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On multiplicative energy of subsets
of varieties
Ilya D. Shkredov
Abstract. We obtain a nontrivial upper bound for the multiplicative energy of any sufficiently large
subset of a subvariety of a finite algebraic group. We also find some applications of our results to the
growth of conjugates classes, estimates of exponential sums, and restriction phenomenon.

1 Introduction

In papers [4, 5, 7, 10, 11, 17, 19, 20, 25] and in many others, the authors study the growth
properties of rather general subsets A of different groups G (basically, of Lie type).
One of the difficulties concerning growth of A is that, in principle, A can live in a
subvariety of G (see [10, 11, 17]). In this paper, we restrict ourselves to the case when A
indeed belongs to a subvariety and consider the most natural combinatorial problem
connecting growth of A, namely, the basic question about obtaining upper bounds for
the multiplicative energy (see, e.g., [35]) of A

E(A) ∶= ∣{(a, b, c, d) ∈ A4 ∶ ab−1 = cd−1}∣.
Our result is the following.

Theorem 1 Let G be a finite algebraic group over Fq , V ⊆ G be a variety, and Γ be a
maximal algebraic subgroup such that a coset of Γ is contained in V. Then, for any A ⊆ V,
∣A∣ ≥ ∣Γ∣1+ε , and all sufficiently large q, one has

E(A) ≪ ∣A∣3−δ ,(1.1)

where δ = δ(ε, dim(V)) > 0 and the implied constant in (1.1) depends on
dim(V), deg(V), dim(G), deg(G), and dimension n of Fn

q ⊇ G.
In particular, bound (1.1) takes place for a variety V iff V does not contain a coset of

an algebraic subgroup of size Ω(∣V ∣).

Now, we consider a particular case of Theorem 1 when our variety V belongs to
a finite Chevalley group and A ⊆ V is a rather large set. It is possible to show that
bound (1.1) can be significantly improved for such A in the sense that A must be
uniformly distributed among any sets with small product and not just subgroups (see
the discussion in Proposition A.1).
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Theorem 2 Let Gr(Fq) be a finite Chevalley group with rank r and odd q, and let
Π ≤ Gr(Fq) be its maximal (by size) parabolic subgroup. Also, let V ⊂ Gr(Fq) be a
variety which does not coincide with all shifts of conjugates of Π. Then, for any A ⊆ V
and ∣A∣ ≥ ∣Π∣q−1+c , c > 0, one has

∥ ∑
g∈A

ρ(g)∥o ≤ ∣A∣1−δ ,(1.2)

where δ = δ(c, r) > 0, ∥ ⋅ ∥o is the operator norm, and ρ is any nontrivial unitary
representation of Gr(Fq).

It is interesting that all our conditions in Theorems 1 and 2 concerning intersection
of A with subgroups are formulated in terms of V but not A. In a similar way, we
do not require that A is a generating set of G. It differs our result from Larsen–Pink
machinery (see [5, 11, 17, 25]).

Theorem 1 has a naturally looking algebraic consequence (see rigorous formulation
in Section 4).

Corollary 3 Suppose that G is a finite algebraic group and V ⊆ G is a variety. Put

t(V) ∶= max
x∈G, Γ≤G

{∣Γ∣ ∶ xΓ ⊆ V},

and

ta(V) ∶= max
x∈G, Γ≤G

{∣Γ∣ ∶ xΓ ⊆ V , Γ is an algebraic subgroup}.

Then, t(V) = O(ta(V)).

In Corollary 3, we assume that q (or ∣G∣) tends to infinity and the implied constant
in big-O depends on dim(V), deg(V), dim(G), deg(G), and the dimension of the
ground affine space.

We obtain several applications of Theorem 1. In the first one, we take our variety
V be a Zariski closure of conjugate class C of a finite algebraic group. In [19, 20], the
authors obtain that for any such C, one has ∣CC∣ ≫ min{∣C∣2−o(1) , ∣G∣}. We prove that
in certain cases, one has ∣AA∣ ≫ ∣A∣1+c , c > 0, for any sufficiently large subset A of C.

Of course, Theorem 2 is based on a purely noncommutative phenomenon of growth
in groups, and, say, estimate (1.2) does not hold in Fn

q . Nevertheless, in Section 5,
we obtain a purely commutative application to the so-called restriction problems
(see the fundamental book [34] and papers [2, 3, 33]). Here, we have dealt with the
restriction phenomenon in finite fields (see [21] and good survey [14]). Let us recall
some definitions. Now, our group G = Fn

q , and G acts on G via shifts. For any function
g ∶ G → C, consider its Fourier transform

ĝ(ξ) ∶= ∑
x∈G

g(x)e(−x ⋅ ξ),

as well as the inverse Fourier transform of a function f ∶ V → C,

( f dσ)∨(x) ∶= 1
∣V ∣ ∑ξ∈V

f (ξ)e(x ⋅ ξ),
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where e(−x ⋅ ξ) is an additive character on G. Put

∥ f ∥Lq(V ,dσ) ∶=
⎛
⎝

1
∣V ∣ ∑ξ∈V

∣ f (ξ)∣q
⎞
⎠

1
q

and ∥g∥Lq(G) ∶= (∑
x∈G

∣g(x)∣q)
1
q

.

The finite-field restriction problem [21] for our variety V seeks exponent pairs (q, r)
such that one has the inequality

∥( f dσ)∨∥Lr(G) ≤ R∗(q → r)∥ f ∥Lq(V ,dσ)

t R∗(q → r) independent of the size of the finite field. In papers [13, 14, 18, 21, 36], the
authors consider some particular varieties as cones, paraboloids, and spheres. Our
result is weaker, but on the other hand, we have dealt with an almost arbitrary variety
V. We think that this is the first result of such generality in the restriction theory over
finite fields.
Theorem 4 Let V ⊆ Fn

q be a variety and d = dim(V). Suppose that V does not contain
any line. Then, R∗( 4

3−c → 4) ≪ 1, where c = c(d) > 0.
Let us say a few words about the proofs. To estimate the multiplicative energy

E(A), A ⊆ V , we consider the shifts Ag ∶= A∩ Ag ⊆ V ∩ Vg and use the formula
E(A) = ∑g ∣Ag ∣2. The main idea is that for “typical” g, the intersection V ∩ Vg is a
variety of a strictly less dimension than dim(V), and hence we can use induction,
considering (Ag)h = A∩ Ag ∩ Ah ∩ Agh ⊆ (Vg)h , ((Ag)h)t ⊆ ((Vg)h)t , and so on.
Our induction procedure can be expressed using the language of the so-called Gowers
norms (see [6], because these norms are defined in terms of the considered intersec-
tions (((Ag1)g2) . . . )gk ). Also, we need to connect the multiplicative energy E(A) and
Gowers norms of A in a direct way, and we do this using some combinatorial tools (see
Section 3 and paper [28]). Hence, to obtain bound (1.1), it is sufficient to estimate the
Gowers norms of A. In the proof, we separate abelian and nonabelian cases, because
the dependence of δ on dim(V) and ε in (1.1) is rather concrete and is much better
in the case of an abelian group G than for a general group G. Also, we show that
“nontypical” elements g exist iff there is a coset of a large algebraic subgroup in V.
To avoid such situations, we need the condition ∣A∣ ≥ ∣Γ∣1+ε in our Theorem 1.

