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Abstract Here we consider the discrete time dynamics described by a transformation T : M → M , where
T is either the action of shift T = σ on the symbolic space M = {1, 2, . . . , d}N, or, T describes the action
of a d to 1 expanding transformation T : S1 → S1 of class C1+α (for example x → T (x) = dx (mod
1)), where M = S1 is the unit circle. It is known that the infinite-dimensional manifold N of Hölder
equilibrium probabilities is an analytical manifold and carries a natural Riemannian metric. Given a
certain normalized Hölder potential A denote by µA ∈ N the associated equilibrium probability. The
set of tangent vectors X (functions X : M → R) to the manifold N at the point µA (a subspace of the
Hilbert space L2(µA)) coincides with the kernel of the Ruelle operator for the normalized potential A.
The Riemannian norm |X| = |X|A of the vector X, which is tangent to N at the point µA, is described
via the asymptotic variance, that is, satisfies

|X|2 = 〈X,X〉 = limn→∞
1
n

∫
(
∑n−1

i=0 X ◦ T i)2 dµA.
Consider an orthonormal basis Xi, i ∈ N, for the tangent space at µA. For any two orthonormal

vectors X and Y on the basis, the curvature K(X,Y ) is

K(X,Y ) =
1

4
[
∞∑
i=1

(

∫
XYXi dµA)2 −

∞∑
i=1

∫
X2Xi dµA

∫
Y 2Xi dµA].

When the equilibrium probabilities µA is the set of invariant Markov probabilities on {0, 1}N ⊂
N , introducing an orthonormal basis ây , indexed by finite words y, we show explicit expressions for
K(âx, âz), which is a finite sum. These values can be positive or negative depending on A and the words
x and z. Words x, z with large length can eventually produce large negative curvature K(âx, âz). If x, z
do not begin with the same letter, then K(âx, âz) = 0.

Keywords: equilibrium probabilities; analytic infinite dimensional; manifold; Riemannian structure;
curvature; Haar basis of the kernel of the Ruelle operator
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1. Introduction

We denote by T : M → M a transformation acting on the metric space M, which is
either the shift σ acting on M = {1, 2, . . . , d}N, or, T is the action of a d to 1 expanding
transformation T : S1 → S1, of class C1+α, where M = S1 is the unit circle.
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2 A. O Lopes and R. O Ruggiero

For a fixed α> 0, we denote by Hol the set of α-Hölder functions on M.
For a Hölder potential A : M → R, we define the Ruelle operator (sometimes called

transfer operator) – which acts on Hölder functions f :M → R – by

f → LAf(x) =
∑

T (y)=x

eA(y)f(y). (1)

It is known (see for instance [18] or [2]) that LA has a positive, simple leading eigenvalue
λA with a positive Hölder eigenfunction hA. Moreover, the dual operator acting on mea-
sures L ∗

A has a unique eigenprobability νA which is associated to the same eigenvalue
λA.
Given a Hölder potential A, we say that the probability µA – defined on the Borel

sigma-algebra of M – is the equilibrium probability for A, if µA maximizes the values

h(µ) +

∫
A dµ,

among Borel T -invariant probabilities µ and where h(µ) is the Kolmogorov–Sinai entropy
of µ.
The theory of thermodynamic formalism shows that the probability µA is unique and

is given by the expression µA = hAνA.
In some particular cases, the equilibrium probability (also called Gibbs probability)

µA is the one observed on the thermodynamical equilibrium in the Statistical Mechanics
of the one-dimensional lattice N (under an interaction described by the potential A). As
an example (where the spin in each site of the lattice N could be + or −) one can take
M = {+,−}N, A :M → R and T is the shift.
Taking into account the above definitions, we say that a Hölder potential A is

normalized if LA1 = 1. In this case, λA = 1 and µA = νA.
Two potentials A,B in Hol will be called cohomologous to each other (up to a constant),

if there exists a continuous function g :M → R and a constant c, such that,

A = B + g − g ◦ T − c. (2)

Note that the equilibrium probability for A, respectively B, is the same if A and
B are coboundaries to each other. In each coboundary class (an equivalence relation),
there exists a unique normalized potential A (see [18]). Therefore, the set of equilibrium
probabilities for Hölder potentials N can be indexed by Hölder potentials A which are
normalized. We will use this point of view here: A↔ µA.
The infinite-dimensional manifold N of Hölder equilibrium probabilities µA is an ana-

lytic manifold (see [22], [8], [18], [6]) and it was shown in [10] that it carries a natural
Riemannian structure. In order to provide a context for our main result, let us review first
some of the main properties of this infinite-dimensional manifold and some definitions
described on [10].
The set of tangent vectors X (a function X :M → R) to N at the point µA coincides

with the kernel of LA. The Riemannian norm |X| = |X|µA of the vector X, which is
tangent to N at the point µA, is described (see Theorem D in [10]) via the asymptotic
variance, that is, satisfies

https://doi.org/10.1017/S0013091524000725 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091524000725


Sectional curvature of Hölder equilibrium probabilities 3

|X| =
√
〈X,X〉 =

√√√√ lim
n→∞

1

n

∫
(
n−1∑
j=0

X ◦ T j)2 dµA. (3)

The associated bilinear form on the tangent space at the point µA can be described (see
Theorem D in [10]) by

〈X,Y 〉 =
∫
XY dµA. (4)

This bilinear form is positive semi-definite and in order to make it definite one can con-
sider equivalence classes (cohomologous up to a constant) as described by Definition 5.4 in
[10]. In this way, we finally get a Riemannian structure onN (as anticipated in some para-
graphs above). Elements X on the tangent space at µA have the property

∫
X dµA = 0.

The tangent space to N at µA is denoted by TAN .
Given a normalized potential A let {Xi} be an orthonormal basis of TAN , i ∈ N.
Our main result is:

Theorem 1.1. Let A be a normalized potential, and let {Xi} be an orthonormal basis
of TAN . Let X = X1, Y = X2, then the sectional curvature K(X,Y ) is given by

K(X,Y ) =
1

4
[
∞∑
i=1

(

∫
XYXi dµA)

2 −
∞∑
i=1

∫
X2Xi dµA

∫
Y 2Xi dµA]. (5)

The expression of K(X,Y ) applies of course to any pair of vectors in the basis {Xi},
and we can always change the enumeration of the vectors in the basis without changing
the basis. The work consists of two distinct parts: the first part, from § 2 to 5, has a
more geometric nature and deals with the calculation of the Levi-Civita connection and
the curvature tensor. This estimate becomes quite complex because we are dealing with
an infinitely dimensional Riemannian manifold. Our goal was to express the sectional
curvature for sections on the tangent space at µA in terms of integrals of functions with
respect to µA. An important tool which will be used here is item (iv) on Theorem 5.1 in
[10]: for all normalized A ∈ N , X ∈ TAN and ϕ a continuous function it holds:

d

dt

∫
ϕ dµA+tX

∣∣∣∣
t=0

=

∫
ϕX dµA. (6)

In § 4.3, we describe the expression of sectional curvature K(X,Y ) in terms of the
calculus of thermodynamic formalism.
The nature of the second part of the paper, from § 6 to 9, is more dynamic, analytical

and considers M = {0, 1}N. We denote by K the set of stationary Markov probabilities
taking values in {0, 1}. The set of shift invariant probabilities µ ∈ K is contained in N .
The probabilities µ are defined on the space {0, 1}N. The two-dimensional manifold K is
the set of equilibrium probabilities for potentials A depending on the two first coordinates
(see [18]), that is, when A(x1, x2, x3, . . . , xn, . . .) = A(x1, x2).
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4 A. O Lopes and R. O Ruggiero

For each point µA in K, we are able to exhibit a special orthonormal basis {ây} for the
tangent space TAN , indexed by finite words y on the alphabet {0, 1} (see expression (28)).
This orthonormal family will be denoted by F . We focus, for each point in K, on the
sectional curvatures for pairs of vectors on F . We get explicit results in this case. This
second part of the article is perhaps the more technical and subtle part; after some
computations, we will get the explicit expression for sectional curvature K(âx, âz) (see
expression (45) in Theorem 7.7 and Propositions 7.9 and 7.12).
A remarkable fact appearing in the proof of Theorem 1.1 is that the expression (5)

of the sectional curvature K(âx, âz) is actually a sum of a finite number of parcels (see
expression (45) in Theorem 7.7 and Remark 7.11).
We highlight some properties that will be demonstrated in the future and that describe

the eventual values of the sectional curvature K(âx, âz) depending on the pair of vectors
âx, âz and the point in K under consideration.
1. Each vector ây is a function which is constant in cylinders of finite size (see expres-

sions (28) and (25)). More precisely, given a finite word y = (y1, y2, . . . , yn), n ≥ 1, we
denote by [y] = [y1, y2, . . . , yn] the associated cylinder set in {0, 1}N. The function ây is
constant in each of the cylinder sets [a, y1, y2, . . . , yn, b], where a, b = 0, 1. The support of
ây is the union of these cylinder sets. In this way if the word y has large length, then the
support of ây is contained on very small sets. We will have to consider the empty word
which will give rise to two tangent vectors â0∅ and â1∅, which are functions with support
on cylinders of size two.
2. The values K(âx, âz) can be positive or negative depending on the point in K and

the words x and z (see Example 7.19).
3. We say that z is a subprefix of x, if x and z satisfy

[x] = [x1, x2, . . . , xk, xk+1, . . . , xn] ⊂ [z] = [x1, x2, . . . , xk],

where n ≥ k. If x and z do not begin with the same letter (do not share a common
subprefix), then K(âx, âz) = 0 (see Proposition 7.10). As an example take x = (0, 1, 1, 0)
and z = (1, 1, 0).
4. Words x and z with large length can eventually produce extremely negative curvature

K(âx, âz). This may happen when x and z have several common subprefixes. This is due
to expression (45). As an example take x = (0, 1, 1, 0, 0, 1) and z = (0, 1, 1, 0, 0, 0, 1). But
even in this case, it is possible to get positive curvature depending on the point in K (see
Example 7.19 for a discussion in a particular case).
5. We also show that if µA (a point in K) corresponds to the measure of maximal

entropy on {0, 1}N, most of the sectional curvatures K(âx, âz) are equal to −1/2 (see
Proposition 7.16). Proposition 7.18 shows, in this case, an example where the sectional
curvatureK(â0[∅], â0) = 1/2. The different possibilities also include the caseK(â0∅, â

1
∅) = 0.

6. Considering the two-dimensional manifold K (of the Markov invariant probabilities),
it is natural to consider that vectors on TM should be functions depending on two
coordinates. In our setting, the corresponding elements on the basis F are â0∅ and â1∅. We
show that for any points in K the sectional curvature K(â0∅, â

1
∅) = 0 (see Theorem 7.14).

