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Abstract

Turbulent flows are chaotic and multi-scale dynamical systems, which have large numbers of degrees of freedom.
Turbulent flows, however, can be modeled with a smaller number of degrees of freedom when using an appropriate
coordinate system, which is the goal of dimensionality reduction via nonlinear autoencoders. Autoencoders are
expressive tools, but they are difficult to interpret. This article aims to propose a method to aid the interpretability of
autoencoders. First, we introduce the decoder decomposition, a post-processing method to connect the latent
variables to the coherent structures of flows. Second, we apply the decoder decomposition to analyze the latent
space of synthetic data of a two-dimensional unsteady wake past a cylinder.We find that the dimension of latent space
has a significant impact on the interpretability of autoencoders.We identify the physical and spurious latent variables.
Third, we apply the decoder decomposition to the latent space of wind-tunnel experimental data of a three-
dimensional turbulent wake past a bluff body. We show that the reconstruction error is a function of both the latent
space dimension and the decoder size, which are correlated. Finally, we apply the decoder decomposition to rank and
select latent variables based on the coherent structures that they represent. This is useful to filter unwanted or spurious
latent variables or to pinpoint specific coherent structures of interest. The ability to rank and select latent variables will
help users design and interpret nonlinear autoencoders.

Impact Statement

Nonlinear dimensionality reduction by autoencoders can efficiently compress high-dimensional data into a low-
dimensional latent space, but the results may be difficult to interpret. We propose the decoder decomposition to
select and rank the latent variables based on the coherent structures that they represent. This opens opportunities
for building interpretable models with nonlinear autoencoding.

1. Introduction

Turbulent flows are nonlinear and multi-scale systems, which have large numbers of degrees of freedom.
High-fidelity simulations of turbulent flows can be performed by solving the governing equations on fine
spatiotemporal grids, but the computational cost can be prohibitively high (Rowley and Dawson, 2017).

When computationally cheaper modeling of turbulent flows is needed, reduced-order models are
applied to approximate the flows with fewer degrees of freedom (Noack et al., 2011; Rowley and
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Dawson, 2017). Commonly, reduced-order models are constructed via projection-based methods, such
as proper orthogonal decomposition (POD) (Noack et al., 2011; Rowley and Dawson, 2017). POD is a
decomposition method dating back to 1970 (Lumley, 1970), which enables the computation of an
optimal linear subspace based on the energy norm (Taira et al., 2017). Each POD mode is associated
with an energy, which ranks the importance of the mode, and PODmodes can be interpreted as coherent
structures of flows (Alfonsi and Primavera, 2007; Kevlahan et al., 1994; Rigas et al., 2014). There are
other methods of linear decomposition, such as the spectral POD (Lumley, 1970; Schmidt and
Colonius, 2020), dynamic mode decomposition (Schmid, 2010; Tu et al., 2014), and wavelet analysis
(Albukrek et al., 2002), which have been employed for dimensionality reduction and discovery of
coherent structures. These linear methods are relatively straightforward to implement, but may require
large numbers of modes to reduce the approximation error for accurate modeling of nonlinear flows
(Alfonsi and Primavera, 2007; Murata et al., 2020). On the other hand, nonlinear reduced-order
modeling seeks nonlinear manifolds onto which dimensionality reduction can be performed to
approximate the dynamics (Magri and Doan, 2022; Racca et al., 2023).

Machine learning has been increasingly applied for dimensionality reduction of fluids, in particular via
nonlinear autoencoders (AEs) (Csala et al., 2022; Doan et al., 2023; Eivazi et al., 2022; Fukami et al.,
2021; Fukami et al., 2024; Fukami and Taira, 2023; Magri and Doan, 2022). AEs consist of an encoding
and a decoding part: the encoding part maps the input (the physical flow field) into a lower-dimensional
latent space, whereas the decoding part maps the latent space back to the physical space. The purpose of
the AEs is to approximate the identity mapping. The turbulent system’s dynamics can be predicted on the
low-dimensional latent space with sequential methods such as reservoir computers (Doan et al., 2021;
Racca et al., 2023) and long short-term memory networks (Nakamura et al., 2021) for flow forecasting.
The latent space of AE, which is a nonlinear manifold (Magri and Doan, 2022), may be difficult to
interpret. This is because the latent variables are entangled and their coordinate bases may not be locally
orthogonal (Magri and Doan, 2022).

Themode-decomposingAE (MD-AE) was developed byMurata et al. (Murata et al., 2020) to improve
the interpretability of nonlinear decomposed fields. MD-AEs assign a decoder to each variable of the
latent space vector (latent variable), and then superpose the single-decoder outputs to generate the
MD-AE output. MD-AEs improve the visualization of flow decomposition because the effect of each
latent variable is isolated in the decoding part, unlike standard AEs in which one decoder contains the
effect of all latent variables. However, anAE outperforms anMD-AE in terms of reconstruction error with
the same latent space dimension (Eivazi et al., 2022; Murata et al., 2020). This is because the design of
MD-AEs does not capture the nonlinear coupling of the decoded latent variables. For highly nonlinear
flows, the difference between the reconstruction errors may be significant (Csala et al., 2022). Other AE
architectures, such as the hierarchical AE (Fukami et al., 2020) and the β-variational AE (Eivazi et al.,
2022; Solera-Rico et al., 2024), have been proposed to disentangle the latent variables to improve the
interpretability, but with a larger reconstruction error as compared to an AE. The decomposed fields,
nonetheless, may be still influenced by more than one latent variable, so the exact effect of each latent
variable on the output is difficult to isolate.

A comparison between mode decomposition methods, including MD-AE and POD, can be found in
the work by Csala et al. (Csala et al., 2022). Effort have been made to obtain interpretable AE latent space
for specific problems (Fukami and Taira, 2023; Fukami et al., 2024), but general interpretability of AE
latent space is an open problem (Magri and Doan, 2022; Vinuesa and Sirmacek, 2021).

The overarching objective of this article is to aid the interpretability of the latent space of common AEs.
For this purpose, we propose the decoder decomposition, which is a post-processing method for raking and
selecting the latent space of nonlinear AEs. The decoder decomposition is based on POD modes and the
decoders’ sensitivities computed as gradients. Specifically, the objectives are to (i) propose the decoder
decomposition, which disentangles the contribution of latent variables in the decoded field; (ii) analyze and
verify the decoder decomposition of two commonly used AEs (the standard AE and the MD-AE) with
synthetic data from numerical simulation of the unsteady two-dimensional wake past a cylinder; and
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(iii) apply the decoder decomposition to gain physical insight into a realistic flow (three-dimensional
turbulent flow from wind-tunnel experiments) and isolate the latent variables of physical interest with a
filtering strategy. The three-dimensional turbulent flow is the high-speed wake past a bluff body.

This article is organized as follows. First, we provide an overview of POD in Section 2 and detail our
datasets in Section 3. Next, we introduce the AE architectures in Section 4 and propose the decoder
decomposition in Section 5. We apply the decoder decomposition to decompose the unsteady laminar
cylinderwake and investigate the impact of the dimension of the latent space on the interpretability ofAEs in
Section 6.We decompose thewind-tunnel wake in Section 7 and demonstrate how to rank latent variables to
filter for coherent structures in the output of the AEs. We present our conclusions in Section 8.

