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Abstract

In this paper we extend the notion of FP-injective modules to that of complexes and characterize such
complexes. We show that some characterizations similar to those for injective complexes exist for
FP-injective complexes. We also introduce and study the notion of an FP-injective dimension associated
to every complex of left R-modules over an arbitrary ring. We show that there is a close connection
between the FP-injective dimension of complexes and flat dimension.
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1. Introduction

In this paper, R denotes a ring with unity, R-Mod denotes the category of left
R-modules and C (R) denotes the abelian category of complexes of left R-modules.
A complex

· · ·
δ2
−−−→C1

δ1
−−−→C0

δ0
−−−→C−1

δ−1
−−−→ · · ·

of left R-modules will be denoted by (C, δ) or C. Given a left R-module M, we use
Dn(M) to denote the complex

· · · −→ 0 −→ M
id
−−→ M −→ 0 −→ · · ·

with M in the nth and (n − 1)st positions. We also use S n(M) to denote the complex
with M in the nth place and 0 in the other places.

Given a complex C and an integer i we use the notation ΣiC for the complex
satisfying the condition that (ΣiC)n = Cn−i and whose boundary operators are (−1)iδC

n−i.
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Given a complex C the nth homology module of C is the module

Hn(C) = Zn(C)/Bn(C)

where Zn(C) = Ker(δC
n ) and Bn(C) = Im(δC

n+1). We set Hn(C) = H−n(C) and Cn(C) =

Coker(δC
n+1).

To every complex C we associate the numbers

sup C = sup{i |Ci , 0}

and
inf C = inf{i |Ci , 0}.

The complex C is said to be bounded above when sup C <∞. We say that C is bounded
below when inf C > −∞ and bounded when it is both bounded below and bounded
above.

Throughout this paper we use both the subscript notation for complexes and the
superscript notation. When we use superscripts for a complex we will use subscripts
to distinguish positions of the complexes. For example, if (Ki)i∈I is a family of
complexes, then Ki

n denotes the nth component of the complex Ki.
For objects C and D of C (R) we let Hom(C, D) denote the abelian group of

morphisms from C to D in C (R). We use the notation Exti(C, D) where i ≥ 1 for
the groups that arise from the right derived functor of Hom.

A homomorphism ϕ : C −→ D of degree n is a family (ϕi)i∈Z of homomorphisms
of R-modules ϕi : Ci −→ Dn+i. The set of all such homomorphisms forms an abelian
group which we denote by Hom(C, D)n. This group is clearly isomorphic to∏

i∈Z HomR(Ci, Dn+i). We let Hom(C, D) denote the complex of abelian groups with
nth componentHom(C, D)n and boundary operator

δn((ϕi)i∈Z) = (δD
n+iϕi − (−1)nϕi−1δ

C
i )i∈Z.

A homomorphism ϕ ∈ Hom(C, D)n is called a chain map if δ(ϕ) = 0, that is, if
δD

n+iϕi = (−1)nϕi−1δ
C
i for all i ∈ Z. A chain map of degree 0 is called a morphism.

Homomorphisms ϕ and ϕ′ in Hom(C, D)n are called homotopic, denoted ϕ ∼ ϕ′, if
there exists a degree n + 1 homomorphism t, called a homotopy, such that δ(t) =

ϕ − ϕ′. A homotopy equivalence is a morphism ϕ : C −→ D for which there exists
a morphism ψ : D −→C such that ϕψ ∼ idD and ψϕ ∼ idC . A morphism ϕ : C −→ D
is called a quasiisomorphism if the induced morphisms Hn(ϕ) : Hn(C) −→ Hn(D) are
isomorphisms for all n ∈ Z.

It is easy to see that
Hom(C, D) = Z0(Hom(C, D)).

We recall the notation introduced in [4]. Let

Hom(C, D) = Z(Hom(C, D)).
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One checks that Hom(C, D) can be made into a complex in which Hom(C, D)n is
the abelian group of morphisms from C to Σ−nD and whose boundary operator is
given by

δn( f ) : C −→ Σ−(n−1)D

where δn( f )m = (−1)nδD fm for all m ∈ Z and f ∈ Hom(C, D)n. Note that the new
functor Hom(C, D) will have right derived functors whose values will be complexes.
These values should certainly be denoted by Exti(C, D). It is not hard to see that
Exti(C, D) is the complex

· · · −→ Exti(C, Σ−(n+1)D) −→ Exti(C, Σ−nD) −→ Exti(C, Σ−(n−1)D) −→ · · ·

with boundary operators induced by the boundary operators of D. For a complex C we
have

C+ = Hom(C, D1(Q/Z)).

If X is a complex of right R-modules and Y is a complex of left R-modules, the
tensor product of X and Y is the complex of abelian groups X ⊗ Y with

(X ⊗ Y)n =
⊕
t∈Z

(Xt ⊗R Yn−t)

and
δ(x ⊗ y) = δX

t (x) ⊗ y + (−1)t x ⊗ δY
n−t(y)

for all x ∈ Xt and y ∈ Yn−t. We define

X ⊗ Y :=
X ⊗ Y

B(X ⊗ Y)

and endow this set with the maps

(X ⊗ Y)n

Bn(X ⊗ Y)
−→

(X ⊗ Y)n−1

Bn−1(X ⊗ Y)
, x ⊗ y 7→ δX(x) ⊗ y.

Here x ⊗ y is used to denote a coset in

(X ⊗ Y)n

Bn(X ⊗ Y)
,

and by this means we form a complex of abelian groups.
General background about complexes of R-modules can be found in [3–7, 9, 10].

In particular, it is well known that a complex (C, δ) is injective if and only if C is exact
and Zn(C) is injective in R-Mod for all n ∈ Z. Also we have id(C) ≤ m in C (R) if and
only if C is exact and id(Zn(C)) ≤ m in R-Mod for all n ∈ Z (see [5, Theorem 1.5]).

The main purpose of this article is to extend the notion of FP-injective modules
to that of FP-injective complexes and to consider the relationships between an
FP-injective complex C and FP-injective modules Cn or Zn(C) for all n ∈ Z. We obtain
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some results similar to those for injective complexes. As an application, coherent rings
are characterized by the FP-injective complexes. In addition, inspired by Avramov and
Foxby’s definition of injective dimension for every complex, we introduce and study a
notion of FP-injective dimension associated to every complex of left R-modules over
an arbitrary ring. We show that there is a close connection between the FP-injective
dimension of complexes and their flat dimension.