In this way, considering K as a surface in itself, we get that K is a flat surface (see
Remark 7.15).
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Sectional curvature of Hölder equilibrium probabilities 5

In [17] , [5] and [21], the authors consider a similar kind of Riemannian structure. The
bilinear form considered in [17] is the one we consider here divided by the entropy of µA.
As mentioned in Section 8 in [10] in that case, the curvature can be positive and also
negative in some parts.
The main motivation for the results obtained on [17] (and also [5]) is related to the

study of a particular norm on the Teichmüller space.
The results presented in [10] and here are related to the topic of Information Geometry

(see [1] for general results on the subject) and this is described in Section 5 in [14].
We point out that in the setting of thermodynamic formalism the asymptotic vari-
ance is the Fisher information (see Definition 4.3 and Proposition 4.4 in [11]). Results
about Kullback–Leibler divergence on thermodynamic formalism appeared recently in
[13].
General references for analyticity (and inverse function theorems and implicit function

theorems) in Banach spaces are [6] and [23].
A reference for general results in infinite-dimensional Riemannian manifolds is [3].
In Section 6 in [10], it is explained that the Riemannian metric considered here

is not compatible with the 2-Wasserstein Riemannian structure on the space of
probabilities.
We would like thanks to Paulo Varandas, Miguel Paternain and Gonzalo Contreras for

helpful conversations on questions related to the topics considered in this paper.
We thank the referee for extremely careful reading and criticism of previous versions

of our paper. Related results appear in [15].

2. Preliminaries of Riemannian geometry

Let us introduce some basic notions of Riemannian geometry. Given an infinite-
dimensional C∞ manifold (M, g) equipped with a smooth Riemannian metric g, let TM
be the tangent bundle and T1M be the set of unit norm tangent vectors of (M, g), the
unit tangent bundle. Let χ(M) be the set of C∞ vector fields of M.
In [3], several results for Riemannian metrics on infinite-dimensional manifolds are

presented. We will not use any of the results of that paper.
The only infinite-dimensional manifold we will be interested in here is N which is

the set of Hölder equilibrium probabilities (which was initially defined in [10]). Tangent
vectors, differentiability, analyticity, etc., should be always considered in the sense of the
setting described in Sections 2.3 and 5.1 in [10] (see also [4] and [8]). We will elaborate
on this later.
So in our case, M = N , and g is the L2 metric, gA(X,Y ) =

∫
XY dµA.

For practical purposes, we shall call Energy the function E(v) = g(v, v), v ∈ TN ,
although in mechanics the energy is rather defined by 1

2g(v, v).
Given a smooth function f : N −→ R, the derivative of f with respect to a vector field

X ∈ χ(N ) will be denoted by X (f ). The Lie bracket of two vector fields X,Y ∈ χ(N ) is
the vector field whose action on the set of functions f : N −→ R is given by [X,Y ](f) =
X(Y (f))− Y (X(f)).
The Levi-Civita connection of (N , g), ∇ : χ(N ) × χ(N ) −→ χ(N ), with notation

∇(X,Y ) = ∇XY , is the affine operator characterized by the following properties:
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6 A. O Lopes and R. O Ruggiero

(1) Compatibility with the metric g :

Xg(Y, Z) = g(∇XY, Z) + g(Y,∇XZ)

for every triple of vector fields X,Y, Z.
(2) Absence of torsion:

∇XY −∇YX = [X,Y ].

(3) For every smooth scalar function f and vector fields X,Y ∈ χ(N ), we have
• ∇fXY = f∇XY ,
• Leibniz rule: ∇X(fY ) = X(f)Y + f∇XY .

The expression of ∇XY can be obtained explicitly from the expression of the
Riemannian metric, in dual form. Namely, given two vector fields X,Y ∈ χ(N ) and
Z ∈ χ(N ), we have

g(∇XY, Z) =
1

2
(Xg(Y, Z) + Y g(Z,X)− Zg(X,Y )

− g([X,Z], Y )− g([Y, Z], X)− g([X,Y ], Z)),

2.1. Curvature tensor and sectional curvatures

We follow [9] for the definitions in the subsection. To simplify the notation, from now
on, we shall adopt the convention g(X,Y ) = 〈X,Y 〉. The curvature tensor

R : χ(N )× χ(N )× χ(N ) −→ χ(N )

is defined in terms of the Levi-Civita connection as follows

R(X,Y )Z = ∇Y∇XZ −∇X∇Y Z +∇[X,Y ]Z. (7)

The sectional curvature of the plane generated by two vector fields X,Y at the point
A ∈ N , which are orthonormal at A, is given by

K(X,Y ) = 〈∇Y∇XX −∇X∇YX +∇[X,Y ]X,Y 〉 = 〈R(X,Y )X,Y 〉. (8)

Let A be a normalized Hölder potential. Let us consider a local smooth surface S(t, s),
for | t |, | s |≤ ε small, tangent to the plane {A + tX + sY } generated by X,Y at the
point A = S(0, 0). Let X̄, Ȳ be the coordinate vector fields of the surface and suppose
that X̄A = X, ȲA = Y . In § 4.2, we shall exhibit such local surfaces.

Lemma 2.1. The expression of the sectional curvature of the plane generated by the
two orthonormal vectors X,Y is

https://doi.org/10.1017/S0013091524000725 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091524000725


Sectional curvature of Hölder equilibrium probabilities 7

K(X,Y ) = −1

2
(X̄(X̄(‖ Ȳ ‖2)) + Ȳ (Ȳ (‖ X̄ ‖2)))+ ‖ ∇Ȳ X̄ ‖2 +Ȳ (X̄〈X̄, Ȳ 〉)

− 〈∇X̄X̄,∇Ȳ Ȳ 〉. (9)

Proof. The fact that X̄ and Ȳ commute implies that ∇X̄ Ȳ = ∇Ȳ X̄ and

〈R(X̄, Ȳ )X̄, Ȳ 〉 = 〈∇Ȳ∇X̄X̄ −∇X̄∇Ȳ X̄, Ȳ 〉.

The first term of 〈R(X̄, Ȳ )X̄, Ȳ 〉 gives

〈∇Ȳ∇X̄X̄, Ȳ 〉 = Ȳ 〈∇X̄X̄, Ȳ 〉 − 〈∇X̄X̄,∇Ȳ Ȳ 〉
= Ȳ (X̄〈X̄, Ȳ 〉 − 〈X̄,∇X̄ Ȳ 〉)− 〈∇X̄X̄,∇Ȳ Ȳ 〉
= Ȳ (X̄〈X̄, Ȳ 〉 − 〈X̄,∇Ȳ X̄〉)− 〈∇X̄X̄,∇Ȳ Ȳ 〉

= Ȳ (X̄〈X̄, Ȳ 〉 − 1

2
Ȳ (‖ X̄ ‖2))− 〈∇X̄X̄,∇Ȳ Ȳ 〉

= − 1

2
Ȳ (Ȳ (‖ X̄ ‖2)) + Ȳ (X̄〈X̄, Ȳ 〉)− 〈∇X̄X̄,∇Ȳ Ȳ 〉.

The second term of the formula gives

〈∇X̄∇Ȳ X̄, Ȳ 〉 = X̄〈∇Ȳ X̄, Ȳ 〉 − 〈∇Ȳ X̄,∇X̄ Ȳ 〉
= X̄〈∇X̄ Ȳ , Ȳ 〉 − 〈∇Ȳ X̄,∇Ȳ X̄〉

=
1

2
X̄(X̄(‖ Ȳ ‖2))− ‖ ∇Ȳ X̄ ‖2 .

Subtracting the second term from the first one we obtain the lemma. �

3. The analytic structure of the set of normalized potentials

Definition 3.1. Let (X, |.|) and (Y, |.|) Banach spaces and V an open subset of X. Given
k ∈ N, a function F : V → Y is called k-differentiable in x, if for each j = 1, . . . , k, there
exists a j-linear bounded transformation

DjF (x) : X ×X × ...×X︸ ︷︷ ︸
j

→ Y,

such that,

Dj−1F (x+ vj)(v1, . . . , vj−1)−Dj−1F (x)(v1, . . . , vj−1) = DjF (x)(v1, . . . , vj) + oj(vj),

where

oj : X → Y, satisfies, lim
v→0

|oj(v)|Y
|v|X

= 0.

By definition F has derivatives of all orders in V, if for any x ∈ V and any k ∈ N, the
function F is k-differentiable in x.
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8 A. O Lopes and R. O Ruggiero

Definition 3.2. Let X,Y be Banach spaces and V an open subset of X. A function
F : V → X is called analytic on V, when F has derivatives of all orders in V, and for
each x ∈ V there exists an open neighbourhood Vx of x in V, such that, for all v ∈ Vx,
we have that

F (x+ v)− F (x) =
∞∑
j=1

1

n!
DjF (x)vj ,

where DjF (x)vj = DjF (x)(v, . . . , v) and DjF (x) is the j-th derivative of F in x.

Above we use the notation of Section 3.2 in [8].
N can be expressed locally in coordinates via analytic charts (see [10]).

3.1. Some more estimates from thermodynamic formalism

Given a potential B ∈ Hol, we consider the associated Ruelle operator LB and the
corresponding main eigenvalue λB and eigenfunction hB.
The function

Π(B) = B + log(hB)− log(hB(T ))− log(λB) (10)

describes the projection of the space of potentials B on Hol onto the analytic manifold
of normalized potentials N .
We identify below TAN with the affine subspace {A+X : X ∈ TAN}.
The function Π is analytic (see [10]) and therefore has first and second derivatives.

Given the potential B, then the map DBΠ : TBN −→ TΠ(B)N given by

DBΠ(X) =
∂

∂t
(Π(B + tX)t=0

should be considered as a linear map from Hol to itself (with the Hölder norm on Hol).
Moreover, the second derivative D2

BΠ should be interpreted as a bilinear form from Hol ×
Hol to Hol and is given by

D2
BΠ(X,Y ) =

∂2

∂t∂s
(Π(B + tX + sY )t=s=0.

We denote by ||A||α the α-Hölder norm of an α-Hölder function A.
When B is normalized the eigenvalue is 1 and the eigenfunction is equal to 1. We would

like to study the geometry of the projection Π restricted to the tangent space TAN into
the manifold N (namely, to get bounds for its first and second derivatives with respect
to the potential viewed as a variable) for a given normalized potential A.
The space TAN is a linear subspace of functions and the derivative map DΠ is analytic

when restricted to it.
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Sectional curvature of Hölder equilibrium probabilities 9

We denote by E0 = EA0 the set of Hölder functions g, such that,
∫
g dµA = 0, where µA

is the equilibrium probability for the normalized potential A. Note that EA0 is contained
in TA(N ).
Most of the claims of the next Lemma are based mainly on results of [10] (see also [8],

[4]).

Lemma 3.3. Let Λ : Hol −→ R, H : Hol −→ Hol be given, respectively, by Λ(B) = λB ,
H(B) = hB. Then we have

(1) The maps Λ, H and A −→ µA are analytic.
(2) For a normalized B, we get that DB log(Λ)(ψ) =

∫
ψ dµB .

(3) D2
B log(Λ)(η, ψ) =

∫
ηψ dµB , where ψ, η are at TBN , and B is normalized.

(4) If A is a normalized potential, then for every function X ∈ TAN , we have
•
∫
X dµA = 0.