2. Proper orthogonal decomposition

LetQ∈ℝN ×Nt be a generic dataset of some fluctuating quantites from a flow field such that each snapshot
is a column, where N is the product of the number of grid points, the number of variables, and Nt is the
number of snapshots. The ith row, Qi,:, is the time series of the measured quantity at grid point i. The tth
column,Q:,t, is the snapshot of the measured quantities at the discrete time step t. (In this article, either the
fluctuating velocities or the pressure is measured.) The covariance matrix C ∈ℝN ×N is

C¼ 1
Nt�1

W pQQ
TW T

p ¼ΦΛΦT , (2.1)

where W p is the POD weight matrix given to each element of Q, Λ is the diagonal matrix of the
eigenvalues, andΦ∈ℝN ×N is the matrix of the eigenvectors. The weight matrix for each dataset is given
in Section 3. The ith column of the matrix of eigenvalues,Φ:,i, is the PODmode i, which represents the i th
principal axis of the space occupied by the observed data ranked by the eigenvalues, that is, the energy of
themode (Taira et al., 2017;Weiss, 2019). Thematrix of temporal coefficientsA is obtained by projecting
the data matrix onto the POD modes

A¼QTΦ, (2.2)

which contains the temporal coordinates of the data snapshots along the principal axes (Weiss, 2019). The
ith row of A, denoted Ai,:, contains the time series of the time coefficient of the ith POD mode. The time
coefficient for the mode i at time step t is Ai,t. By setting Nm <N as the truncated number of modes for
reconstructing the flow, we approximate the flow field in the subspace spanned by the first Nm POD
modes

~Q¼
XNm

i¼1
Φ:,iA

T
i,:: (2.3)

IfNm¼N, then ~Q¼Q, that is, no approximation is made, and only a linear change of coordinate system is
performed.

3. Datasets and preprocessing

Two datasets are considered in this article. First, an unsteady laminar wake behind a cylinder, which is the
benchmark case whose dynamics are well-known (Section 3.1). Second, a wind-tunnel dataset of a three-
dimensional turbulent bluff body wake (Brackston, 2017) (Section 3.2). Both datasets are characterized
by POD analysis.

3.1. Unsteady laminar wake of a two-dimensional cylinder

The unsteady laminar wake behind a 2D circular cylinder at Reynolds number Re ¼ 100 is generated by
solving the dimensionless Navier–Stokes equations
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∇ �u¼ 0
∂u
∂t
þu �∇u¼�∇pþ 1

Re
Δu

 
, (3.1)

where the vector u∈ℝNu with Nu¼ 2 is the velocity, p is the pressure, and t is the time. The velocity and
length are nondimensionalized by the inlet velocity U∞ and the diameter of the cylinder D. The
computation domain has size L1¼ 12, L2¼ 5, and L3¼ 1 (Figure 1), divided uniformly into 513, 129,
and 8 nodes in streamwise, wall-normal and spanwise directions1, respectively. The boundary conditions
are Dirichlet boundary condition at x1¼ 12; slip walls at x2¼ 0 and x2¼ 5; and the periodic at x3¼ 0 and
x3¼ 1. The center of the cylinder is at 3,2:5ð Þ. The dataset is simulated with direct numerical simulation
using Xcompact3D (Bartholomew et al., 2022). A time stepΔt¼ 0:0002 is chosen to satisfy the Courant–
Friedrichs–Lewy condition. The numerical schemes are the sixth-order compact scheme in space (Laizet
and Lamballais, 2009) and the third-order Adams–Bashforth in time. The simulation matches the results
of Ganga Prasath et al. (Ganga Prasath et al., 2014).

The transient period of the first 100 time units at the beginning of the simulation is discarded to ensure
the dataset contains only the periodic flow (Ganga Prasath et al., 2014). Snapshots of the streamwise
velocity, u1, are saved every 0:125 time units, giving over 40 snapshots per vortex shedding period, T lam

The final dataset contains 720 snapshots. We consider a 200-by-129 grid behind the cylinder (gray box in
Figure 1). The domain includes areas from 0 to 4:5D downstream of the body, capturing the near wake and
the vortex shedding (Zdravkovich, 1997). The dataset used by the AEs, U ∈ℝN1 ×N2 ×Nt , consists of the
fluctuating streamwise velocity, where Nt ¼ 720 is the number of snapshots, N1¼ 200 and N1¼ 129 are
the number of grid points in the streamwise and wall-normal directions, respectively.

We perform POD on the dataset U to obtain the POD modes Φlam and the matrix of time coefficients
Alam, referred to as the “data modes” and “data time coefficients,” respectively, where lam stands for
“laminar.” Examination of the eigenvalues shows that the data modes are out-of-phase pairs, the two
modes in a pair contain a similar amount of flow energy (Figure 2, left panel) and their time coefficients are

Figure 1. Snapshots of the streamwise velocity of the laminar wake dataset at different times within the
same period. Avortex shedding period is denoted with T lam. The area bounded by the gray box is used for

training.

1 XCompact3D only accepts 3D domains. Therefore, the 2D flow is simulated as one x1–x2 plane of the wake of an infinitely long
cylinder.
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90 ° out-of-phase (Figure 2, center panel). Figure 3 shows the first six data modes of the laminar dataset.
The first two data modes represent the vortex shedding, at the vortex shedding frequency, and the higher
modes oscillate at the harmonic frequencies (Loiseau et al., 2020). The magnitude of the fast Fourier
transform in time, summed over the grid points, is used to measure the overall frequency content of the
dataset, shown in Figure 2 (right panel). The frequency content of the flow is described in terms of the
Strouhal number, St¼ fD=U∞, where f is the frequency measured in Hz. The dominant frequency is
the vortex shedding frequency at St¼ 0:23, and the dataset also contains higher harmonic frequencies.
Each pair of data modes oscillates at a single, distinct frequency (Figure 2, right panel). The first pair,
comprised of data modes 1 and 2, oscillates at the vortex shedding frequency, while the subsequent pairs,

Figure 2.PODof the laminar wakeU. Left: the percentage energy contained in the first six PODmodes of
the unsteady wakeΦlam (data mode). Data modes 1 and 2, 3 and 4, and 5 and 6 contain similar flow energy
and oscillate at the same frequency but out of phase. Center: phase plot of the first two data time coefficients.
Right: the frequency spectrum of the data and the data time coefficients 1, 3, 5, and 7, normalized by their
standard deviations. The data contain the vortex shedding frequency and its harmonics. (Since each pair

has the same frequency spectrum, only the odd data modes are shown here.)

Figure 3. The first six PODmodes (datamodes) of the unsteadywake behind a cylinderdatasetΦlam
:,1 ,…,Φlam

:,6 .
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composed of datamodes 3 and 4, oscillate at the first harmonic, and so forth. The concentration of the flow
energy in the leading data modes and the distinct frequencies of the data time coefficients make the
unsteady wake behind a cylinder suitable for dimensionality reduction and interpretation with POD.

3.2. Turbulent wake of a bluff body from wind-tunnel experiments

The turbulent wake of an axisymmetric body from wind-tunnel experiments (Rigas et al., 2014;
Brackston, 2017) is employed in the second part of this article. Figure 4 shows the experimental setup.
The axisymmetric body has a diameter of D¼ 196:5 mm and a length-to-diameter ratio L=D¼ 6:5.
Pressure measurements at the base of the body are collected via 64 static pressure sensors placed on a
regular polar grid, with eight grid points in the radial direction and eight grid points in the azimuthal
direction (Figure 4). We provide here an overview of the dataset. For a more in-depth analysis of the
dataset and the experimental setup, the readers are referred to (Rigas et al., 2014).

The mean and root-mean-squared (RMS) pressures are both axisymmetric (Figure 5). The power
spectral density (PSD) of the pressure data is shown in Figure 5 (right), premultiplied by the Strouhal
number to improve the visualization (Rigas et al., 2014). The peaks at St≈ 0:002, 0:06, and 0:2 are
associated with the 3D rotation of the symmetry plane, pulsation of the vortex core, and vortex shedding,
respectively.