2 Definitions

Let G be a group with the identity 1. Given two sets A, B ⊂ G, define the product set of
A and B as

AB ∶= {ab ∶ a ∈ A, b ∈ B}.

In a similar way, we define the higher product sets, e.g., A3 is AAA. Let A−1 ∶=
{a−1 ∶ a ∈ A}. As usual, having two subsets A, B of a group G, denote by

E(A, B) = ∣{(a, a1 , b, b1) ∈ A2 × B2 ∶ a−1b = a−1
1 b1}∣,

the common energy of A and B. Clearly, E(A, B) = E(B, A), and by the Cauchy–
Schwarz inequality,

E(A, B)∣A−1B∣ ≥ ∣A∣2∣B∣2 .(2.1)
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In a little more general way, define

EL
k(A) = ∣{(a1 , . . . , ak , b1 , . . . , bk) ∈ A2k ∶ a−1

1 b1 = ⋅ ⋅ ⋅ = a−1
k bk}∣,

and, similarly,

ER
k (A) = ∣{(a1 , . . . , ak , b1 , . . . , bk) ∈ A2k ∶ a1b−1

1 = ⋅ ⋅ ⋅ = ak b−1
k }∣.

For k = 2, we have EL
k(A) = ER

k (A), but for larger k, it is not the case. If there is no
difference between EL

k(A) and ER
k (A), then we write just Ek(A). In this paper, we use

the same letter to denote a set A ⊆ G and its characteristic function A ∶ G → {0, 1}.
First of all, we recall some notions and simple facts from the representation theory

(see, e.g., [23] or [27]). For a finite group G, let Ĝ be the set of all irreducible unitary
representations of G. It is well known that size of Ĝ coincides with the number of all
conjugate classes of G. For ρ ∈ Ĝ, denote by dρ the dimension of this representation.
Thus, G is a quasi-random group in the sense of Gowers (see [7]) iff dρ ≥ ∣G∣ε , where
ε > 0 and ρ is any nontrivial irreducible unitary representation of G. We write ⟨⋅, ⋅⟩
for the corresponding Hilbert–Schmidt scalar product ⟨A, B⟩ = ⟨A, B⟩HS ∶= tr(AB∗),
where A, B are any two matrices of the same sizes. Put ∣A∥ =

√
⟨A, A⟩. Finally, it is easy

to check that for any matrices A, B, one has ∥AB∥ ≤ ∥A∥o∥B∥ and ∥A∥o ≤ ∥A∥, where
the operator l 2-norm ∥A∥o is just the maximal singular value of A.

For any function f ∶ G → C and ρ ∈ Ĝ, define the matrix f̂ (ρ), which is called the
Fourier transform of f at ρ by the formula

f̂ (ρ) = ∑
g∈G

f (g)ρ(g).(2.2)

Then, the inverse formula takes place

f (g) = 1
∣G∣ ∑ρ∈Ĝ

dρ⟨ f̂ (ρ), ρ(g−1)⟩,(2.3)

and the Parseval identity is

∑
g∈G

∣ f (g)∣2 = 1
∣G∣ ∑ρ∈Ĝ

dρ∥ f̂ (ρ)∥2 .(2.4)

The main property of the Fourier transform is the convolution formula

f̂ ∗ g(ρ) = f̂ (ρ)ĝ(ρ),(2.5)

where the convolution of two functions f , g ∶ G → C is defined as

( f ∗ g)(x) = ∑
y∈G

f (y)g(y−1x).

Given a function f ∶ G → C and a positive integer k, we write f (k) = f (k−1) ∗ f for
the kth convolution of f. Now, let k ≥ 2 be an integer and f j ∶ G → C, j ∈ [2k] be any
functions. Denote by C the operator of convex conjugation. As in [31], define

Tk( f1 , . . . , f2k) =
1
∣G∣ ∑ρ∈Ĝ

dρ⟨
k
∏
j=1

C j f̂ j(ρ),
2k
∏

j=k+1
C j f̂ j(ρ)⟩.(2.6)
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Put Tk( f ) = Tk( f , . . . , f). For example, we have, clearly, T2(A) = E(A). It is easy to
see that T1/2k

k ( f ) defines a norm of a function f (see [31]). This fact follows from the
following inequality [31, Lemma 10]:

T2k
k ( f1 , . . . , f2k) ≤

2k
∏
j=1

Tk( f j).(2.7)

In particular, E(A, A−1) ≤ E(A).
Now, let us say a few words about varieties. Having a field F, define an (affine)

variety in Fn to be the set of the form

V = {(x1 , . . . , xn) ∈ Fn ∶ p j(x1 , . . . , xn) = 0 for all j},

where p j ∈ F[x1 , . . . , xn]. Let us recall some basic properties of varieties. General
theory of varieties and schemes can be found, e.g., in [8]. The union of any finite
number of varieties is, clearly, a variety, and the intersection of any number of varieties
is a variety as well. Having a set X, we denote by Zcl(X) a minimal (by inclusion)
variety, containing X. A variety over an algebraically closed field F is irreducible if it is
not the union of two proper subvarieties. Every variety has a unique (up to inclusion)
decomposition into finitely many irreducible components [8]. The dimension of V is

dim(V) = max{n ∶ V ⊇ Xn ⊃ Xn−1 ⊃ ⋅ ⋅ ⋅ ⊃ X0 ≠ ∅},

where X j are irreducible subvarieties of V. We will frequently use the simple fact that
if V1 ⊆ V2 are two varieties and V2 is irreducible, then either V1 = V2, or dim(V1) <
dim(V2). A variety is absolutely irreducible if it is irreducible over F. In this paper, we
consider just these varieties.

We define the degree of any irreducible variety V with dim(V) = d as in [9], namely,

deg(V) = sup{∣L ∩ V ∣ < ∞ ∶ L is (n − d)-dimensional affine subspace in Fn}.

For an arbitrary variety V, we denote deg(V) to be the sum of the degrees of its
irreducible components. Recall the generalized Bézout theorem (see [9, Theorem 1]):
for any varieties U , V , one has

deg(U ∩ V) ≤ deg(U)deg(V).(2.8)

The signs ≪ and ≫ are the usual Vinogradov symbols. If we want to underline the
dependence on a parameter M, then we write ≪M and ≫M . All logarithms are to base
2. Sometimes, we allow ourselves to lose logarithmic powers of ∣F∣. In this situation,
we write ≲ and ≳ instead of ≪ and ≫.