• DAΠ(X) = X.

In order to simplify the notation, from now on, unless is necessary for the understand-
ing, we will denote (I − LT,A|EA0

)−1 by (I − LT,A)
−1.

Items (2) and (3) are taken from Theorem D in [10]. Item
∫
X dµA = 0 in (3) follows

from Theorem A and Corollary B in [10], and the other item in (4) is trivial.
The analyticity of Λ and H of the item (1) are well-known facts (see Chapter 4 in [18]

or Corollary B in [10]) which was also proved in [4].
The law that takes a Hölder potential B to its normalization A is differentiable

according to Section 2.2 in [10].
Note that the derivative linear operator X → DAH(X) is zero when A is normalized.
Remark 1: Item (1) above means that for a fixed Hölder function f the map A →∫
f dµA is differentiable on A (see Theorem B in [4]).
Questions related to second derivatives on thermodynamic formalism are considered

in [16], [19] and [21].

4. Evaluating the sectional curvatures of the Riemannian metric

The goal of the section is to calculate the sectional curvature K(X,Y ) of the plane
generated by two orthogonal vector fields tangent to A ∈ N applying the calculus of
thermodynamic formalism. We start with a technical result that is a consequence of
formula 6. This lemma will be extensively used in the article.

4.1. Leibniz rule of differentiation

Lemma 4.1. Let A ∈ N and let γ : (−ε, ε) −→ N be a smooth curve such that
γ(0) = A. Let X(t) = γ′(t), and let Y be a smooth vector field tangent to N defined in an
open neighbourhood of A. Denote by Y (t) = Y (γ(t)). Then the derivative of

∫
Y (t) dµγ(t)

with respect to the parameter t is

d

dt

∫
Y (t)dµγ(t) =

∫
dY (t)

dt
dµγ(t) +

∫
Y (t)X(t)dµγ(t)
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10 A. O Lopes and R. O Ruggiero

for every t ∈ (−ε, ε).

Proof. The idea of the proof is very simple and based on the fact that the function
Q : χ(N )×mT −→ R given by

Q(X,µ) =

∫
Xdµ

is a bilinear form, where χ(N ) is the set of C 1 vector fields tangent to N and mT is
the set of invariant measures of the map T. So the derivative of a function of the type
Q(X(t), µ(t)) satisfies a sort of Leibniz rule. Let us check.
Let us calculate the derivative at t =0, for every other t ∈ (−ε, ε), the calculation is

analogous. We have

d

dt

∫
Y (t) dµγ(t) |t=0 = lim

t→0

1

t
(

∫
Y (t) dµγ(t) −

∫
Y (0) dµA)

=

∫
lim
t→0

1

t
(Y (t)− Y (0)) dµγ(t)

+ lim
t→0

1

t
(

∫
Y (0) dµγ(t) −

∫
Y (0) dµA)

=

∫
dY (t)

dt
dµA + lim

t→0

1

t
(

∫
Y (0) dµA+tX(0) −

∫
Y (0) dµA)

where in the last step we use the fact that the derivative with respect to t only depends
on the vector X (0) and not on the curve through A tangent to X (0). By Equation (6),
the second term in the above equality is just d

dt

∫
Y (0) dµA+tX(0) |t=0, which equals∫

X(0)Y (0) dµA. This finishes the proof of the lemma. �

From now on, we shall adopt the notation ∂Y
∂t = Y ′ = Yt; the second one applies when

there is only one parameter involved in the calculations, and the third one will be used
otherwise.

4.2. Auxiliary local surfaces in N

Next, given a normalized potential A and X,Y orthonormal vector in the tangent
space of A, we proceed to construct a local surface S(t, s), | t |, | s |< ε small, such that
S(0, 0) = A, and the tangent space of S(t, s) at A is the plane generated by X,Y . Let us
consider the plane

P (t, s) = A+ tX + sY

where t, s,∈ R, that is a subset of TAN , and let Π be the projection into N defined
in Equation (10). The vector fields XP (t,s) =

∂
∂tP (t, s) = X, YP (t,s) =

∂
∂sP (t, s) = Y are

tangent to the plane P of course.
Let S(t, s) = Π(P (t, s)). By Lemma 3.3 item (5), the restriction of the map Π to the

plane P (t, s) is a local diffeomorphism onto its image, so there exists ε> 0 small such
that S(t, s) is an analytic embedding of the rectangle {| t |< ε} × {| s |< ε}.
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The coordinate vector fields of S(t, s) are X̄S(t,s) = ∂
∂t (Π(P (t, s))) = DP (t,s)Π(X),

ȲS(t,s) =
∂
∂s (Π(P (t, s)) = DP (t,s)Π(Y ), so X̄, Ȳ are extensions of X,Y .

Moreover, we have the following result from thermodynamic formalism (for derivatives
of high order see (3.4) in [16]):

Lemma 4.2. Suppose ψ : {1, 2, . . . , d}N → R is Hölder, normalized and µ denotes
the associated equilibrium probability. Assume also that the Hölder function φ satisfies
Lψ(φ) = 0. Denote by λt and wt, t ∈ R, respectively, the eigenvalue and the eigenfunction
for the Ruelle operator Lψ+tφ. Then, we have

(1) The derivative of wt satisfies

d

dt
wt(x)|t=0 = c, for allx, (11)

for some constant c.
(2) Moreover, as ψ is normalized

d

dt
log(wt(x)|t=0) = c, for allx. (12)

(3) Suppose X is an analytic vector field, extending the tangent vector X, defined in a
neighbourhood of φ. Let γ : (−ε, ε) → N be an integral curve of X, with γ(0) = φ,
and let wt be the curve of eigenfunctions for the Ruelle operator of γ(t). Then,

d

dt
wt(x) = ct, for allx, (13)

is a curve of constant functions which is analytic on t.
(4) For any tangent vector X (in the kernel of the Ruelle operator), the directional

derivative

DψH(X) = cX = Dψ logH(X), (14)

where cX depends on X and ψ.
(5) From Equation (11), we get

d

dt
wt(T (x))|t=0 = c, for allx, (15)

and for the same constant c of Equation (11).

Proof. We are going to take derivative on the Hölder direction φ. Assume that φ
satisfies Lψ(φ) = 0, which implies that

∫
φ dµ = 0. This is so because iterates of a

function under the Ruelle–Perron–Frobenius operator converge to the integral of that
function against the eigenmeasure.
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Denote by w(t, x) = wt(x), the normalized eigenfunction for Lψ+tφ associated with
the eigenvalue λt. That is

Lψ+tφ(wt) = λtwt. (16)

Taking derivative on t :

d

dt
Lψ+tφ(w(t, .))(x) = Lψ+tφ(φ(.)w(t, .))(x) + Lψ+tφ(

d

dt
w(t, .))(x).

Therefore, for all x, when t =0, we get

d

dt
Lψ+tφ(w(t, .))(x)|t=0 = Lψ(φ(.))(x) + Lψ(

d

dt
w(t, .)|t=0)(x) =

0 + Lψ(
d

dt
w(t, .)|t=0)(x).

On the other hand, for all x and t

d

dt
[λtw(t, x)] = w(t, x)

d

dt
λt + λt

d

dt
w(t, x).

Then, taking t =0,

d

dt
[λtw(t, x)]|t=0 = w(0, x)

d

dt
λt|t=0 + λt

d

dt
|t=0w(t, x) =

∫
φdµ+

d

dt
|t=0w(t, x) =

d

dt
|t=0w(t, x).

Denote g(x) = d
dtw(t, .)|t=0(x).

Then, ∀x, we get from the above and Equation (16)

Lψ(g)(x) = g(x),

for the normalized potential ψ. But, the only continuous eigenfunctions for Lψ, which
are associated to the eigenvalue 1 are the constant functions.
Therefore, there exists c such that d

dtwt(x)|t=0 = c, for all x.
As, for all t and x

d

dt
log(wt(x)|t=0) =

d
dtwt(x)|t=0

w0(x)
=

d

dt
wt(x)|t=0,

we get Equation (12).
Equation (14) follows at once from the above.
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Expression (13) is obtained in the same way as it was derived Equation (11) (apply-
ing the argument for each value t), and, finally, Equation (15) follows trivially from
Equation (11). �

We will use the above result on the next lemma.

Lemma 4.3. The derivatives with respect to t, s of the coordinate vector fields X̄, Ȳ
at the point A (a normalized potential) are

(1) ∂
∂tX̄ = ∂

∂s Ȳ = −1

(2) ∂
∂sX̄ = ∂

∂t Ȳ = 0.

Proof. We assume that the tangent vector is Hölder and in the kernel of the Ruelle
operator LA. The proof of the lemma will be a direct consequence of Lemma 4.2 taking
ψ = A and φ = X. We will prove first the item (1) above.
The local surface S(t, s) is contained in the manifold of normalized potentials, and

we denote, respectively, the corresponding eigenvalue by λS(t,s) and the associated
eigenfunction by hS(t,s) (of the Ruelle operator associated with S(t, s)).
Let I be the identity map. The expression of the projection Π (Equation (10)) is

Π(B) = I(B) + log(hB)− log(hB(T ))− log(λB).

By definition, we have

∂

∂t
(X̄S(t,0))t=0 =

∂

∂t
(DP (t,0)Π(XP (t,0)))t=0. (17)

Lemma 3.3 grants that all the functions involved in the expression of Π are
differentiable, so we get at the point t =0,

∂

∂t
(DP (t,0)Π(XP (t,0)))t=0 =

∂

∂t
(DP (t,0)I(XP (t,0)))t=0

+
∂

∂t
((DP (t,0) log(H))(XP (t,0)))t=0

− ∂

∂t
((DP (t,0) log(H ◦ T ))(XP (t,0)))t=0

− ∂

∂t
((DP (t,0) log(Λ))(XP (t,0)))t=0.

(18)

The first term gives at t =0,

∂

∂t
(DP (t,0)I(XP (t,0)))t=0 =

∂

∂t
(X)t=0 = 0,

since X does not depend on t.
Claim 1:
The second and third term cancel due to Equations (11) and (15).
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Indeed, the curves

α(t) = DP (t,0) log(H)(XP (t,0)), β(t) = DP (t,0) log(H ◦ T )(XP (t,0))

coincide by Equations (11) and (15) with the expression

α(t) = β(t) =

d
dtcXP (t,0)

cXP (t,0)

for each t, where cX is given in Lemma 4.2. These curves are analytic and therefore
differentiable, so their derivatives with respect to t coincide. Since derivatives α′(t), β′(t)
appear with opposite signs in Equation (18), they add up to zero in this formula. This
proves the Claim.
Finally, the fourth line of Equation (18) gives by Lemma 3.3 item (3),

− ∂

∂t
((DP (t,0) log(Λ))(XP (t,0)))t=0 = −

∫
X2 dµ = −1

since X has L2 norm equal to 1. The same argument applies replacing X by Y in the
above proof, so this finishes the proof of item (1).
Item (2) follows the same type of reasoning and using Equation (13). By definition, we

have

∂

∂s
(X̄S(0,s))s=0 =

∂

∂s
(DP (t,s)Π(XP (t,s))t=0)s=0.