2. FP-injective complexes

A left R-module M is called FP-injective (or absolutely pure) if Ext1(N, M) = 0
for each finitely presented module N. General background material on FP-injective
modules can be found in [1, 8, 11–16, 18].

It is well known that each injective module is FP-injective, but the converse is not
true. In addition, injective complexes are the counterparts of injective modules in the
category of complexes. In this section, as a generalization of injective complexes,
FP-injective complexes are investigated and studied. We show that some
characterizations similar to those for injective complexes hold for FP-injective
complexes.

D 2.1 [6]. A complex C is called finitely generated if, in the case where we
can write C =

∑
i∈I Di with Di ∈ C (R) subcomplexes of C, there exists a finite subset

J ⊂ I such that C =
∑

i∈J Di. A complex C is called finitely presented if C is finitely
generated and for every exact sequence of complexes

0→ K→ L→C→ 0

with L finitely generated, K is also finitely generated.

L 2.2 [6]. A complex C is finitely generated if and only if C is bounded and Cn is
finitely generated in R-Mod for all n ∈ Z. A complex C is finitely presented if and only
if C is bounded and Cn is finitely presented in R-Mod for all n ∈ Z.

It is easy to see that each finitely generated projective complex coincides with
a finitely presented projective complex and that each finitely presented projective
complex coincides with a finitely presented flat complex.

R 2.3. If M is a finitely generated module, then S i(M) and Di(M) are finitely
generated complexes for each i ∈ Z. If M is a finitely presented module, then S i(M)
and Di(M) are finitely presented complexes for each i ∈ Z.

D 2.4. A complex C is called FP-injective if Ext1(F,C) = 0 for every finitely
presented complex F.

R 2.5. First, it is easy to see that the class of all FP-injective complexes is closed
under extensions, direct products, direct sums and direct summands. Clearly each
injective complex is FP-injective.
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Moreover, if R is a left coherent ring and C is an FP-injective complex, then
Exti(F,C) = 0 for each finitely presented complex F and i ≥ 1. In fact, for every exact
sequence of complexes

0 −→ K −→ P −→ F −→ 0

with P a finitely presented projective complex, K is also finitely presented. So

0 = Ext1(K,C) � Ext2(F,C).

Applying this result inductively, we obtain Exti(F,C) = 0 for all i ≥ 1.

P 2.6. Let C be a complex. Then C is FP-injective if and only if Cn is
FP-injective in R-Mod for all n ∈ Z and Hom(F,C) is exact for all finitely presented
complexes F.

P. Suppose that (C, δ) is FP-injective and let

0 −→Cn
α
−−→ X −→G −→ 0 (2.1)

be an extension in R-Mod where G is a finitely presented module. We show that the
sequence (2.1) splits.

By the factor theorem (see [2, Theorem 3.6]) we have the following commutative
diagram:

Cn−1

δn−1

��

η // Coker(δn)

θyy

// 0

Cn−2

where
η : Cn−1 −→ Coker(δn)

is the natural epimorphism. We form the pushout of Cn
α
−−→ X and Cn

δn
−−−→Cn−1 to

obtain a commutative diagram.

0 // Cn

δn

��

α // X

µ

��

// G // 0

0 // Cn−1

η

��

ν // P

g

��

// G // 0

Coker(δn)

��

Coker(δn)

��
0 0
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So we have the commutative diagram

�� �� ��
0 // Cn+2

δn+2

��

id // Cn+2

δn+2

��

// 0

��
0 // Cn+1

δn+1

��

id // Cn+1

αδn+1

��

// 0

��
0 // Cn

δn

��

α // X

µ

��

// G // 0

0 // Cn−1

δn−1

��

ν // P

θg

��

// G

��

// 0

0 // Cn−2

δn−2

��

id // Cn−2

δn−2

��

// 0

��
0 // Cn−3

��

id // Cn−3

��

// 0

��

and can form the complex

W = · · · −→Cn+2 −→Cn+1 −→ X −→ P −→Cn−2 −→ · · · .

Thus we have an exact sequence of complexes

0 −→C −→W −→ Dn(G) −→ 0. (2.2)

Since G is a finitely presented module we may deduce from Lemma 2.2 that Dn(G) is a
finitely presented complex. By our hypothesis the sequence (2.2) splits in the category
of complexes and so the sequence

0 −→Cn −→ X −→G −→ 0

splits in the category of modules. Therefore Cn is an FP-injective module.
For a finitely presented complex F we have that Hom(F,C) is exact if and only if

for each n each morphism of complexes

f : F −→ Σ−nC

is homotopic to 0. This is equivalent to the requirement that for each n and each
morphism of complexes

f : F −→ Σ−nC
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the sequence
0 −→ Σ−nC −→ M( f ) −→ Σ−1F −→ 0

splits, or, equivalently, for each n and each morphism of complexes

f : F −→ Σ−nC

the sequence
0 −→C −→ ΣnM( f ) −→ Σn−1F −→ 0

splits where M( f ) denotes the mapping cone of f . Since F is finitely presented, so is
Σn−1F. By hypothesis,

Ext1(Σn−1F,C) = 0.

Hence the sequence

0 −→C −→ ΣnM( f ) −→ Σn−1F −→ 0

splits andHom(F,C) is an exact complex.
Suppose Cn is an FP-injective module for all n ∈ Z and Hom(F,C) is exact for

every finitely presented complex F. An exact sequence

0 −→C −→W −→ F −→ 0

of complexes with F finitely presented splits at the module level. So this sequence is
isomorphic to

0 −→C −→ M( f ) −→ F −→ 0

where
f : Σ1F −→C

is a morphism of complexes. SinceHom(Σ1F,C) is exact the sequence

0 −→C −→ M( f ) −→ F −→ 0

splits by [9, Lemma 2.3.2], so

0 −→C −→W −→ F −→ 0

also splits. �

P 2.7. If C is an exact complex and Zn(C) is FP-injective in R-Mod for all
n ∈ Z, thenHom(F,C) is exact for each finitely presented complex F.

P. If F is a finitely presented complex, then F is bounded by Lemma 2.2. Hence
we can assume that

F = · · · −→ 0 −→ Fn −→ Fn−1 −→ · · · −→ F2 −→ F1 −→ F0 −→ 0 −→ · · · .
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It is well known thatHom(F,C) is a complex and

Hom(F,C) = · · ·
δn+1
−−−−→

∏
i∈Z

Hom(Fi,Cn+i)
δn
−−−→
∏
i∈Z

Hom(Fi,Cn−1+i)
δn−1
−−−−→ · · · .

