R L−r(R){AutM |D}. Indeed, this identification holds

because we showed that the class of the subschemes of Spec(Sym•H0(D,H (E |D,F•|D))∨)
having ramification profile R is L−r(R){AutM |D} when we computed the class of YR,d in
Theorem 8.9. �

In order to get a good bound on the codimension up to which Proposition 9.10 holds, we
need to show that the value of s defined there is high whenever the codimension of the stratum
is low. We now establish this.

Lemma 9.11. For any Casnati–Ekedahl stratum M (E ,F•) so that the minimum degree of a
line bundle summand of H (E ,F•) is s, and H1(P1,H (E ,F•)) = 0, we have codimHurd,g,k

M +
(s+ 1)/2 ≥ (g + cd)/κd, where c3 = 0, c4 = −2, c5 = −23, κ3 = 4, κ4 = 12, and κ5 = 40.

Proof. We can verify this in the case that d = 3 directly. Write E = O(s)⊕ O(g + 2− s)
with s ≤ g + 2− s, so that codimHur3,g,k

M = h1(P1,End(E )) ≥ (g + 2)− 2s− 1. Then,
codimHur3,g,k

M + (s+ 1)/2 ≥ (g + 2)− 2s− 1 + (s+ 1)/2 = (2g + 3− 3s)/2. This is minimized
when s is maximized. Since we must have s ≤ (g + 2)/2, when s = (g + 2)/2, we find (2g + 3−
3s)/2 = g/4.

We now concentrate on the cases d = 4 and d = 5. First, in the case that E and F are
balanced, so that codimHurd,g,k

M = 0, we claim that (s+ 1)/2 ≥ (g + cd)/κd.
When d = 4, and E and F are balanced, the minimum line bundle summand of E has

degree at least (g + 1)/3 while the maximum line bundle summand of F has degree at most
(g + 4)/2 using Lemma 6.3 and the isomorphism det E � det F from Theorem 3.14. Hence,
the minimum line bundle summand of H has degree s ≥ 2(g + 1)/3− (g + 4)/2 = (g − 8)/6.
Therefore, (s+ 1)/2 ≥ (g − 2)/12.

When d = 5, and E and F are balanced, the minimum line bundle summand of E has degree
at least (g + 1)/4 by Lemma 6.3 and the minimum line bundle summand of F has degree at
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least (2(g + 4)− 4)/5 as det E ⊗2 = det F by Theorem 3.16. Therefore, the minimum degree of a
line bundle summand of H is s ≥ 2((2(g + 4)− 4)/5)− (g + 4) + (g + 1)/4 = (g − 43)/20 and
(s+ 1)/2 ≥ (g − 23)/40.

In the case d = 4 or 5, it remains to see that codimHurd,g,k
M + (s+ 1)/2 ≥ (g + cd)/κd

remains true for non-general strata, supposing still that H1(P1,H (E ,F )) = 0. In this case,
by Lemma 9.2, the codimension of M (E ,F ) is h1(P1,End(E )) + h1(P1,End(F )). This codi-
mension is also the codimension of the point [(E ,F )] in the moduli stack of vector bundles
Vectrk E

P1
k
×Vectrk F

P1
k

, see [Lar21, (3.1)]. Hence, we wish to verify

codimVectrk E
P1
k

×Vectrk F
P1
k

[(E ,F )] +
s+ 1

2
≥ g + cd

κd
,

granting that we have established this in the case that E ,F are both balanced, and so correspond
to the generic point of Vectrk E

P1
k
×Vectrk F

P1
k

, as explained in § 6.9. Following the discussion from

§ 6.9 where we describe when one vector bundle on P1
k, viewed as a point in the moduli stack of

vector bundles lies in the closure of another, any (E ,F ) may be connected to a balanced pair
by a sequence of (Ei,Fi), each contained in the closure of the next. Further, we can assume that
for any two adjacent indices i and i+ 1, one of the following two cases occurs:

(1) Ei � Ei+1 and Fi differs from Fi+1 only in two line bundles summands by a single degree;
(2) Fi � Fi+1 and Ei differs from Ei+1 only in two line bundle summands by a single degree.

In order to show the claimed inequality holds for arbitrary strata, it suffices to show it remains
true under such specializations. Because each such stratum has codimension at least 1 in the
next, it suffices to show the value of s under such specializations decreases by at most 2. When
d = 4 this is the case because H (E ,F ) = Sym2 E ⊗F∨ and increasing a summand of F by
1 only decreases all summands of H (E ,F ) by at most 1, while decreasing a summand of
E decreases all summands of H (E ,F ) by at most 2. Similarly, when d = 5, so H (E ,F ) =
∧2F ⊗ E ⊗ det E ∨, and decreasing a summand of E by 1 while maintaining detE decreases all
summands of H (E ,F ) by at most 1, while decreasing a summand of F by 1 decreases all
summands of H (E ,F ) by at most 2. �

9.12 Putting the codimension bounds together
We now merge the bounds on codimension of various bad loci established earlier in this section
to obtain the following result.

Proposition 9.13. For 3 ≤ d ≤ 5, k a field of characteristic not dividing d!, R an allowable
collection of ramification profiles of degree d, let cd, κd be as in Lemma 9.11. Define nd,g :=
χ(H (E ,F•)). Then, {HurRd,g,k} is equal to∑

Casnati–Ekedahl strata M

1
{AutM }L

nd,g
∏

x∈P1
k

(
∑

R∈R L−r(R)){AutM |D}
Lh0(D,H (E |D,F•|D))

(9.5)

modulo codimension rd,g := min((g + cd)/κd, (g + d− 1)/d− 4d−3) in
̂̃
K0(Spacesk).