This expression, according to Equation (18), is

∂

∂s
(DP (t,s)Π(XP (t,s)))t=s=0 =

∂

∂s
(DP (t,s)I(XP (t,s)))t=s=0

+
∂

∂s
((DP (t,s) log(H))(XP (t,s)))t=s=0

− ∂

∂s
((DP (t,s) log(H ◦ T ))(XP (t,s)))t=s=0

− ∂

∂s
((DP (t,s) log(Λ))(XP (t,s)))t=s=0.

The first term gives at t =0,

∂

∂s
(DP (t,0)I(XP (t,0)))t=0 =

∂

∂s
(X)t=0 = 0

since X does not depend on t, s. The fourth term is, by Lemma 3.3 item (3),

− ∂

∂s
(DP (t,s) log(Λ)(XP (t,s)))t=s=0 = −D2

A log(Λ)(Y,X) = −
∫
XY dµA = 0.
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As for the second and third terms, we have
Claim 2:

∂

∂s
((DP (t,s) log(H))(XP (t,s)))t=s=0 =

∂

∂s
((DP (t,s) log(H ◦ T ))(XP (t,s)))t=s=0.

The proof goes as in Claim 1, letting

αs(t) = DP (t,s) log(H))(XP (t,s)), βs(t) = DP (t,s) log(H ◦ T )(XP (t,s))

we have by Lemma 4.2 items (3) and (5) that αs(t) = βs(t) is an analytic curve of
constant functions for each given s. Therefore, the function

w(t, s) = αs(t) = βs(t)

is an analytic function of the parameters t, s and therefore, the derivatives of αs(t) and
βs(t) with respect to s coincide and give a family of constant functions in the local surface
S(t, s). This finishes the proof of Claim 2.
Claim 2 yields that the sum of the second and third terms of the expression of

∂
∂s (DP (t,s)Π(XP (t,s)))t=s=0 vanishes, just finishing the proof of item (2). �

4.3. The expression of K(X,Y ) in terms of the calculus of thermodynamic

formalism

Let us first state some notation. Let X̄t be the derivative of the vector field X̄ with
respect to the parameter t and X̄s be the derivative of the vector field X̄ with respect to
the parameter s. The same convention applies to Ȳt, Ȳs. The notation X̄(Y ) = ∂

∂t Ȳ = Ȳt
will always represent derivatives with respect to the vector field X̄, while X̄Ȳ or X̄ × Ȳ
will represent the product of the functions X̄ and Ȳ . Through the section, this double
character of the vectors tangent to the manifold N which are also functions will show up
in all statements and proofs.

Theorem 4.4. Let A be a normalized potential, let X,Y ∈ TAN be a pair of orthonor-
mal vector fields, and let S : (−ε, ε) × (−δ, δ) −→ N be the local surface defined in the
previous subsection with S(0, 0) = A, X̄, whose coordinate vector fields are X̄, Ȳ , with
X̄(A) = X, Ȳ (A) = Y . Then the sectional curvature K(X,Y ) at A of the plane generated
by X,Y is given by the expression

K(X,Y ) =‖ ∇Ȳ X̄ ‖2 −〈∇X̄X̄,∇Ȳ Ȳ 〉.

We shall subdivide the proof into several steps.

Lemma 4.5. We have that X̄s = Ȳt in the local surface S.

This is a straightforward consequence of the fact that the vector fields X̄, Ȳ commute.
Next, let us evaluate the terms of the sectional curvature in Lemma 2.1,
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K(X,Y ) = − 1

2
(X̄(X̄(‖ Ȳ ‖2)) + Ȳ (Ȳ (‖ X̄ ‖2)))+ ‖ ∇Ȳ X̄ ‖2

+ Ȳ (X̄〈X̄, Ȳ 〉)− 〈∇X̄X̄,∇Ȳ Ȳ 〉.

Lemma 4.6. At every point p ∈ S(t, s), we have

(1) X̄(X̄(‖ Ȳ ‖2)) = 2
∫
Ȳ Ȳtt dµp −

∫
Ȳ 2 dµp +

∫
X̄2Ȳ 2 dµp.

(2) Ȳ (Ȳ (‖ X̄ ‖2)) = 2
∫
X̄X̄ss dµp −

∫
X̄2 dµp +

∫
X̄2Ȳ 2 dµp.

In particular, if p=A, we have

(1) X̄(X̄(‖ Ȳ ‖2)) = 2
∫
Ȳ Ȳtt dµA − 1 +

∫
X̄2Ȳ 2 dµA.

(2) Ȳ (Ȳ (‖ X̄ ‖2)) = 2
∫
X̄X̄ss dµA − 1 +

∫
X̄2Ȳ 2 dµA.

Proof. The expression follows from the application of the Leibniz rule to differentiate
‖ Ȳ ‖2=

∫
Ȳ 2 dµp (we shall omit for convenience the p in the notation of the measure

dµp ):

X̄(X̄

∫
Ȳ 2 dµ) = X̄(2

∫
Ȳ Ȳt dµ+

∫
X̄Ȳ 2 dµ)

= 2

∫
(Ȳt)

2 dµ+ 2

∫
Ȳ Ȳtt dµ+ 2

∫
Ȳ X̄Ȳt dµ

+

∫
X̄tȲ

2 dµ+ 2

∫
X̄Ȳ Ȳt dµ+

∫
X̄2Ȳ 2 dµ

= 2

∫
(Ȳt)

2 dµ+ 2

∫
Ȳ Ȳtt dµ+ 4

∫
X̄Ȳ Ȳt dµ

+

∫
X̄tȲ

2 dµ+

∫
X̄2Ȳ 2 dµ.

Since by Lemma 4.3 we have that X̄s = Ȳt = 0, X̄t = Ȳs = −1, we get item (1) just by
replacing this values in the integral expressions above.
Interchanging X̄ and Ȳ , t and s, in the above formula, we get item (2). At the point

p=A, we have that
∫
X̄2 dµA =

∫
T̄ 2 dµA = 1, so replacing these values in the formula

we finish the proof of the lemma. �

Lemma 4.7. The expression of Ȳ (X̄〈X̄, Ȳ 〉) = Ȳ (X̄
∫
X̄Ȳ dµp) is

Ȳ (X̄

∫
X̄Ȳ dµp) =

∫
Ȳ X̄ts dµp+1−

∫
Ȳ 2 dµp+

∫
X̄Ȳts dµp−

∫
X̄2 dµp+

∫
X̄2Ȳ 2 dµp

at every point p ∈ S(t, s). In particular, at p=A, we have

Ȳ (X̄

∫
X̄Ȳ dµA) =

∫
Ȳ X̄ts dµA +

∫
X̄Ȳts dµA − 1 +

∫
X̄2Ȳ 2 dµA.
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Proof. We apply the Leibniz rule,

Ȳ (X̄

∫
X̄Ȳ dµ) = Ȳ (

∫
X̄tȲ dµ+

∫
X̄Ȳt dµ+

∫
X̄2Ȳ dµ)

=

∫
X̄tsȲ dµ+

∫
X̄tȲs dµ+

∫
X̄tȲ

2 dµ

+

∫
X̄sȲt dµ+

∫
X̄Ȳts dµ+

∫
X̄ȲtȲ dµ

+

∫
ȲsX̄

2 dµ+ 2

∫
Ȳ X̄X̄s dµ+

∫
X̄2Ȳ 2 dµ.

Since by Lemma 4.5 we have that X̄s = Ȳt we get the following formula just adding the
terms in the above formula:

Ȳ (X̄

∫
X̄Ȳ dµ) =

∫
Ȳ X̄ts dµ+

∫
X̄tȲs dµ+

∫
X̄tȲ

2 dµ+

∫
(X̄s)

2 dµ

+

∫
X̄Ȳts dµ+ 3

∫
X̄X̄sȲ dµ+

∫
ȲsX̄

2 dµ+

∫
X̄2Ȳ 2 dµ.

By Lemma 4.3, X̄s = Ȳt = 0, X̄t = Ȳs = −1, and replacing these values in the integral
expression above we obtain the formula in the statement. Moreover, if p=A, we know

that
∫
X̄2 dµA =

∫ 2
dµA = 1, as well as

∫
Ȳ 2 dµA =

∫
Y 2 dµA = 1, thus concluding the

proof of the Lemma. �

Corollary 4.8. The term − 1
2 (X̄(X̄(‖ Ȳ ‖2)) + Ȳ (Ȳ (‖ X̄ ‖2))) + Ȳ (X̄〈X̄, Ȳ 〉) in the

expression of K(X,Y ) at the point A vanishes.

Proof. To shorten notation, we shall omit the dependence of A in the expressions.
According to Lemma 4.5, we have that

(1)
∫
X̄X̄ss dµ =

∫
X̄Ȳts dµ.

(2)
∫
Ȳ X̄st dµ =

∫
Ȳ Ȳtt dµ.

Replacing the above equalities in the expressions of Lemmas 4.6 and 4.7, and adding
the resulting formulae we get Corollary 4.8. �

Theorem 4.4 follows at once from Corollary 4.8.

5. Cristoffel coefficients at the expression of K(X,Y )

We denote by {Xi}, i ∈ N, a complete orthonormal base of the vector space TAN ⊂ L2(µ)
(for the Gibbs probability µ associated with the normalized potential A).
The main goal of the section is to obtain the expression for the sectional curvature in

Theorem 1.1.
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Namely, let A ∈ N be a point in the manifold of normalized potentials, let X,Y ∈ TAN
be two orthonormal tangent vectors. Then the expression of the curvature of the plane
generated by X,Y is

K(X,Y ) =
1

4
[
∞∑
i=1

(

∫
XYXi dµ)

2 −
∞∑
i=1

∫
X2Xi dµ

∫
Y 2Xi dµ]. (19)

In Proposition 5.2, we will show that the above sum is well-defined.
The proof is a direct calculation of the terms ‖ ∇Ȳ X̄ ‖2, 〈∇X̄X̄,∇Ȳ Ȳ 〉 that appear

in the expression of the curvature in Theorem 4.4. We shall subdivide the calculation in
several lemmas.
We follow the notation of the previous section. Let S(t, s) be the local surface given in

§ 4 tangent to the plane generated by the vectors X,Y , satisfying S(0, 0) = A, let X̄, Ȳ
be the local extensions of the vectors X,Y obtained by projecting by the map Π the
plane generated by X,Y at TAN into the tangent space of N .
Let us define local extensions X̄i of the vector fields Xi in an analogous way we

defined the extensions of X,Y : let Sk be the plane generated by X1, X2, . . . , Xk and
let us project by Π the tangent space of Sk into TN by the differential of the projection
into N .
The terms ‖ ∇Ȳ X̄ ‖2, 〈∇X̄X̄,∇Ȳ Ȳ 〉 involve the Cristoffel symbols of the vector fields

X̄, Ȳ , at the point A we have:

∇X̄k
X̄l =

∞∑
i=1

ΓiklXi

where Γikl = 〈∇X̄k
X̄l, X̄i〉 is the Cristoffel coefficient. We follow [9] for the definitions

and basic properties of Cristoffel coefficients.
The coefficient Γkij can be calculated in terms of the coefficients of the first fundamental

form of the metric at A, the inner products gij = 〈Xi, Xj〉 by the following formula:

Γikl =
1

2
gim(gmk,l + gml,k − gkl,m)

where g im is the coefficient of the inverse of the first fundamental form of index im,
gmk,l is the derivative with respect to X̄l of the coefficient gmk and the above notation is
Einstein’s convention for the sum on the index m.
The expression ‘inverse of the first fundamental form’ requires some explanation since

we are dealing with an infinite-dimensional Riemannian manifold. One natural rigor-
ous approach is to evaluate the series

∑∞
i=1 Γ

i
klXi as the limit of its partial sums∑n

i=1 Γ
i
klXi that includes the Cristoffel coefficients in the subspace of TAN generated

by {X1, X2, . . . , Xn}. The first fundamental form restricted to this subspace is a n ×n
matrix that, under our assumptions, is the identity. Its inverse is of course the iden-
tity. This allows us to define all the terms in the partial sum, then we take the limit as
n→ ∞ to get the series. We shall prove that the series converges absolutely, so the above
procedure provides the expression of ∇X̄k

X̄l as an infinite series.
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In particular, since the basis {X1, X2, . . . , Xn, . . .} is orthonormal, the indices in the
sum of the expression of ∇X̄k

X̄l according to Einstein’s convention just reduce to ii,kk,

ll, depending on the case, and gkl = gkl = δkl. So at the point A we get the formula

Γikl =
1

2
(gik,l + gil,k − gkl,i).

Lemma 5.1. The term gik,l at A, for any permutation of the indices, is

gik,l =

∫
XiXkXl dµ.

Then,

∇X̄k
X̄l =

1

2

∞∑
i=1

(

∫
XiXkXl dµA)Xi.

Proof. We have that gik,l = X̄l〈X̄i, X̄k〉 = X̄l

∫
X̄iX̄k dµ. By the Leibniz rule, we

have

X̄l

∫
X̄iX̄k dµ =

∫
∂

∂X̄l
(X̄i)X̄k dµ+

∫
X̄i

∂

∂X̄l
(X̄k) dµ+

∫
X̄iX̄kX̄l dµ

where ∂
∂X̄l

(X̄i) is the derivative of the vector field X̄i in the direction of X̄l.

Notice that Lemma 4.3 extends to the submanifolds Sk for every k ∈ N. So we have

(1) ∂
∂X̄l

(X̄i) = 0 if l 6= i,

(2) ∂
∂X̄l

(X̄i) = −1 if l = i.

In both cases, since
∫
X̄i dµ = 0 for every i, we get gik,l =

∫
XiXkXl dµ as claimed.

The expression for ∇X̄k
X̄l is straightforward from this formula. �

Corollary 5.2. Let us assume that X = X1 and Y = X2 are the first two vectors of
the orthonormal base {Xi}. For the normalized potential A = S(0, 0), we get the following
expressions

∇X̄1
X̄1 =

1

2

∞∑
i=1

(

∫
X2

1Xi dµA)Xi

∇X̄2
X̄2 =

1

2

∞∑
i=1

(

∫
X2

2Xi dµA)Xi

∇X̄1
X̄2 =

1

2

∞∑
i=1

(

∫
X1X2Xi dµA)Xi.
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Moreover, for any pair X,Y ∈ TAN the sums

∞∑
i=1

(

∫
XYXi dµ)

2and
∞∑
i=1

∫
X2Xi dµ

∫
Y 2Xi dµ

are both finite.

Proof. We consider an extension of the family Xr, r ∈ N, to all L2(µ) and we get a
complete orthonormal base of the vector space L2(µ), given by Xr, Ys, r, s ∈ N. The first
three expressions in the statement are straightforward from Lemma 5.1.
Given two elements X,Y ∈ TAN consider f = XY =

∑
r a

f
rXr +

∑
s b
f
sYs ∈ L2(µ),

then,

(

∫
XYXi dµ)

2 = |afi |
2.

It follows that
∑∞
i=1(

∫
XYXi dµ)

2 =
∑∞
i=1 |a

f
i |2 ≤‖ f ‖2 is finite.

Denote g = X2 =
∑
r a

g
rXr +

∑
s b
g
sYs and h = Y 2 =

∑
r a

h
rXr +

∑
s b
h
sYs. Therefore,∫

gh dµ =
∞∑
i=1

agi a
h
i +

∞∑
j=1

bgj b
h
j .

Form this follows that
∑∞
i=1 a

g
i a
h
i converges. Note that

∫
X2Xi dµ = agi and

∫
Y 2Xi dµ =

ahi . Then,

∞∑
i=1

∫
X2Xi dµ

∫
Y 2Xi dµ =

∞∑
i=1

agi a
h
i

converges. �

Theorem 1.1 follows from direct calculation applying Corollary 5.2 to the expression
of K(X,Y ).

6. A worked example in the Markov case: an orthonormal basis for the

kernel of the Ruelle operator

From now onM = {0, 1}N and we denote by K the set of stationary Markov probabilities
taking values in {0, 1}.
In this section, given a probability µA ∈ K, we will exhibit an orthonormal basis for

the tangent space to N (the kernel of the Ruelle operator) at µA.
Given a finite word x = (x1, x2, . . . , xk) ∈ {0, 1}k, k ∈ N, we denote by [x] the

associated cylinder set in M = {0, 1}N.
Consider an invariant Markov probability µ obtained from a row stochastic matrix

(Pi,j)i,j=0,1 and an initial left invariant vector of probability π = (π0, π1) ∈ R2.
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Given r ∈ (0, 1) and s ∈ (0, 1), we denote

P =

(
P0,0 P0,1

P1,0 P1,1

)
=

(
r 1− r

1− s s

)
. (20)

In this way (r, s) ∈ (0, 1)× (0, 1) parameterize all row stochastic matrices.
The explicit expression is

µ[x1, x2, . . . , xn] = πx1Px1,x2Px2,x3 · · ·Pxn−1,xn
. (21)

Definition 6.1. Denote by J : {0, 1}N → R the Jacobian associated to P. This function
J is such that is constant equal

Ji,j =
πiPi,j
πj

on the cylinder [i, j], i, j = 0, 1.

According to our previous notation µA = µlog J (which in this section will be called
just µ).

Definition 6.2. The Ruelle operator for log J acts on continuous functions ϕ and is
given by: for each ϕ :M → R, we get that

Llog J(ϕ)(x1, x2, x3, . . .) =
π0P0,x1

πx1
ϕ(0, x1, x2, . . .) +

π1P1,x1

πx1
ϕ(1, x1, x2, . . .). (22)

It is known that L ∗
log J(µ) = µ (see [18]).

We also consider the action of Llog J on L2(µ) and we are interested in the kernel of
this operator when acting on Holder functions.
Given a finite word x = (x1, x2, . . . , xn), depending of the context [x] will either denote

the word or the corresponding cylinder set in {0, 1}N. The empty word is also considered
a finite word.
We start by recalling that, given a Markov probability µ on {0, 1}N, the family of

Holder functions

e[x] =
1√
µ([x])

√
Pxn,1
Pxn,0

1[x0] −
1√
µ([x])

√
Pxn,0
Pxn,1

1[x1], (23)

where x = (x1, x2, . . . , xn) is a finite word on the symbols {0, 1}, is an orthonormal set
for L 2(µ) (see [12] for a general expression and [7] for the specific expression we are using
here). In order to get a (Haar) basis, we should add e0[∅] =

1√
µ([0])

1[0] and e
1
[∅] =

1√
µ([1])

1[1]

to this family.
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Definition 6.3. Given a finite word x = (x1, x2, . . . , xn), we denote

ax =

√
πx1√

π0
√
P0,x1

e[0,x1,x2,...,xn] −
√
πx1√

π1
√
P1,x1

e[1,x1,x2,...,xn]. (24)

It will follow from Equations (33) and (34) that the terms |ax| are uniformly bounded
away from zero (the minimum value is 2). Moreover, they depend just on the first letter
of the word [x].

Definition 6.4. We denote by

âx =
1

|ax|
ax, (25)

the normalization of ax.

In order to get a complete orthonormal set for the kernel of the Ruelle operator, we
will have to add to the functions of the form (25) two more functions: â0[∅] and â

0
[∅] to be

set in Definition 6.8. To show this result is our main goal in this section. This family will
be later denoted by F according to Definition 6.9.
In this direction, we first consider the problem of exhibiting an orthogonal family which

is a basis for the kernel of the Ruelle operator, and later via normalization, we will get a
complete orthonormal family which is a basis for the kernel of the Ruelle operator.
Following this line of reasoning, one of our main tasks in this section is to show the

following:

Theorem 6.5. The family ax, indexed by all words x = (x1, x2, . . . , xn), plus the two
functions e0[∅] and e

1
[∅], determine an orthogonal set on the kernel of the Ruelle operator

Llog J .

We will address first the issue related to the functions ax, and later to questions
regarding the functions e0[∅] and e

1
[∅].

First note that as the family e[x], where x is a finite word, is orthonormal, then, ax,
where x is a finite word with size bigger or equal to 1, is an orthogonal family.
Indeed, it follows from the fact that the family e[x] defined by Equation (23) is

orthogonal, and the bilinearity of the inner product, that

〈ax, az〉 =

〈
√
πx1√

π0P0,x1

e[0,x] −
√
πx1√

π1P1,x1

e[1,x],

√
πz1√

π0P0,z1

e[0,z] −
√
πz1√

π1P1,z1

e[1,z]〉 = 0,

for all x = (x1, x2, . . . , xn) 6= z = (z1, z2, . . . , zk).
We shall subdivide the proof of Theorem 6.5 into several steps. First of all, we have

that:
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Proposition 6.6. Given x = [x1, x2, . . . , xn] with a size larger or equal to 1,

Llog J(e[x1,x2,...,xn]) =

√
πx1√
πx2

√
Px1,x2e[x2,x3,...,xn]. (26)

From this follows that all elements in the orthogonal family

ax =

√
πx1√

π0
√
P0,x1

e[0,x1,x2,..,xn] −
√
πx1√

π1
√
P1,x1

e[1,x1,x2,..,xn], (27)

indexed by words x = (x1, x2, . . . , xn), are in the kernel of the Ruelle operator Llog J .

Proof. We consider finite words x with size larger or equal to 1.
Indeed, given the word x = (x1, x2, . . . , xn), let L = Llog J(e[x1,x2,...,xn]), then we get

L =
πx1
πx2

Px1,x2 [
1√
µ([x])

√
Pxn,1
Pxn,0

1[x2,...,xn,0]

− 1√
µ([x])

√
Pxn,0
Pxn,1

1[x2,...,xn,1]]

=
πx1
πx2

√
Px1,x2 [

√
Px1,x2√
µ([x])

√
Pxn,1
Pxn,0

1[x2,...,xn,0]

−
√
Px1,x2√
µ([x])

√
Pxn,0
Pxn,1

1[x2,...,xn,1]].