It is enough to prove that Ker(δn−1) ⊆ Im(δn) for each n ∈ Z.
Let g ∈ Ker(δn−1). Then

δn−1(g) = (δC
n−1+tgt − (−1)n−1gt−1δ

F
t )t∈Z = 0.

In the following procedure we are going to construct a morphism f satisfying

f ∈ Hom(F,C)n =
∏
i∈Z

Hom(Fi,Cn+i)

and
δn( f ) = (δC

n+t ft − (−1)n ft−1δ
F
t )t∈Z = (gt)t∈Z.

Since gt = 0 for t ≤ −1 we take ft = 0 if t ≤ −1. If t = 0, then δC
n−1g0 = 0 and so

Im(g0) ⊆ Ker(δC
n−1) = Im(δC

n ).

Since Zn(C) is FP-injective and F0 is finitely presented there exists a homomorphism
f0 : F0→Cn such that δC

n f0 = g0. That is, the diagram

F0

g0

��

f0

{{
0 // Zn(C) // Cn

δC
n

// Zn−1(C) // 0

commutes.
If t = 1, then

δC
n (g1 − (−1)n−1 f0δ

F
1 ) = δC

n g1 − (−1)n−1δC
n f0δ

F
1 = 0

and so
Im(g1 − (−1)n−1 f0δ

F
1 ) ⊆ Ker(δC

n ).

Set h1 = g1 − (−1)n+1 f0δF
1 . Since Zn+1(C) is FP-injective and F1 is finitely presented

we have the following commutative diagram.

F1

h1

��

f1

{{
0 // Zn+1(C) // Cn+1

δC
n−1

// Zn(C) // 0

That is, g1 = δC
n−1 f1 − (−1)n f0δF

1 . Repeating this procedure, we deduce that f ∈ Im(δn)
and δn f = g. �

P 2.8. If C is an exact complex and Zn(C) is FP-injective in R-Mod for all
n ∈ Z, then C is an FP-injective complex.
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P. Since C is exact we have an exact sequence

0→ Zn(C)→Cn→ Zn−1(C)→ 0

for each n ∈ Z. Now Zn(C) and Zn−1(C) are FP-injective which implies that Cn is FP-
injective. The result now follows from Propositions 2.6 and 2.7. �

P 2.9. If C is an FP-injective complex, then C is exact and Zn(C) is FP-
injective in R-Mod for all n ∈ Z.

P. Suppose that C is an FP-injective complex. Since Hi(C) � Ext1(S 1−i(R),C) for
all i ∈ Z and S 1−i(R) is finitely presented, then C is exact. We only need to prove that
Ext1(G, Zn(C)) = 0 for every finitely presented module G.

Consider the exact sequence

0→ K→ P→G→ 0

with P a finitely generated projective module. It yields an exact sequence of complexes

0 −→ S n(K) −→ S n(P) −→ S n(G) −→ 0.

By the hypothesis Ext1(S n(G),C) = 0. So

Hom(S n(P),C) −→ Hom(S n(K),C) −→ 0

is exact.
Let f : K −→ Zn(C) be an R-homomorphism. We define αn : K −→Cn by αn = λ f

where λ is the inclusion map and αi = 0 for i , n. In this way we obtain a morphism of
complexes α : S n(K) −→C. Then there exists β : S n(P) −→C such that the diagram

S n(K)

α

��

// S n(P)

β
zz

C

commutes. Hence we have the commutative diagram

K

λ f
��

// P

βn~~
Cn

and δnβn = 0, which implies that Im(βn) ⊆ Ker(δn). So we define g : P→ Ker(δn) by
g = βn. Thus the sequence

Hom(P, Zn(C)) −→ Hom(K, Zn(C)) −→ 0

is exact.
On the other hand, we have an exact sequence

Hom(P, Zn(C)) −→ Hom(K, Zn(C)) −→ Ext1(G, Zn(C)) −→ 0.

Therefore Ext1(G, Zn(C)) = 0 and we have established our result. �
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Based on the above results we may deduce the following theorem.

T 2.10. Let C be a complex. Then the following statements are equivalent.

(1) C is FP-injective.
(2) C is exact and Zn(C) is FP-injective in R-Mod for all n ∈ Z.
(3) Cn is FP-injective in R-Mod for all n ∈ Z andHom(F,C) is exact for each finitely

presented complex F.

C 2.11. A module M is FP-injective if and only if the complex Di(M) is FP-
injective complex for each i ∈ Z.

E 2.12. If R is not Noetherian, then we can form a direct sum
⊕

I Mi of
injective R-modules (Mi)I which is not injective, but which is necessarily FP-injective.
Hence D0(

⊕
I Mi) is an FP-injective complex but is not an injective complex.

It is well known that a complex C is flat (injective, projective respectively) if and
only if C is exact and Zn(C) is flat (injective, projective respectively) in R-Mod for all
n ∈ Z. So we have the following corollaries.

C 2.13. Let C be a complex. Then the following statements are equivalent.

(1) C+ is FP-injective.
(2) C is flat.
(3) C+ is injective.

C 2.14. Let R be a ring and let C be a complex. Then the following assertions
are equivalent.

(1) R is a left coherent ring.
(2) C is an FP-injective complex if and only if C+ is a flat complex.
(3) C is an FP-injective complex if and only if C++ is an injective complex.
(4) The complex C of right R-modules is flat if and only if C++ is flat.

C 2.15. Let R be a left coherent ring and 0→ A→ B→C→ 0 be exact in
C (R) with A FP-injective. Then B is FP-injective if and only if C is FP-injective.

C 2.16. Let R be left coherent and let C be a bounded above complex. Then
C is FP-injective if and only if C is exact and Cn is FP-injective for all n ∈ Z.

C 2.17. Let R be a ring. Then the following assertions are equivalent.

(1) R is a left coherent and right perfect ring.
(2) C is an FP-injective complex if and only if C+ is a projective complex.

According to [9], a short exact sequence

0 −→ A −→ B −→C −→ 0

in C (R) is called pure if the sequence

0 −→ F ⊗ A −→ F ⊗ B
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is exact for every (or every finitely presented) complex F of right R-modules.
Equivalently,

Hom(F, B) −→ Hom(F,C) −→ 0

is surjective for all finitely presented complexes F of left R-modules. A subcomplex A
of complex B is pure if

0 −→ A −→ B −→ B/A −→ 0

is a pure exact sequence.

