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Abstract
The challenging tracking control issue for a space manipulator subject to parametric uncertainty and unknown
disturbance is addressed in this paper. An observer-based fixed-time terminal sliding mode control methodology is
put forward. Firstly, a nonlinear disturbance observer is introduced for exactly reconstructing the lumped uncertainty
without requiring any prior knowledge of the lumped uncertainty. Meanwhile, the estimation time’s upper bound
is not only irrelevant to the initial estimation error but can be directly predicted in advance via a specific parameter
in the observer. Invoking the estimated information, a fast fixed-time tracking controller with strong robustness
is designed, where a novel sliding mode surface incorporated enables faster convergence. The globally fixed-time
stability of the closed-loop tracking system is rigorously demonstrated through Lyapunov stability analysis. Finally,
numerical simulations and comparisons verify the validity and superiority of the suggested controller.

Nomenclature
rb base spacecraft position
vb base spacecraft linear velocity
ωb base spacecraft angle velocity
Ib base spacecraft inertia tensor
Mb base spacecraft mass
ri the ith link position
vi the ith link velocity
ωi the ith link angle velocity
Ii the ith link inertia tensor
M i the ith link mass
ai position vector from the ith joint to the centre of the ith link
bi position vector from the centre of the ith link to i+1th link
ρ i position vector from the rigin OI to the centre of the ith link
qi rotation angle of the ith joint
zi rotation axis of the ith joint
rg position vector from OI to the total centre of the system
E3 three-dimensional identity matrix
H generalised inertia matrix of space manipulator system
C Coriolis and centrifugal matrix of space manipulator system
u joint driving torque
e1 joint angle tracking error

C© The Author(s), 2024. Published by Cambridge University Press on behalf of Royal Aeronautical Society.

https://doi.org/10.1017/aer.2024.128 Published online by Cambridge University Press

https://doi.org/10.1017/aer.2024.128
https://orcid.org/0000-0003-3071-4656
mailto:yanyxhit@126.com
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/aer.2024.128&domain=pdf
https://doi.org/10.1017/aer.2024.128


2 Yan et al.

e2 joint velocity tracking error
f dis the lumped uncertainty of the system
f dis the estimate of the lumped uncertainty of the system
ef the disturbance observer error
Td the predefined observation time
ld, lk, kd, λd1, λd2, δd positive constant
h1i, h2i, μi positive gain
m1, n1, p1, q1 positive odd integer
ka, kb positive scalars
sn, sr, sm positive constants
m2, n2, p2, q2 positive odd integer
γ1, γ2, γ3 positive gain
ssn, ssr, ssm positive constant
SMS space manupulator system
FFSM free-floating space manipulator
DOBFTSMC disturbance observer-based fixed-time sliding mode control
FTSMC fixed-time sliding mode control
ANFTSMC adaptive nonsingular fast terminal sliding mode control
D-H Denavit-Hartenberg parameters

1.0 Introduction
Free-floating space manipulators (FFSM) have demonstrated significant potential for a variety of com-
plicated on-orbit operations, such as constructing and maintaining space stations, removing space debris,
repairing or refueling defunct satellites and so on [1–4]. One of the primary concerns in successfully
accomplishing these specific space missions is precise tracking control for space manipulators. However,
unlike ground-based robotic manipulators, any movement of the manipulator can interfere with the trans-
lation and rotation of the base spacecraft, and vice versa. Notably, the high non-linearity and strong
coupling characteristics of the dynamic model present tremendous challenges to the trajectory-tacking
process of FFSM. What’s worse, it is inherently vulnerable to unknown disturbance and paramet-
ric uncertainty in complex space environment, which deteriorates tracking performance even further.
Consequently, designing an advanced tracking control system with strong robustness and high reliability
is essential for FFSM.

Only the asymptotic convergence is guaranteed despite the fact that numerous control strategies are
accessible for space manipulators, including adaptive technique [5], backstepping technique [6], neural
network technique [7], model predictive technique [8, 9], sliding mode control (SMC) [10, 11] and H∞
control [12]. Nonetheless, from a practical perspective, rapid and flexible manoeuvering of manipulators
plays a crucial role in the execution of aerospace activities. Finite-time control, as opposed to the asymp-
totic control, provides quick convergence of the state variables within a confined time while enhancing
control accuracy. Terminal SMC was presented in Ref. [13] as a dependable method for finite-time con-
trol of a space rigid manipulator. Nevertheless, when the system state value approaches zero, terminal
SMC encounters a singularity issue. To resolve the issue, a non-singular terminal sliding mode control
(NTSMC) was designed for FFSM vulnerable to external disturbance [14]. A neural network adaptive
NTSMC-based finite-time formation tracking controller was designed for a space manipulator under
actuator saturation [15]. To tolerate different undesirable actuator faults, a continuous tracking control
strategy based on integral sliding surface was also devised for a space manipulator in Ref. [16]. By
utilising the homogeneous technique, a reliable robust controller was designed for an uncertain space
manipulator to enable finite-time trajectory tracking [17]. Nevertheless, there is an obvious disadvan-
tage to these finite-time control schemes: the required settling time is extremely sensitive to the system’s
initial conditions.

To overcome such weakness, a fixed-time stability control strategy was developed, which can guaran-
tee that the convergence time is confined by a positive constant [18]. The significant characteristic of this
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methodology is that the control coefficient is the sole determinant of the settling time. Owing to such an
outstanding attribute, control schemes based on the fixed-time stabilisation concept have attracted a lot
of attention recently. Through a combination of fixed-time control and extended state observer, a robust
task-space trajectory tracking control strategy was presented for a space manipulator with model uncer-
tainties and unknown velocities [19]. With the help of the backstepping technique, a fault-tolerant control
approach was proposed for a free-flying space manipulator, which enables fixed-time trajectory tracking
while satisfying output constraints [20]. Besides, fixed-time control is frequently applied in conjunction
with SMC. Cao et al. [21] extended the conventional fixed-time stability system and proposed a faster
terminal SMC for the attitude stabilisation of rigid spacecraft. To deal with the singularity issue, a piece-
wise fast terminal sliding surface was developed in Ref. [22] to ensure that the system state was practical
fixed-time stable. Liu et al. [23] proposed a general class of non-singular predefined-time SMC mech-
anism, which was implemented in the tracking control of a two-arm space manipulator. In Ref. [24], a
non-singular fault-tolerant trajectory tracking control strategy based on a fast fixed-time stable system
was designed for unmanned surface vehicles. Nonetheless, the current fixed-time SMC schemes do not
have a rapid enough convergence rate, especially when the system state is close to the equilibrium point.
As a result, there is still an open topic for developing a faster fixed-time SMC controller.