The weighted POD (each data point is weighted by the area of the element of the polar grid) is applied
to the dataset (Rigas et al., 2014; Brackston, 2017). The resulting POD modes Φexp and time coefficients
Aexp are the data modes and data time coefficients, respectively, where exp stands for “experimental.”
Figure 6 shows the energy contained in each data mode of the wind-tunnel dataset and the cumulative
energy of themodes. The flow energy is spread overmoremodes than the laminar case, and 21 datamodes
are needed to reconstruct the dataset to recover 95% of the energy. The modes and the premultiplied PSD
of their time coefficients are shown in Figure 7. Datamodes 1 and 2 are antisymmetric and have frequency
peaks at St≈ 0:002,0:1and0:2. As a pair, data modes 1 and 2 represent vortex shedding and the “very-low-
frequency” 3D rotation of the symmetry plane (Rigas et al., 2014). Data mode 3 has a frequency peak at
St≈ 0:06 and is associated with the pulsation of the vortex core (Rigas et al., 2014; Brackston, 2017). The

Figure 4.Experimental setup, reproduced from(Rigas, 2021). The dimensions x1 and x2 are the measured
location nondimensionalized by the diameterD. The black dots mark the location of the pressure sensors.
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data modes 4 and 5 contain the subharmonic frequencies. Data modes 1–5 contain the coherent structures
of the dataset. We base our analysis and latent variable selection on the interpretation of the data modes
Φexp provided here. We consider the fluctuating field, following the same logic as for the laminar cylinder
wake dataset. The final experimental pressure dataset employed for training is P ∈ℝN ×Nt , where
Nt ¼ 420000 is the number of available snapshots in time, sampled at a sampling frequency of 225 Hz
and N ¼ 64 is the number of pressure sensors. The dataset P contains data collected for over 1800 s.

4. Autoencoder architectures

An AE approximates the identity function by means of an encoder and a decoder. We define a generic
Y ∈ℝN∗ ×Nt , where N∗ is the spatial dimension. For all time steps, the encoder Fen :ℝN∗!ℝNz maps the
snapshot of the data at time t, Y :,t into a latent space, represented by a latent vector Z :,t, where Nz ≪N∗ is
the dimension of the latent space. The ith latent variable isZ i,:. The encoder,Fen, is a composition of layers

f 1ð Þ
en , f

2ð Þ
en ,…, f nð Þ

en and activation functions θ 1ð Þ
en ,θ

2ð Þ
en ,…,θ nð Þ

en applied to each layer. The decoder, Fde, is a

composition of layers f 1ð Þ
de , f

2ð Þ
de ,…, f nð Þ

de and the activation functions θ 1ð Þ
de ,θ

2ð Þ
de ,…,θ nð Þ

de applied to each layer

Fen¼ θ nð Þ
en ∘ f nð Þ

en ∘ θ n�1ð Þ
en ∘ f n�1ð Þ

en … ∘ θ 1ð Þ
en ∘ f 1ð Þ

en ,

Fde¼ θ nð Þ
de ∘ f nð Þ

de ∘ θ n�1ð Þ
de ∘ f n�1ð Þ

de … ∘ θ 1ð Þ
de ∘ f 1ð Þ

de ,
(4.1)

Figure 5. The wind-tunnel pressure dataset P. Left: Mean pressure. Center: RMS pressure. Right: The
premultiplied PSD (St�PSD) of the wind-tunnel dataset, with peaks at St≈ 0:002,0:06 and St≈ 0:2 and its
harmonics. The peaks correspond to the three-dimensional rotation of the wake, the pulsation of the

vortex core, and the vortex shedding and its harmonics, respectively.

Figure 6. POD of the wind-tunnel dataset P. Left: Percentage energy of the first 10 data modes. Right:
Cumulative percentage energy of POD modes. The reconstruction of the pressure dataset to 95% energy

needs 21 data modes.
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where n is the number of layers. Each layer (f ∗ð Þ
en or f ∗ð Þ

de ) maps the output of the previous layer to the input

of the next layer, and is a function of the trainable parameters (ω ∗ð Þ
en or ω ∗ð Þ

de ). Each layer is either a
convolution or a linear mapping depending on the test case and the datasets. Details of the layers and
activation functions are explained in Sections 4.1 and 4.2.

The decoding part maps the latent vector at t back to the original space, with the output bY :,t

approximating the input Y :,t. The AE is trained with snapshots at all t to output bY , which approximates

the input Y . The error between bY and Y is measured with the mean squared error (MSE)

MSEðY , bY Þ¼ 1
N∗ ×Nt

XN∗

i¼1

XNt

t¼1
ðYi,t� bYi,tÞ2: (4.2)

The parameters of the AE, ω¼ ω 1ð Þ
en ,…,ω nð Þ

en ,ω
1ð Þ
de ,…,ω nð Þ

de ,
n o

, are obtained by minimizing the MSE

ω∗¼ argmin
ω

MSE Y , bY� �
: (4.3)

This analysis includes two different AE architectures—the standard AE (Section 4.1) and the MD-AE
(Section 4.2). Because we use networks with no bias and train on the fluctuating fields, the trivial latent
vector 0 maps to the trivial output 0. Two types of intermediate layers are employed—convolutional
layers for the laminar dataset, and feedforward layers for the wind-tunnel dataset to handle the polar grid.

Figure 7. Left: The premultiplied PSD (St PSD) of their associated time coefficients Aexp
1,: toA

exp
5,: . Middle:

The temporal evolution of the data time coefficients,Aexp
1,: toA

exp
5,: , for the first 10 seconds of the experiment.

Right: The first five data modes of the wind-tunnel dataset Φexp
:,1 to Φexp

:,5 .
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In this section, we define theAEs for a generic input datasetY , where the spatial dimensionN∗ depends
on the dataset under investigation (numerical and wind-tunnel datasets) and the AE architectures. The
inputs and AE architectures are summarized in Table 1.

4.1. Standard autoencoders

We refer to a standardAE as anAEwith the structure shown in Figure 8, which consists of one encoderFen

and one decoder Fde. In compact notation, an AE is

Z :,t ¼Fen Y :,t;ωð Þ,bY :,t ¼Fde Z :,t;ωð Þ: (4.4)

Table 1. Different autoencoder architectures and the training datasets

Results in section Autoencoder architecture Inputs Y Spatial dimension N∗

6.1 MD-AE (CNN) U 200 × 129
6.2 AE (CNN) U 200 × 129
7 AE (feedforward) P 64

Figure 8. The schematics of the standard autoencoder (AE). Different AEs are employed for different
datasets and tests. The AE architecture and dataset for each test are listed in Table 1a. (a) AE for

decomposing the laminar cylinder wake U with three convolution layers in both the encoder and the
decoder. The hyperparameters are in Tables A.1 and A.2 in the Appendix. (b) AE for decomposing the
wind-tunnel pressure data P with five feedforward layers. The input is a flattened vector of measurement
taken from all sensors at time t. The hyperparameters are given in Tables A.3 and A.4 in the Appendix.
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Details of the layers are given in the Appendix A (Tables A.1–A.4). All neural networks that have the
convolutional encoder and decoder share the same layers and filter size (Tables A.1 and A.2). The
feedforward AEs have layers given in Tables A.3 and A.4 unless stated otherwise. For all the AEs, we use
the activation function “tanh” because the outputs contain both positive and negative values.
(We performed further tests in which we found that the AEs do not train well with an activation function
that does not contain 0, such as the “sigmoid.”) All hyperparameters are given in Table A.5.