3 On noncommutative Gowers norms

Let G be a group and A ⊆ G be a finite set. Let ∥A∥Uk be the Gowers nonnormalized
kth-norm [6] of the characteristic function of A (in multiplicative form; see, say, [28]):

∥A∥Uk = ∑
x0 ,x1 , . . . ,xk∈G

∏
ε⃗∈{0,1}k

A(x0x ε1
1 . . . x εk

k ),
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where ε⃗ = (ε1 , . . . , εk). For example,

∥A∥U2 = ∑
x0 ,x1 ,x2∈G

A(x0)A(x0x1)A(x0x2)A(x0x1x2) = E(A)

is the energy of A, and ∥A∥U1 = ∣A∣2. For any s⃗ = (s1 , . . . , sk) ∈ Gk , put

A s⃗(x) = ∏
ε⃗∈{0,1}k

A(xsε1
1 . . . sεk

k ),(3.1)

and similar for an arbitrary function f ∶ G → C, namely,

f s⃗(x) = ∏
ε⃗∈{0,1}k

Cε1+⋅⋅⋅+εk f (xsε1
1 . . . sεk

k ),

where C is the operator of the conjugation. For example, As(x) = A(x)A(xs) or, in
other words, As = A∩ (As−1). Then, obviously,

∥A∥Uk = ∑
s⃗
∣A s⃗ ∣.(3.2)

Also, note that

∥A∥Uk+1 = ∑
s⃗
∣A s⃗ ∣2 .(3.3)

Moreover, the induction property for Gowers norms holds (it follows from the
definitions or see [6])

∥A∥Uk+1 = ∑
s∈A−1 A

∥As∥Uk ,(3.4)

e.g., in particular,

∥A∥U3 = ∑
s∈A−1 A

E(As).

The Gowers norms enjoy the following weak commutativity property. Namely, let
k = n + m and s⃗ = (s1 , . . . , sk) = (u⃗, v⃗), where the vectors u⃗, v⃗ have lengths n and m,
correspondingly. We have

∥A∥Uk = ∑
s⃗
∑

x
∏

ε⃗∈{0,1}k

A(xsε1
1 . . . sεk

k )

= ∑
u⃗ ,v⃗

∑
x

∏
η⃗∈{0,1}m

∏
ω⃗∈{0,1}n

A(uη1
1 . . . uηm

m xvω1
1 . . . vωn

n ).(3.5)

In particular, ∥A−1∥Uk = ∥A∥Uk and ∥gA∥Uk = ∥Ag∥Uk = ∥A∥Uk for any g ∈ G. To
obtain (3.5), just make the changing of variables u jx = xũ j for j ∈ [m].

It was proved in [6] that ordinary Gowers kth-norms of the characteristic function
of any subset of an abelian group G are connected to each other. In [28], the author
shows that the connection for the nonnormalized norms does not depend on the size
of the group G. Here, we formulate a particular case of Proposition 35 from [28], which
relates ∥A∥Uk and ∥A∥U2 (see Remark 36 here).
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Lemma 1 Let A be a finite subset of a commutative group G. Then, for any integer k ≥ 1,
one has

∥A∥Uk+1 ≥
∥A∥(3k−2)/(k−1)

Uk

∥A∥2k/(k−1)
Uk−1

.

In particular,

∥A∥Uk ≥ E(A)2k−k−1∣A∣−(3⋅2
k−4k−4) .

Actually, one can derive Lemma 1 from Lemma 2, but to prove this more general
result, we need an additional notation and arguments.

Given two functions f , g ∶ G → C and an integer k ≥ 0, consider the “scalar prod-
uct”

⟨ f , g⟩k ∶= ∑
s⃗ ,t
∑

x
f s⃗(x)g s⃗(xt) = ⟨g , f ⟩k ,

where s⃗ = (s1 , . . . , sk). For example, ⟨A, B⟩1 = E(A, B), ⟨A, B⟩0 = ∣A∣∣B∣,
⟨A, A⟩k = ∥A∥Uk+1 , and ⟨A, 1⟩k = ∣G∣∥A∥Uk (for finite group G). Clearly,
⟨ f , g⟩0 = (∑x f (x)) (∑x g(x)), but for k ≥ 1, it is easy to see that ⟨ f , g⟩k ≥ 0, because
⟨ f , g⟩k = ∑s⃗∗ ,sk

∣( f s⃗∗ ∗ g̃ s⃗∗)(sk)∣2 ≥ 0, where s⃗∗ = (s1 , . . . , sk−1), and g̃(x) ∶= g(x−1).
Also, note that

⟨A, B⟩k = ∑
s⃗
∣A s⃗ ∣∣B s⃗ ∣ = ∑

s⃗∗
∑
sk

∣A s⃗∗ ∩ A s⃗∗ sk ∣∣B s⃗∗ ∩ B s⃗∗ sk ∣.(3.6)

Lemma 2 Let G be a commutative group and f , g ∶ G → C be functions. Then, for any
integer k ≥ 1, one has

⟨ f , g⟩3+1/k
k ≤ ⟨ f , g⟩2

k−1⟨ f , g⟩k+1∥ f ∥1/k
Uk ∥g∥1/k

Uk ,(3.7)

and hence for an arbitrary k ≥ 2 and any sets A, B ⊆ G, the following holds:

E(A, B) ≤ (∣A∣∣B∣) 3
2−

β(k+2)
2 ⟨A, B⟩β

k ,(3.8)

where β = β(k) ∈ [4−k , 2−k+1].
For any (not necessary commutative) group G, if ∥A∥Uk ≤ ∣A∣k+1−c , where c > 0, then
E(A) ≤ ∣A∣3−c∗ with c∗ = c∗(c, k) > 0.

Proof We have

σ ∶= ⟨ f , g⟩k = ∑
s⃗ ,t
∑

x
f s⃗(x)g s⃗(xt),(3.9)

and our first task to estimate the size of the set of (s⃗, t) in the last formula. Basically,
we consider two cases. If the summation in (3.9) is taken over the set

Q ∶= {s⃗ ∶ ∑
t

g s⃗(t) ≥ σ(2k∥ f ∥Uk)−1},(3.10)

then it gives us (1 − 1/2k) proportion of σ . Cardinality of the set Q can be estimated as

∣Q∣ ⋅ σ(2k∥ f ∥Uk)−1 ≤ ∥g∥Uk ,
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and hence ∣Q∣ ≤ 2k∥ f ∥Uk∥g∥Uk σ−1. Now, we fix any j ∈ [k] (without any loss of
generality, we can assume that j = 1), put s⃗∗ = (s2 , . . . , sk), and consider

Q1 ∶= {(s⃗∗ , t) ∶ ∑
s1

f s⃗∗(s1)g s⃗∗(ts1) ≥ σ(2k⟨ f , g⟩k−1)−1}.(3.11)

Using the changing of the variables as in (3.5) (here we appeal to the commutativity
of the group G) and arguing as above, we have

∣Q1∣ ⋅ σ(2k⟨ f , g⟩k−1)−1 ≤ ∑
s⃗∗ ,t

∑
s1

f s⃗∗(s1)g s⃗∗(ts1)⟨ f , g⟩k−1 .