Proof. First, by Proposition 7.10, it suffices to show∑
Casnati–Ekedahl strata M

{UR,Sd
M }

{AutM } (9.6)

agrees with (9.5).
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We next check (9.6) agrees with ∑
nonempty Casnati–Ekedahl strata M

{UR
M }

{AutM } (9.7)

modulo codimension min((g + cd)/κd, (g + d− 1)/d− 4d−3). Since we are working modulo
codimension (g + d− 1)/d− 4d−3, we can assume M (E ,F•) has H1(P1,H (E ,F•)) = 0 and
H0(P1,E ∨) = 0, by Lemma 9.4. Note that the condition H0(P1,E ∨) = 0 ensures all curves
defined by sections of UR

M are geometrically connected, by Theorem 3.17. Since we have
now restricted ourselves to work with strata for which H1(P1,H (E ,F•)) = 0, it follows from
Lemma 9.11, with notation for s as in Lemma 9.11, that codimM (E ,F•) + (s+ 1)/2 ≥
(g + cd)/κd. We also obtain from Lemma 9.8 that the smooth geometrically connected curves in
UR

M which do not lie in Hurd,g,k (because they do not have Galois closure Sd) have codimension
at least (g + 3)/2 in Hurd,g,k. Hence, as we are working modulo codimension (g + 3)/2, we can
freely ignore these, and so (9.6) agrees with (9.7).

We next claim (9.7) agrees with∑
nonempty Casnati–Ekedahl strata M

1
{AutM }L

dim UR
M

∏
x∈P1

k

(
∑

R∈R L−r(R)){AutM |D}
Lh0(D,H (E |D,F•|D))

. (9.8)

Indeed, this follows from Proposition 9.10 using the bounds on s from Lemma 9.11. Next, we
claim that for any M (E ,F•) as above, dim UR

M is independent of M whenever codimHurd,g,k
M ≤

min((g + cd)/κd, (g + d− 1)/d− 4d−3). Indeed, in this case, because H1(P1,H (E ,F•)) = 0,
we find dim UR

M = h0(P1,H (E ,F•)) = χ(H (E ,F•)) and indeed this Euler characteristic only
depends on the degrees and ranks of E and F . For notational convenience, we let nd,g denote
this dimension χ(H (E ,F•)). Then, up to codimension min((g + cd)/κd, (g + d− 1)/d− 4d−3),

in ̂̃
K0(Spacesk), we can rewrite (9.8) as (9.5).
To conclude the proof, we wish to remove the word ‘nonempty’ in (9.8). That is, there may

be certain strata which contain no Sd covers, and we wish to show they do not contribute to (9.5)
in low codimension. The summand in (9.5) associated to such an empty stratum M (E ,F•) has
codimension equal to the codimension of (E ,F•), considered as a point in the moduli stack of
tuples of vector bundles on P1. Using Corollary 9.7, this is only potentially an issue in the case
d = 4, where we must deal with strata M (E ,F•) so that the generic members of
H0(P1,H (E ,F•)) define D4 covers. In [CL24, Lemma 5.5], it is shown that such strata
are either codimension at least (g + 3)/2 or else have H1(P1,H (E ,F•)) �= 0. In the latter
case, by [CL24, Lemma 5.4], such strata have codimension at least (g + 3)/4− 4 in the stack of
vector bundles on P1. In either case, we may ignore these contributions up to our codimension
bounds, and so (9.8) agrees with (9.5). �

10. Proving the main result

In this section, we prove our main result Theorem 10.5 by massaging the formula for {Hurd,g,k}
given in Proposition 9.13. We then deduce some corollaries.

In order to prove our main result we will need one of the simplest cases of the ‘motivic
Tamagawa number conjecture’ [BD07, Conjecture 3.4]. To start this Tamagawa number formula,
we employ the following notation.

Notation 10.1. For G a vector bundle on a scheme X, let AutSL,X
G denote the SL bundle over X

associated to G (i.e. the kernel of the determinant map of group schemes AutG → Gm). We use
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AutSL
G as notation for the Weil restriction ResX/ Spec k(AutSL,X

G ). For (E ,F•) resolution data, we

use AutSL(F•) :=
∏�(d−2)/2�

i=1 AutSL(Fi).

Lemma 10.2. For any positive integer n,∑
rank-n vector bundles V on P1

det V =O
P1

1
{AutSL

V }
∏

x∈P1
k

{AutSL
V |D}

Ldim AutSL
V |D

= L− dim SLn ∈ ̂̃
K0(Spacesk).

Proof. We will deduce this from the motivic Tamagawa number conjecture for SLn over P1 proven
in [BD07, § 7]. Let BunG,P1 denote the moduli stack of G-bundles on P1. It is shown in [BD07,

§ 7], and also via a different argument in [BD07, § 6], that in ̂̃
K0(Spacesk) (and even without

inverting universally bijective morphisms) we have {BunSLn,P1} = L− dim SLn
∏n

i=2 Z(P1,L−i),
where Z(P1, t) :=

∑∞
i=0{Symi

P1}ti = (1/(1− t))(1/(1− Lt)) is the motivic Zeta function of P1.

Note that Z(P1,L−i) = (1/(1− L−i+1))(1/(1− L−i)) is invertible in ̂̃
K0(Spacesk), with

inverse equal to (1− L−i+1)(1− L−i). To complete the proof, it is therefore enough to
demonstrate the two equalities

{BunSLn,P1} =
∑

rank-n vector bundles V on P1

det V =O
P1

1
{AutSL

V }
(10.1)

( n∏
i=2

Z(P1,L−i)
)−1

=
∏

x∈P1
k

{AutSL
V |D}

Ldim AutSL
V |D

, (10.2)

where we note that the right-hand side of (10.2) turns out to be independent of V .
We first verify (10.1). Taking cohomology on P1 associated to exact sequence SLn → GLn →

Gm defining SLn shows that SLn torsors over P1 are in bijection with GLn torsors of trivial
determinant. We can then stratify BunSLn,P1 =

∐
BAutSL

V as a disjoint union of locally closed
substacks corresponding to residual gerbes, as is explained for general G in place of SLn (see
[BD07, p. 636]). (Much of this argument can be verified more simply and directly in the case G =
SLn.) Noting that AutSL

V is special with invertible class in the Grothendieck ring by Lemma 7.12,
we find {B(AutSL

V )} = 1/{AutSL
V } and (10.1) follows.