4.2. Mode-decomposing autoencoders

AnMD-AE associates one decoder to each latent variable (Figure 9), sowe can visualize the effect of each
latent variable separately, which makes it easier to interpret (Murata et al., 2020). The MD-AE is

Z :,t ¼Fen Y :,t;ωð Þ,

bY :,t ¼
XNz

i¼1
Fi
de Z i

:,t;ω
� �|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
� M i

:,:,t

(4.5)

whereM i denotes the ith decomposed field of the MD-AE andM i
:,:,t is the ith decomposed field at time

step t, corresponding to the output of the ith decoder. The MD-AE is only applied to the laminar cylinder
wake case (the reasoning behind this decision is explained in Section 6).

5. The decoder decomposition

The dynamics of POD modes are encapsulated in their time coefficient. To gain physical insight into the
decomposed fields, we propose the decoder decomposition to obtain a relationship between the data time
coefficients (Eq. (2.2)) and the latent variables trained with the same data. The decoder decomposition is a
post-processingmethod that applies to a trained network.We define the decoder decomposition for AEs in
Section 5.1 and for MD-AEs in Section 5.2.

5.1. The decoder decomposition for standard autoencoders

The data modesΦY (the matrix of PODmodes of Y , see Table 1) form a basis of the subspace in which the
output bY :,t is represented as

Figure 9. Schematic of the MD-AE (Murata et al., 2020) with two latent variables as an example. Each
latent variable is decoded by a decoder to produce a decomposed field. The sum of the decomposed fields

M1 and M2 is the output of the MD-AE.
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bY :,t ¼
XN∗

k¼1
Bk,tΦ

Y
:,k ¼ΦYB:,t, (5.1)

with B∈ℝN∗ ×Nt being the temporal coefficients (decoder coefficients). The decoder coefficient for the
data mode k at time step t is Bk,t. The matrix form of Equation (5.1) isbY ¼ΦYBT : (5.2)

In other words, the reconstructed flow bY is expressed as a linear combination of the POD modes of the
original training data Y with B being the matrix of coefficients. In a trained network, B depends only bY ,
which depends only on the latent variables Z . Thus, the gradient of the output of the decoder with respect
to the latent variables is

dbY
dZ
¼ΦY dB

dZ
: (5.3)

The gradient of the decoder coefficients is the sensitivity to changes in the latent variables. Each element

of the gradient matrix dbY
dZ

� �
j,i,t

is the rate of change of the output at grid point j and time step t ðbYj,tÞ with
respect to the latent variable Zi,t. Because a single decoder coefficient corresponds to a single data mode,
which represents a coherent structure; thus, the gradient of the decoder coefficients also reflects the
sensitivity of the coherent structure to changes in the latent variables. Physically, the sensitivity quantifies
the relative importance of the different latent variables for the decoder coefficients and the data modes
they represent.We quantify the relative importance of the decoder coefficientBj,: due to the latent variable
Z i,: by defining the average rate of change

ϵi,j ¼

Z
∂Bj,:

∂Z i,:

���� ����dZ1,:…dZNzZ
dZ1,:…dZNz

: (5.4)

The average rate of change of a decoder coefficient due to a latent variable i quantifies its contribution to the
datamode j in theoutput associatedwith that decoder coefficient (Eq. 5.1).The larger the ϵi,j, themore important
the latent variable i is in representing the data mode j in the output. This can be used to rank and select latent
variables, as demonstrated in Section 7.2. Algorithm 1 shows how the average rate of change is computed.

Algorithm 1: Computing the average rate of change.

Input: Fde–trained decoder.
Δz–constant step size.

Output: ϵ–average rate of change.

for i 1,…,Nz do.

dbY
dZ i,: 1

Z i,:ð Þ
Fde Z i,:þΔzð Þ�Fde Z i,:�Δzð Þ

2Δz

��� ; // approximate derivatives & normalize

end

Collect dbYdZ;
dB
dZ
 ΦYT dbY

dZ
;

ϵT 1
Nt

PNt
t¼1

dB
dZ

�� ��
:,:,t; // average rate of change

return ϵ.
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5.2. Decoder decomposition for MD-AEs

In an MD-AE, the decomposed fields M i is decomposed into

M i¼ΦYBiT , (5.5)

where Bi is the matrix of the ith decoder coefficients of the ith decomposed field. Combined with
Equation (4.5), the output of the MD-AE becomes

bY ¼ΦY
XNz

i¼1
BiT : (5.6)

Equations (5.3) and (5.4) still apply as they are.

6. Decomposition of the unsteady laminar wake

In this section, we analyze the latent space of AEs trained with the laminar cylinder wake dataset
(Section 3.1). We first decompose the dataset with an MD-AE and apply the decoder decomposition in
Section 6.1, which serves as a benchmark to compare against the literature. We then apply the decoder
decomposition to interpret the latent variables of AEs in Section 6.2.

6.1. The latent space of a mode-decomposing autoencoder

We decompose the unsteady wake dataset, described in Section 3.1, with an MD-AE with Nz¼ 2
(Figure 10) and compare our results with (Murata et al., 2020) to verify the decoder decomposition.
The reconstruction loss, measured with MSE (Eq. (4.2)), is 2:6× 10�5, showing that the output bU is an
accurate approximation of U . Figure 10a shows that the latent variables have the same periodic behavior
as the data time coefficients, matching the results of Murata et al. (2020). By applying POD to the
decomposed fields and by inspection, the decomposed field 1 contains the data modes 1, 3, and 6, and the
decomposed field 2 contains the data modes 2, 4, and 5 (Figure 10c), similarly to what was observed by
Murata et al. (Murata et al., 2020). This observation is based on visual inspection of the PODmodes of the
decomposed fields (Figure 10c) and the data modes (Figure 3), which is a qualitative comparison.
Therefore, the POD modes of the decomposed fields may have different physical interpretations to the
data modes they resemble. A quantitative comparison between the decomposed fields and the data modes
is performed later in this section by applying the decoder decomposition. Figure 10b shows that the two
latent variables have the same frequency spectrum, with peaks at St¼ 0:23 and 0:69, corresponding to the
vortex shedding frequency and its second harmonic. Because the decomposed field 1 contains a POD
mode similar to data mode 1 and the decomposed field 2 contains a similar mode to data mode 2, and the
two latent variables have an identical frequency spectrum, are periodic and out of phase, we conclude that
the two latent variables form a pair similar to the data time coefficients. However, the latent variables have
two frequency peaks instead of a singular peak of the first two data time coefficients, showing that the
latent variables contain nonlinear temporal information.

We apply the decoder decomposition to the MD-AE and plot the first four decoder coefficients for the
two decomposed fields in Figure 11. None of the first four decoder coefficients are constant in Figure 11,
meaning that the first four data modes all contribute toward both decomposed fields. The relative
frequencies of the latent variables and the decoder coefficients can also be deduced from Figure 11. As
the latent variables change from�1 to 1, decoder coefficients 1 and 2 in both decomposed fields complete
a quarter of a sine wave, but the decoder coefficients 3 and 4 complete half a sine wave, meaning that
decoder coefficients 3 and 4 oscillate at double the frequency of decoder coefficients 1 and 2.

For a more quantitative measure of how the data modes are split into the decomposed fields of the
MD-AE, we calculate the equivalent energy (Kneer et al., 2021) for each decomposed field separately.

Thematrix of equivalent energy for the ith decomposed field and the datamodes of the laminar flow, bΛi
, is

given by
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bΛi¼ 1
Nt�1

BiBiT , (6.1)

which is interpreted as the variance of the ith decomposed field,M i, projected onto the data modes. The

equivalent energy of the ith decomposed field and the kth datamode is bΛi

kk . AsM
i approaches the first data

POD decomposed field (Φlam
:,1 AT

i,:), bΛi

11 approaches Λ11 while bΛi

kk , where k ≠ 1, approaches 0.
Figure 12 shows the equivalent energy of the first six data modes in the two decomposed fields and in

the predicted output bU . The equivalent energies of the predicted output for all data modes are approxi-
mately 100%, meaning that the output bU is an accurate approximation ofU. Figure 12 also shows that all
latent variables jointly contribute toward the presence of the data modes in the output, which also shows
that the MD-AE does not fully separate data modes into different decomposed fields.