D 2.18. A complex C is called absolutely pure if it is pure in every complex
that contains it.

P 2.19. Let C be a complex. Then the following assertions are equivalent.

(1) C is absolutely pure.
(2) Ext1(F,C) = 0 for every finitely presented complex F.
(3) C is FP-injective.

P. We show that (1) implies (2). For a complex C we have an exact sequence

0→C→ E→ L→ 0

with E an injective complex. By (1),

Hom(F, E)→ Hom(F, L)→ 0

is exact for every finitely presented complex F. On the other hand, the sequence

Hom(F, E)→ Hom(F, L)→ Ext1(F,C)→ 0

is exact. So Ext1(F,C) = 0.
The implications (2) implies (1) and (2) implies (3) are trivial.
To see that (3) implies (2), suppose that F is a finitely presented complex. Then

ΣnF is finitely presented for each n ∈ Z. But C is FP-injective and

Ext1(ΣnF,C) � Ext1(F, Σ−nC).

It follows that Ext1(F, Σ−nC) = 0 which implies that Ext1(F,C) = 0. �

P 2.20. Let C be a complex. Then the following assertions are equivalent.

(1) C is absolutely pure.
(2) C is FP-injective.
(3) Every exact sequence

0→C→ L→ F→ 0

with F finitely presented splits.
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(4) C is injective with respect to every exact sequence

0→ U → V → F→ 0

in C (R) with F finitely presented.
(5) C is a pure subcomplex of an (FP-) injective complex.
(6) Every diagram

S

��

// T

��
C

with T finitely generated and projective (free) and S a finitely generated
subcomplex of T can be completed to a commutative diagram.

P. The implications (2) if and only if (3), (2) if and only if (6), (1) implies (5), (2)
implies (4) and (4) implies (3) are obvious.

We show that (3) implies (4). Let 0→ U → V → F→ 0 be an exact sequence
with F finitely presented. For a morphism α : U →C we form the following pushout
diagram.

0 // U

α

��

f // V

��

//

θ

��

F //

γ

��

0

0 // C // Q
β

// F // 0

By (3), the sequence
0→C→ Q→ F→ 0

splits and so there exists γ such that βγ = 1. Thus there exists θ such that θ f = α by
the homotopy lemma.

Now we show that (5) implies (3). Let 0→C→ L→ F→ 0 be an exact sequence
with F finitely presented and let C be a pure subcomplex of the FP-injective
complex V . Since V is FP-injective we get the following diagram.

0 // C
f // L

��

//

θ

��

F //

γ

}}
α

��

0

0 // C // V
β

// V/C // 0

Since C is pure in V there exists γ such that βγ = α. Thus there exists θ such that
θ f = 1 by the homotopy lemma. That is, the sequence 0→C→ L→ F→ 0 splits. �

L 2.21. If 0→ A→ B→C→ 0 is pure exact in C (R) and A or B is exact, then
the sequence

0→ Zn(A)→ Zn(B)→ Zn(C)→ 0

is pure exact in R-Mod for all n ∈ Z.
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P. By the hypothesis we have an exact sequence

0→ Zn(A)→ Zn(B)→ Zn(C)→ 0

in R-Mod. Let P be a finitely presented module and f : P→ Zn(C) be an
R-homomorphism. We define α : S n(P) −→C by

S n(P) = · · · // 0

��

// P

λ f

��

// 0 //

��

· · ·

C = · · · // Cn+1
// Cn

// Cn−1
// · · ·

where λ : Zn(C) −→Cn is the natural inclusion. Since S n(P) is a finitely presented
complex there exists β : S n(P) −→ B such that the diagram

S n(P)

α

��

β

||zzzzzzzz

0 // A // B // C // 0

commutes. Thus
P

λ f
��

βn

~~||
||

||
||

Bn
// Cn

// 0

commutes and Im(βn) ⊆ Zn(B). This implies that βn : P −→ Zn(B) and the diagram

P

f
��

βn

zzuuuuuuuuu

Zn(B) // Zn(C) // 0

commutes. �

P 2.22. If S is a pure subcomplex of an FP-injective complex C, then S is
FP-injective.

P. Suppose that C is an FP-injective complex and S is a pure subcomplex of C.
Then we have a pure exact sequence

0 −→ S −→C −→C/S −→ 0

and so the sequence
0 −→ (C/S )+ −→C+ −→ S + −→ 0

splits. Thus S + is isomorphic to some direct summand of C+.
Since C is FP-injective, C is exact and Zn(C) is FP-injective in R-Mod for all n ∈ Z.

Therefore, C+ is exact which implies that S + is exact. Furthermore, S is exact.
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On the other hand, we obtain a pure exact sequence

0 −→ Zn(S ) −→ Zn(C) −→ Zn(C/S ) −→ 0

for each n ∈ Z by Lemma 2.21. Since Zn(C) is FP-injective, Zn(S ) is FP-injective. By
Theorem 2.10 S is an FP-injective complex and our result is established. �

Let FI stand for the class of all FP-injective modules and let F̃ I denote the class
of all FP-injective complexes.

P 2.23. Let R be a ring. Then the following assertions are equivalent.

(1) R is a left coherent ring.
(2) F̃ I is injectively coresolving.
(3) Let

0 −→ A −→ B −→C −→ 0

be a short exact sequence in C (R). If A, B ∈ F̃ I, then C ∈ F̃ I.
(4) If C ∈ F̃ I and S is a pure subcomplex of C, then C/S ∈ F̃ I.

P. The implications (1) implies (2) and (2) if and only if (3) are obvious.
To show that (3) implies (1), we note that R is a left coherent ring if and only if

every factor module of an FP-injective module by a pure submodule is FP-injective
(see [18]).

Now we show that (3) implies (4). Let

0 −→ S −→C −→C/S −→ 0

be a pure exact sequence and C ∈ F̃ I. Then S ∈ F̃ I by Proposition 2.22, which
implies that C/S ∈ F̃ I.

To show that (4) implies (3), let

0 −→ A −→ B −→C −→ 0

be an exact sequence in C (R) and let A and B be FP-injective complexes. Since A is
FP-injective the sequence

0 −→ A −→ B −→C −→ 0

is pure. By (4) we have C ∈ F̃ I. �

D 2.24. Let C be a complex. The FP-injective dimension FP-id(C) of C is
defined to be the smallest nonnegative integer n such that Extn+1(F,C) = 0 for every
finitely presented complex F. If no such n exists, then we set FP-id(C) =∞.