Again, if the summation in (3.9) is taken over the set Q1, then it gives us (1 − 1/2k)
proportion of σ . Hence, by the standard projection results (see, e.g., [1]), we see that
the summation in (3.9) is taken over a set S of vectors (s⃗, t) of size at most

∣S∣ ≤ ((2k)k+1∥ f ∥Uk∥g∥Uk σ−(k+1))1/k⟨ f , g⟩2
k−1 .(3.12)

The proof below is rather technical in the commutative case. If the reader is interested
in the general case, then it is possible to avoid all calculations before (3.17), where
much simpler arguments are presented to estimate the size of the set S.

Returning to (3.12) and using the Cauchy–Schwarz inequality, we get

2−4σ 2 ≤ ∣S∣∑
s⃗ ,t
∣∑

x
f s⃗(x)g s⃗(xt)∣ 2 ≤((2k)k+1∥ f ∥Uk∥g∥Uk σ−(k+1))1/k⟨ f , g⟩2

k−1⟨ f , g⟩k+1 ,

and we have (3.7) up to a constant depending on k. Using the tensor trick (see, e.g.,
[35]), we obtain the result with the constant one.

To prove inequality (3.8), we see by induction and formula (3.7) that one has, for
l ≤ k,

⟨A, B⟩l ≤ ⟨A, B⟩α0(l ,k)
0

k−1
∏
j=1
(∥A∥U j∥B∥U j)α j(l ,k) ⋅ ⟨A, B⟩βk(l ,k)

k ,

where α j(l , k), β j(l , k) are some nonnegative functions. In principle, in view of (3.7),
these functions can be calculated via some recurrences, but we restrict ourselves giving
just crude bounds for them. We are interested in l = 1 and k is a fixed number, and
hence we write

E(A, B) = ⟨A, B⟩1 ≤ ⟨A, B⟩α0
0

k−1
∏
j=1
(∥A∥U j∥B∥U j)α j ⋅ ⟨A, B⟩β

k .

By homogeneity, we get

2 = α0 +
k−1
∑
j=1

α j2 j + 2k β.(3.13)

In particular, β ≤ 2−k+1. Further taking A = B equals a subgroup, we obtain one more
equation

3 = 2α0 + 2
k−1
∑
j=1

α j( j + 1) + (k + 2)β.(3.14)
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Using trivial inequalities ∥A∥U j ≤ ∣A∣ j+1, ∥B∥U j ≤ ∣B∣ j+1 and formula (3.14), we derive

E(A, B) ≤ (∣A∣∣B∣)α0+∑
k−1
j=1 α j( j+1)⟨A, B⟩β

k = (∣A∣∣B∣)
3
2−

β(k+2)
2 ⟨A, B⟩β

k ,

as required. Actually, if there is a nontrivial upper bound for ∥A∥U j (and it will be
so in the next section), then the last estimate can be improved in view of Lemma 1.
Furthermore, our task is to obtain a good lower bound for β. Put ω j ∶= 3 + 1/ j > 3,
j ∈ [k − 1]. Using (3.7), we get

k−1
∏
j=1
⟨A, B⟩ω j x j

j ≤ S
k−1
∏
j=1

(⟨A, B⟩2
j−1⟨A, B⟩ j+1)

x j ,(3.15)

where S is a quantity depending on ∥A∥U j , ∥B∥U j , which we do not specify, and let x j
be some positive numbers, which we will choose (indirectly) later. For 2 ≤ j ≤ k − 2,
put

x j−1 + 2x j+1 = ω jx j .(3.16)

Then, we obtain from (3.15)

⟨A, B⟩4x1
1 ⟨A, B⟩ωk−1 xk−1

k−1 ≤ S⟨A, B⟩2x2
1 ⟨A, B⟩xk−1

k ⟨A, B⟩xk−2
k−1 .

Now, choosing xk−2 = ωk−1xk−1, we see that β = xk−1/(4x1 − 2x2), and it remains to
estimate xk−1 in terms of x1 , x2. But for all j, one has ω j ≤ 4, hence xk−1 ≥ 4−1xk−2, and
similarly, from x j−1 + 2x j+1 = ω jx j , 2 ≤ j ≤ k − 2, we get x j ≥ 4−1x j−1, and hence xk−1 ≥
4−(k−1)x1. Furthermore, summing (3.16) over 2 ≤ j ≤ k − 2 and putting T = ∑k−1

j=1 x j ,
we obtain

T − xk−1 − xk−2 + 2T − 2x1 − 2x2 =
k−2
∑
j=2

ω jx j ≥ 3T − 3x1 − 3xk−1 ,

and hence

x1 − 2x2 ≥ xk−2 − 2xk−1 = (ωk−1 − 2)xk−1 > 0.(3.17)

In particular, it gives x j > 0 for all j ∈ [k − 1], and thus indeed β ≥ 4−k .
Now, suppose that G is an arbitrary group and ∥A∥Uk ≤ ∣A∣k+1−c , but E(A) ≥

∣A∣3/K, where K ≥ 1 is a parameter. By the noncommutative Balog–Szemerédi–
Gowers theorem (see [22, Theorem 32] or [35, Proposition 2.43 and Corollary 2.46]),
there is a ∈ A and A∗ ⊆ a−1A, ∣A∗∣ ≫K ∣A∣ such that ∣A3

∗∣ ≪K ∣A∗∣. We can apply the
previous argument to the set A∗ and obtain an estimate similar to Lemma 1

∣A∣k+1−c ≥ ∥A∥Uk ≥ ∥A∗∥Uk ≫K E(A∗)2k−2
∣A∗∣−(3⋅2

k−2−k−1)

≫K E(A)2k−2
∣A∣−(3⋅2

k−2−k−1) .(3.18)

Indeed, to bound E(A∗) via ∥A∗∥Uk+2 using the argument as in the proof above, we
need to estimate the size of the set Sk at each step k. But clearly, ∣Sk ∣ ≤ ∣A∗A−1

∗ ∣k+1 ≪K

∣A∗∣k+1, and hence, by induction, we obtain E2k(A∗) ≪K ∣A∗∣3⋅2
k−k−3∥A∗∥Uk+2 , as

required. Finally, from (3.18), it follows that KC(k) ≫ ∣A∣c , where C(k) is a constant
depending on k only. This completes the proof. ∎
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A closer look to the proof (see, e.g., definition (3.11)) shows that for k = 1, estimate
(3.7) of Lemma 1 takes place for any class functions f, g. Nevertheless, for larger k, this
argument does not work.

4 The proof of the main result

Let G be an algebraic group in an affine or projective space of dimension n over the
field Fq , and let V ⊆ G be a variety, d = dim(V), and D = deg(V). If V is absolutely
irreducible, then by Lang and Weil [16], we know that

∣∣V ∣ − qd ∣ ≤ (d − 1)(d − 2)qd−1/2 + A(n, d , D)qd−1 ,(4.1)

where A(n, d , D) is a certain constant. By sufficiently large q, we mean that q ≥
q0(n, d , D, dim(G), deg(G)) and all constants below are assumed to depend on
n, d , D, dim(G), deg(G). In particular, for an absolutely irreducible variety V, one has
qd ≪ ∣V ∣ ≪ qd . One can think about G and V as varieties defined overQ by absolutely
irreducible polynomials. Then, by the Noether theorem [24], we know that G and V
reduce mod p to some absolutely irreducible varieties defined over p, p ∉ S(G, V),
where S(G, V) is a certain finite set of the primes.