(a) (b)

(c)

Figure 10. Results of training the MD-AE on the laminar wake dataset with a latent dimension of
2. (a) Both latent variables are periodic in time. (b) Frequency spectrum of the latent variables,

normalized by their standard deviation, compared with the frequency of the data. The latent variables
both contain the vortex shedding frequency and the second harmonic of the vortex shedding frequencies.
(c) A snapshot output of theMD-AE (mean flow added) and the PODmodes of the decomposed fields. The

POD modes of decomposed field 1 are similar to data modes 1, 3, and 6 and the POD modes of
decomposed field 2 are similar to data modes 2, 4, and 5.
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In summary, the decoder decomposition applied to anMD-AE (Murata et al., 2020) leads to a detailed
interpretation of the decomposed fields. By computing the equivalent energy, we also show that, although
the MD-AE works well for visualization, the decomposed fields are entangled.

6.2. The latent space of standard autoencoders

Unlike theMD-AE, anAE has no decomposed fields to visualize.We apply the decoder decomposition to
AEs trained with the unsteady wake dataset to connect the data time coefficients to the latent variables.
Since the frequency content of data modes of the laminar, periodic wake are well known (Zdravkovich,
1997), we use the interpretation of the data modes and time coefficients to provide an interpretation of the
latent variables.

Figure 13 shows the loss of AEs trained with the unsteady wake dataset using 1, 2, 3, and 4 latent
variables. The first plateau of loss occurs at Nz¼ 2 before the loss decreases again at Nz¼ 4. Similar
behavior is also observed by Csala et al. (2022). The AEs with two latent variables achieve a significantly
smaller loss than AEs with a single latent variable but the difference in loss between using two and three
latent variables is small. The laminar wakeU has periodic underlying dynamics and thus can be described
by a single variable in polar coordinates (the angle) or two variables in Cartesian coordinates. However,
theAEs do not find the best representationwhen forced to use only one latent variable due to their inability
to perform Cartesian to polar transformation. Polar to Cartesian relies on the sin function, which is a
many-to-one function and can be learned by neural networks either through approximation with any
activation function or by using sin as the activation function (Wong et al., 2024). However, the Cartesian

Figure 12. Results from the MD-AE trained with the laminar wake dataset with two latent variables. The
equivalent energy of the two decomposed fields of the MD-AE, showing the first four POD modes of the

data. All POD modes of data are present in both decomposed fields.

Figure 11. Results from the MD-AE trained with the laminar wake dataset with two latent variables. The
first four decoder coefficients plotted against the latent variables. Both latent variables affect the

magnitude of the first four POD modes of the data in the output of the MD-AE.
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to polar transformation relies on arcsin , which is not defined for all inputs. The Cartesian to polar
transformation is a known difficulty inmachine learning, with benchmark problems such as the two-spiral
problem built around it (Fahlman and Lebiere, 1989; Liu et al., 2018), this is consistent with our
observations (Figure 13). Therefore, we analyze an AE with Nz¼ 2 with decoder decomposition to
obtain the physical interpretation in the current section, even though Nz¼ 1 should be the theoretical
minimum number of latent variables to represent the laminar wake.

The phase plot of the two latent variables is a unit circle (Figure 14a), which indicates that the latent
variables of an AE are periodic; the same phase plot also describes the first two data time coefficients. The
same periodic behavior also shows in the time trace of the latent variables (Figure 14b). Figure 14c
compares the frequency spectrum of the latent variables and the data. We find that both latent variables
oscillate at the vortex shedding frequency, which is the lowest frequency in the dataset (Figure 2, right
panel). The higher harmonic frequencies are not included in the latent variables because they are functions
of the vortex shedding frequency, and the decoder can represent the spatial patterns of multiple data
modes. The AE has produced latent variables that have a singular peak in the frequency spectrum, less
than the frequency spectrum of the latent variables of the MD-AE, without sacrificing accuracy, showing
that AEs are more expressive given the same number of latent variables than MD-AEs.

Figure 15 shows the sensitivity of the decoder coefficients,B1,:,…,B4,: to the two latent variables. The
contours are the values of the decoder coefficients, shown for all values of the latent variables allowed by
the nonlinear activation function. The dynamics of the dataset are shown as the gray circle, which shows
the values of the latent variables that are observed during training.

The decoder coefficients B3,: and B4,: have double the frequency of B1,: and B2,:, consistent with the
characteristics of the first four data modes. At Z ¼ 0, all decoder coefficients have the value 0 because the
network has no bias. Figure 15 provides a qualitative overview of the sensitivity of the data modes to
the latent variables.

Because the decoder output bU depends on multiple latent variables, the equivalent energy (Eq. (6.1))
cannot be used to identify the contribution of each latent variable. We use the average rate of change
(Eq. (5.4)) to quantify the contribution of individual latent variables of theAE (Figure 16). Among the first
four data modes, latent variable Z1,: contributes most to the presence of the second data modeΦlam

:,2 in the
output bU , while Z2,: mainly contributes toward the presence of the other three data modes. The first six
data modes depend on both latent variables, so no latent variable can be removed without affecting the
dynamics of the output. However, the average rate of change suggests that the smaller-scale energy-
containing structures between the vortex streets (Zdravkovich, 1997), namely the pair comprised of data
modes 3 and 4, are mainly represented by Z2,:. Therefore, Z2,: should be used if the representation of data
modes 3 and 4 in the output is required.

Figure 13. The MSE of AEs trained with the unsteady wake dataset with different numbers of latent
variables averaged over five repeats each. The error bars represent the standard deviation of the repeats.

At Nz¼ 2, the MSE is approximately 1:3 × 105.
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By comparing the frequency spectrum of the latent variables of the AE and the MD-AE (Section 6.1),
both with Nz¼ 2, we find that the AE has learned a more accurate representation of the data than the
MD-AE because the latent variables have the minimum number of frequency peaks needed to represent
the data. The frequency of the two latent variables coincides with the lowest frequency in the frequency
spectrum of the data, meaning that the data modes with higher frequencies are added by the decoder. By

Figure 14.Results from the AE trained with the laminar wake dataset with two latent variables. (a) Phase
plot of two latent variables. The unit circle indicates harmonic oscillations. (b) Time trace of the two latent
variables. The latent variables are periodic and 90 ° out of phase, behaving the same as the first two data
time coefficients. (c) The frequency spectrum of the latent variables, compared to the frequency in the
dataset. The variables are normalized by their standard deviation, σ, before applying the Fourier

transform for visualization.

Figure 15. Contour plots of the first four decoder coefficients of an AE with two latent variables, trained
with the laminar wake dataset. The contours show the values of the decoder coefficients. The gray circle
labels the values of the latent variables observed during training, which shows the dynamics of the

dataset. The images in the last column show the output of the AE at points 1 and 2 labeled on the contour
plots.
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introducing the average rate of change, we show that both latent variables are equally important in
representing the vortex shedding, but the first harmonic is contained mainly in one of the latent variables
in this case. Because the training of an AE depends on random seeds, the physical meaning of the latent
variables may change for different cases. During training, we noticed that the dimension of latent space
has a significant impact on the physical interpretation of the latent variables.2 In-depth comments with
example AEs trained with Nz¼ 1 and Nz¼ 3 are found in Appendix C.