The FP-injective dimension FP-id(M) of a left R-module M is similarly defined.
Details and results on the FP-injective dimension of modules appeared in [8, 16].
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L 2.25. Let R be a left coherent ring. For a complex C of left R-modules the
following assertions are equivalent.

(1) FP-id(C) ≤ m.
(2) Extm+1(F,C) = 0 for all finitely presented complexes F.
(3) Extm+k(F,C) = 0 for all finitely presented complexes F and all k ≥ 1.
(4) If the sequence

0→C→ E0→ · · · → Em→ 0

is exact with E0, . . . , Em−1 FP-injective, then Em is also FP-injective.

P. This is a straightforward application of the definition. �

By [9, Theorem 3.1.3] we have id(C) ≤ m in C (R) if and only if C is exact and
id(Zn(C)) ≤ m in R-Mod for all n ∈ Z. Similar results hold for FP-injective dimensions.

T 2.26. Let R be a left coherent ring and C be a complex. Then FP-id(C) ≤ m
in C (R) if and only if C is exact and FP-id(Zn(C)) ≤ m in R-Mod for all n ∈ Z.

P. Suppose that FP-id(C) ≤ m. Let

0→C→ E0→ · · · → Em→ 0

be an FP-injective resolution of C. Then the Ei are exact and so C is exact.
On the other hand, we have the exact sequence

0 −→ Zn(C) −→ Zn(E0) −→ · · · −→ Zn(Em) −→ 0

where the Zn(Ei) are FP-injective modules. Hence FP-id(Zn(C)) ≤ m.
Suppose that the sequence

0 −→C −→ E0 −→ · · · −→ Em−1 −→ Km −→ 0

is exact and the Ei are FP-injective. We only need to show that Km is FP-injective.
Then we get an exact sequence,

0 −→ Zn(C) −→ Zn(E0) −→ · · · −→ Zn(Km) −→ 0.

Since FP-id(Zn(C)) ≤ m it follows that each Zn(Km) is FP-injective. Since the C, Ei are
exact, Km is exact. By Theorem 2.10, Km is FP-injective. �

According to [9, Theorem 5.4.1] we have fd(C) ≤ m in C (R) if and only if C is
exact and fd(Zn(C)) ≤ m in R-Mod for all n ∈ Z. In [8] it is shown that, for a left
R-module M,

fd(M) = id(M+) = FP-id(M+)

and, over a left coherent ring R, we have fd(M+) = FP-id(M). Thus we get the
following corollaries.
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C 2.27. Let R be a left coherent ring and let C be a complex. Then

id(C+) = fd(C) = FP-id(C+).

C 2.28. Let R be a left coherent ring and let C be a complex. Then

fd(C+) = FP-id(C).

P 2.29. Let C be an exact complex. Then

FP-id(C) = sup{FP-id(Zn(C)) | n ∈ Z}.

P. If
sup{FP-id(Zn(C)) | n ∈ Z} =∞,

then
FP-id(C) ≤ sup{FP-id(Zn(C)) | n ∈ Z}.

So naturally we may assume that

sup{FP-id(Zn(C)) | n ∈ Z} = m

is finite.
Consider an FP-injective resolution

0 −→C −→ E0 −→ · · · −→ Em−1 −→ Km −→ 0

of C where each Ei is FP-injective. Then we get an exact sequence

0 −→ Zn(C) −→ Zn(E0) −→ · · · −→ Zn(Km) −→ 0

for all n ∈ Z. Since FP-id(Zn(C)) ≤ m we have that Zn(Km) is FP-injective for all n ∈ Z.
By Theorem 2.10 Km is FP-injective. This shows that FP-id(C) ≤ m and so

FP-id(C) ≤ sup{FP-id(Zn(C)) | n ∈ Z}.

Now it is enough to show that

sup{FP-id(Zn(C)) | n ∈ Z} ≤ FP-id(C).

Naturally we may assume that FP-id(C) = m is finite. Then there exists an exact
sequence

0 −→C −→ E0 −→ · · · −→ Em−1 −→ Em −→ 0

with each Ei FP-injective. So we get an exact sequence

0 −→ Zn(C) −→ Zn(E0) −→ · · · −→ Zn(Em) −→ 0.

Now FP-id(Zn(C)) ≤ m because Zn(Ei) is FP-injective for all n ∈ Z and i = 0, 1, . . . , m,
and so

sup{FP-id(Zn(C)) | n ∈ Z} ≤ m = FP-id(C).

This concludes the proof. �

https://doi.org/10.1017/S1446788711001364 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788711001364


[17] FP-injective complexes 179

P 2.30. The following are equivalent for a ring R.

(1) R is left coherent.
(2) Every direct limit of FP-injective complexes of left R-modules is FP-injective.
(3) The map

lim
−−→

Ext1(F,Ci)→ Ext1(F, lim
−−→

Ci)

is an isomorphism for every finitely presented F and direct system (Ci)I .
(4) The map

lim
−−→

Extn(F,Ci)→ Extn(F, lim
−−→

Ci)

is an isomorphism for every finitely presented F and direct system (Ci)I .
(5) Every direct limit of complexes of FP-injective dimension less than or equal n

has FP-injective dimension less than or equal n.

P. The implications (4) implies (3), (3) implies (2), (4) implies (5) and (5) implies
(2) are obvious.

We show that (1) implies (4). Suppose that R is a left coherent ring. Then every
finitely presented complex of left R-modules has a projective resolution consisting of
finitely presented complexes and so the result follows by [17, Proposition 3.4].

To see that (2) implies (1), let {Mi}I be a direct system of FP-injective left
R-modules. Then {D0(Mi)}I is a direct system of FP-injective complexes. By (2),
lim
−−→

D0(Mi) is FP-injective. However,

lim
−−→

D0(Mi) = D0(lim
−−→

Mi),

and so D0(lim
−−→

Mi) is an FP-injective complex and lim
−−→

Mi is an FP-injective module.
Thus R is a left coherent ring. �

3. FP-injective dimension of complexes

In [3] Avramov and Foxby defined injective, projective and flat dimensions for
arbitrary complexes of left R-modules over associative rings in terms of DG-injective,
DG-projective and DG-flat complexes respectively. A complex I is DG-injective
if each In is injective and Hom(E, I) is exact for every exact complex E. For
example, every bounded above complex of injective modules is DG-injective (see [3,
Remark 1.1I]). By [7, Remark, p. 31] the class of DG-injective complexes is injectively
coresolving, that is, if

0 −→ I′ −→ I −→ I′′ −→ 0

is a short exact sequence of complexes with I′ DG-injective, then I is DG-injective if
and only if I′′ is DG-injective.