A potential problem in the application of fixed-time SMC is the requirement of the disturbance’s
upper bound, which is hard to determine in practice. To deal with this issue, several disturbance rejec-
tion techniques including the adaptive method [25], the time-delay estimation method [26, 27] and
the observer-based method [28, 29] are typically introduced to attenuate the negative effects of dis-
turbance. Among them, the disturbance observer-based control techniques have attracted considerable
attention because of straightforward structure and excellent estimation performance. An observer-based
two scale robust control strategy was presented for space manipulators to eliminate the effects of exter-
nal disturbance [30]. In Ref. [31], an adaptive sliding mode disturbance observer was presented for
estimating and compensating the model uncertainty of space manipulators. Even though the system
uncertainty’s derivative has an unknown bound, it is still achievable for the finite-time disturbance esti-
mation. Recently, a robust fixed-time tracking control scheme was investigated for FFSM, where the
system’s total uncertainties can be accurately and quickly estimated by designing a disturbance observer
[32]. It should be noted that the majority of the existing disturbance observers were developed based on
the assumption of either known disturbance upper bounds or limited disturbance time derivatives. Such
restrictive assumptions let the controllers hold certain conservative, and thus the issue of releasing such
constraints is required to be further explored.

Inspired by the above-mentioned considerations, this work investigates a unique observer-based
fast fixed-time SMC tracking strategy for FFSM suffering from parametric uncertainty and unknown
disturbance. The primary contributions of this research are concisely summarised in the following:

• A novel fast and singularity-free stable system is put forward to assure theoretical global fixed-
time convergence. In comparison to the existing fixed-time stable systems in Refs [33, 34], the
suggested stable system exhibits a faster convergence.

• A nonlinear disturbance observer is built to facilitate quick and precise disturbance estimation
while requiring no prior information about the lumped uncertainty. Moreover, a distinctive fea-
ture of the suggested observer is that the estimation error is stable within a specific time that can
be arbitrarily determined in advance because it is explicitly expressed in the observer.

• Based on the reconstructed uncertainties, a unique faster sliding mode tracking controller is
devised, which guarantees the position and velocity tracking errors converge to zero within
a given time even in the case of lumped uncertainty. The suggested approach has greater
application potential due to the advantages in convergence speed and control precision.

The remainder of this work is structured as follows. Section 2 gives the system modelling and for-
mulates the problem. Section 3 presents the main result. Section 4 illustrates numerical simulations and
comprehensive comparisons. Section 5 draws conclusion.
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Figure 1. System model for a free-floating space manipulator.

2.0 System description and problem statement
2.1 Notations and lemmas
Notations. z = [z1, z2, . . . , zn]T is an n-dimensional vector with the ith element zi. The symbols ‖
· ‖ denotes the Euclidean norm of a vector or the induced norm of a matrix. For a positive con-
stant a > 0, define the vector siga(z) = [|z1|asign (z1) ,| z2|asign (z2) , . . . , |zn|asign (zn)

]T and the vector
sgn(z) = [sign (z1) , sign (z2) , . . . , sign (zn) ]T.

Definition 1. ([35]) Consider a nonlinear system

ẏ(t) = g (y(t)) , y (0) = y0, y ∈R
n (1)

If the system (1) is finite-time convergent and the settling time t
(
y0

)
is bounded for all initial states, then

the system’s equilibrium is said to be fixed-time stable, i.e., ∃tmax > 0 such that t (y0) ≤ tmax, ∀y0 ∈R
n.

Lemma 1. ([36, 37]) Let vj ≥ 0 (j = 1, 2, . . . , N), for two constants w1 and w2 satisfying 0 < w1 ≤ 1 and
w2 > 1, the following inequalities hold

N∑
j=1

vw1
j ≥

(
N∑

j=1

vj

)w1

,
N∑

j=1

vw2
j ≥ N1−w2

(
N∑

j=1

vj

)w2

(2)

2.2 Mathematical modelling
For the final approaching phase of target capture, the primary objective is to precisely manoeuver the
joint in accordance with the planned trajectory. To describe the space manipulator ’s trajectory tracking
issue, the reference coordinate systems, which include the inertial coordinate system OIXIYIZI and the
body coordinate system ObXbYbZb, are depicted in Fig. 1. In the free-floating mode, the spacecraft has
its control system turned off and there is no external force or torques acting on the system. Therefore,
motion of the manipulator will result in translation and rotation of the spacecraft. Considering the actual
working environment of FFSM, the following reasonable assumptions are given [14]:

Assumption 1. Since FFSM works in the microgravity environment, the effects of gravity are ignored
during modeling. Besides, all parts of the system are rigid, and the flexibility influences and the solar
panels are neglected.

Assumption 2. All the links of FFSM are connected by revolute joints and have an open chain kinematic
configuration. Since the system work in free-floating mode, the spacecraft can rotate around three axes
and move in three directions.

Assumption 3. In the case of free-floating, the system satisfies the condition of momentum conservation.
In other words, the system’s linear and angular momentum are both constant.
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Based on the relative relations in Fig. 1, the position vector from Bi to OI can be represented as:

ri = rb + b0 +
i−1∑
j=1

(
aj + bj

)+ ai i = 1, 2, . . . , n (3)

The line and angular velocity of Bi can be expressed as

vi = vb + ωb × (ri − rb) +
i∑

j=1

(
zj ×

(
ri − ρ j

))
q̇j (4)

ωi = ωb +
i∑

j=1

q̇jzj (5)

For zero initial momentum, the conservation equation of an FFSM system can be deduced as[
P
L

]
=
[

MgE3 Mg

(
r×

bg

)T

Mgr×
bg Hω

] [
vb

ωb

]
+
[

JTω

Hωφ

]
q̇ = 0 (6)

where the system total linear momentum P = Mbvb +∑n
i=1 Mivi, and the system total angular

momentum L = Ibωb + rb × Mbvb +∑n
i=1 Iiωi +∑n

i=1 (ri × M iri), the total mass Mg = Mb +∑n
i=1 Mi,

rbg = rg − rb, Hω =∑n
i=1

(
Ii − Mi(ri − rb)

×(ri − rb)
×)+ Ib, Hωφ =∑n

i=1 (IiJωi + Mi (ri − rb) × JTi),
JTω =∑n

i=1 (MiJTi), Jωi =
[
z1 z2 . . . 03×(n−i)

]
, and JTi =

[
z1 × (ri − ρ1) . . . zi × (ri − ρi) 03×(n−i)

]
.