Finally, for any set W ⊆ G, consider the quantity

t = t(W) ∶= max
x∈G, Γ≤G

{∣Γ∣ ∶ xΓ ⊆ W , Γ is an algebraic subgroup}.(4.2)

Now, we are ready to estimate different energies of varieties in terms of the quantity
t(V). We are also able to give a nontrivial bound for any sufficiently large subset of V
(see inequality (4.5)). The proof relies on Lemma 2, and this lemma works better in
the abelian case allowing to find concrete δ = δ(d , ε) in (1.1) for an abelian group G.

Theorem 1 Let G be an algebraic group, V ⊆ G be a variety, d = dim(V), D = deg(V),
and t = t(V). Then, for any positive integer k and all sufficiently large q, one has

Ek(V) ≪d ,D
∣V ∣k+1

qk−1 + t∣V ∣k .(4.3)

In particular, if V is absolutely irreducible and V is not a coset of a subgroup, then
Ek(V) ≪d ,D ∣V ∣k+1− 1

d .
Similarly, one has

∥V∥Uk ≪d ,D ∣V ∣k+1q−
k(k−1)

2 + ∣V ∣2 tk−1 + ∣V ∣2
k−2
∑
j=1

∣V ∣ j tk−1− jq−
j(1+ j)

2 ,(4.4)

and for any A ⊆ V, the following holds:

∥A∥Ud+1 ≪d ,D t∣A∣d+1 .(4.5)

Proof First of all, consider the case of an absolutely irreducible V. For any g ∈ G, we
have either dim(V ∩ gV) < dim(V), or g belongs to the stabilizer Stab(V) of V. It is
well known that any stabilizer under any action of an algebraic group is an algebraic
subgroup (but not necessary irreducible). Clearly, Stab(V) ⊆ v−1V for any v ∈ V , and
hence either V is a coset of an (algebraic) subgroup, and hence there is nothing
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to prove, or dim(Stab(V)) < dim(V). The degree of the variety gV ∩ V is at most
deg2(V) by inequality (2.8). Similarly, because our topological space is a Noetherian
one (see, e.g., [8, p. 5]) and Stab(V) = ⋂v∈V v−1V , it follows that the cardinality of
Stab(V) can be estimated in terms of d and D thanks to (4.1). Hence, all parameters of
all appeared varieties are controlled by d , D, n (and, possibly, by dim(G), deg(G)).
Using the Lang–Weil formula (4.1), we obtain for sufficiently large q that qd/2 ≤
∣V ∣ ≤ 2qd , say, further ∣Stab(V)∣ ≪ qd−1, and, similarly, for any g ∉ Stab(V), one has
∣V ∩ gV ∣ ≪ qd−1. Hence,

Ek(V) = ∑
g∈G

∣V ∩ gV ∣k = ∑
g∉Stab(V)

∣V ∩ gV ∣k + ∑
g∈Stab(V)

∣V ∩ gV ∣k(4.6)

≪ (qd−1)k−1 ∑
g∈G

∣V ∩ gV ∣ + qd−1∣V ∣k ≪ (qd−1)k−1∣V ∣2 + qd−1∣V ∣k ≪ ∣V ∣k+1− 1
d .

(4.7)

Now, to obtain (4.3), we apply the same argument but before we need to con-
sider V as a union of its irreducible components V = ⋃s

j=1 Vj . Clearly, s ≤ deg(V).
Take any g ∈ G, and consider V ∩ gV = ⋃s

i , j=1(Vi ∩ gVj). If, for all i , j ∈ [s], one has
dim(Vi ∩ gVj) < dim V , then for such g, we can repeat the previous calculations in
(4.6)–(4.7). Consider the set of the remaining g, and denote this set by B. For any
g ∈ B, there is i , j ∈ [s] such that dim(Vi ∩ gVj) = dim(V). In particular, dim(Vi) =
dim(Vj) = dim(V) and Vi ∩ gVj = Vi = gVj by irreducibility of Vi , Vj . Suppose that
for the same pair (i , j), there is another g∗ = g∗(i , j) ∈ B such that g∗Vj = Vi . Then,
g−1
∗ g ∈ Stab(Vj). It follows that g ∈ g∗Stab(Vj), and hence the set B belongs to
⋃s

i , j=1 g∗(i , j)Stab(Vj) plus at most s2 ≤ deg2(V) points. Hence, we need to add to
the computations in (4.6)–(4.7) the term

s2(t + 1)∣V ∣k ≤ deg(V)2(t + 1)∣V ∣k ≪ t∣V ∣k ,

as required.
To prove bound (4.4), let us obtain a generalization of (4.3). Put E(l)k = E

(l)
k (V) ∶=

∑s⃗ ∣Vs⃗ ∣k , where s⃗ = (s1 , . . . , s l) and Vs⃗ as in (3.1). Write s⃗ = (s⃗∗ , s l). Because E
(l)
k =

∑s⃗∗ Ek(Vs⃗∗), it follows that by the obtained estimate (4.3),

E
(l)
k ≪∑

s⃗∗
(∣Vs⃗∗ ∣k+1

qk−1 + t(Vs⃗∗)∣Vs⃗∗ ∣k) ≪ q−(k−1)E
(l−1)
k+1 + tE(l−1)

k .(4.8)

Here, we have used the fact that the function t on a subset of V does not exceed t(V).
Furthermore, inequality (4.8) gives by induction

E
(l)
k ≪ ∣V ∣k

l
∑
j=0

q−
j(2k+ j−3)

2 ∣V ∣ j t l− j .(4.9)

Now, applying inequality (4.3) with the parameter k = 2 and using the notation s⃗ =
(s⃗∗ , s l) again, we get

∥V∥Ul+1 = ∑
s⃗
∣Vs⃗ ∣2 = ∑

s⃗∗
E(Vs⃗∗) ≪∑

s⃗∗
( ∣Vs⃗∗ ∣3

q
+ t∣Vs⃗∗ ∣2) = q−1E

(l−1)
3 + tE(l−1)

2 .
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Hence, in view of (4.9), we derive

∥V∥Ul+1 ≪ ∣V ∣2
l−1
∑
j=0

∣V ∣ j t l−1− j(∣V ∣q−
j(3+ j)

2 −1 + tq−
j(1+ j)

2 )

≪ ∣V ∣2 t l + ∣V ∣l+2q−
l 2+l

2 + ∣V ∣2
l−1
∑
j=1
∣V ∣ j t l− jq−

j(1+ j)
2 .