It remains only to prove (10.2). First, note that V is trivial Zariski locally and, hence,
trivial over D, so AutSL

V |D is simply ResD/ Spec k(SLn) which is an extension of SLn by Gdim SLn
a .

Therefore, for any vector bundle V , we may re-express

{AutSL
V |D}

Ldim AutSL
V |D

=
{SLn}

Ldim SLn
= {SLn}L− dim SLn =

( n∏
i=2

(Li − 1)
)

L− dim SLn =
n∏

i=2

(1− L−i).

Using multiplicativity of Euler products (Lemma 2.14),∏
x∈P1

k

{AutSL
V |D}

Ldim AutSL
V |D

=
∏

x∈P1
k

n∏
i=2

(1− L−i) =
n∏

i=2

∏
x∈P1

k

(1− L−i).

Hence, to prove (10.2), we only need check Z(P1,L−i)−1 =
∏

x∈P1
k
(1− L−i) for 2 ≤ i ≤ n.

The right-hand side is, by definition,
∏

x∈P1
k
(1− L−it)|t=1. By [Bil17, § 3.8, Property 4], we

have
∏

x∈P1
k
(1− L−it)|t=1 =

∏
x∈P1

k
(1− t)|t=L−i . (As a word of warning, it is important that

the substitution we made here was via replacing t by its product with a power of L, see
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[BH21, Remarks 6.5.2 and 6.5.3].) Finally, by [BH21, Ex. 6.1.12] and multiplicativity of Euler
products [Bil17, Proposition 3.9.2.4],

∏
x∈P1

k
(1− t)|t=L−i = Z(P1,L−i)−1. �

In fact, we will need a slight generalization of the above formula from Lemma 10.2, where
we replace bundles of degree 0 with bundles of arbitrary fixed degree.

Lemma 10.3. For any positive integer n, and any fixed integer δ,∑
rank-n vector bundles V on P1

deg V =δ

1
{AutSL

V }
∏

x∈P1
k

{AutSL
V |D}

Ldim AutSL
V |D

= L− dim SLn ∈ ̂̃
K0(Spacesk).

Proof. The case that δ = 0 was precisely covered in Lemma 10.2. Therefore, it remains to show
that the left-hand side of the statement of the lemma is independent of δ. The left hand side
is unchanged upon replacing δ by δ ± n because tensoring with the line bundle OP1

k
(1) defines

a bijection from degree δ vector bundles of rank n to degree δ + n vector bundles of rank n,
which preserves automorphism groups. Therefore, it suffices to show that the left-hand side is
independent of which congruence class δ lies in modn.

Next, note that one can express

Ldim PGLn ·
∑

rank-n vector bundles V on P1

deg V =δ

1
{AutSL

V }
∏

x∈P1
k

{AutSL
V |D}

Ldim AutSL
V |D

,

as fδ(L), for fδ a rational function. Hence, for δ, δ′ two distinct residue classes modn, it is
enough to show fδ(q) = fδ′(q) for infinitely many integers q, as then the two rational functions
must agree. The reason for choosing the above expression is that

∑n
δ=1 fδ(q) can also be identified

with the Tamagawa number of PGLn over the function field P1
Fq

. Here we are using that if one
starts with a vector bundle V on P1

Fq
, # Aut PV = (1/(q − 1)) Aut V , and the same expression

calculates the number of automorphisms of V with trivial determinant.
We now use the above description in terms of Tamagawa numbers to show fδ(q) = fδ′(q) for

1 ≤ δ ≤ δ′ ≤ n. For x ∈ P1
Fq

a closed point, let Ôx,P1
Fq

denote the complete local ring at x. We use

K(P1
Fq

) to denote the function field of P1
Fq

, and A :=
∏

v∈P1
Fq

closed points(K(P1
Fq

)v, Ôv) to denote

the ring of adeles for this function field. Note that the Tamagawa number can be expressed as
the Tamagawa measure of PGLn(K(P1

Fq
))\PGLn(A).

There is a projection map

α : PGLn(K(P1
Fq

))\PGLn(A)→ PGLn(K(P1
Fq

))\PGLn(A)/
∏

places x∈P1
Fq

PGLn(Ôx,P1
Fq

). (10.3)

We claim one can identify the target with the set of isomorphism classes of PGLn bundles on
P1

Fq
, and moreover, if X is a PGLn bundle, the Tamagawa measure satisfies

μTam(α−1([X])) =
μTam

(∏
places x∈P1

Fq
PGLn(Ôx,P1

Fq
)
)

# AutX
. (10.4)

Our claim essentially follows from [GL19, Proposition 1.3.2.11], except the statement there
assumes the group G is simply connected, which is not the case for PGLn. However, the only
place in the proof (see the proof of [GL19, Proposition 1.3.2.10]) that the simply connected
hypothesis was used was to show there is some dense open of P1

Fq
on which any PGLn bundle

is trivial. We can instead verify this directly as follows. Note first that the Brauer group of P1
Fq

1836

https://doi.org/10.1112/S0010437X24007206 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X24007206


Low-degree Hurwitz stacks in the Grothendieck ring

is trivial [Gro68, Remarques 2.5(b)]. Hence, any PGLn bundle on P1
Fq

is the projectivization of
a GLn bundle. Since any GLn bundle is Zariski locally trivial, the same holds for any PGLn

bundle on P1
Fq

.
There is natural map π : PGLn(K(P1

Fq
))\PGLn(A)→ Z/nZ which factors through the dou-

ble quotient map (10.3) parameterizing projective bundles on P1, and sends a projective bundle
to its degree modn. Note that the degree of the projectivization of a vector bundle is not well
defined as an integer, but it is well defined modn. In this setup, we obtain μTam(π−1(δ)) = fδ(q),
where μTam denotes the right-invariant Tamagawa measure, by summing (10.4) over all bundles
of degree δ mod n.