This is equal to

πx1
πx2

√
πx2√
πx2

√
Px1,x2

√
Px1,x2√

πx1Px1,x2Px2,x3 · · ·Pxn−1,xn

√
Pxn,1
Pxn,0

1[x2,...,xn,0]

−
πx1
πx2

√
πx2√
πx2

√
Px1,x2

√
Px1,x2√

πx1Px1,x2Px2,x3 · · ·Pxn−1,xn

√
Pxn,0
Pxn,1

1[x2,...,xn,1]

which is equivalent to

πx1
πx2

√
πx2√
πx1

√
Px1,x2

1√
πx2Px2,x3 · · ·Pxn−1,xn

√
Pxn,1
Pxn,0

1[x2,...,xn,0]

−
πx1
πx2

√
πx2√
πx1

√
Px1,x2

1√
πx2Px2,x3 · · ·Pxn−1,xn

√
Pxn,0
Pxn,1

1[x2,...,xn,1]
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that yields

L =

√
πx1√
πx2

√
Px1,x2

1√
µ[x2, x3, . . . , xn]

[

√
Pxn,1
Pxn,0

1[x2,...,xn,0] −

√
Pxn,0
Pxn,1

1[x2,...,xn,1]]

=

√
πx1√
πx2

√
Px1,x2ex2,x3,...,xn .

Then,

Llog J(

√
πx2√

πx1
√
Px1,x2

e[x1,x2,...,xn])

=
1√

µ[x2, x3, . . . , xn]
[

√
Pxn,1
Pxn,0

1[x2,...,xn,0] −

√
Pxn,0
Pxn,1

1[x2,...,xn,1]] = e[x2,x3,...,xn]

and therefore,

Llog J(

√
πx2√

π0
√
P0,x2

e[0,x2,...,xn]) = Llog J(

√
πx2√

π1
√
P1,x2

e[1,x2,...,xn]).

For each finite word (x1, x2, . . . , xn) denote

ax =

√
πx1√

π0
√
P0,x1

e[0,x1,x2,...,xn] −
√
πx1√

π1
√
P1,x1

e[1,x1,x2,...,xn]

=

√
πx1√

π0
√
P0,x1

1√
µ([0x])

[

√
Pxn,1
Pxn,0

1[0x0] −

√
Pxn,0
Pxn,1

1[0x1]]

−
√
πx1√

π1
√
P1,x1

1√
µ([1x])

[

√
Pxn,1
Pxn,0

1[1x0] −

√
Pxn,0
Pxn,1

1[1x1]]. (28)

From the above reasoning, it follows that the family ax is in the kernel of the Ruelle
operator. �

For words, x of size greater or equal to 1 the function ax is constant in cylinder sets of
size equal to the length of x plus 2.
As an example, we get that

a0 =

√
π0

√
π0
√
P0,0

1√
µ([00])

[

√
P0,1

P0,0
1[000] −

√
P0,0

P0,1
1[001]]

−
√
π0

√
π1
√
P1,0

1√
µ([10])

[

√
P0,1

P0,0
1[100] −

√
P0,0

P0,1
1[101]] (29)
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is constant on cylinders of size 3.
Note that if x and z are different words, then, 1x, 0x, 0z and 1z are four different

words.
Note that

e2[x] =
1

µ([x])

Pxn,1
Pxn,0

1[x0] +
1

µ([x])

Pxn,0
Pxn,1

1[x1]. (30)

Therefore,

a2x = axax =
πx1

π0P0,x1

e2[0,x1,x2,...,xn] +
πx1

π1P1,x1

e2[1,x1,x2,...,xn]

= [
πx1

π0P0,x1

1

µ([0x])

Pxn,1
Pxn,0

1[0x0] +
πx1

π0P0,x1

1

µ([0x])

Pxn,0
Pxn,1

1[0x1]]

+[
πx1

π1P1,x1

1

µ([1x])

Pxn,1
Pxn,0

1[1x0] +
πx1

π1P1,x1

1

µ([1x])

Pxn,0
Pxn,1

1[1x1]]. (31)

From the above, it follows that

|ax| =
√

πx1
π0P0,x1

+
πx1

π1P1,x1

. (32)

Using the notation in the variables r, s for the matrix P, when x1 = 0 we get

|ax| =
√

πx1
π0P0,x1

+
πx1

π1P1,x1

= (
√
r(1− r))−1 (33)

and when x1 = 1 we get

|ax| =
√

πx1
π0P0,x1

+
πx1

π1P1,x1

= (
√
s(1− s))−1. (34)

Definition 6.7. We denote by F̃ the orthonormal set of normalized functions âx,
where x = (x1, x2, . . . , xk) is a finite word with size equal or larger than 1.

As we mentioned before, we will have to add two more functions in order to get a basis
(a completely orthogonal set in the Hilbert space) for the kernel of the Ruelle operator
Llog J .
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We claim that the orthogonal pair (constant in cylinders of size 2)

V1 = π1P1,01[00] − π0P0,01[10]

V2 = π0P0,11[11] − π1P1,11[01] (35)

is in the kernel of the Ruelle operator (see Proposition 6.11). The functions V 1 and V 2

are orthogonal to all âx ∈ F̃ and they depend on the first two coordinates x1, x2 of x.
The vectors V̂1 =

V1
|V1|

and V̂2 =
V2
|V2|

are normalized and orthogonal to all âx. This

claim will be proved in Proposition 6.11.
One can show that

|V1| =
√
π2
1P

2
1,0π0P0,0 + π2

0P
2
0,0π1P1,0 =

√
(1− r)r(s− 1)3

(−2 + r + s)3
(36)

and

|V2| =
√
π2
0P

2
0,1π1P1,1 + π2

1P
2
1,1π0P0,1 =

√
(1− s)s(r − 1)3

(−2 + r + s)3
. (37)

Definition 6.8. As a matter of notation, we denote â0[∅] = V̂1 and â1[∅] = V̂2.

These two functions are constant in cylinders of size 2.

Definition 6.9. We add â0[∅] and â
1
[∅] to the family F̃ in order to get the family F .

Remark 6.10. The elements in F range in all possible words of size larger or equal
to zero. A generic element in F is denoted by âx, and by this we mean that âx can
eventually represent â0[∅] or â

1
[∅].

Proposition 6.11. The orthogonal pair

V1 = π1P1,01[00] − π0P0,01[10]

V2 = π0P0,11[11] − π1P1,11[01] (38)

is such that, each one of them is orthogonal to the other elements âx, where x ranges in
all finite words with size bigger or equal to 1. V1 and V2 are on the kernel of the Ruelle
operator Llog J .

Proof. Note first that 1[00] is orthogonal to all ax, where x = (x1, x2, . . . , xn) is a word
with size equal or greater than 1. This claim follows from (28). Indeed, if x1 = 0, we get
that
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〈1[00],

√
Pxn,1
Pxn,0

1[0x0] −

√
Pxn,0
Pxn,1

1[0x1]〉 =

√
Pxn,1π0P0,x1

Px1,x2 · · ·Pxn−1,xn

√
Pxn,0−

√
Pxn,0π0P0,x1

Px1,x2 · · ·Pxn−1,xn

√
Pxn,1 = 0.

If x1 = 1 the claim follows at once.
Using the same reasoning one can show that 1[01], 1[10], 1[11] are orthogonal to all ax,

where length of x is bigger than zero. It follows that linear combinations of this functions
are also orthogonal to all ax. It follows that V 1 and V 2 are orthogonal to all ax, where
the length of x is bigger than zero.
We will show that V 1 is in the kernel of the Ruelle operator (for V 2 the proof is

similar). Given y = (y1, y2, . . . , yn, . . .) ∈M , suppose first that y1 = 0, then, we get

Llog J(V1) = Llog J(π1P1,01[00] − π0P0,01[10])(y) =

π1P1,0(J0,y11[00](0, y1, y2, . . .) + J1,y11[00](1, y1, y2, . . .))−

π0P0,0(J0,y11[10](0, y1, y2, . . .) + J1,y11[10](1, y1, y2, . . .)) =

π1P1,0J0,0 − π0P0,0J1,0 = π1P1,0
π0P0,0

π0
− π0P0,0

π1P1,0

π0
= 0.

In the case y1 = 1, we get

Llog J(V1) = π1P1,0(J0,y11[00](0, y1, y2, . . .) + J1,y11[00](1, y1, y2, . . .))−

π0P0,0(J0,y11[10](0, y1, y2, . . .) + J1,y11[10](1, y1, y2, . . .)) = 0.

�

Remark 6.12. A function of the form w = r11[0] + r21[1] is in the kernel of Llog J

only in the case where P01 = (1− r) = s = P11. In this case

w = (1− r)1[0] − (1− s)1[1] (39)

is such that Llog J(w) = 0.
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We do not have to take into account in our future reasoning this function because

w =
1

r
V1 +

1

r − 1
V2.

Proposition 6.13. The family of elements in F (see Definition 6.9 and Remark 6.10)
is an orthonormal basis for the kernel of the Ruelle operator Llog J .

Proof. From Proposition 6.6, we know that given x = [x1, x2, . . . , xn]

Llog J(e[x1,x2,...,xn]) =

√
πx1√
πx2

√
Px1,x2e[x2,x3,...,xn]. (40)

Suppose ϕ is in the kernel of the Ruelle operator. We will show that ϕ can be expressed
as an infinite linear combination of the normalized functions âx ∈ F .
We can express ϕ as

ϕ =
∑

words y

cye[y].

When applying Llog J on ϕ, we separate the infinite sum in subsums of the form

c0,α2,...,αne[0,α2,...,αn] + c1,α2,...,αne[1,α2,...,αn].

Assuming that ϕ is in the kernel of Llog J , we get from Equation (40) that

0 = Llog J(
∑
n

∑
α2,...,αn

[c0,α2,...,αne[0,α2,...,αn] + c1,α2,...,αne[1,α2,...,αn]])

=
∑
n

∑
α2,...,αn

[

√
π0

√
πα2

√
P0,α2

c0,α2,...,αne[α2,...,αn] +

√
π1

√
πα2

√
P1,α2

c1,α2,...,αne[α2,...,αn]]

=
∑
n

∑
α2,...,αn

[

√
π0

√
πα2

√
P0,α2

c0,α2,...,αn +

√
π1

√
πα2

√
P1,α2

c1,α2,...,αn ]e[α2,...,αn].

Then, for fixed n and (α2, α3, . . . , αn)

√
π0

√
πα2

√
P0,α2

c0,α2,...,αn = −
√
π1

√
πα2

√
P1,α2

c1,α2,...,αn ,

which means

c0,α2,...,αn = −
√
π1

√
πα2

√
P1,α2

√
πα2√
π0

1√
P0,α2

c1,α2,...,αn .

Then, the sum

c0,α2,...,αne[0,α2,...,αn] + c1,α2,...,αne[1,α2,...,αn]

https://doi.org/10.1017/S0013091524000725 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091524000725
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is equal to

−c1,α2,...,αn [
√
π1

√
πα2

√
P1,α2

√
πα2√
π0

1√
P0,α2

e[0,α2,...,αn] − e[1,α2,...,αn]].