7. Autoencoder decomposition of the turbulent wake from wind-tunnel experiments

We analyze theAEs trained to decompose thewind-tunnel wake datasetP (Section 3.2).We show that, for
a turbulent dataset, the size of the network becomes an additional limiting factor for the interpretability of
AEs in Section 7.1. We demonstrate how to select latent variables to single out a particular flow structure
in Section 7.2.

7.1. The limiting factor is network size for turbulence

At least two latent variables are needed to represent flows with periodicity (Section 6.2). Because the
turbulent wake of the axisymmetric body contains periodic behaviors such as vortex shedding (Brackston,
2017), we first train an AEwith two latent variables on thewind-tunnel dataset (feedforward, see Table 1).
Figure 17 (top & bottom left panels) shows the RMS pressure and the frequency content of the predicted
pressure. The frequency peaks of the reconstructed pressure field match the data, but the RMS pressure
and the magnitude of the PSD differ from the reference pressure field. We investigate the effect of
increasing the latent variables from two to three. The prediction made by the AE with Nz¼ 3 is more
accurate in both the RMS pressure and frequency content (Figure 18, top & bottom left panels) compared
to the prediction by theAEwithNz¼ 2. By increasing the number of the latent variables from two to three,
the prominent frequencies of the prediction remain unchanged, but themagnitude is closer to the reference
data. By increasing the dimension of the latent space from Nz¼ 2 to Nz¼ 3, the prediction has improved
without changing any frequency-related behavior. This suggests that the benefit of increasing the latent
dimension comes from increasing the size of the decoder, thus improving the decoder’s ability to express
spatial patterns.

To further understand the cause of the improved prediction, we train a large decoder-only network
(Figure 19) with the latent variables obtained with the previous Nz¼ 2 AE. (The details of the large

Figure 16.Results from the AE trained with the laminar wake dataset with two latent variables. The figure
shows the average rate of change of the decoder coefficients due to the latent variable i.

2 The results presented in Section 6.2 are fromAEs trainedwith the ‘tanh’, which are consistent. Training anAEwithNz ¼ 2 using
“ReLU” occasionally lead to results similar to those shown in Appendix C.
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decoder are given in Table A.6.) The large decoder has approximately twice the number of trainable
parameters than the decoder in the previous Nz¼ 2 AE. The input to the large decoder is the latent
variables obtained from the trained Nz¼ 2 AE, the frequency contents of which are shown in Figure 17
(bottom right panel); the output of the large decoder approximates the reference fluctuating pressure P.

The PSD of the large decoder-only network overlaps with the PSD of the Nz¼ 3 smaller-sized AE
(Figure 20 right panel), both are closer to the PSD of the reference data than the smallerNz¼ 2AE.When
the latent variables remain unchanged, the large decoder-only Nz¼ 2 network can make predictions that
match the predictions made by a smaller dimension Nz¼ 3 AE. By comparing the results of the smaller
size Nz¼ 2 and Nz¼ 3 AEs to the large decoder-only network with identical latent variable to the Nz¼ 2

Figure 17. The AE trained with the wind-tunnel dataset with two latent variables. Top left: Predicted RMS
pressure. Top right: Predicted instantaneous pressure. Bottom left: The premultiplied overall PSD of the
prediction. Bottom right: The premultiplied PSD of the latent variables of the AE trained with two latent

variables, normalized by their standard deviation.

Figure 18. Same as Figure 17 with three latent variables.
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AE, we find that using a larger decoder has the same effect as increasing the number of latent variables.
More importantly, the frequency peaks in the latent variables and predictions remain the same for all three
networks. Therefore, we conclude that the critical factor for an accurate prediction using the wind-tunnel
dataset, which containsmultiple spatiotemporal scales, is the size of the decoder. In anAE, the weights are
responsible for representing the spatial patterns in the flow, and the latent variables represent the time-
dependent behaviors. We found that the optimal dimension of the latent space is a function of both of the
underlying manifold’s dimension (Magri and Doan, 2022; Doan et al., 2023; Racca et al., 2023) and the
size of the decoder.

7.2. Filtering unwanted latent variables

Section 7.1 shows that changing both the dimension of the latent space,Nz, and the size of the AEs have a
similar effect for the turbulent datasets. In this section, we apply the proposed decoder decomposition to

Figure 19. The schematics and training process of the decoder-only network. The decoder has 99%more
trainable parameters than the decoder in the Nz¼ 2 AE discussed in Section 7.1.

Figure 20. Left: Predicted RMS pressure of the decoder-only network. Right: The premultiplied PSD of
the predicted pressure from the AE with two and three latent variables, and from the large decoder-only

network, trained with the wind-tunnel dataset.
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filter out unwanted latent variables. When training on the turbulent pressure dataset, P, we find that the
MSE is sufficiently small at Nz ≈ 28 (Figure 21). Therefore, we employ the AE with 28 latent variables.
We filter the latent variables to enhance or reduce the importance of certain data modes among other data
modes in the output of the AEs, similar to selecting data modes for reconstructing only a particular
coherent structure. Figure 22 shows the results from the AE with 28 latent variables. The RMS predicted
pressure is in agreement with the reference RMS pressure, and the prediction has PSD that approximates
the data’s PSD in terms of both magnitude and frequency content. To understand which data modes are
present in the prediction, we define the equivalent energy for an AE with a POD weight matrix, W p

(Eq. 2.1), as

bΛ¼ 1
Nt�1

ΦYT W pΦ
YBT

� �
BΦYTW T

p

� �� �
ΦY (7.1)

from Equation (6.1) (Kneer et al., 2021). The matrix ΦY ¼Φexp contains the data modes. Figure 23a
compares the equivalent energy of the predicted pressure from the AE with Nz¼ 28 with the POD
eigenvalues of the reference data. The prediction contains a similar amount of energy to the reference data
for the more energetic coherent structures identified by POD.We focus our analysis on data modes 1 and

Figure 21. AE with different numbers of latent variables and the same hyperparameters, trained with the
wind-tunnel dataset. The loss stops decreasing at Nz ≈ 28. Figure 22 shows the results from the AE with
28 latent variables. The RMS predicted pressure is in agreement with the reference RMS pressure, and the
prediction has PSD that approximates the data’s PSD in terms of both magnitude and frequency content.
To understand which data modes are present in the prediction, we define the equivalent energy for an AE

with a POD weight matrix, Wp (Eq. 2.1), as:

Figure 22. RMS predicted pressure and premultiplied PSD of the prediction of the AE trained with the
wind-tunnel dataset with 28 latent variables. The network attains anMSE equivalent to the reconstruction

with 30 POD modes.
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2, which represent vortex shedding. Figure 23b shows how each latent variable affects the decoder
coefficients 1 and 2 in the prediction, which are associated with data modes 1 and 2 in the prediction. We
compute the average rate of change ϵi,j (Equation (5.4)) and focus the analysis on data modes 1 and
2, which represent vortex shedding. Figure 23b shows how each latent variable affects the decoder
coefficients 1 and 2 in the prediction, which are associated with PODmodes 1 and 2 in the prediction. For
both datamodes, the largest contribution comes from the latent variable 13, followed by the latent variable
28. The numbering changes with the random seeds and the gradient update algorithms, but the
conclusions do not. For the output of the AE to represent mainly the data modes 1 and 2, we set all
latent variables (except for Z13,: and Z28,:) to 0. This yields the filtered latent space Z f such thatbPf ¼Fde Z f

� �
, (7.2)

which contains mostly data modes 1 and 2. By filtering, we identify the contribution that the latent
variables make to the data modes in the output, and manipulate some latent variables based on that
contribution. Technically, by setting the latent variables to 0, we eliminate the fluctuation of the data
modes in the output of the AE. Since the AE is nonlinear, setting all but latent variablesZ13,: and Z28,: to
0 is not equivalent to truncating the data modes from mode 2. Thus, the filtering process aims to
minimize the fluctuation of the data modes Φexp

:,3 to Φexp
:,Nz

in the output. The results of decoding the
filtered latent variables are shown in Figure 24. The RMS of the filtered prediction shows strong

fluctuations only in the outer region. The PSD of the filtered prediction (Figure 25) shows that bPf has a
large amount of energy at St≈ 0:2 and St≈ 0:002. The frequency St≈ 0:06 does not appear in the PSD of
the filtered prediction, meaning that by keeping only the two most contributing latent variables for data
modes 1 and 2, the AE no longer models the pulsation of the vortex core. This means that the filtering
has been successful.