Moreover, the total kinetic energy of the FFSM can be derived

T = 1

2

(
ωT

b Ibωb + MbvT
b vb +

n∑
i=1

(
ωT

i Iiωi + MivT
i vi

))
(7)

Substituting (4)–(6) into (7) and rearranging it, ones eventually have

T = 1

2
q̇THq̇ (8)

where H is called the generalised inertia tensor of the space manipulator, which can expressed as H =
Hm + HT

bmJbm. And the matrices Hm is the inertia matrix of the manipulator, Jbm is the Jacobian matrix
between the base spacecraft and the manipulator, and Hbm is the coupling matrix between the base
spacecraft and the manipulator.

Considering the time-varying disturbances, the mathematical model of FFSM through the application
of the Lagrange equation is given by:

H(q)q̈ + C(q, q̇)q̇ = u + d(t) (9)

where, q, q̇, q̈ ∈R
n are the joint generalised position, velocity and acceleration vectors, respectively.

The inertia matrix H(q) ∈R
n×n is described by H(q) = H0(q) + �H(q), and the Coriolis and Centrifugal

matrix C(q, q̇) ∈R
n×n is described by C(q, q̇) = C0(q, q̇) + �C(q, q̇), in which H0(q) and C0(q, q̇) indi-

cate the nominal matrices, �H(q) and �C(q, q̇) represent the deviations caused by the parametric
uncertainty, d(t) ∈R

n denotes the time-varying disturbance acting on the space manipulator system,
and u ∈R

n represents the control input.
Considering the desired position and velocity qd and q̇d, define e1 = q1 − qd and e2 = q̇1 − q̇d as

position and velocity tracking errors, respectively. The system (9) can be then rewritten as{
ė1 = e2

ė2 = H−1
0 (q)u − H−1

0 (q)C0(q, q̇)q̇ + f dis − q̈d

(10)

where f dis is lumped uncertainty denoted by f dis = H−1
0 (q) (d − �H(q)q̈ − �C(q, q̇)q̇).
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Figure 2. The structure diagram of the closed-loop tracking system.

Assumption 4. Given bounded inertial uncertainty and unknown disturbance, the lumped uncertainty
fdis is assumed to be bounded, which satisfies

∥∥fdis

∥∥≤ dm with an unknown constant dm > 0.

2.3 Problem description
The primary objective for a joint-space task typically requires the FFSM to precisely track the desired
joint trajectory. In this context, the tracking issue can be described as: despite the unknown disturbance
and parametric uncertainty, for any initial states design a tracking controller u for FFSM system such that
the desired trajectory qd is followed within a fixed time, i.e., the tracking errors e1 and e2 are fixed-time
stable.

3.0 Main results
This section presents the research’s primary outcomes. First, a new fast fixed-time stability system is
developed which enables faster convergence. For determining the lumped uncertainty estimation, a
nonlinear disturbance observer is subsequently constructed. Finally, a robust fixed-time sliding mode
tracking controller is designed employing the reconstructed uncertainty information. Figure 2 depicts
the schematic structure for the suggested closed-loop tracking system.

3.1 A novel fast fixed-time stability system

Theorem 1. When a system satisfies

ẋ = −N (x)
(
c1sig1+σ0 (x) + c2sigλ0 (x)

)
(11)

where σ0 = m0
2n0

(1 + sgn (|x| − 1)) +
(

p0
2q0

− 1
2

)
(1 − sgn (|x| − 1)), λ0 =

(
p0
q0

+ m0
2n0

)
+
(

1 − p0
q0

+ m0
2n0

)
sgn (|x| − 1), c1 > 0 and c2 > 0 are two scalars, m0 > 0, n0 > 0, p0 > 0, and q0 > 0 are odd integers,
which satisfy m0 > n0 and q0

2
< p0 < q0. N (x) = 1 + 2aarctan (sb|x|sc) /π with sa > 0, sb > 0 and sc > 0

satisfying sc =
{

sc |x| ≥ 1
1 |x| < 1

. Then the system (11) is fixed-time stable and the convergence time Tc is

bounded by

Tc ≤ q0

(q0 − p0) c1

(
1 − c2

c1

ln
(

1 + c1

c2

))
+ n0

(c1 + c2) m0

(12)
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Proof. Introduce a variable � = |x|1− p0
q0 and its time derivative can be obtained

�̇ =
(

1 − p0

q0

)
sig− p0

q0 (x) ẋ

= −
(

1 − p0

q0

)
N (x)

(
c1

∣∣∣x|1+σ0− p0
q0 + c2

∣∣∣ x|λ0− p0
q0

)

= −
(

1 − p0

q0

)
N (x) (c1 |�|ε + c2| �|γ ) (13)

where ε = 1 + σ0q0
q0−p0

and γ = λ0q0−p0
q0−p0

.
According the definitions of σ0 and λ0, it can be known that⎧⎨

⎩
ε = γ = 1 + m0q0

n0 (q0 − p0)
|x| ≥ 1

ε = 0, γ = −1 |x| < 1
(14)

Solving (13), the convergence time is derived

Tc = q0

q0 − p0

∫ �(0)

0

d�

N (x) (c1 |�|ε + c2| �|γ )

= q0

q0 − p0

(∫ 1

0

d�

N (x) (c1 |�|ε + c2| �|γ ) +
∫ �(0)

1

d�

N (x) (c1 |�|ε + c2| �|γ )
)

= q0

q0 − p0

(∫ 1

0

d�

N (x) (c1 + c2|�|−1)
+
∫ �(0)

1

d�

N (x) (c1 + c2) |�|ρ
)

(15)

where ρ = 1 + m0q0
n0(q0−p0)

.
Since 1 ≤ N (x) < 1 + sa, then one has

Tc ≤ q0

q0 − p0

(∫ 1

0

d�

c1 + c2|�|−1
+
∫ �(0)

1

d�

(c1 + c2) |�|ρ
)

≤ q0

q0 − p0

{
1

c1

(
1 − c2

c1

ln
(

1 + c1

c2

))
+ 1 − �(0)1−ρ

(c1 + c2) (ρ − 1)

}
(16)

Invoking ρ = 1 + m0q0
n0(q0−p0)

> 1 and � (0) > 0, the settling time Tc is given by

Tc ≤ q0

(q0 − p0) c1

(
1 − c2

c1

ln
(

1 + c1

c2

))
+ n0

(c1 + c2) m0

(17)

Remark 1. As shown in (17), the upper bound of the convergence time Tc depends only on the system
parameters p0, q0, m0, n0, c1, c2 regardless of any system initial states.