A DG-injective resolution of X is a quasiisomorphism X −→ I for which I is
DG-injective. By [7, Corollary 3.10] every complex X has an injective DG-injective
resolution X −→ I. If H(X) is bounded above, then I can be chosen so that sup I =

sup H(X). A complex P is DG-projective if each Pn is projective and Hom(P, E)
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is exact for every exact complex E. For example, every bounded below complex of
projective modules is a DG-projective complex (see [3, Remark 1.1P]).

By [7, Remark, p. 31] the class of DG-projective complexes is projectively
resolving. That is, if

0 −→ P′ −→ P −→ P′′ −→ 0

is a short exact sequence of complexes with P′′ DG-projective, then P′ is DG-
projective if and only if P is DG-projective. A quasiisomorphism P −→ X with P
DG-projective is called a DG-projective resolution of X. By [7, Corollary 3.10] every
complex X has a surjective DG-projective resolution P −→ X. If H(X) is bounded
below, then P can be chosen so that inf P = inf H(X).

A complex F of left R-modules is DG-flat if each Fn is flat and the complex E ⊗ F
is exact for every exact complex E of right R-modules. Since (E ⊗ F)+ �Hom(E, F+)
we have that F is DG-flat if and only if F+ is DG-injective. Thus every bounded below
complex of flat modules is DG-flat.

The class of DG-flat complexes is projectively resolving. A DG-flat resolution of
a complex X is a quasiisomorphism F −→ X with F a DG-flat complex. Since every
DG-projective complex is DG-flat, every complex has a surjective DG-flat resolution.
By [7, Proposition 3.7], a complex is projective (injective, flat respectively) if and only
if it is exact and DG-projective (DG-injective, DG-flat respectively).

We now define the injective and flat dimensions of a complex X. Let DGInj(X)
denote the class of all DG-injective complexes I such that X ' I and let DGFlat(X)
denote the class of all DG-flat complexes F such that X ' F. The injective dimension
of the complex X is defined by

idR(X) = inf{sup{−n ∈ Z | In , 0} | I ∈ DGInj(X)},

and the flat dimension of X is defined by

fdR(X) = inf{sup{n ∈ Z | Fn , 0} | F ∈ DGFlat(X)}.

In [10], Gillespie introduced the following definition.

D 3.1 [10, Definition 3.3]. Let (A, B) be a cotorsion pair on an abelian
category C . Let X be a complex. Then we have the following definitions.

(1) X is called anA complex if it is exact and Zn(X) ∈ A for all n.
(2) X is called a B complex if it is exact and Zn(X) ∈ B for all n.
(3) X is called a dg-A complex if Xn ∈ A for each n and Hom(X, B) is exact

whenever B is a B complex.
(4) X is called a dg-B complex if Xn ∈ B for each n and Hom(A, X) is exact

whenever A is anA complex.

We denote the class of A complexes by Ã and the class of dg-A complexes by
dg Ã. Similarly the class of B complexes are denoted by B̃ and the class of dg-B
complexes is denoted by dg B̃.
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L 3.2 [10]. Let (A, B) be a cotorsion pair in R-Mod.

(1) Complexes that are bounded below and have components in A are dg-A
complexes (see [10, Lemma 3.4]). Complexes that are bounded above and have
components in B are dg-B complexes.

(2) (Ã, dg B̃) and (dg Ã, B̃) are cotorsion pairs in C (R) (see [10, Proposition 3.6]).
(3) If (A, B) is hereditary, then dg Ã ∩ E = Ã and dg B̃ ∩ E = B̃ where E denotes

the class of exact complexes (see [10, Theorem 3.12]).
(4) If (A, B) is hereditary, then (Ã, dg B̃) and (dg Ã, B̃) are hereditary in C (R)

(see [10, Corollary 3.13]).

It is well known that over a left coherent ring (⊥FI, FI) there is a hereditary
cotorsion pair. According to Lemma 3.2, complexes of FP-injective modules that
are bounded above are dg-FP-injective complexes, dg F̃ I ∩ E = F̃ I and dg F̃ I is
injectively coresolving.

Inspired by Avramov and Foxby’s definition of injective dimension for every
complex, we now introduce and study a notion of FP-injective dimension associated
to every complex of left R-modules over an arbitrary ring.

D 3.3. A morphism X −→ F is called a dg-FP-injective resolution of X if
X −→ F is a quasiisomorphism and F is a dg-FP-injective complex.

Since every DG-injective complex is dg-FP-injective and every complex has an
injective DG-injective resolution every complex has an injective dg-FP-injective
resolution.

D 3.4. Let X be a complex of left R-modules. The FP-injective dimension
of X is defined by FP-idR(X) ≤ n if there is a dg-FP-injective resolution X −→ F
such that inf H(X) ≥ −n and Z−n(F) is an FP-injective module. If FP-idR(X) ≤ n, but
FP-idR(X) ≤ n − 1 does not hold, then FP-idR(X) := n. If FP-idR(X) ≤ n for each n, then
FP-idR(X) := −∞. If FP-idR(X) ≤ n does not hold for each n, then FP-idR(X) :=∞.

This definition is quite different from Definition 2.24. The reason is that FP-idR(X)
defines an R-dimension while Definition 2.24 defines a C (R)-dimension.

R 3.5. First, FP-idR(X) = −∞ if and only if X is exact.
Next, for each k ∈ Z

FP-idR(ΣkX) = FP-idR(X) + k.

Finally, FP-idR(X) ≤ idR(X). If R is a left Noetherian ring, then FP-idR(X) = idR(X).

P 3.6. Let R be a left coherent ring and let X be a complex. If X has a dg-FP-
injective resolution X −→ F such that inf H(F) ≥ −n and Z−n(F) is FP-injective, then
for every DG-injective resolution X −→ I we have inf H(I) ≥ −n and Z−n(I) is an FP-
injective module.