Finally, take any A ⊆ V . As above, put s⃗ = (s1 , . . . , sd) = (s⃗∗ , sd). We have A s⃗ ⊆ Vs⃗ .
Furthermore, by (3.6),

∥A∥Ud+1 = ∑
s⃗
∣A s⃗ ∣2 = ∑

s⃗∗
E(A s⃗∗) = ∑

s⃗∗
∑
sd

∣A s⃗∗ ∩ A s⃗∗ sd ∣2 .(4.10)

Take any vector z⃗ = (z1 , . . . , z l), l < d, and consider the decomposition of the variable
Vz⃗ onto irreducible components Vz⃗( j). As before, define the set B(z⃗) of all g ∈ G
such that there are Vz⃗(i), Vz⃗( j)with Vz⃗(i) = gVz⃗( j). Then, arguing as above, we have
∣B(z⃗)∣ ≪ t. Using formula (4.10), we get

∥A∥Ud+1 ≪ t∑
s⃗∗
∣A s⃗∗ ∣2 + σ = t∥A∥Ud + σ ,(4.11)

where for all s⃗ in σ , we have dim(Vs⃗) = 0. Hence,

∥A∥Ud+1 ≪ t∥A∥Ud +∑
s⃗
∣A s⃗ ∣ ≪ t∣A∣d+1 + ∣A∣d+1 ≪ t∣A∣d+1 .(4.12)

This completes the proof. ∎

Once again, the bounds above depend on d , D, as well as on dim(G), deg(G) and
on the dimension of the ground affine space.

Remark 2 The quantity ∥V∥Uk can be written in different ways as∑s1 , . . . ,sk
∣Vs1 , . . . ,sk ∣2,

∑s1 , . . . ,sk−1
E(Vs1 , . . . ,sk−1), and so on. Taking variables s j running over the maximal coset

belonging to V, we see that all terms with t in (4.4) are needed.

Corollary 3 Let G be an abelian algebraic group, V ⊆ G be a variety, d = dim(V), and
D = deg(V). Then, for all sufficiently large q and any A ⊆ V, one has

E(A) ≪d ,D ∣A∣3 ( t
∣A∣ )

(2d+1−d−5)−1

for d ≥ 2 and E(A) ≪d ,D ∣A∣2 t , for d = 1.

(4.13)

In particular, for any A ⊆ V with ∣A∣ ≥ t1+c , c > 0, there is δ = δ(d , c) > 0 such that

E(A) ≪d ,D ∣A∣3−δ .(4.14)

Bound (4.14) takes place in any algebraic group. Moreover, let B ⊆ G be an arbitrary set.
Then,

E(A, B) ≪d ,D ( t
∣A∣ )

β

⋅ ∣A∣ 3
2−

βd
2 ∣B∣ 3

2+
βd
2 ,(4.15)
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where β = β(d) ∈ [4−d , 2−d+1], and for any k ≥ 1, one has either Tk(A) ≤ ∣A∣2k−1−cβ/4

or

Tk+1(A) ≪d ,D ∣A∣2Tk(A) ⋅ ∣A∣−cβ/4 .(4.16)

Proof Let d ≥ 2. By Theorem 1, we have ∥A∥Ud+1 ≪ t∣A∣d+1. Using the second part of
Lemma 1 with k = d + 1, we obtain

E(A) ≪ ∣A∣3 ( t
∣A∣ )

(2k−k−4)−1

= ∣A∣3 ( t
∣A∣ )

(2d+1−d−5)−1

.

If d = 1, then the arguments of the proof of Theorem 1 (see, e.g., (4.12)) give us

E(A) ≪ t∣A∣2 +∑
s
∣As ∣ ≪ t∣A∣2 .

For an arbitrary algebraic group, use the last part of Lemma 2.
To derive (4.15), we can suppose that ∣B∣ ≥ ∣A∣, because otherwise the required

bound

E(A, B)2 ≤ E(A)E(B) ≤ ( t
∣A∣ )

β

∣A∣3∣B∣3 ≤ ( t
∣A∣ )

β

⋅ ∣A∣3−βd ∣B∣3+βd

takes place for β = (2d+1 − d − 5)−1, d ≥ 2 (and similar for d = 1; see estimate (4.13)).
Furthermore, let ∣B∣ ≥ ∣A∣. Then, we use Lemma 2 with k = d, combining with Theorem
1 (see formulae (3.6), (4.11), and (4.12)) and the assumption ∣A∣ ≤ ∣B∣ to obtain

E(A, B) ≤ (∣A∣∣B∣) 3
2−

β(d+2)
2 ⟨A, B⟩β

d ≪ (∣A∣∣B∣) 3
2−

β(d+2)
2 (∥B∥Ud + t⟨A, B⟩d−1)β

≤ (∣A∣∣B∣) 3
2−

β(d+2)
2 (∣B∣d+1 + t∣A∣∣B∣d)β ≪ (∣A∣∣B∣) 3

2−
β(d+2)

2 tβ ∣B∣β(d+1)

= tβ ∣A∣ 3
2−

β(d+2)
2 ∣B∣ 3

2+
βd
2 ,

and (4.15) follows. Finally, to get (4.16), we use the dyadic pigeonhole principle and
the fact that T1/2k( f ) defines a norm of f to find the number Δ > 0 and the set P such
that P = {x ∈ G ∶ Δ < A(k)(x) ≤ 2Δ} and Tk+1(A) ≲ Δ2E(A, P). Thus (we assume
that c ≤ 1),

Tk+1(A)≲(t/∣A∣)β ∣A∣ 3
2−

βd
2 (Δ2∣P∣) 1

2−
d β
2 (Δ∣P∣)1+d β ≤ ∣A∣−

cβ
2 ∣A∣ 3+2k

2 −
βd
2 +βkd ⋅T

1
2−

d β
2

k (A).

Suppose that Tk(A) ≥ ∣A∣2k−1−ε , where ε ≤ cβ/4. In view of the last inequality and
β ≤ 2−d+1, one has

∣A∣−
cβ
2 ∣A∣ 3+2k

2 −
βd
2 +βkd ⋅T

1
2−

d β
2

k (A) ≤ ∣A∣2−εTk(A).

This completes the proof. ∎

Remark 4 As it was said in the proof of Lemma 2, the bound for E(A, B), A ⊆ V ,
where V is our variety and B ⊆ G is an arbitrary set, can be improved, because we
have a nontrivial upper bound for ∥A∥Ul , 2 ≤ l ≤ d + 1. Thus, bounds (4.15) and (4.16)
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can be improved slightly. Also, inequalities (4.15) and (4.16) say, basically, that either
∣A3∣ is much larger than ∣A∣ or ∣A3∣ is larger than ∣A2∣.

Theorem 1 and Corollary 3 imply the following criterion.

Corollary 5 Let G be a finite simple group, V ⊆ G be a variety, d = dim(V), and D =
deg(V). Suppose that t(V) = o(∣V ∣). Then, there is δ = δ(d , n) > 0 such that for any
A ⊆ V, ∣A∣ ≫ ∣V ∣, the following holds:

E(A) ≪d ,D ∣A∣3−δ .(4.17)

Clearly, if t(V) ≫ ∣V ∣, then (4.17) does not hold, and hence Corollary 5 is indeed
a criterion. Also, it gives a lower bound for δ of the form δ ≫ 1/d. Recall that our
current dependence on d in (4.17) has an exponential nature.