Multiplying the above expression by
√πα2√
π1

1√
P1,α2

, we get

√
πα2√
π1

1√
P1,α2

[c0,α2,...,αne[0,α2,...,αn] + c1,α2,...,αne[1,α2,...,αn]]

which is equal to

− c1,α2,...,αn [

√
πα2√
π0

1√
P0,α2

e[0,α2,...,αn] −
√
πα2√
π1

1√
P1,α2

e[1,α2,...,αn]]

= − c1,α2,...,αna[a2,...,an].

Then, (c0,α2,...,αne[0,α2,...,αn] + c1,α2,...,αne[1,α2,...,αn]) is a multiple of the function
â[α2,...,αn]. Since the above reasoning was done for a generic choice of (α2, α3, . . . , αn),
we conclude that for each n the sum

∑
words y of lengthn cye[y] can be expressed as a linear

combination of elements âx, using words of length n − 1, n > 1.
From this follows that each element in the kernel of Llog J can be expressed as an

infinite linear combination of the functions âx. �

Theorem 6.5 follows from the combination of Propositions 6.6 and 6.13.
The above shows that the set F is a complete orthonormal set for the kernel of the

Ruelle operator acting on L 2(µ).

7. A worked example in the Markov case: preliminary calculations of the

terms in K(X,Y )

In this section, we shall devote ourselves to the calculation of the sectional curvatures in
the case of Markov stationary probabilities on M = {0, 1}N.
We denote by K ⊂ N , the set of Markov invariant probabilities. We will consider this

section the sectional curvature for points in K for general orthogonal pairs of tangent
vectors to N .
We can also consider K as a two-dimensional manifold carrying the Riemannian struc-

ture induced by N . From this point of view, there exists just one orthonormal pair
to be considered. One of our main results (see Theorem 7.14) claims that for the two-
dimensional manifoldK, for any point in K, the sectional curvature for the pair of tangent
vectors to K is always zero.
We will consider in our reasoning the empty word as a regular word. â0∅ and â1∅ are two

elements in F associated with the empty word.
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Definition 7.1. We say that z is a subprefix of x, if x and z satisfy

[x] = [x1, x2, . . . , xk, xk+1, . . . , xn] ⊂ [z] = [x1, x2, . . . , xk],

where n ≥ k.

Note that, even when z is not a subprefix of x and x is not a subprefix of z, they
can share some common subprefix. Note also that if x and z do not share a common
subprefix, then z is not a subprefix of x and x is not a subprefix of z.
If [x] = [z], then, x is a subprefix of z.

Definition 7.2. We say that z is a strict subprefix of x, if x and z satisfy

[x] = [x1, x2, . . . , xk, xk+1, . . . , xn] ⊂ [z] = [x1, x2, . . . , xk],

where n> k.

Two different words with the same length cannot be subprefix of each other. If the
length of z is strictly larger than the length of x, then, z cannot be a subprefix of x.

Definition 7.3. Given the finite words x, z we denote by D[x, z] the set of all finite
words y such that are subprefix of x and z.

If for example x = (0, 0, 0) and z = (0, 0, 0, 1), then

D[x, z] = {â0∅, (0), (0, 0), (0, 0, 0)}.

In the case x = (0, 1, 0, 0, 1) and z = (0, 1, 1) we get that D[x, z] = {â0∅(0), (0, 1), }.
Another example: D[a0,0, â

0
∅] = {â0∅} and D[a0,0, â

1
∅] = ∅.

Note that in the case z = (z1, z2, . . . , zk) is a subprefix of x = (x1, x2, . . . , xn), n > k,
then, z1 = x1. Then, it follows from (32) that |ax| = |az|.

Proposition 7.4. Assume that x is not a subprefix of z and z is not a subprefix of x.
Then,

axaz = 0.

Proof. Note that az is a linear combination of 1[0z0], 1[0z1], 1[1z0] and 1[1z1]. As ax is a
linear combination of 1[0x0], 1[0x1], 1[1x0] and 1[1x1], the result follows. �

Note that the hypothesis of the last proposition is equivalent to saying that the
cylinders [x] and [z] are disjoint.

Corollary 7.5. Given a word x assume that x is not a subprefix of y and y is not a
subprefix of x. Then,

â2xây = 0.

Proof. This follows from at once from Proposition 7.4. �
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Note that if x and y have the same length, but they are different, then
∫
â2xây dµ = 0.

From Proposition 7.4, it follows:

Corollary 7.6. Assume that x is not a subprefix of z and z is not a subprefix of x.
Then, we get that the products (part of the first sum contribution in Equation (44))
satisfy ∫

âxâzây dµ = 0, (41)

for all word y.

Remember that F (defined in last section) is the set of all functions of the form

âx =
1√

πx1
π0P0,x1

+
πx1

π1P1,x1

ax, (42)

where x = (x1, x2, . . . , xk) is a general finite word, plus the functions â0[∅] and â
1
[∅].

Remember that Proposition 6.13 of last section claims that the family of functions F
determines an orthonormal basis for the Kernel of the Ruelle operator.
We want to estimate for X = âx, Y = âz ∈ F and the orthogonal basis Xi = ây ∈ F

the explicit expression of the curvature which was described in Theorem 1.1

K(X,Y ) =
1

4
[
∞∑
i=1

(

∫
XYXi dµ)

2 −
∞∑
i=1

∫
X2Xi dµ

∫
Y 2Xi dµ]. (43)

We will not present the explicit expression of the sectional curvature K(X,Y ) for any
pair of vectors X,Y in the kernel, but just for the case where the functions X,Y are part
of the family âx ∈ F .
An important issue is: 0 = 〈â2z, ây〉 =

∫
â2zây dµ, when the length of y is strictly larger

than the length of z (as will be proved in § 8 and 9). We mention this point to stress the
point that the last sum in expression (44) is a sum of a finite number of terms.
Our main result in this section concerns the Markov case:

Theorem 7.7. For a fixed pair âx, âz ∈ F (with z different from x) the value

K(âz, âx) =
1

4
[
∑

word y

(

∫
âxâzây dµ)

2 −
∑

word y

∫
â2zây dµ

∫
â2xây dµ]. (44)

In the case the length of x is strictly larger than the length of z we get that Equation (44)
can be expressed in a more simplified form as:

1

4
[(

∫
â2xâz dµ)

2 −
∑

y∈D[x,z]

∫
â2xây dµ

∫
â2zây dµ]. (45)

In this case, the above expression is a sum of a finite number of terms.
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In the general case, the value
∫
â2xâz dµ is zero if z is not a subprefix of x. If z is a

strict subprefix of x and y is a strict subprefix of z, then the term

−
∫
â2xây dµ

∫
â2zây dµ (46)

is non-positive. Moreover, by Equation (75), we get
∫
â2zâx dµ = 0. Then, it follows that

Equation (44) is a sum of a finite number of terms, for any given x and z, with z 6= x.

The proof of this result will take several sections and subsections. Proposition 7.12 will
summarize several explicit computations that are necessary in our reasoning.
We will also provide an explicit expression for the curvature (45) in terms of the words

x, z and the probability µ (which is indexed by (r, s) of expression (20)). This will follow
from explicit expressions for (

∫
axazay dµ)

2,
∫
a2zay dµ and

∫
a2xay dµ, for all finite words

x, z, y, that will be presented the Propositions 7.9 and 7.12 (which will be proved in § 8
and 9).
It will also follow that when x and z do not share a common subprefix y, then the

curvature K(âz, âx) is equal to 0 (see Proposition 7.10).
There are examples (for instance, the case x = (0, 1, 0) and z = (0, 1, 0, 0)) where the

curvature K(âz, âx) is positive for some values of the parameters (r, s) and negative for
others (see Example 7.19). We can show from the explicit expressions we obtain that
for fixed values of the parameters (r, s) the curvature K(âz, âx) can be very negative if
both words x, z have large lengths and share common subprefix with large length (see
Remark 7.17). In Example 7.20, we show that K(â(0), â(0,0)) = −0.205714 · · · , when
r = 0.1, s = 0.3. In Proposition 7.18, we show the curvature K(â0[∅], â0) can be positive

for some pairs r, s ∈ (0, 1). It follows from the expressions of Proposition 7.12 that all
sectional curvatures K(âz, âx) are equal to −1/2, when r = 1/2 = s, the size of z is bigger
than 1 and z is a strict subprefix of x. See also Proposition 7.18, when r = 1/2 = s, for
the computation of K(â0[∅], â0) = 1/2.

Remark 7.8. Expression (73) in § 8.3 shows that in the case the length of x is larger
than the length of z, then (

∫
â2zâxdµ)

2 = 0.

Proposition 7.9. Assume that the length of x is larger than the length of z. The first
sum on expression (44) is given by∑

word y

(

∫
âxâzây dµ)

2 = (

∫
â2xâz dµ)

2 + (

∫
â2zâx dµ)

2 = (

∫
â2xâz dµ)

2. (47)

For a proof of this claim see expression (78) in § 9. This term in the sum (44) is the
part that contributes to the curvature to be more positive. The second term in the sum
(44) will contribute to the curvature becoming more negative (see Proposition 7.12).
Note that Equation (47) does not depend on y. Note also that from expression (21)

one can get explicitly the values (47) as a function of (r, s).
In Proposition 7.4, we show that if x is not a subprefix of z and z is not a subprefix

of x, we get that
∫
â2xâz dµ = 0. In this case, the contribution of Equation (47) for the

curvature will be null.
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Proposition 7.10. When z and x do not share common subprefix the curvature

K(âz, âx) = 0.

Proof. When z and x do not share a common subprefix, it follows that x is not a
subprefix of z and z is not a subprefix of x.
We will show that in this case K(âz, âx) = 0. Indeed, from Proposition 7.4, we get

that (
∫
â2xâz dµ)

2 + (
∫
â2zâx dµ)

2 = 0. Fix the words z, x and consider a variable word y.
In order to estimate the second sum in expression (45), we have to consider all different
possible words y such that are subprefix of x and z. But there is no such kind of y.
Therefore, K(âz, âx) = 0.
See also Proposition 7.18, when r = 1/2 = s, for the computation of other sectional

curvatures. �

Remark 7.11. It follows from Remark 7.8 that
∑

word y

∫
â2zây dµ

∫
â2xây dµ is a sum

of a finite number of terms; because when estimating
∫
â2zây dµ

∫
â2xây dµ, we do not have

to take into account words y with length strictly larger than the minimum of the lengths
of x and z. It also follows from Proposition 7.10 that if x is not a subprefix of y and y is
not a subprefix of x, we get that

∫
a2xay dµ = 0.

Note that the above makes clear that in expression (44), the second sum has non-zero
terms only when y ∈ D[x, z]. This justifies the simplified expression (45).
With all this in mind, in order to have explicit expressions, the next proposition deals

just with the words y with lengths smaller than or equal to the length of a given word x.