Since the Tamagawa measure is translation invariant, we can right-translate by any element
of PGLn(A) in π−1(δ′ − δ) and this sends π−1(δ) to π−1(δ′). Hence, the Tamagawa measures of
π−1(δ) and π−1(δ′) agree, so fδ(q) = fδ′(q), as desired. �

For our main theorem, we will also need the following elementary dimension comparison.

Lemma 10.4. For 3 ≤ d ≤ 5 and nd,g as in Proposition 9.13, nd,g − dim SLrk E −∑�d−2�/2
i=1 dim SLrk Fi

= dim Hurd,g,k + 1.

Proof. Indeed, this can be checked separately in the cases d = 3, 4, and 5.
We now check the most difficult case that d = 5, leaving the other cases to the reader. In the

case d = 5, one computes

nd,g = χ(∧2F ⊗ E ⊗ det E ∨)

= rk(∧2F ⊗ E ⊗ det E ∨) + deg∧2F ⊗ E ⊗ det E ∨

=
(

5
2

)
· 4 + 16 deg F − 30 deg E = 40 + 32 deg E − 30 deg E

= 40 + 2 deg E

= 40 + 2g + 2d− 2.

Furthermore, still in the d = 5 case, dim SLrk E = 15 and dim SLrk F = 24. Therefore,

nd,g − dim SLrk E − dim SLrk F = 40 + 2g + 2d− 2− 15− 24

= (2g + 2d− 2) + 1

= dim Hurd,g,k + 1

as claimed. �

We are finally prepared to prove our main theorem. For the statement of our main
theorem, recall we defined rd,g = min((g + cd)/κd, (g + d− 1)/d− 4d−3) in Proposition 9.13, with
c3 = 0, c4 = −2, and c5 = −23. Note that for g � 0, rd,g is more than g/κd − 1.

Theorem 10.5. Let 2 ≤ d ≤ 5, k a field of characteristic not dividing d!, R an allowable
collection of ramification profiles of degree d. Then,

{HurRd,g,k} ≡
Ldim Hurd,g,k

1− L−1

( ∏
x∈P1

k

( ∑
R∈R

L−r(R)

)
(1− L−1)

)
(10.5)
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modulo codimension rd,g in
̂̃
K0(Spacesk). In the case d = 2, the left-hand side and right-hand

side of (10.5) are actually equal in K0(Stacksk) (and not just equivalent in
̂̃
K0(Spacesk) modulo

terms of a certain dimension).

Proof. The proof of the d = 2 case is of a different nature and we defer it to the end of § 11. We
now concentrate on the case 3 ≤ d ≤ 5. By Proposition 9.13, our goal reduces to showing (9.5)
agrees with the right hand side of (10.5).

Recall our notation for nd,g from Proposition 9.13. First, we claim we can rewrite (9.5) as

1
L− 1

∑
E ,F•

1
{AutSL

E }
1

{AutSL
F•}

Lnd,g
∏

x∈P1
k

(
∑

R∈R L−r(R))(L− 1)L{AutSL
E |D}{AutSL

F•|D}
Lh0(D,H (E |D,F•|D))

, (10.6)

with the summation over E ,F• interpreted as follows: E ranges over all P1 bundles of rank d− 1
and degree g + d− 1; when d = 3, F• is interpreted as being empty (so all classes associated
to it are 1); when d = 4, F• = F has rank 2 and degree g + d− 1; when d = 5, F• = F has
rank 5 and degree 2(g + d− 1). To see this we proceed as follows. For M = M (E ,F•), using
the formula for AutP1/k

E ,F• from Lemma 4.4, we can rewrite

1
{AutM } = {ResP1

k/k(Gm)} 1

{AutP1/k
E }

1

{AutP1/k
F• }

=
1

L− 1
1

{AutSL
E }

1
{AutSL

F•}
, (10.7)

where we interpret {AutSL
F•} = 1 when d = 3. Similarly,

{AutM |D} = {ResD/k(Gm)}{AutSL
E |D}{AutSL

F•|D} = (L− 1)L{AutSL
E |D}{AutSL

F•|D}. (10.8)

Hence, using (10.7) and (10.8), we can rewrite (9.5) as (10.6).
We next make a sequence of simplifications of (10.6). Then, summing over the same pairs

(E ,F•) as in (10.6), we can rewrite it as

1
L− 1

(∑
E

1
{AutSL

E }

)(∑
F•

1
{AutSL

F•}

)
Lnd,g

·
∏

x∈P1
k

(
∑

R∈R L−r(R))(L− 1)L{AutSL
E |D}{AutSL

F•|D}
Lh0(D,H (E |D,F•|D))

, (10.9)

where the parenthesized sum of F• is interpreted as 1 in the case d = 3, in this line and in the
remainder of the proof.