P. If X −→ I is a DG-injective resolution, then

inf H(I) = inf H(X) = inf H(F) ≥ −n.
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We can assume, without loss of generality, that X −→ F is an injective dg-FP-injective
resolution. Then there exists an exact sequence

0 −→ X −→ F −→ L −→ 0

with L exact. This yields an exact sequence

0 −→ Hom(L, I) −→ Hom(F, I) −→ Hom(X, I) −→ Ext1(L, I) = 0.

Hence there is a morphism of complexes F −→ I such that the diagram

X //

��

F

��
I

commutes. Since both X −→ F and X −→ I are quasiisomorphisms, so is F −→ I.
We can assume that F −→ I is an injective quasiisomorphism (if not, let

F −→ I be injective with I an injective complex, then F −→ I ⊕ I is an injective
quasiisomorphism). Then there exists an exact sequence

0 −→ F −→ I −→ V −→ 0

with V an exact complex. Both F and I are dg-FP-injective complexes and so V is a
dg-FP-injective complex. Thus V is exact and dg-FP-injective and so V is FP-injective.

On the other hand, we have an exact sequence

0 −→ Z−n(F) −→ Z−n(I) −→ Z−n(V) −→ 0

with Z−n(V) and Z−n(F) FP-injective modules. It follows that Z−n(I) is FP-injective
and our result is established. �

T 3.7. Let R be a left coherent ring and let X a be complex. Then the following
assertions are equivalent.

(1) FP-idR(X) ≤ n.
(2) inf H(X) ≥ −n and Z−n(I) is FP-injective for each DG-injective resolution X −→

I.
(2)′ inf H(X) ≥ −n and Z j(I) is FP-injective for every j ≤ −n for each DG-injective

resolution X −→ I.
(3) There exists a DG-injective resolution X −→ I′ such that H j(I′) = 0 for every

j ≤ −n − 1 and Z−n(I′) is FP-injective.
(3)′ There exists a DG-injective resolution X −→ I′ such that H j(I′) = 0 for every

j ≤ −n − 1 and Z j(I′) is FP-injective for every j ≤ −n.

P. It follows from Proposition 3.6 that (1) implies (2). The implication (2) implies
(3) is obvious, and (3) implies (1) by definition, since every DG-injective resolution is
a dg-FP-injective resolution. The implications (2) implies (2)′ and (3) implies (3)′ are
clear, since over a left coherent ring the class of all FP-injective modules is injectively
coresolving. �

https://doi.org/10.1017/S1446788711001364 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788711001364


[21] FP-injective complexes 183

R 3.8. We have proved that FP-idR(X) ≤ n is equivalent to inf H(X) ≥ −n and
Z−n(I) is FP-injective for each DG-injective resolution X −→ I. However, we do not
know whether FP-idR(X) ≤ n is equivalent to inf H(X) ≥ −n and Z−n(F) is FP-injective
for each dg-FP-injective resolution X −→ F and whether FP-idR(X) can be expressed
in the form

inf{sup{−n ∈ Z | Fn , 0} | F ∈ dg-FPInj(X)}

where dg-FPInj(X) denotes the class of all dg-FP-injective complexes F such that
X ' F.

The following result shows that for coherent rings the FP-injective dimension of
complexes is a generalization of the FP-injective dimension of modules.

P 3.9. Let R be a left coherent ring and let M be an R-module. Then

FP-id(M) = FP-idR(S 0(M)).

P. Let
0 −→ M −→ F0 −→ F−1 −→ · · ·

be an injective resolution of M. Then S 0(M) −→ F is a DG-injective resolution where

F = · · · −→ 0 −→ F0 −→ F−1 −→ · · · .

If FP-id(M) =∞ and
FP-idR(S 0(M)) = n <∞,

then Z j(F) is FP-injective for some j ≤ −n by Theorem 3.7.
Since

0 −→ M −→ F0 −→ · · · −→ F−n−1 −→ Z−n(F) −→ 0

is exact for FP-injective modules Z−n(F) and F j it follows that FP-id(M) ≤ n. This
contradicts the fact that FP-id(M) =∞. So FP-idR(S 0(M)) =∞.

If FP-id(M) = n <∞, then Z−n(F) is FP-injective and so Z j(F) is FP-injective for
every j ≤ −n. Thus S 0(M) −→ F is a dg-FP-injective resolution with Z j(F) FP-
injective for all j ≤ −n and H j(F) = 0 for every j ≤ −n − 1.

By definition we get FP-idR(S 0(M)) ≤ n. Suppose that FP-idR(S 0(M)) ≤ n − 1.
Then FP-id(M) ≤ n − 1. This contradicts the fact that FP-id(M) = n. Therefore,
FP-idR(S 0(M)) = n. �

Let R be a left coherent ring and let X be a homologically bounded above complex.
In the following proposition we obtain a description of FP-idR(X) in terms of the
class BA(X) of bounded above complexes Q of FP-injective modules which satisfy
the condition that X ' Q.

P 3.10. Let R be a left coherent ring and let X be a homologically bounded
above complex. Then

FP-idR(X) = inf{sup{l ∈ Z | Q−l , 0} | Q ∈ BA(X)}.
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P. Since X is a homologically bounded above complex we can assume that
sup H(X) = 0. Let X −→ I be a DG-injective resolution of X such that sup I = 0. Set

Ω = inf{sup{l ∈ Z | Q−l , 0} | Q ∈ BA(X)}.

If FP-idR(X) = n, then Z−n(I) is FP-injective and inf H(X) ≥ −n by Theorem 3.7. Let

I′ = 0 −→ I0 −→ I−1 −→ · · · −→ Z−n(I) −→ 0,

and
X′ = · · · −→ X1 −→ X0 −→ · · · −→ X−n−1 −→ Z−n(I) −→ 0.

Since X −→ I is a quasiisomorphism X′ −→ I′ is also a quasiisomorphism. However,
X ' X′ and so we get X ' I′. Each component of I′ is an FP-injective module, which
implies that Ω ≤ n.