The equivalent energy in Figure 26a further shows that the filtered prediction represents only the data
modes 1 and 2, which is the objective that we set. Figure 26b shows the two leading POD modes of the
filtered prediction. The modes are approximately antisymmetric with frequency peaks at St≈ 0:2 and
St≈ 0:002, which represent vortex shedding. The structures in Figure 26b are not perfectly antisym-
metric due to information being lost by removing 26 out of 28 latent variables. The two leading modes
contain over 99% of the energy in the filtered prediction, showing that the filtering has significantly

Figure 23. The AE trained with the wind-tunnel dataset with 28 latent variables. (a) Equivalent energy of
the predicted pressure compared to the POD eigenvalues of the reference data. (b) The average rate of
change of decoder coefficients 1 and 2 due to the latent variables, normalized by the standard deviation of

the latent variables. The decoder coefficients 1 and 2 are direct analogies of the data POD time
coefficients 1 and 2, which are associated with vortex shedding.
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Figure 24. Prediction obtained with the AE with 28 latent variables from the filtered latent variables Zf

and the reference data.

Figure 25. Premultiplied PSD of the prediction obtained with the AE with 28 latent variables from the
filtered latent variables. All peaks (except for St≈ 0:2) are filtered.

Figure 26. POD on the prediction obtained with the AE with 28 latent variables from the filtered latent
variables. (a) Equivalent energy of the filtered prediction bPf compared to the POD eigenvalues of the
reference data. Among the fivemost energetic PODmodes, the filtered prediction shows a large amount of
energy only in data modes 1 and 2, which is the goal we set. (b) PODmodes 1 and 2 of bPf , which contain
over 99% of the flow energy of bPf . These two modes show the same frequency peak at St≈ 0:2 and have

antisymmetric spatial structures. These two modes represent vortex shedding.

e38-22 Yaxin Mo, Tullio Traverso and Luca Magri

https://doi.org/10.1017/dce.2024.31 Published online by Cambridge University Press

https://doi.org/10.1017/dce.2024.31


compressed the spatial information. Combining the energy, the structures, and frequency content, we
conclude that the only coherent structures in the filtered prediction are modes associated with vortex
shedding. By selecting latent variables based on contribution to the decoder coefficients, we have
successfully filtered the coherent structures of the output of the AE. Thus, we have shown decoder
decomposition as a viable method for selecting latent variables based on coherent structures of the flow
for anAEwith a large latent dimension. This is useful for filtering spurious or unwanted latent variables,
as well as singling out specific modes of interest.

8. Conclusions

We propose the decoder decomposition to help practitioners design and interpret the latent space of
nonlinear AEs. The decoder decomposition is a post-processing method which ranks the latent
variables of an AE. Two types of AEs are considered: the standard AEs with one decoder and one
encoder, and the MD-AEs with one decoder per latent variable. First, we apply the decoder decom-
position to analyze the latent space of the two-dimensional unsteady laminar cylinder wake. Both AEs
and MD-AEs are applied to the laminar wake and their results are compared. By analyzing AEs with
different latent dimensions, we show that the dimension of the latent space significantly impacts the
physical meanings of the latent variables even if the reconstruction errors remain unaffected. Second,
we apply the decoder decomposition to AEs trained with the wind-tunnel experimental data of a three-
dimensional turbulent wake past a bluff body. We show that increasing the size of the decoder has a
similar effect to increasing the number of latent variables when the number of latent variables is small.
Third, we apply the decoder decomposition to rank and select the latent variables that are associated
with the vortex shedding structures. We apply the average rate of change to rank the latent variables
based on their contribution to the data modes 1 and 2, which correspond to vortex shedding. Finally, we
filter the latent space to minimize the effect of the unwanted data modes in the AE output. The output
containsmainly the two coherent structures associatedwith vortex shedding, which verifies themethod.
The decoder decomposition is a simple yet robust post-processing method for ranking and selecting
latent variables based on the flow physics and coherent structures of interest. In the future, the decoder
decomposition will be employed to select the number of latent variables to model the flow physics of
interest.
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Appendices

A. Autoencoder layers
The convolutional autoencoders are trained with the laminar wake dataset. All convolutional AEs and MD-AEs are built with
encoders described in Table A.1 and decoders described in Table A.2. The encoders are identical except for the latent dimension Nz.
For all convolutional AEs, the decoders are identical except forNz. For all convolutionalMD-AEs, the input to the decoder has shape
(1), specified in Table A.2. When training on the wind-tunnel dataset, AEs with feedforward layers are used (Tables A.3 and A.4).
The large decoder-only network (Table A.6) is only used in Section 7.1. The hyperparameters used by all networks can be found in
Table A.5.

Table A.1. The encoder used in all convolutional AEs and MD-AEs

Layers Output shape Notes

input (200, 129, 1)
conv2d (200, 129, 8) 3-by-3 filter
maxpooling (100, 65, 8)
conv2d (100, 65, 16) 3-by–3 filter
maxpooling (50, 33, 16)
conv2d (50, 33, 32) 3-by–3 filter
maxpooling (25, 17, 32)
flatten (13600)
dense Nzð Þ Output shape is (1) if MD-AE
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Table A.2. The decoder used in all convolutional AEs and MD-AEs

Layers Output shape Notes

input Nzð Þ Shape is (1) if MD-AE
dense (13600)
reshape (25, 17, 32)
upsampling (50, 33, 32) Bilinear interpolation
conv2d (50, 33, 16) 3-by–3 filter
upsampling (100, 65, 16) Bilinear interpolation
conv2d (100, 65, 8) 3-by–3 filter
upsampling (200, 129, 8) Bilinear interpolation
conv2d (200, 129, 1) 3-by–3 filter

Table A.3. The encoder used in feedforward AEs

Layers Output shape Notes

input (64)
dense (128)
batch_normalisation (128)
dropout (128)
dense (256)
batch_normalisation (256)
dropout (256)
dense (256)
batch_normalisation (256)
dropout (256)
dense (128)
batch_normalisation (128)
dropout (128)
dense (64)
batch_normalisation (64)
dropout (64)
dense Nzð Þ

Table A.4. The decoder used in feedforward AEs

Layers Output shape Notes

input Nzð Þ
dense (64)
batch_normalisation (64)
dropout (64)
dense (128)
batch_normalisation (128)
dropout (128)
dense (256)
batch_normalisation (256)

Continued

e38-26 Yaxin Mo, Tullio Traverso and Luca Magri

https://doi.org/10.1017/dce.2024.31 Published online by Cambridge University Press

https://doi.org/10.1017/dce.2024.31


Table A.4. Continued

Layers Output shape Notes

dropout (256)
dense (256)
batch_normalisation (256)
dropout (256)
dense (128)
batch_normalisation (128)
dropout (128)
dense (64)

Table A.5. The hyperparameters used in all networks

Which network (table/figure
number(s) of the network(s)
using these hyperparameters)

MD-AEs and AEs for
the unsteady laminar
wake (Table A.1, A.2)