Next, observe that 2 + dim AutSL
E |D + dim AutSL

F•|D = h0(D,H (E |D,F•|D)). Indeed, this can
be checked separately in the cases d = 3, 4, and 5. When d = 3, both sides equal 8, when d = 4,
both sides equal 24, and when d = 5, both sides equal 80. Therefore, we can rewrite (10.6) as

1
L− 1

(∑
E

1
{AutSL

E }

)(∑
F•

1
{AutSL

F•}

)
Lnd,g

·
∏

x∈P1
k

( ∑
R∈R

L−r(R)

)
(L− 1)L

L2

{AutSL
E |D}

Ldim AutSL
E |D

{AutSL
F•|D}

Ldim AutSL
F•|D

. (10.10)
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Using multiplicativity of Euler products, as proven in Lemma 2.14, this becomes

1
L− 1

(∑
E

1
{AutSL

E }

)(∑
F•

1
{AutSL

F•}

)
Lnd,g

( ∏
x∈P1

k

( ∑
R∈R

L−r(R)

)
(1− L−1)

)

·
( ∏

x∈P1
k

{AutSL
E |D}

Ldim AutSL
E |D

)
·
( ∏

x∈P1
k

{AutSL
F•|D}

Ldim AutSL
F•|D

)
. (10.11)

Then, by the Tamagawa number formula for SLn, and its slight generalization from
Lemma 10.3,

∑
E

1
{AutSL

E }
∏

x∈P1
k

{AutSL
E |D}

Ldim AutSL
E |D

= L−dim SLrk E , (10.12)

∑
F•

1
{AutSL

F•}
∏

x∈P1
k

{AutSL
F•|D}

Ldim AutSL
F•|D

= L−dim SLrk F• , (10.13)

where −dim SLrk F• is interpreted as 0 in the case d = 3. Again, in (10.12) and (10.13), the
bundles have degrees as described after (10.6). Therefore, (10.11) simplifies to

1
L− 1

Lnd,g−dim SLrk E−dim SLF•
∏

x∈P1
k

( ∑
R∈R

L−r(R)

)
(1− L−1). (10.14)

Hence, using Lemma 10.4, (10.15) simplifies to

1
L− 1

Ldim Hurd,g,k+1
∏

x∈P1
k

( ∑
R∈R

L−r(R)

)
(1− L−1), (10.15)

which equals the right-hand side of (10.5). �

Specializing Theorem 10.5 to the simply branched case gives the following corollary.

Corollary 10.6. For 2 ≤ d ≤ 5, and k a field of characteristic not dividing d!, in the case
R = {(1d), (2, 1d−2)} corresponding to simply branched curves, we have

{HurRd,g,k} ≡ Ldim Hurd,g,k(1− L−2)

in
̂̃
K0(Stacksk) modulo codimension rd,g if d �= 2, and in K0(Stacksk) when d = 2.

Note that in the case d = 2, this corollary is equivalent to the statement of Theorem 10.5
and is really proven in § 11.

Proof. Simply plug in R = {(1d), (2, 1d−2)} into Theorem 10.5. Then,
∑

R∈R L−r(R) = 1 + L−1

and so∏
x∈P1

k

(1− L−1)
( ∑

R∈R
L−r(R)

)
=

∏
x∈P1

k

(1− L−2)

=
∏

x∈P1
k

(1− L−2t)|t=1
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=
∏

x∈P1
k

(1− t)|t=L−2 by [Bil17, § 3.8, Property 4]

=
1

ZP1
k
(L−2)

by [BH21, Ex. 6.1.12]

= (1− L−1)(1− L−2).

Therefore, modulo codimension rd,g in ̂̃
K0(Spacesk) when d �= 2 (and in K0(Stacksk) when d = 2)

{HurRd,g,k} ≡
Ldim Hurd,g,k

(1− L−1)

∏
x∈P1

k

(1− L−1)
( ∑

R∈R
L−r(R)

)

=
Ldim Hurd,g,k

1− L−1
(1− L−1)(1− L−2)

= Ldim Hurd,g,k(1− L−2). �

When we allow the ramification profile to be arbitrary in Theorem 10.5 we obtain the fol-
lowing corollary counting all degree d Sd Galois covers of P1. In the cases d = 4 and d = 5, there
does not seem to be any obvious simplification of the motivic Euler product.

Corollary 10.7. For k a field of characteristic not dividing d!,

Hurd,g,k ≡

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ldim Hur2,g,k(1− L−2) if d = 2,
Ldim Hur3,g,k(1 + L−1)(1− L−3) if d = 3,
Ldim Hur4,g,k

(1− L−1)

∏
x∈P1

k

(1 + L−2 − L−3 − L−4) if d = 4,

Ldim Hur5,g,k

(1− L−1)

∏
x∈P1

k

(1 + L−2 − L−4 − L−5) if d = 5,

in
̂̃
K0(Stacksk) modulo codimension rd,g if d �= 2, and in K0(Stacksk) when d = 2.

Proof. The case d = 2 is already covered in Corollary 10.6, since Hur{(1
2),(2)}

2,g,k = Hur2,g,k. Taking

R = {(14), (2, 12), (3, 1), (22), (4)}
the d = 4 case follows from plugging R into Theorem 10.5 and using HurR4,g,k = Hur4,g,k.
Taking R = {(15), (2, 13), (22, 1), (3, 12), (3, 2), (4, 1), (5)} the d = 5 case follows from plugging
R into Theorem 10.5 and using HurR5,g,k = Hur5,g,k. Finally, let us check the d = 3 case. Here,
for R = {(13), (2, 1), (3)}, we have HurR3,g,k = Hur3,g,k. Thus, by Theorem 10.5, using
[Bil17, § 3.8, Property 4] and by [BH21, Ex. 6.1.12] as in the proof of Corollary 10.6,

{HurRd,g,k} ≡
Ldim Hurd,g,k

1− L−1

∏
x∈P1

k

(1− L−1)
( ∑

R∈R
L−r(R)

)

=
Ldim Hurd,g,k

1− L−1

∏
x∈P1

k

(1− L−1)(1 + L−1 + L−2)
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=
Ldim Hurd,g,k

1− L−1

∏
x∈P1

k

(1− L−3)

=
Ldim Hurd,g,k

1− L−1

1
ZP1

k
(L−3)

=
Ldim Hurd,g,k

1− L−1
(1− L−2)(1− L−3)

= Ldim Hurd,g,k(1 + L−1)(1− L−3),

where we work in ̂̃
K0(Stacksk) modulo codimension rd,g. �

11. Degree 2

Following the notation introduced in [AV04], let Asm(1, n) ⊂ Spec(Sym•H0(P1,O(n)∨)) denote
the open subscheme parameterizing those degree n forms on P1 whose associated closed
subscheme is reduced.