Remark 2. Zuo et al. [33] constructed a fixed-time stable system (named FTSS1) ẋ =
−c1xm0/n0 − c2xp0/q0 . Ni et al. [38] investigated a fast fixed-time stable system (called FTSS2)
ẋ = −c1x

1
2 + m0

2n0
+
(

m0
2n0

− 1
2

)
sgn(|x|−1) − c2xp0/q0 . By observation, the convergence time of FTSS1 and FTSS2

can be uniformly calculated as

TF = q0

q0 − p0

(∫ 1

0

1

c1W + c2

dW +
∫ W(0)

1

1

c1Wζ + c2

dW

)
(18)

where ζ = 1 for FTSS1 and ζ = 1 + (m0−n0)q0
n0(q0−p0)

for FTSS2. Due to the fact the inequality 1
c1W+c2

> 1
c1+c2W−1

holds for W ∈ (0, 1), and the inequality 1
c1Wζ +c2

> 1
(c1+c2)Wρ holds for W ∈ (1, +∞), it is concluded that

the proposed fixed-time stable system (11) attains a faster convergence rate than FTSS1 and FTSS2.
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3.2 Nonlinear disturbance observer design
The system (10) can be represented as

ė2 = −lde2 + H−1
0 (q)u + Fd (19)

where ld is a positive gain, and Fd = −H−1
0 (q)C0(q, q̇)q̇ + f dis − q̈d + lde2.

For system (19), introduce an auxiliary system as

żd = −ldzd + H−1
0 (q)u (20)

where zd ∈R
n×n is the state of the auxiliary system.

Define xd as the deviation between e2 and zd, which is expressed as xd = e2 − zd. Then, the time
derivative of xd yields

ẋd = −ldxd + Fd (21)

Theorem 2. Construct a nonlinear disturbance observer as

˙̂xd = −lkkdx̂d + l−1
k ẏd + kdyd

+ n
δd
4 π

2δdTd

√
λd1λd2

(
λd1sig1+δd (ed) + λd2sig1−δd (ed)

)
(22)

with its output provided by

f̂dis = F̂d + H−1
0 (q)C0(q, q̇)q̇ + q̈d − lde2 (23)

with

F̂d = l−1
k yd + ldx̂d (24)

where x̂d and f̂dis denote the estimations of xd and fdis, respectively. yd = lkxd, lk > 0, kd > 0, 0 < δd < 1, λd1

and λd2 are two positive constants, Td is an adjustable parameter that characterises the convergence time.
Then, the observer error ed = xd − x̂d and the disturbance estimation error ef = fdis − f̂dis are fixed-time
stable, and the convergence time Te is bounded by Td.

Proof. The observer error dynamics can be given by

ėd = ẋd − ˙̂xd

= ẋd + lkkdx̂d − l−1
k ẏd − kdyd

− n
δd
4 π

2δdTd

√
λd1λd2

(
λd1sig1+δd (ed) + λd2sig1−δd (ed)

)

= −lkkded − n
δd
4 π

2δdTd

√
λd1λd2

(
λd1sig1+δd (ed) + λd2sig1−δd (ed)

)
(25)

Choose a Lyapunov function as Vd = eT
d ed, and its time derivation can be obtained

V̇d = 2eT
d ėd

= −2lkkdeT
d ed − n

δd
4 π

δdTd

√
λd1λd2

(
n∑

i=1

λd1|edi|2+δd +
n∑

i=1

λd2|edi|2−δd

)
(26)

According to Lemma 1, V̇d has the following inequality relation

V̇d ≤ − n
δd
4 π

δdTd

√
λd1λd2

{
n− δd

2 λd1V
δd
d + λd2

}
V

2−δd
2

d (27)
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Define χd = n− δd
4

√
λd1
λd2

V
δd
2

d , then dχd = δd
2

n− δd
4

√
λd1
λd2

V
δd
2 −1

d dVd. Then, solving the inequality (27) yields
Vd(t) ≡ 0 for t ≥ Te, and Te is bounded by

Te ≤ δdTd

√
λd1λd2

n
δd
4 π

∫ Vd(0)

0

V
δd
2 −1

d{
n− δd

2 λd1V
δd
d + λd2

}dVd

≤ 2Td

π

∫ χd(0)

0

dχd{
χ 2

d + 1
}

≤ 2Td

π
arctan (χd (0) )) (28)

Since 0 < arctan (χd (0)) < π

2
, one has

Te ≤ Td (29)
Consequently, it is shown that the observer error ed is fixed-time stable. Applying (23), the disturbance

estimation error ef is derived

ef = f dis − f̂ dis

= Fd + H−1
0 (q)C0(q, q̇)q̇ + q̈d − lde2

− F̂d − H−1
0 (q)C0(q, q̇)q̇ − q̈d + lde2

= Fd − F̂d (30)
From (21), it follows Fd = ẋd + ldxd. Applying (24), Equation (30) can be simplified as

ef = ẋd + ldxd − l−1
k ẏd − ldx̂d

= lded (31)
As a result, it can be conclude that ef = 0 is obtained for t ≥ Te. This means that the lumped

uncertainty f dis can be reconstructed by f̂ dis after the specific time Td.

Remark 3. The primary highlights of the suggested disturbance observer (22) are as follows:

1. Contrary to the existing observers in Refs [19, 31, 39, 40], there is a relaxation of restrictive
assumptions that the lumped disturbance and corresponding time-derivative have to be bounded
or know. The suggested disturbance observer (22) requires no prior knowledge of the lumped
disturbance, which allows for a wider rage of applications.

2. Even when the initial estimation error tends to infinity, the precise estimate of lumped uncertainty
is guaranteed within a finite time. Unlike most existing fixed-time observers, the settling time is
explicitly specified through an individual parameter Td in the proposed observer without the
requirement for tedious parameter adjustment.