AEs used to search for
suitable latent
dimension (Figure 21)

AEs for the wind-tunnel
turbulent wake (Tables
A.3, A.4, and A.6)

Learning rate 0:001 0:004 0:0022
Learning rate schedule n/a CosineDecayRestarts CosineDecayRestarts
Activation function tanh tanh tanh
Regularization 0:0 0:0 0:00003
Dropout rate 0:0% 0:0% 1:4%

CosineDecayRestarts is a built-in tensorflow learning rate schedule (Abadi et al., 2015; Loshchilov and Hutter, 2017)

Table A.6. Large decoder used in Section 7.1

Layers Output shape Notes

input (2) The large decoder is only used withNz¼ 2
dense (64)
batch_normalisation (64)
dropout (64)
dense (256)
batch_normalisation (256)
dropout (256)
dense (256)
batch_normalisation (256)
dropout (256)
dense (256)
batch_normalisation (256)
dropout (256)
dense (256)
batch_normalisation (256)
dropout (256)
dense (64)
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B. POD and linear AE

Performing POD is equivalent to solving the quadratic optimization problem (Fukami et al., 2021)

Φ¼ argmin
Φ∗

Q�Φ∗Φ∗TQ
�� ��2

2
: (B.1)

Let us consider a linear AE in which the number of latent variables is equal to the number of grid points in the input, that is,
Nz¼N. A linear AE is an AE with linear activation functions. If Nz <N, the linear AE recovers only the Nz most energetic POD
modes in an L2-norm sense. For a linear AE without biases, we express the training as

ω∗¼ argmin
ω

∥Q� bWWQ∥22, (B.2)

which has the solution bWW ¼ I, (B.3)

whereW and bW are the weights of the encoder and the decoder of the linear AE. These matrices are not necessarily orthogonal. To
obtain the POD solution, we seek orthogonal bW andW . Baldi andHornik (1989) showed that for a linear AEwithout biases, the only
solution is the POD solution, whereas all the remaining critical points are saddle points. However, there are saddle points in the
optimization of (B.2), which may affect convergence.We apply L2-regularization to the weights for the linear AE to converge to the
POD solution, which is equivalent to minimizing the Frobenius norm of weights, denoted ∥W∥F . When the autoencoder is linear,
applying L2-regularization ofweights is known as applying a “soft constraint of orthogonality” (Bansal et al., 2018; Xie et al., 2017).
Training the linear AE with L2-regularization is solving

ω∗ ¼ argmin
ω

Q� bQ��� ���2
2
þ γ ∥W∥2Fþ∥ bW∥2F
� �

, (B.4)

where γ≥ 0 is the regularization factor. The only solution to the optimization problem (B.2) which minimizes (B.4) is

WW T ¼ I (B.5)

where I is the identity matrix. Therefore, bW ¼W T , that is, the decoder and encoder matrices are orthogonal. A similar analysis can
be applied to a linear MD-AE to show that each decomposed field is a POD mode.

C. Physical interpretation is more difficult when unsuitable latent dimension is used

In Section 6.2, we show that theMSEof theAEs converges forNz¼ 2, and that at least two latent variables are needed to describe
the periodic behavior. However, it is difficult to know the theoretical number of latent variables to use in common machine learning
tasks. The common approach in machine learning is to treat the latent dimension as a hyperparameter of the networks. By using the
laminar wake as an example, we discuss how the choice of the latent variables affects the physical interpretation of the latent
variables. First, we show the results from anAEwithNz¼ 1 in Figure 27. The latent variable is periodic in time, but the time trace of

Figure 27. Results from the AE trained with the laminar wake dataset with one latent variable. (a) The
latent variable approximates the discontinuity caused by the angle moving from 2π to 0. (b) The frequency
spectrum of the latent variable, normalized by its standard deviation, comparedwith the data frequencies.

The latent variables contain frequencies that do not exist in the dataset.
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the latent variable is not smooth (Figure 27a) and have frequency peaks at high frequencies not present in the data (Figure 27b).
When a single variable (the angle) is used to represent the periodic behavior of the datasetU , there is a discontinuity when the angle
moves from 2π to 0. The latent variable is forced to use higher frequencies to try to approximate the discontinuity. These higher
frequencies are the results of numerical approximation and are unphysical. In an AEwithNz¼ 3, the latent variables contain the first
harmonic in addition to the vortex shedding frequency (Figure 28b), which is present in the data but not in the first two data time
coefficients (Figure 2, right panel) or the latent variables from an AE with two latent variables (Figure 14b). We discussed
(Section 6.2) that the additional frequency peak is not necessary for the accurate reconstruction of the dataset.

The average rate of change shows that latent variables Z2,: and Z3,: contribute equally to the first six data modes (Figure 28c).
Equal contribution to all data modes indicates that the two latent variables have the same role in representing the data, which means
that the information carried by one of the latent variables is duplicate information contained in the other latent variables. The three
latent variables are not suitable because they lead to redundant information. All three latent variables contribute similarly to the first
six data modes, making the selection of latent variables more difficult. In the present case, the three latent variables form a group to
represent the counter-rotating vortices, even though two latent variables should be, in principle, sufficient.

Both the AE with Nz ¼ 3 and the MD-AE with Nz¼ 2 (Section 6.1) have latent variables with an additional frequency peak
compared to the latent variables of the AE with Nz¼ 2 (Section 6.2), even though there is no substantial difference in the
reconstruction error. Additionally, unphysical frequencies also arise from numerical approximations when using AE with
Nz¼ 1. Therefore, a design consideration of AEs for nonlinear reduced-order modeling is to use a latent dimension that results
in the least number of frequency peaks in the latent variables while maintaining the reconstruction accuracy of the AEs.

D. Nomenclature

Acronyms
AE a standard autoencoder
exp experimental wake
lam laminar wake
MD-AE a mode-decomposing autoencoder
MSE mean square error
POD proper orthogonal decomposition
PSD power spectrum density

Matrix/tensorsbΛ the equivalent energy of the output of an AE.bΛi
the equivalent energy of the ith decomposed field of an MD-AE.

Figure 28. Results from the AE trained with the laminar wake dataset with three latent variables. (a) The
time trace of the latent variables. (b) The frequency spectrum of the latent variables, normalized by their
standard deviations. The latent variables contain the vortex shedding and the first harmonic frequency.
(c) The average rate of change of decoder coefficients due to the latent variables of an AEwith three latent
variables. Latent variables Z2,: and Z3,: have the same contributions toward the first six data modes,

meaning that both latent variables carry the same information.
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Λ diagonal matrix of eigenvalues, sorted from largest to smallest
Φ POD modes
A time coefficients for POD modes
B matrix of decoder coefficients
C correlation matrix
I identity matrix
M i the ith decomposed field of an MD-AE.
P the experimental wake dataset consists of the pressure measurements of the experimental bluff body

wake on a two-dimensional polar grid.
Q snapshot matrix
U the laminar wake dataset consists of the streamwise velocity of the simulated laminar wake on a two-

dimensional grid.
WP weighting factor for the snapshot matrix for POD
Y an example data matrix used for defining the autoencoders and related methods.
Z matrix of latent variables
~Q reconstructed snapshot matrix Q using Nm POD modes.

Nondimensional group
Re Reynolds number
St Strouhal number

Symbolsb∗ dataset * reconstructed by an autoencoder
σ standard deviation
ω parameters of a network
u velocities
Fde function composition that represents the decoder
Fen function composition that represents the encoder
N the number of measured variables in the dataset
Nm number of truncated POD modes to keep for reconstruction
Nt number of time steps
Nu number of velocity components
p pressure
U∞ inlet velocity
D diameter of the cylinder/axisymmetric body
f frequency
L domain length
T period of vortex shedding
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