Lemma 11.1. For k a field with char k �= 2, there is an isomorphism of stacks Hur2,g,k �
[Asm(1, 2g + 2)/Gm], for an appropriate action of Gm on Asm(1, 2g + 2).

Remark 11.2. This can be deduced from the proofs of [AV04, Theorem 4.1, Corollary 4.7], though
there the authors work with a further quotient by the PGL2 action on the base P1. The Gm action
on Asm(1, n) in Lemma 11.1 is explicitly given by α · f(x) = α−2f(x), though we will not need
this in what follows.

Proof. First, we verify that Hur2,g,k is equivalent to the fibered category whose S-points param-
eterize pairs (L , i : L ⊗2 → OP1

S
), for L a degree-(−g − 1) invertible sheaf on P1

S , and i an
injective homomorphism of sheaves. Indeed, to connect this to our given definition of Hur2,g,k,
we follow [AV04, Remark 3.3 and Proposition 3.1]: given a cover ρ : H → P1

S , we have a nat-
ural action of μ2 on H over P1. This comes from the isomorphism μ2 � Z/2Z as we are
assuming char(k) �= 2. From this action, we obtain an isomorphism ρ∗OH � OP1

S
⊕L , for L

the subsheaf on which μ2 acts by (t, s) �→ t · s, i.e. L is the weight-1 eigenspace of μ2, and
OP1

S
is the weight-0 eigenspace. The description of L as the 1 eigenspace for the μ2 action

yields a map i : L ⊗L → O. In the other direction, given (L , i : L ⊗2 → OP1
S
), we can recover

H = SpecO
P1
S

(OP1
S
⊕L ). The given maps respect automorphisms over P1, as the only nontriv-

ial automorphism in both cases is given by the hyperelliptic involution. Hence, they define an
equivalence of algebraic stacks.

Next, consider the cover H̃ur2,g,k of Hur2,g,k given as the stackification of the fibered category
whose S points parameterize triples (L , φ : L � O(−g − 1), i : L ⊗2 → O), with i injective. Note
that H̃ur2,g,k → Hur2,g,k is indeed surjective because L � E ∨ is a degree-(−g − 1) line bundle
on P1 by Lemma 6.3. Observe that H̃ur2,g,k has a natural action of Gm acting by automorphisms
of L , so that Hurd,g,k = [H̃urd,g,k/Gm]. Said another way, quotienting by Gm forgets the data of
the isomorphism φ.

It remains to identify H̃ur2,g,k with Asm(1, 2g + 2). Indeed, this was done in the course of the
proof of [AV04, Theorem 4.1]. Briefly, given an S-point (L , φ, i), associate the map i ◦ (φ−1)⊗2 :
OP1

S
(−2g − 2)→ OP1

S
corresponding to a section of H0(P1

S ,O(2g + 2)). Conversely, given a
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section f ∈ H0(P1
S ,O(2g + 2)), associate the triple (O(−g − 1), id : O(−g − 1)→ O(−g − 1), f :

O(−g − 1)⊗2 → O). �

We are now ready to prove Theorem 10.5 in the case d = 2.

11.3 Proof of d = 2 case of Theorem 10.5
Note that the only allowable collection of ramification profiles is R = {(2), (1, 1)}. Since
[Hur2,g,k � Asm(1, 2g + 2)/Gm] by Lemma 11.1, and Gm is special, we have {Hur2,g,k}{Gm} =
Asm(1, 2g + 2). Since

{Gm}L
dim Hur2,g,k

1− L−1

( ∏
x∈P1

k

( ∑
R∈R

L−r(R)

)
(1− L−1)

)
=

L− 1
1− L−1

· L2g+2
∏

x∈P1
k

(1− L−2)

= L2g+3 1
ZP1

k
(L−2)

= L2g+3(1− L−1)(1− L−2),

(by [BH21, Ex. 6.1.12] and [Bil17, § 3.8, Property 4], as in the proof of Corollary 10.6) it suffices
to verify

Asm(1, 2g + 2) = L2g+3(1− L−1)(1− L−2).

Indeed, this follows from [VW15, Lemma 5.9(a)]. In a bit more detail, taking a = 2 in [VW15,
Lemma 5.9(a)], the expression K<2(t) there is the generating function for which the coefficient
of tn is the class of w1n in the notation of [VW15, (5.1)]. Here, w1a is the class of the space of
degree n reduced divisors on P1. Therefore, w1n = {[Asm(1, n)/Gm]}, and so we only need check
{w1n} = Ln − Ln−2. But, indeed, this is the coefficient of tn in the expansion of

ZP1(t)
ZP1(t2)

=
(1− t2L)(1− t2)
(1− tL)(1− t) = (1− t2L)(1 + t)

( ∞∑
i=0

(tL)i

)
.

Remark 11.4. The construction above used to compute the class of Hur2,g,k is admittedly fairly
ad hoc in the context of this paper. A similar construction, more in line with the themes of this
paper could be obtained by realizing a given hyperelliptic curve ρ : H → P1 as a subscheme of
P((ρ∗OH)∨). One can verify that P(ρ∗O∨

H) is fppf locally isomorphic to P(OP1 ⊕ OP1(g + 1)), and
use this to deduce that Hur2,g,k is the quotient of the smooth members of a certain linear series
on P

(
OP1 ⊕ OP1(g + 1)

)
by the automorphisms of P(OP1

k
⊕ OP1

k
(g + 1)) preserving the projection

to P1
k, and then use this description to compute {Hur2,g,k}, obtaining a formula similar to that

of Theorem 10.5. However, such a proof would only calculate the class in ̂̃
K0(Stacksk) modulo a

certain codimension, as opposed to the proof we give here, which actually calculates the class in
K0(Stacksk).
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Appendix A. A proof of a theorem of Ekedahl

Aaron Landesman and Federico Scavia

The main result of this appendix is a proof of the following Theorem of T. Ekedahl. We retain
the notation for the Grothendieck ring of stacks described in § 1.20.