3.3 Tracking controller design and stability analysis
Based on Theorem 1, a novel non-singular fixed-time terminal sliding mode surface (NFTSMS) is
presented as

s = e2 + N(e1) (kaSc + kbSz) (32)
where ka > 0 and kb > 0 are two scalars, N (e1) = 1 + 2smarctan (sne1

sr) /π with sn > 0, sm > 0 and sr > 0

satisfying sr =
{

sr ||e1|| ≥ 1

1 ||e1|| < 1
. Sci and Szi are respectively the ith elements of Sc and Sz, and have the

following forms
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Sci =
{

sig1+2σ1 (e1i) if s̄i = 0 or si �= 0, |e1i| ≥ δ

l1e1i + l2e2
1isgn (e1i) + l3e3

1i if s̄i �= 0, |e1i| < δ

Szi =
{

sig2λ1−1 (e1i) if si = 0 or si �= 0, |e1i| ≥ δ

g1e1i + g2e2
1i sgn (e1i) + g3e3

1i if si �= 0, |e1i| < δ
(33)

where i = 1, 2, . . . , n, σ1 = m1
2n1

(1 + sgn (||e1|| − 1)) +
(

p1
2q1

− 1
2

)
(1 − sgn (||e1|| − 1)), λ1 =(

p1
q1

+ m1
2n1

)
+
(

1 − p1
q1

+ m1
2n1

)
sgn (||e1|| − 1) with m1 > n1 and 3

4
q1 < p1 < q1, 0 < δ < 1 is a con-

stant. To make the functions Sci and Szi, and their time derivative continuous, the values of l1, l2, l3, g1,
g2, g3 are chosen as [41]

l1 = (2p1/q1 − 3) (p1/q1 − 2) δ2p1/q1−2

l2 = − (2p1/q1 − 2) (2p1/q1 − 4) δ2p1/q1−3

l3 = (p1/q1 − 1) (2p1/q1 − 3) δ2p1/q1−4

g1 = (4p1/q1 − 5) (2p1/q1 − 3) δ4p1/q1−4

g2 = − (4p1/q1 − 4) (4p1/q1 − 6) δ4p1/q1−5

g3 = (2p1/q1 − 2) (4p1/q1 − 5) δ4p1/q1−6

s̄ = e2 + N (e1)
(
kasig1+2σ1 (e1) + kbsig2λ1−1 (e1)

)
(34)

Let G (e1) = N (e1) (kaSc + kbSz). And taking the time derivative of the NFTSMS by using (10)
yields

ṡ = ė2 + Ġ

= H−1
0 (q)u − H−1

0 (q)C0(q, q̇)q̇ + f dis − q̈d + Ġ (35)

To obtain accurate and fast trajectory tracking, design an observer-based fixed-time SMC
strategy as

u = u1 + u2 (36)

where

u1 = −H0(q) f̂ dis + C0(q, q̇)q̇ + H0(q)q̈d − H0Ġ (37)

u2 = −H0(q)N(s)
(
γ1sig1+2σ2 (s) + γ2sig2λ2−1(s) + γ3s

)
(38)

where σ2 = m2
2n2

(1 + sgn (‖ s ‖ −1)) +
(

p2
2q2

− 1
2

)
(1 − sgn (‖ s ‖ −1)), λ2 =

(
p2
q2

+ σ2
2

)
+
(

1 − p2
q2

+ σ2
2

)
sgn (‖ s ‖ −1) with m2 > n2 and q2

2
< p2 < q2. γ1, γ2, γ3 are positive control gains, N(s) = 1 +

2ssm arctan (ssn ‖ s‖ssr ) /π with ssm > 0, ssn > 0 and ssm > 0 satisfying ssr =
{

ssr ||s|| > 1

1 ||s|| < 1
.

Theorem 3. Considering the space manipulator system (10), once the nonlinear disturbance observer
(22)–(23) reconstructs the lumped uncertainty, then the fixed-time tracking controller (36)–(38) with the
NFTSMS (32) guarantees the closed-loop system is fixed-time stable.

Proof. Substituting the controller (36) into (35) yields

s = −N(s)
(
γ1sig1+2σ2 (s) + γ2sig2λ2−1(s) + γ3s

)− f̂ dis + f dis (39)
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Choose a Lyapunov function as V1 = 1
2
sTs, and one obtains

V̇1 = sTṡ

= −N(s)
(
γ1 ‖ s‖2+2σ2 + γ2 ‖ s‖2λ2 + γ3 ‖ s‖2

)+ sTef

≤ −N(s)γ12
1+σ2

(
1

2
sTs
)1+σ2

− N(s)γ22
λ2

(
1

2
sTs
)λ2

+ sTef (40)

Since ef = 0 is obtained for t ≥ Td, the above inequality is simplified as

V̇1 ≤ −N(s)
(
ρ1V1+σ2

1 − ρ2Vλ2
1

)
(41)

where ρ1 = γ121+σ2 , ρ2 = γ22λ2 .
Similar to the analysis and demonstration of Theorem 1, the sliding surface NFTSMS is fixed-time

stable. Noted that the sliding surface converges to the origin only if it is guaranteed that both the obser-
vation system and the sliding surface converge. Taking this into account, the convergence time tr satisfies
tr ≥ max {Td, Tr}, where Tr ≤ n2

(ρ1+ρ2)m2
+ q2

(q2−p2)ρ1

(
1 − ρ2

ρ1
ln
(

1 + ρ1
ρ2

))
. As a result, the system states are

capable of reaching the sliding surface under the proposed controller after fixed-time tr.
Once the system states reach the NFTSMS, i.e., s = 0, the ideal sliding motion satisfies the following

differential equation

e2 = −N(e1) (kaSc + kbSz)

= −N(e1)
(
kasig1+2σ1 (e1) + kbsig2λ1−1 (e1)

)
(42)

Choose a Lyapunov function candidate V2 = eT
1 e1, its time derivative yields

V̇2 = −2N(e1)eT
1

(
kasig1+2σ1 (e1) + kbsig2λ1−1(e1)

)
= −2N(e1)

(
kaV1+σ1

1 + kbVλ1
1

)
(43)

Invoking Theorem 1, the tracking errors e1 and e2 are proved to converge to the origin along the
proposed NFTSMS (32) within a fixed-time ts, which is given by

ts ≤ n1

2 (ka + kb) m1

+ q1

2 (q1 − p1) ka

(
1 − kb

ka

ln
(

1 + ka

kb

))
(44)

Through the above demonstrations, it is concluded that the system states are fixed-time stable with
the convergence time Ts satisfying Ts ≤ tr + ts.