5 Applications

In [19, 20], the authors obtain the following results on growth of normal sets.

Theorem 1 Let G be a finite simple group and N ⊆ G be a normal set. Then, there is
n ≪ log ∣Γ∣/ log ∣N ∣ such that N n = G. Moreover, for any ε > 0, there is δ = δ(ε) > 0 such
that any normal set N with ∣N ∣ ≤ ∣G∣δ satisfies ∣NN ∣ ≥ ∣N ∣2−ε .

From Corollary 3, we obtain a result on the growth of an arbitrary subset of a
conjugate class.

Corollary 2 Let G be a finite connected semisimple algebraic group, and let C ⊆ G
be a conjugate class. Also, let A ⊆ C be an arbitrary set with ∣A∣ ≥ t(Zcl(C))1+ε . Then,
for a certain δ > 0 depending on dimension of C, one has E(A) ≪deg(Zcl(C)) ∣A∣3−δ . In
particular, ∣AA∣ ≫deg(Zcl(C)) ∣A∣1+δ .

Proof It is well known (see, e.g., [12, pp. 15 and 17]) that for any conjugate class C, its
Zariski closure Zcl(C) equals C and possibly other conjugate classes of strictly lower
dimension, as well as that C = C(x) is a variety iff x ∈ G is a semisimple element. Now,
the result follows from a direct application of Corollary 3 where the implied constants
depend on deg(Zcl(C)), dim(C), dim(G), deg(G), and the dimension of the ground
affine space. This completes the proof. ∎

One can see that t(C) ≤ ∣C∣1−c∗ for a certain c∗ > 0 via the general bound on such
intersections with generating sets (see [17]) or, alternatively, from some modifications
of Theorem 1 (see [19, 20]). Thus, Corollary 2 takes place for all large subsets of
conjugate classes.

Question. Is it true that for any A ⊆ C, where C is a conjugate class such that
∣A∣ ≥ ∣C∣1−o(1), say, one has An = G, where n is a function on log ∣G∣/ log ∣A∣? For
n ≪ log ∣G∣/ log ∣A∣? For C = C(x), where x is a semisimple element?

Now, we are ready to obtain a nontrivial upper bound for any sufficiently large
subset of a Chevalley group living in a variety differ from the maximal parabolic
subgroup.

Theorem 3 Let Gr(Fq) be a finite Chevalley group with rank r and odd q and Π ≤
Gr(Fq) be its a maximal (by size) parabolic subgroup. Also, let V ⊂ Gr(Fq) be a variety

https://doi.org/10.4153/S0008414X21000687 Published online by Cambridge University Press

https://doi.org/10.4153/S0008414X21000687


336 I. D. Shkredov

differ from all shifts of conjugates of Π. Then, for any A ⊆ V and ∣A∣ ≥ ∣Π∣q−1+c , c > 0,
one has

∥Â(ρ)∥o ≤ ∣A∣1−δ ,(5.1)

where δ = δ(c, r) > 0 and ρ is any nontrivial representation of Gr(Fq).

Proof Because by the assumption ∣A∣ ≥ ∣Π∣q−1+c , it follows that ∣V ∣ ≥ ∣Π∣q−1+c and
hence V is rather large. Also, one can see that, trivially, ∣A∣ ≥ ∣Π∣q−1+c ≫ q1+c . Further-
more, by [30, Lemma 8], we know that Π is the maximal (by size) subgroup of G(Fq),
and for all other subgroups Γ ≤ G(Fq), one has ∣Γ∣ ≤ q−1∣Π∣ (Γ is not conjugate to Π,
of course). In particular, in view of (4.1),

t(V) ≤ max
x , y∈Gr(Fq)

{q−1∣Π∣, ∣V ∩ xΠy∣} ≪ ∣V ∣q−c∗ ,

where c∗ = min{c, 1}. Take any subgroup H differ from all conjugates of Π. Also,
let x ∈ Gr(Fq) be an arbitrary element. Our task is to estimate the above size of the
intersection A∗ ∶= A∩ xH ⊆ V . By Corollary 5 and estimate (2.1), we have

∣A∗∣1+δ ≪ ∣A−1
∗ A∗∣ ≤ ∣H∣ ≤ ∣Π∣q−1 ≤ ∣A∣q−c ,

and hence, in particular, ∣A∗∣ ≪ ∣A∣(1+δ)−1
(actually, in this place of the proof, we can

assume a weaker condition on size of A). By a similar argument and estimate (4.1), we
derive that

∣A∩ xΠy∣ ≤ ∣V ∩ xΠy∣ ≪ ∣Π∣q−1 ≤ ∣A∣q−c ,

and hence for any proper subgroup Γ ⊂ Gr(Fq) and for all x ∈ Gr(Fq), one has
∣A∩ xΓ∣ ≪ ∣A∣q−c/2 (we use ∣A∣ ≫ q and assume that δ ≤ c). In particular, A is
a generating set of Gr(Fq). Combining this observation with the fact (see [15])
that Chevalley groups are quasi-random in the sense of Gowers [7], we obtain
desired estimate (5.1) (see, e.g., [10, 11], [29, Sections 8 and 10]). This completes the
proof. ∎

Now, we obtain an application of Corollary 3 to some questions about the restric-
tion phenomenon. Recall that in this setting, our group G is G = Fn , F is a finite field,
V ⊆ Fn is a variety, and G acts on G via shifts. For any function g ∶ Fn → C, consider
the commutative analogue of (2.2)

ĝ(ξ) ∶= ∑
x∈Fn

g(x)e(−x ⋅ ξ),

as well as the inverse Fourier transform of a function f ∶ V → C,

( f dσ)∨(x) ∶= 1
∣V ∣ ∑ξ∈V

f (ξ)e(x ⋅ ξ),

where e(x ⋅ ξ) = e2πi(x1 ξ1+⋅⋅⋅+xn ξn)/char(F) for x = (x1 , . . . , xn), ξ = (ξ1 , . . . , ξn). Thus,
a “Lebesgue Lq-norm” of f on V is defined as

∥ f ∥Lq(V ,dσ) ∶=
⎛
⎝

1
∣V ∣ ∑ξ∈V

∣ f (ξ)∣q
⎞
⎠

1
q

,
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while for a function g, it is

∥g∥Lq(Fn) ∶= ( ∑
x∈Fn

∣g(x)∣q)
1
q

.

The finite-field restriction problem [21] for our variety V seeks exponent pairs (q, r)
such that one has the inequality

∥( f dσ)∨∥Lr(Fn) ≤ R∗(q → r)∥ f ∥Lq(V ,dσ)

or, equivalently,

∥ĝ∥Lq′(V ,dσ) ≤ R∗(q → r)∥g∥Lr′(Fn)

takes place with a constant R∗(q → r) independent of the size of the finite field. As
before, we use the notation ≲ and ≳ instead of ≪ and ≫, allowing ourselves to lose
logarithmic powers of ∣F∣.