Theorem A.1 (Ekedahl [Eke09b, Theorem 4.3]). Let k be a field. Then, for all integers n ≥ 1,
{BSn} = 1 in K0(Stacksk).

Unfortunately, Ekedahl passed away prior to publishing [Eke09b], and so the article was never
refereed. There are a number of typos and errors appearing in the proof of [Eke09b, Theorem 4.3].
The objective of this appendix is to point out the fixes necessary.

Let k be a field, let G be a finite group, and let V be a G-representation of dimension d ≥ 0
over k. If H is a subgroup of G, we denote by V H the subscheme of V fixed by H, and by VH

the locally closed subscheme parameterizing the locus whose stabilizer is exactly H. If there is
a point of V whose stabilizer is exactly H, we call H a stabilizer subgroup of G. The normalizer
NG(H) of H acts on V H and VH , and VH is an open subscheme of V H . By definition, a stabilizer
flag of length n is a sequence

f = ({e} =: H0 ⊂ H1 ⊂ · · · ⊂ Hn)

of subgroups of G such that, for all 0 ≤ i ≤ n− 1, Hi+1 is a stabilizer subgroup of the G-action
on V . We say that f is strict if Hi � Hi+1 for all i. We set nf := n, Hf := Hn, df := dimV Hf

and NG(f) := ∩0≤i≤nNG(Hi).

Remark A.2. Our definition of stabilizer flag differs from that used by Ekedahl [Eke09b, p. 10], as
he required that Hi+1 be a stabilizer subgroup of the action of ∩j≤iNG(Hi) on V Hi . In particular,
in our definition it is not necessarily true that Hf ⊂ NG(f).
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The conjugation action of G on itself induces a G-action on the collection of all stabilizer
flags. We say that two stabilizer flags are conjugate to each other if they belong to the same
orbit under this action.

Proposition A.3. Let K ⊂ G be the kernel of the G-action on V . We have

{BG}Ld = {[VK/G]} −
∑

f

(−1)nf {BNG(f)}Ldf , (A.1)

where f runs over a set of representatives of conjugacy classes of strict stabilizer flags of length
nf ≥ 1.

Proposition A.3 corrects [Eke09b, Theorem 3.4]. The formula there looks the same as ours
(up to signs), but it is wrong as it is claimed with a different definition of stabilizer flag. The
error there stems from the falsity of [Eke09b, Lemma 3.3(iv)], as illustrated by Example A.4
below.

We note that the proof of Proposition A.3 follows similar lines to that of [Eke09b,
Theorem 3.4]. In particular, it uses results from [Eke09b, Lemma 3.3(i), (ii), and (iii)] even
though [Eke09b, Lemma 3.3(iv)] is incorrect. It may be helpful for the reader to consult these
statements.

Example A.4. The result [Eke09b, Lemma 3.3(iv)] claims that VH = (V H)H , where V H is consid-
ered as an NG(H) representation. However, when G = S3 and H is the subgroup generated by
(12), and G acts as the three-dimensional permutation representation, then VH = {(a, a, b) :
a �= b}, while NG(H) = H and V H = {(a, a, b)}. Thus, here, when V H is considered as an
NG(H) = H representation, we have that H acts trivially and (V H)H = V H �= VH .

Since [Eke09b, Lemma 3.3(iv)] is implicitly used in the proof of [Eke09b, Theorem 3.4],
[Eke09b, Theorem 3.4] is also incorrect. To produce a counterexample to the statement of
[Eke09b, Theorem 3.4] (even after correcting the + sign appearing in the statement there to
the − sign of (A.1)), we can again take G = S3. Then, the only strict stabilizer flags in the
sense of [Eke09b, p. 10] (which are defined in a slightly different way than in this appendix)
up to conjugacy are {e}, {e} ⊂ S2, {e} ⊂ S3. In this case, with our knowledge that {BS3} = 1,
the formula of [Eke09b, Theorem 3.4] claims L3 = (L3 − L2) + (L2) + (L). Of course, what is
missing from this formula is that we should subtract off a term L coming from the sequence of
subgroups {e} ⊂ S2 ⊂ S3, which is a stabilizer flag in the sense of this appendix, but not in the
sense of [Eke09b, p. 10].

Proof of Proposition A.3. Let f be a strict stabilizer flag. We have

[V Hf /NG(f)]− [VHf
/NG(f)] =

[ ∐
H⊂G

g∈NG(f)/(NG(f)∩NG(H))

VgHg−1/NG(f)
]

where, on the right-hand side, H runs among a set of representatives of NG(f)-conjugacy classes
of subgroups of G acting on V and properly containing Hf .

For any fixed H ⊂ G, we have[ ∐
g∈NG(f)/(NG(f)∩NG(H))

VgHg−1/NG(f)
]

= [VH/NG(f) ∩NG(H)].

For any such H, construct a strict stabilizer flag f ′ by appending H at the end of f . Then

NG(f) ∩NG(H) = NG(f ′).
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We conclude

{[VHf
/NG(f)]} = {BNG(f)}Ldf −

∑
f ′
{[VHf ′/NG(f ′)]}, (A.2)

where f ′ runs over a set of representatives of conjugacy classes of strict stabilizer flags of length
nf + 1 and starting with f .

We now wish to prove by induction on m ≥ 1 that

{BG}Ld = {[VK/G]} −
∑

0<nf <m

(−1)nf {BNG(f)}Ldf − (−1)m
∑

nf=m

{[VHf
/NG(f)]}, (A.3)

where f runs among a set of representatives of conjugacy classes of strict stabilizer flags. When
m = 1, (A.3) coincides with (A.2) for f = (K). Assume now that (A.3) holds for some m > 1.
One obtains the formula for m+ 1, by starting from the formula for m and applying (A.2) to
every flag f of length m.