Remark 4. Noted that ẏd and Ġ are respectively contained in the disturbance observer (22) and the
control law u1 (37), which are required to adopt the presented methodology. To satisfy this requirement,
an exact fixed-time estimation of the input signal’s derivatives is obtained by utilising the following
uniform robust exact differentiator (URED) [42]

˙̂
ξ 1i = −h1i

(
sig 1

2

(
ξ̂1i − vi

)
+ μisig

3
2

(
ξ̂1i − vi

))
+ ξ̂2i

˙̂
ξ 2i = −h2i

(
1

2
sign

(
ξ̂1i − vi

)
+ 2μi

(
ξ̂1i − vi

)
+ 3

2
μ2

i sig
2
(
ξ̂1i − vi

))
(45)

where i = 1, 2, . . . , n, ξ1i and ξ2i are the estimations of input vi and its derivative v̇i, respectively, h1i, h2i

and μi are positive gains. According to Ref. [42], the differentiator (45) enables to guarantee that the
states ξ̂1i and ξ̂2i converge to vi and its derivative within a fixed time with respect to the parameters h1i, h2i

and μi.
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Table 1. Physical parameters of the studied space manipulator

Parameter B0 B1 B2 B3 B4 B5 B6 B7

mass (kg) 100 4.25 7 7 4.25 4.25 4.25 4.25
bi (m) 0.6 0.3 0.25 0.25 -0.25 0.25 0.25 0.3

0 0 0 0 0 0 0 0
0 0 0.25 0.25 0 0 0 0

ai (m) 0 0.3 0.25 0.25 -0.25 0.25 0.25 0.3
0 0 0 0 0 0 0 0
0 0 0.25 0.25 0 0 0 0

Ii

(
kg · m2

)
Ixx 2000 0.05 0.09 0.09 0.05 0.05 0.05 1.28
Iyy 2000 1.28 1.46 1.46 0.89 0.89 0.89 1.28
Izz 2000 1.28 1.46 1.46 0.89 0.89 0.89 0.05
Ixy 0 0 0 0 0 0 0 0
Ixz 0 0 0 0 0 0 0 0
Iyz 0 0 0 0 0 0 0 0

Figure 3. D-H model of the studied space manipulator system.

4.0 Simulation results
To demonstrate the suggested disturbance observer-based fixed-time sliding mode control (denoted
DOBFTSMC) framework, numerical simulations are performed on a 7 Dof space manipulator sys-
tem, whose detail physical parameters and D-H model are shown in Table 1 and Fig. 3, respectively.
Noted that this paper ignores the joint trajectory planning issue, and focuses on the joint-space opera-
tions of FFSM in the presence of uncertainty. Without loss of generality, the system’s initial conditions
and joint desired trajectories are set the same as those in Ref. [43]. Taking into consideration model
uncertainty, the nominal mass of every component in the system is assumed to be 0.9 times its actual
mass. The system’s time-varying disturbances are provided by d(t) = [d1, d2, d3, d4, d5, d6, d7]TNm with
d1 = 0.03sin(t), d2 = 0.03sin(2t), d3 = 0.01sin(t), d4 = 0.01sin(2t), d5 = 0.02sin(t), d6 = 0.01sin (3t),
and d7 = 0.02sin (3t).

The numerical simulations can be separated into three following sections. In the first section, the
effectiveness of the proposed observer (22) is illustrated in terms of fixed-time convergence as well
as convergence time tunability. In the second section, the superiority of the proposed DOBFTSMC
is confirmed through a comparison with two other existing fixed-time control schemes. In the third
section, the robustness of the proposed DOBFTSMC is demonstrated against parameter uncertainty and
time-varying disturbance through Monte Carlo tests.
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Figure 4. Observer output for the reference signal with different initial states.

4.1 Verification of the suggested disturbance observer
This section primarily aims to demonstrate the estimation performance of the suggested observer (22).
Considering various complex disturbances that may be in the space environment, the reference signal
xd = 3 + sin (0.5t) + 0.3sin(2t) + 0.2cos(0.1t) + 0.1sin(5t) + 0.2e−t + 0.01rand(1) is simulated, and no
reconstruction of the lumped disturbance is involved here, which will be discussed in Section 4.2. The
simulation results are verified from the following two scenarios.

The proposed observer’s fixed-time convergence characteristic is evaluated in the first scenario.
This simulation tests six possibilities with various initial states. The observer gains are selected as
kd = 0.1, ld = 2, Td = 1, δd = 0.2, λd1 = 4, λd2 = 3, h1 = 10, h2 = 50, μ = 2. The observer’s output for the
reference signal is illustrated in Fig. 4. As illustrated, it is apparent that the settling time of the observer
consistently remains approximately the same, regardless of the distinct values chosen for the initial
conditions. In addition, the actual convergence time is observed to be significantly less than the prede-
termined time Td which is attributed to the fact that Td represents the upper bound of the convergence
time. This implies that, regardless of the initial conditions, the precise estimate is always achieved within
the predefined time. This fixed-time convergence feature provides increased flexibility and predictability
in the observation phase.

In the second scenario, the convergence time tunability of the suggested observer is assessed via
selecting multiple predetermined settling times for an identical beginning state. The observer gains are
the same as the first scenario expect that Td is different. For a given initial state value of 2, the simulation
chooses Td to be 0.5, 1.5, 3, 5, 8 and 10 seconds, respectively. Figure 5 manifests the observer’s output
for the reference signal under various predefined times. The observation process for the reference signal
adjusts in conjunction with Td changes. More detailed, the larger Td is, the more time it takes to accurately
estimate the reference signal. Additionally, it can be concluded from Fig. 5, that the observer can realise
the precise estimation of the reference signal within the predefined time Td. The predefined time allows
straightforward and simplistic adjustment in (22), which is the intention of the observer proposed in the
present research.

4.2 Verification of the suggested fixed-time tracking controller
This section focuses on the effectiveness of the proposed DOBFTSMC strategy against parametric
uncertainty and time-varying disturbance. Table 2 lists the selected control parameters. The simulation
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Figure 5. Observer output for the reference signal with different predefined times.

results ensured by the suggested approach are displayed in Figs 6 and 7. The analysis in Section 3 is
well-verified by those results. As depicted in Figs 6(a) and (b), the space manipulator under the sug-
gested control strategy can accomplish the trajectory tracking manoeuver after a brief amount of time
(approximately 1.2 seconds), even in the presence of uncertain parameter and time-varying disturbance.
Figure 6(c) depicts the sliding surface’s time response. With the application of the proposed control
law, the sliding surface is fixed-time stable, which is consistent with Theorem 3. The requested control
torque is shown in Figs 6(d). Figure 7 gives the estimation performance of lumped disturbance under
the proposed controller. As shown, the lumped disturbance can be precisely estimated in an extremely
short period of time. This indicates that the suggested disturbance observer may accurately observe
and quickly reconstruct the lumped disturbance within a predetermined time though the information
of disturbance is unknown. Based on the feed-forward compensation of the constructed disturbance
observer, the suggested controller achieves outstanding disturbance attenuation and satisfying tracking
performance, simultaneously.