Using the arguments of the proofs of [21, Lemma 5.1 and Proposition 5.2], we obtain
the following result.

Theorem 4 Let V ⊆ Fn be a variety and d = dim(V). Suppose that V does not contain
any line. Then, R∗( 4

3−c → 4) ≪ 1, where c = c(d) > 0.

Proof According to our assumption that V does not contain any line, we see that the
parameter t(V) equals 1. Hence, by Corollary 3, we know that E(A) ≪ ∣A∣3−c = ∣A∣κ,
where c = c(d) > 0. Put q = 4/κ, and we want to obtain a good bound for R∗(q →
4). We want to obtain an estimate of the form (see the proofs of [21, Lemma 5.1 and
Proposition 5.2])

∑
x
( f V ∗ f V)2(x) ≲ (∑

x∈V
∣ f (x)∣q)

4/q

,

where f is an arbitrary function (we can freely assume that f is positive). Using the
dyadic pigeonhole principle, we need to prove the last bound for any f = A with A ⊆ V ,
and this is equivalent to

E(A) ≲ ∣A∣4/q = ∣A∣3−c .

This completes the proof. ∎
Notice that if the variety V contains subspaces of positive dimension, then there

is no any restriction-type result as in Theorem 4 in such generality (see, e.g., [21,
Section 4]).

A Appendix

Now, we obtain an analogue of the Weyl criterion for noncommutative case. In this
situation, ordinary abelian intervals or progressions correspond to some structural
nonabelian objects as subgroups. In particular, the first part of the Proposition A.1
below is applicable for subgroups H of our group G. Of course, such results should be
known, but it is difficult to find them in the literature, and we include Proposition A.1
and its converse for the completeness.
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Proposition A.1 Let ε ∈ (0, 1] be a real number, G be a finite group, and A ⊆ G be a set
such that for any nontrivial irreducible representation ρ, one has

∥Â(ρ)∥o ≤ ε∣A∣.(A.1)

Then, for any H, H∗ ⊆ G, 1 ∈ H∗ with ∣HH∗∣ ≤ ∣H∣ + K∣H∗∣, one has

∣∣A∩ H∣ − ∣A∣∣H∣
∣G∣ ∣ ≤ 2K∣H∗∣ + ε∣A∣

√
∣H∣/∣H∗∣ + K .(A.2)

Proof Put Π = HH∗. Then, for any x ∈ H, the following holds H(x) = ∣H∗∣−1(Π ∗
H−1
∗ )(x). Hence,

∥H(x) − ∣H∗∣−1(Π ∗ H−1
∗ )(x)∥1 ≤ ∣HH∗∣ − ∣H∣ ≤ K∣H∗∣,

and thus in view of formulae (2.4) and (2.5), we obtain

∣A∩ H∣ = ∣H∗∣−1 ∑
x

A(x)(Π ∗ H−1
∗ )(x) + E

= ∣A∣∣Π∣
∣G∣ + 1

∣H∗∣∣G∣
∑

ρ∈Ĝ, ρ≠1
dρ⟨Â(ρ), Π̂(ρ)Ĥ∗∗(ρ)⟩ + E,

where ∣E∣ ≤ K∣H∗∣. Applying condition (A.1), the Cauchy–Schwarz inequality, and
formula (2.4) again, we get

∣∣A∩ H∣ − ∣A∣∣H∣
∣G∣ ∣ ≤ K∣H∗∣ +

K∣A∣∣H∗∣
∣G∣ + ε∣A∣∣Π∣1/2∣H∗∣−1/2

≤ 2K∣H∗∣ + ε∣A∣
√
∣H∣/∣H∗∣ + K .

This completes the proof. ∎
The inverse statement to Proposition A.1 also takes place, but it requires some

notation, and, actually, our argument gives an effective bound if the dimension of the
corresponding representation ρ is small. Following [26, Section 17], define the Bohr
sets in a (nonabelian) group G.

Definition A.2 Let Γ be a collection of some unitary representations of G and δ ∈
(0, 2] be a real number. Put

Bohr(Γ, δ) = {g ∈ G ∶ ∥γ(g) − I∥o ≤ δ ,∀γ ∈ Γ}.

The number ∣Γ∣ is called the dimension of Bohr(Γ, δ). If Γ = {ρ}, then we write just
Bohr(ρ, δ) for Bohr({ρ}, δ). A Bohr set Bohr(ρ, δ) is called to be regular if

∣∣Bohr(ρ, (1 + κ)δ)∣ − ∣Bohr(ρ, δ)∣∣ o ≤ 100d2
ρ ∣κ∣ ⋅ ∣Bohr(ρ, δ)∣,

whenever ∣κ∣ ≤ 1/(100d2
ρ).

Even in the abelian case, it is easy to see that not each Bohr set is regular (see, e.g.,
[35, Section 4.4]). Nevertheless, it can be showed (see, e.g., [32]) that one can find a
regular Bohr set decreasing the parameter δ slightly.

Lemma A.3 Let δ ∈ [0, 1/2] be a real number and ρ be a unitary representation. Then,
there is δ1 ∈ [δ, 2δ] such that Bohr(ρ, δ1) is regular.
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Let us remark an universal lower bound for the size of any Bohr set (see [26, Lemma
17.3], [32, Proposition 28] for the case of multidimensional Bohr sets).

Lemma A.4 Let δ ∈ (0, 2] be a real number and Bohr(ρ, δ) ⊆ G be a one-dimensional
Bohr set. Then,

∣Bohr(ρ, δ)∣ ≥ (cδ)d2
ρ ⋅ ∣G∣,

where c > 0 is an absolute constant.

Now, suppose that for a set A ⊆ G, one has ∣A∣ = δ∣G∣ and ∥Â(ρ)∥o ≥ ε∣A∣. Put
f (x) = fA(x) = A(x) − δ. Take a regular Bohr set B = Bohr(ρ, δ), δ = ε/4, and let
B∗ = Bohr(ρ,κδ), where ∣κ∣ ≤ 1/(100d2

ρ) is a certain number. Then, by the definition
of Bohr sets, we have

ε∣A∣ ≤ ∥Â(ρ)∥o = ∣B∣−1∥∑
h
∑

g
f (g)B(gh−1)ρ(g)∥o

= ∣B∣−1∥∑
h
∑

g
f (g)B(gh−1)ρ(h)∥o + E,

where ∣E∣ ≤ 2δ∣A∣. Thus,

ε∣A∣/2 ≤ ∣B∣−1 ∑
h

55555555555
∑

g
f (g)B(gh−1)

55555555555
,

and hence in view of Lemma A.4, we find h ∈ G with

∣A∣∣B∣
∣G∣ + ε∣A∣ exp(−O(d2

ρ log(1/δ))) ≤ ∣A∩ Bh∣.

On the other hand, by the regularity of B, one has ∣BB∗∣ ≤ ∣B∣(1 + 100d2
ρ ∣κ∣). It implies

that Proposition A.1 can be reversed indeed.
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