Now suppose Ω = n <∞. We will show that FP-idR(X) ≤ n. By the hypothesis there
exists a complex

Q = 0 −→ Q0 −→ Q−1 −→ · · · −→ Q−n−1 −→ Q−n −→ 0

of FP-injective modules such that X ' Q. Since Q ' X ' I and I is a DG-injective
complex there is a quasiisomorphism Q −→ I. In addition, Q is bounded above and so
there is an injective morphism Q −→ I∗ with I∗ a bounded above injective complex.
Thus Q −→ I ⊕ I∗ is an injective quasiisomorphism, and we have an exact sequence

0 −→ Q −→ I ⊕ I∗ −→W −→ 0

with W exact, which implies that there is an exact sequence

0 −→ Q j −→ I j ⊕ I∗j −→W j −→ 0

in R-Mod for all j ∈ Z. Since I j ⊕ I∗j and Q j are FP-injective it follows that W j is FP-
injective. Thus W is a bounded above exact complex of FP-injective modules. That is,
W is an FP-injective complex and so Z j(W) is an FP-injective module.

In the exact sequence

0 −→ Z−n(Q) −→ Z−n(I) ⊕ Z−n(I∗) −→ Z−n(W) −→ 0

we have that Z−n(Q) = Q−n and Z−n(W) are FP-injective and so Z−n(I) ⊕ Z−n(I∗) is FP-
injective which implies that Z−n(I) is FP-injective. Since X −→ I is a DG-injective
resolution with inf H(I) ≥ −n and Z−n(I) FP-injective it follows that FP-idR(X) ≤ n.
From the above, we have FP-idR(X) =∞ if and only if Ω =∞. Note that FP-idR(X) =

−∞ if and only if X is exact if and only if Ω = −∞ and we have established our result. �

L 3.11 (Horseshoe lemma). For every exact sequence of complexes

0 −→ X −→ Y −→ Z −→ 0
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there exists a commutative diagram with exact rows

0 // X

��

// Y

��

// Z

��

// 0

0 // IX // IY // IZ // 0

in which the columns are injective DG-injective resolutions.

P 3.12. Let R be a left coherent ring and let

0 −→ X −→ Y −→ Z −→ 0

be an exact sequence of complexes of R-modules. If any two of the three complexes
X, Y and Z have finite FP-injective dimension, then so does the third.

P. By Lemma 3.11 there is an exact sequence of complexes

0 −→ IX −→ IY −→ IZ −→ 0

with X −→ IX , Y −→ IY and Z −→ IZ DG-injective resolutions. If two of the
complexes X, Y and Z have finite FP-injective dimension, then there is n ∈ Z such
that

H j(IX) = H j(IY ) = H j(IZ) = 0

for all j ≤ −n.
For each j ≤ −n we have an exact sequence

0 −→ Z j(IX) −→ Z j(IY ) −→ Z j(IZ) −→ 0

in R-Mod. If Z j(IX) is FP-injective, then Z j(IY ) is FP-injective if and only if Z j(IZ) is
FP-injective. If both Z j(IY ) and Z j(IZ) are FP-injective, then FP-id(Z j(IX)) ≤ 1 and so
Z j−1(IX) is FP-injective. �

P 3.13. Let R be a left coherent ring. Then the following equalities hold.

(1) fdR(X) = FP-idR(X+).
(2) fdR(X) = idR(X+).

P. We show (1) holds. If X is exact, then X+ is also exact, so

FP-idR(X+) = −∞ = fdR(X).

If fdR(X) = n <∞, then there exists a DG-flat resolution F −→ X with the properties
that sup H(F) ≤ n and C j(F) is flat for all j ≥ n. It follows that X+ −→ F+ is a DG-
injective resolution, and inf H(F+) ≥ −n.

The exact sequence

· · · −→ Fn+1
δn+1
−−−−→ Fn

π
−−→Cn(F) −→ 0
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yields an exact sequence

0 −→Cn(F)+ π+

−−−→ F+
n

δ+
n+1
−−−−→ F+

n+1 −→ · · · .

Thus
Ker(δ+

n+1) = Im(π+) �Cn(F)+.

Since Cn(F) is flat, Cn(F)+ is FP-injective. Hence

0 −→ Ker(δ+
n+1) −→ F+

n

δ+
n+1
−−−−→ F+

n+1 −→ · · ·

is an exact sequence of FP-injective modules, which implies that Z j(F+) = Ker(δ+
j ) is

FP-injective for all j ≥ n + 1. Therefore FP-idR(X+) ≤ n.
Suppose that FP-idR(X+) = n ≤∞, and let F −→ X be a DG-flat resolution. Then

X+ −→ F+ is a DG-injective resolution. Since FP-idR(X+) = n, it is quite clear that
H j(F+) = 0 for all j ≤ −n − 1 and Z j(F+) is FP-injective for all j ≥ n + 1. Since
H j(F+) � H j(F)+ = 0, we obtain H j(F) = 0 for every j ≥ n + 1. Thus the sequence

· · · −→ Fn+1
δn+1
−−−−→ Fn −→Cn(F) −→ 0

is exact and hence yields the sequence

0 −→Cn(F)+ −→ F+
n

δ+
n+1
−−−−→ F+

n+1 −→ · · · ,

which is also exact. Therefore Ker(δ+
n+1) �Cn(F)+ is FP-injective. It follows that

Cn(F) is flat and so fdR(X) ≤ n.
An analogous proof to that of part (1) proves part (2). �

P 3.14. Let R be a left coherent ring and let X be a homologically bounded
above complex. Then fdR(X+) = FP-idR(X).

P. If X is exact, then the result clearly holds. Now suppose that X is not exact.
Since X is a homologically bounded above complex we can assume that sup H(X) = 0.

Let X −→ I be a DG-injective resolution of X and sup I = 0. Then I+ −→ X+ is a
DG-flat resolution and inf I+ = 0. If FP-idR(X) = n ≤∞, then Z j(I) is FP-injective for
all j ≤ −n and inf H(X) ≥ −n. Thus we have an exact sequence

0 −→ Z−n(I) −→ I−n −→
δ−n
−−−→ I−n−1 −→ · · · ,

which yields the sequence

· · · −→ I+
−n−1

δ+
−n
−−−→ I+

−n −→ Z−n(I)+ −→ 0,

which is exact. Hence

C−n(I+) = Coker(δ+
−n) � Z−n(I)+.
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Since I j and Z−n(I) are FP-injective, I+
j and Z−n(I)+ are flat and, consequently,

C−n(I+) �C−n(I)+ is flat. As inf H(I) = inf H(X) ≥ −n, we deduce that sup H(I+) ≤ n.
Thus fdR(X+) ≤ FP-idR(X). By analogy with the above discussion, we deduce that
FP-idR(X) ≤ fdR(X+). Therefore fdR(X+) = FP-idR(X) and our result is established. �
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