To further highlight the superiority of the suggested fixed-time control strategy, comparisons are car-
ried out with fixed-time terminal sliding mode control (FTSMC) in Ref. [33] and adaptive nonsingular
fast terminal sliding mode control (ANFTSMC) in Ref. [34]. The corresponding controllers for space
manipulator can be formulated as follows:

The FTSMC is written as

u = u1 + u2

u1 = C0(q, q̇)q̇ + H0(q)q̈d − H0(q)ζ sgn(s)

− H0(q)σ−1�e2 − p1

q1

H0(q)σ−1diag
(|σie2i|1−q1/p1

)
e2

u2 = −p1

q1

H0(q)diag
(
σ

−q1/p1
i

) (
γαsigm2/n2 (s) + γβsigp2/q2 (s)

)
s = e1 + sigq1/p1 (σe2) (46)

where � = diag (�1, �2, . . . , �n) with �i = −α1i

(
m1
n1

− p1
q1

)
em1/n1−p1/q1−1

1i σ 2
i e2i, σ =

diag (σ1, σ2, . . . , σn) with σi = 1

α1(i)e
m1/n1−p1/q1
1i +β1(i)

, γα, γβ , ζ are three positive constants,

α1 = [α11, α12, . . . , α1n]T and β1 = [β11, β12, . . . , β1n]
T with α1i > 0 and β1i > 0, positive odd integers
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Table 2. Parameters of the proposed controller

Parameter Values
Positive odd integer m1 9
Positive odd integer n1 7
Positive odd integer p1 15
Positive odd integer q1 17
Positive constant ka 0.8
Positive constant kb 0.6
Positive constant δ 0.001
Positive constant sm 0.5
Positive constant sn 0.5
Positive constant sr 1
Positive odd integer m2 9
Positive odd integer n2 7
Positive odd integer p2 15
Positive odd integer q2 17
Control gain γ1 0.8
Control gain γ2 0.6
Control gain γ3 0.4
Positive constant ssm 0.5
Positive constant ssn 1.2
Positive constant ssr 2
Positive constant kd 3
Positive constant lk 0.5
Observation time Td 0.5
Positive constant ld 0.5
Positive constant δd 0.2
Control gain λd1 4
Control gain λd2 3
Initial state of zd [0.1, 0.15, −0.1, −0.15, 0.05, −0.05, 0.1]T

Positive constant h1i 5
Positive constant h2i 6.4
Positive constant μi 1

m1, m2, n1, n2, p1, p2, q1, q2 satisfy the relationships m1/n1 > 1, m2/n2 > 1, 1
2
< p1/q1 < 1, 0 < p2/q2 < 1,

and m1/n1 − p1/q1 > 1. To reduce the chattering phenomena, the saturation function is utilised in place
of the function sgn (·) in the control design. The definition of the elements of sat (·) are

sat(si) =
{

sgn(si), |si| ≥ ε0,

si/ε0, |si| < ε0,
i = 1, 2, . . . , 7 (47)

with a positive small constant ε0 > 0.
The ANFTSMC scheme is described as

u = u1 + u2

u1 = C0(q, q̇)q̇ + H0(q)q̈d

− H0(q)
(
α1Kadiag(|e1i|α1−1)e2 + Kbṡρ (e1)

)
u2 = −H0(q)

(
γasigα2 (s) + γbsigp2/q2 (s)

)− H0(q)kη̂tanh(s/ε) (48)
˙̂η = ksT tanh(s/ε)

s = e2 + Kasigα1 (e1) + Kbsρ (e1)
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Figure 6. Simulation results under DOBFTSMC.
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Figure 7. Esitimation performance of lumped disturbance under DOBFTSMC.

with the ith element of sρ , which is expressed as

sρi =
(

sigp1/q1 (e1i) , s̄i = 0 ∪ s̄ �= 0, |e1i| ≥ ε0

l1e1i + l2e2
1i sgn (e1i) , s̄ �= 0, |e1i| < ε0

(49)

where for a small positive constant ε0, l1 =
(

2 − p1
q1

)
ε

p1/q1−1
0 , l2 =

(
p1
q1

− 1
)

ε
p1/q1−2
0 , γa, γb, k are pos-

itive constants, Ka, Kb are two positive definite matrices, α1 = 1
2
+ m1

2n1
+
(

m1
2n1

− 1
2

)
sign (||e1 − 1||) ,
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Table 3. Control parameters for compared controllers

Controllers Parameters
FTSMC m1 = 9, n1 = 5, m2 = 5, n2 = 3, γα = 2,

p1 = 7, q1 = 9, p2 = 5, q2 = 9, γβ = 2,
α1 = [1.5, 1.8, 1.5, 1.6, 1.8, 1.8, 1.2] ,
β1 = [0.8, 1.2, 1.2, 1.0, 0.8, 1.0, 1.2] ,
ζ = 0.8, ε0 = 0.01

ANFTSMC m1 = 9, m2 = 9, n1 = 7, n2 = 7, γa = 0.8,
p1 = 11, p2 = 9, q1 = 13, q2 = 13, k = 2.8,
Ka = diag (0.6, 0.8, 1.0, 0.8, 1.2, 0.8, 0.8) ,
Kb = diag (0.8, 1.2, 1.2, 1.0, 0.8, 1.0, 1.0) ,
γb = 1.5, ε0 = 0.001, ε = 0.01
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Figure 8. Simulation results under FTSMC.
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Figure 9. Simulation results under ANFTSMC.
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]T with a con-

stant ε > 0, m1, m2, n1, n2, p1, q1 are positive odd integers satisfying m1/n1 > 1, m2/n2 > 1 and
0 < p2/q2 < 1.