Since G is finite, there are only finitely many strict stabilizer flags. The conclusion follows
by choosing m to be larger than the length of every strict stabilizer flag. �

Having replaced [Eke09b, Theorem 3.4] by Proposition A.3, the proof of Theorem A.1 can
be completed as in [Eke09b]. From now on, let G = Sn be the group of permutations of Σ :=
{1, 2, . . . , n}, and let V be the n-dimensional permutation representation of Sn.

A flag is a pair (S,R), where S is a finite set, and R is a sequence R1 ⊂ R2 ⊂ · · · ⊂ Rn of
equivalence relations Ri ⊂ S × S on S. An isomorphism of flags (S′, R′)→ (S,R) is a bijection
S′ ∼−→ S sending R′

i to Ri for all i. We denote by NR(S) the automorphism group of (S,R).

Lemma A.5. Assume that G = Sn and that V is the standard n-dimensional representation
of Sn. Let f be a strict stabilizer flag, and denote by Hi the stabilizer subgroups appearing in f .
For every i, let Ri be the equivalence relation determined by the orbit partition of the Hi-action
on Σ, and let R be the flag on Σ given by the Ri.

(a) We have NSn(f) = NR(Σ).
(b) If NSn(f) = Sn, then either f = ({e}) or f = ({e} ⊂ Sn).
(c) Assume that {BSm} = 1 for all m < n and that NSn(f) �= Sn. Then {BNSn(f)} = 1.

Proof. (a) This follows from the fact that, for every i, a bijection σ of Σ respects Ri if and only
if it normalizes Hi.

(b) If NSn(f) = Sn, then for every i, Ri is respected by every bijection of Σ. It follows that
either Ri is the diagonal in Σ× Σ or Ri = Σ× Σ. Now part (b) follows from part (a).

(c) We may assume that {BNSn(f ′)} = 1 for all flags such that nf ′ < nf . By [Eke09b,
Proposition 4.2], NSn(f) is a direct product of wreath products N ′ � Sr := (N ′)r � Sr, where
N ′ is the normalizer of a flag of smaller length, and Sr acts by permutation of the r factors N ′.

In what follows, we use the symbol Symm for the stacky symmetric power as introduced in
[Eke09b, p. 5]. We also use the symbol � for wreath product. This was introduced and notated∫

in [Eke09b, p. 5], but we use � instead of
∫

in order to keep our notation consistent with the
rest of the paper.

Because, for G and H finite groups, B(G×H) � BG×BH, it suffices to show {B(N ′ �
Sr)} = 1. We have B(N ′ � Sr) � BN ′ �BSr � Symmr(BN ′), as explained in [Eke09b, p. 5], By
inductive assumption, {B(N ′ � Sr)} = σt

s({BN ′}) = σt
s(1) = 1. For the symbol σt

s, see [Eke09b,
Proposition 2.5]. �
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Proof of Theorem A.1. Let V be the n-dimensional permutation representation of Sn over k,
and let U := V{e} ⊂ V be the free locus of the Sn-action. By Proposition A.3,

{BSn}Ln = {U/Sn} −
∑

f

(−1)nf {BNSn(f)}Ldf ,

where f runs among conjugacy classes of strict stabilizer flags. By Lemma A.5(b), we may rewrite
this as

{BSn}(Ln − L) = {U/Sn} −
∑

f

(−1)nf {BNSn(f)}Ldf ,

where now f runs among conjugacy classes of strict stabilizer flags such that NSn(f) �= Sn. By
Lemma A.5(c), we have {BNSn(f)} = 1 for all such f .

We claim that {U/Sn} is a polynomial in L with integer coefficients. The stacks VH/NSn(H)
are isomorphic to parts of a locally closed stratification of V/Sn. This is well known from general
principles when char k = 0 or when char k > 0 does not divide n, but Ekedahl gave a proof in
arbitrary characteristic in [Eke09b, Proposition 1.1(ii)].

To show {U/Sn} is a polynomial in L, let f be a strict stabilizer flag. Then, as in the proof
of Proposition A.3, we have

{VHf
/NSn(f)} = {V Hf /NSn(f)} −

∑
f ′
{VHf ′/NSn(f ′)},

where f ′ runs among conjugacy classes of strict stabilizer flags starting with f and of length
nf + 1.

Applying the previous formula iteratively, we obtain

{V/Sn} = {U/Sn} −
∑

f

(−1)nf {V Hf /NSn(f)},

where f runs among conjugacy classes of strict stabilizer flags of positive length. For every
flag f , we claim that the quotient Wf := NSn(f)/(Hf ∩NSn(f)) is a product of symmetric
groups, and V Hf is a permutation representation of Wf . To see this, note that NSn(f) can be
identified with NRf

(Σ) via Lemma A.5 for a sequence of equivalence relations Rf given as R1 ⊂
R2 ⊂ · · · ⊂ Rnf

. Under this identification, Hf is identified with the subgroup of permutations
acting trivially on the equivalence classes defined by Rnf

. Therefore, the action of Wf on V Hf

is generated by permutations switching two equivalence classes of Rnf
for which there exists

an isomorphism of those two classes respecting R. Therefore, Wf is a product of symmetric
groups acting by a permutation representation on V Hf . Hence, by the fundamental theorem
for symmetric polynomials, V Hf /NSn(f) = V Hf /Wf is an affine space over k. Since V/Sn is
also isomorphic to affine space, we deduce that {U/Sn} is a polynomial in L, as claimed. We
conclude that {BSn} can be written as a rational function in L with integer coefficients, and
with denominator Ln − L. By [Eke09b, Lemma 3.5], this implies that {BSn} = 1. �
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