For a fair and rational comparison, the simulations are conducted under the identical conditions. The
selected control parameters for the two comparison controllers mentioned earlier are provided in Table 3.
Figures 8 and 9 present the simulation results using FTSMC and ANFTSMC, respectively. In compari-
son with Fig. 6, all three controllers have finite convergence time, however, the suggested DOBFTSMC
exhibits faster convergence. The norms of tracking position and velocity errors are shown in Fig. 10,
demonstrating that the proposed controller has improved convergence and higher steady-state accuracy
in more detail. Furthermore, three critical metrics − integrated absolute errors (IAEs), integrated time
absolute errors (ITAEs), and energy consumptions (ECs) − are introduced to quantitatively evaluate the
tracking performance of these controllers. Comparing the obtained indices displayed in Tables 4–6, it is
observed that the suggested DOBFTSMC obtains the lower IAEs, ITAEs and ECs values than the other
two referenced controllers. It is evident from this that the suggested controller outperforms the other two
controllers with regard to tracking accuracy and convergence speed while consuming less energy.
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Table 4. IAEs of the different controllers

IAE = ∫ t

0
|e1i(ς )| dς DOBFTSMC FTSMC ANTSMC

IAEq1 0.1153 0.1351 0.1280
IAEq2 0.0730 0.0755 0.0754
IAEq3 0.0988 0.1023 0.0997
IAEq4 0.1556 0.1627 0.1606
IAEq5 0.0909 0.1063 0.0951
IAEq6 0.1469 0.1528 0.1513
IAEq7 0.1045 0.1059 0.1095

Table 5. ITAEs of the different controllers

Eqi =
∫ t

0
ς |e1i(ς )| dς DOBFTSMC FTSMC ANTSMC

ITAEq1 0.0099 0.0294 0.0229
ITAEq2 0.0049 0.0073 0.0073
ITAEq3 0.0075 0.0112 0.0094
ITAEq4 0.0152 0.0239 0.0219
ITAEq5 0.0068 0.0211 0.0113
ITAEq6 0.0139 0.0216 0.0202
ITAEq7 0.0082 0.0107 0.0136

Table 6. ECs of the different controllers

ECui =
∫ t

0
|ui(ς )|2dς DOBFTSMC FTSMC ANTSMC

ECu1 1,283.6 1,311.5 1,511.0
ECu2 386.1 571.2 671.5
ECu3 170.0 269.4 317.1
Cu4 47.9 86.4 102.6
ECu5 71.4 76.3 80.3
ECu6 16.3 18.1 18.7
ECu7 0.7 1.6 1.8
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Figure 10. Norms of tracking position and velocity errors.

https://doi.org/10.1017/aer.2024.128 Published online by Cambridge University Press

https://doi.org/10.1017/aer.2024.128


The Aeronautical Journal 19

Figure 11. Time response of the position tracking errors under the Monte Carlo tests.

Figure 12. Time response of the velocity tracking errors under the Monte Carlo tests.

4.3 Monte Carlo tests
In this section, a total of 30 times Monte Carlo tests are executed to evaluate the robustness of
the proposed DOBFTSMC method against parametric uncertainty and time-varying disturbance.
Each trial subjects the space manipulator to a unique set of parametric uncertainties and time-
varying disturbances. Specifically, the actual mass of each system component is set to Mi

′ =
Mi (1 + 0.1N (0, 1)), and the time-varying disturbances acting on the FFSM are chosen as d(t) =
(2N (0, 1) − 1) [0.03cos(t), 0.01cos(2t), 0.01sin(2t), 0.03sin(t), 0.02 + 0.01ϕd(t), 0.01ϕd(t), 0.01]T Nm,
where ϕd(t) =∑N

r=0 b−rvcsin (brt) is continuous but nowhere differentiable and limited, which attains
continuous extended Caputo derivatives of any order v < vc [44]. Additionally, N (0, 1) is a randomised
number following a standard Gaussian distribution. In the simulation, the values of N = 200, b = 6 and
vc = 0.7 are chosen. Besides, the remaining simulation conditions and the control parameter settings
remain identical to those in Section 4.2.

The simulation results are illustrated in Figs 11–14. Figures 11 and 12 display the time responses
of the position and velocity tracking errors under the Monte Carlo tests, respectively. Figure 13 shows
the disturbance estimation of the proposed observer under the Monte Carlo tests. As evident from the
figures, the change curves of position and velocity tracking errors under various test conditions are
almost coincident. This suggests that the proposed controller effectively mitigates the adverse effects of
parametric uncertainties and time-varying disturbances, thereby ensuring stable tracking performance
within a fixed time. Figure 14 represents the time response of the control torques under the Monte Carlo
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Figure 13. The disturbance estimation of the proposed observer under the Monte Carlo tests.

Figure 14. Time response of control torques under the Monte Carlo tests.

tests. Notably, at the beginning of the simulation, the control input is comparatively large, which is
primarily attributed to a substantial initial tracking error coupled with an overestimation of the lumped
disturbances. Based on the above analysis, it can be inferred that thanks to the excellent disturbance com-
pensation capabilities of the observer, the proposed controller exhibits outstanding robustness against
parametric uncertainties and time-varying disturbances. This guarantees the successful implementations
of the specific on-orbit servicing missions, such as approaching or grasping a non-cooperative target.

Concluding from the aforementioned simulation results, the suggested DOBFTSMC scheme success-
fully solves the fixed-time trajectory tracking issue for space manipulator with parametric uncertainty
and time-varying disturbance. Compared with the existing fixed-time control methods, the suggested
method is verified to provide a better tracking performance when it comes to steady-state precision,
convergence speed and control energy consumption.

5.0 Conclusion
In this paper, a new observer-based fixed-time sliding mode control approach was presented towards the
trajectory tracking issue related to the space manipulator with parametric uncertainty and unknown dis-
turbance. The proposed control strategy is based on the incorporation of a nonlinear disturbance observer
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in a faster fixed-time terminal sliding mode control. Despite the prior information of the lumped uncer-
tainty remains unknown, the presented disturbance observer always enables accurate estimation and fast
reconstruction of the lumped uncertainty within a specified time. Benefiting from such feed-forward
compensation, the proposed controller assures that tracking errors of the position and the velocity con-
verge to the origin within a fixed time, regardless of initial conditions. Simulation comparisons with
existing fixed-time controllers demonstrate an excellent control performance of the suggested method in
terms of faster convergence rate, higher tracking precision and less energy consumption. The primary
focus of this paper is on the theoretical research of control algorithms. In the future, our work can primar-
ily centre on two aspects. One is developing an experimental prototype to validate the performance of the
devised controllers in real-world scenarios. Another is addressing more practical challenges encountered
in controller development, such as actuator faults and time delays.
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