Proposition 7.12. Assume that the length of x is larger or equal to the length of y.
Then we have:
(a)

∫
â2xây dµ = 0, if y is not a subprefix of x. This also includes the case where x 6= y

and length of x is equal to the length of y.
(b.0) Assume that [x] = [x1, x2, . . . , xk, xk+1, . . . , xn] ⊂ [y] = [x1, x2, . . . , xk], where

n> k, and xk+1 = 0. Note that from Equation (32) we get that |ax| = |ay|. Then,

∫
â2xây dµ =

1

|ay|3

√
Pxk,1√
Pxk,0

{(
πx1

π0P0,x1

)3/2
1√

µ([0y])
− (

πx1
π1P1,x1

)3/2
1√

µ([1y])
} =

1

|ax|3
√
Pxk,1{(

πx1
π0P0,x1

)3/2
1√

µ([0y0])
− (

πx1
π1P1,x1

)3/2
1√

µ([1y0])
}. (48)

(b.1) Assume that [x] = [x1, x2, . . . , xk, xk+1, . . . , xn] ⊂ [y] = [x1, x2, . . . , xk], where
n> k, and xk+1 = 1. Then,
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â2xây dµ =

1

|ay|3

√
Pxk,0√
Pxk,1

{−(
πx1

π0P0,x1

)3/2
1√

µ([0y])
+ (

πx1
π1P1,x1

)3/2
1√

µ([1y])
} =

1

|ax|3
√
Pxk,0{−(

πx1
π0P0,x1

)3/2
1√

µ([0y1])
+ (

πx1
π1P1,x1

)3/2
1√

µ([1y1])
}. (49)

(b.2) Assume, [x] = [x1, x2, . . . , xn] = [y].
Then,

∫
â2xây dµ =

∫
â3y dµ =

1

|ax|3
{(

πx1
π0P0,x1

)3/2[
P

3/2
xn,1√

µ([0y0])
−

P
3/2
xn,0√

µ([0y1])
]− (

πx1
π1P1,x1

)3/2[
P

3/2
xn,1√

µ([1y0])
−

P
3/2
xn,0√

µ([1y1])
]}.

(50)
(b.3) If x1 = 0, then

∫
â2xâ

0
[∅] dµ =

1

|ax|2|V1|
(
π1P1,0

P0,0
+
π2
0P0,0

π1P1,0
) = (51)

(s− 1)(1− 2r + 2r2)√
(1−r)r(s−1)3

(−2+r+s)3
(−2 + r + s)

> 0,

and ∫
â2xâ

1
[∅] dµ = 0.

When r = 1/2 = s, we get that for any word x (with size bigger or equal to 1), such
that, x1 = 0 ∫

â2xâ
0
[∅] dµ =

√
2. (52)

For the proof of this proposition, see § 8.1 and 8.2.

Remark 7.13.

• We point out that Equations (48) and (49) do not depend on xk+2, . . . , xn−1, xn.
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• If y ∈ D[x, z]−{z}, then the product
∫
â2xây dµ

∫
â2zây dµ is non-negative for any

choice of (r, s) (the product will not depend on x and z ). This follows from the
expressions in (b.0) and (b.1). This shows Equation (46).

• The term
∫
â2xâz dµ

∫
â2zâz dµ may be sometimes negative.

We previously denoted by K the two-dimensional manifold of Markov invariant prob-
abilities (the set of equilibrium probabilities for potentials depending on two coordinates
and parametrized by r, s).
Given the Markov invariant probability µ associated with the parameters r, s, the set

of vectors which are tangent to K at this point is the set of functions that depend on two
coordinates (x1, x2). The ones that are on the kernel of Llog J are â0[∅] and â

1
[∅].

Theorem 7.14. Given the two-dimensional manifold of Markov invariant probabilities
M, for any point in K the sectional curvature for the pair of tangent vectors to K is always
zero.

Proof. Remember that V1 = π1P1,01[00]−π0P0,01[10] and V2 = π0P0,11[11]−π1P1,11[01]
determine an orthogonal basis for the tangent space to K at µ.
We claim that the curvature K(â0∅, â

1
∅) = 0.

Indeed, take Xi = âz, for some finite word z = (x1, x2, . . . , xk). If we assume that
x1 = 1, then

V 2
1 az = [π2

1P
2
1,0(

πx1
π0P0,x1

1

µ([0z])

Pxk,1

Pxk,0
)1/21[0z0]1[00]

− π2
1P

2
1,0(

πx1
π0P0,x1

1

µ([0z])

Pxk,0

Pxk,1
)1/21[0z1]1[00]]

− [π2
0P

2
0,0(

πx1
π1P1,x1

1

µ([1z])

Pxk,1

Pxk,0
)1/21[1z0]1[10]

− π2
0P

2
0,0(

πx1
π1P1,x1

1

µ([1z])

Pxk,0

Pxk,1
)1/21[1z1]1[00]] = 0.

Above we use the fact that 1[01x2...xk0]1[00] = 0, etc.
Therefore, it follows that: ∫

V̂ 2
1 ây dµ

∫
V̂ 2
2 ây dµ = 0.

If we assume that x1 = 0, then in a similar way
∫
âzV

2
2 dµ = 0, and therefore,∫

âzV̂
2
1 dµ

∫
âzV̂

2
2 dµ = 0.

Note that V1V2 = 0.
Then, for any word y, we get

∫
V̂1V̂2ây dµ = 0. In the same way,

∫
V̂ 2
1 V̂2 dµ = 0 and∫

V̂ 2
2 V̂1 dµ = 0.
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Finally, we get

1

4
[(

∫
(â0∅)

2â1∅ dµ)
2 −

∑
y

(

∫
(â0∅)

2ây dµ)(

∫
(â1∅)

2ây dµ)] = 0. (53)

�

Remark 7.15. Recall that the expression of the Gauss sectional curvature KM (X,Y )
of an isometric immersion (M, gM ), submanifold of the Riemannian manifold (N, g), at
the plane generated by two orthogonal vector fields X,Y tangent to K, is given by

KM (X,Y ) = K(X,Y ) + 〈∇⊥
XX,∇⊥

Y Y 〉− ‖ ∇⊥
XY ‖2

according to Gauss formula (see for instance [9]). Here, the operator ∇⊥
XY is the compo-

nent of the covariant derivative ∇XY of the Riemannian manifold (N, g) that is normal
to (M, gM ).
Notice that the sectional curvature

K(X,Y ) =‖ ∇Ȳ X̄ ‖2 −〈∇X̄X̄,∇Ȳ Ȳ 〉

includes all the terms of the normal component of the covariant derivative of X,Y . By
Theorem 7.14, all the components of the covariant derivative of a certain pair of orthog-
onal vector fields tangent to the surface of Markov probabilities vanish. In particular, all
the terms of the normal covariant derivative of X,Y vanish. Therefore, Theorem 7.14
yields that the Gaussian curvature of the surface of Markov probabilities vanishes, its
intrinsic curvature as an isometric immersion of the manifold of normalized potentials
is zero. This is a remarkable fact, which implies for instance that the surface would be
totally geodesic in the manifold of normalized potentials provided that geodesics exist.
We won’t consider the problem of the existence of geodesics in this article, we shall study
this problem in further papers.

Proposition 7.16. When r=0.5 and s=0.5, we get that

K(ây, âx) = −1/2, (54)

for words x, y with size bigger or equal to 1

Proof. It follows from the above proposition that due to symmetry, when r =0.5 and
s =0.5, we get

∫
â2xây dµ

∫
â2zây dµ = 0, for words with size bigger or equal to 1. Moreover,∫

â2xw dµ = 0, for any ax. In this case, if x1 = 0 and x is a subprefix of y, we get that for
words with size bigger or equal to 1 (see Equation (52)),

K(ây, âx) = −1/4

∫
â2xâ

0
[∅] dµ

∫
â2yâ

0
[∅] dµ = −1/2. (55)

�
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Remark 7.17. From the explicit expressions, we obtain (for fixed values of the param-
eters (r, s)) the curvature K(âz, âx) can be very negative if both words x, z have large
lengths and have common subprefix y with large length. Indeed, for fixed âz, âx, as∫
â2xây dµ

∫
â2zây dµ is non-negative for any common word y, in the calculus of the cur-

vature K(âz, âx), we get a sum of several expressions
∫
â2xây dµ

∫
â2zây dµ. Note that∫

â2xây dµ
∫
â2zây dµ does depend on y (but not on x and z ). Note also that for fixed x

the expression (48) can be very large if the length of y is very large (and, so µ([ayb]),
a, b = 0, 1, is very small).

Proposition 7.18. The curvature K(â0[∅], â0) = 1/2, when r = 1/2 = s.

Proof. Note that Equation (45) can be expressed as

K(â0[∅], â0) =
1

4
[(

∫
â20â

0
[∅] dµ)

2 −
∫
â20â

0
[∅] dµ

∫
(â0[∅])

2â0[∅] dµ)].

For any r, s, it is known from Equation (51) that∫
â20â

0
[∅] dµ =

1

|a0|2|V1|
(
π1P1,0

P0,0
+
π2
0P0,0

π1P1,0
) > 0. (56)

Note that

V 2
1 V1 =

(π2
1P

2
1,01[00] + π2

0P
2
0,01[10])× (π1P1,01[00] − π0P0,01[10]) =

π3
1P

3
1,01[00] − π3

0P
3
0,01[10].

Then, ∫
V 2
1 V1 = π3

1P
3
1,0µ([00])− π3

0P
3
0,0µ([10]),

which is equal to 1
2

6 1
2

2 − 1
2

6 1
2

2
= 0, in the case r = 1/2 = s.

Therefore,

K(â0[∅], â0) =
1

4
(

∫
â20â

0
[∅] dµ)

2 =
1

4

√
2
2
= 1/2 > 0.

�

In other examples, we used the software Mathematica for getting explicit computations.

Example 7.19. Consider the case where z = (0, 1, 0) and x = (0, 1, 0, 0).
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â2xây dµ

∫
â2zây dµ = 0, unless ây is such that

y ∈ D[(0, 1, 0), (0, 1, 0, 0)] = {(0), (0, 1), (0, 1, 0)}, or ây = â0[∅].

Note that
∫
â2zâ

1
[∅] dµ =

∫
â2xâ

1
[∅] dµ = 0.

Using Mathematica and the formulas of Proposition 7.12, we made computations when
r =0.1 and s =0.3. In this case, π0 = 0.4375 and π1 = 0.5625 and from Equation (25)
we get |a(0,1,0)| = |a(0,1,0,0)| = 3.33 · · · and |V1| = 0.086 · · · . Finally, 1

|ax|2|az |
= 1

|az |3
=

1
|ax|2|ay |

= 1
|az |2|ay |

= 0.027 · · · .
We will show that K(â(0,1,0), â(0,1,0,0)) = 35.9142 · · · .
We get the following values:

using (50)

∫
â2zâz dµ =

1

|az|3

∫
a2(0,1,0)a(0,1,0) dµ = 107, 51 · · · ,

using (48)

∫
â2xâz dµ =

1

|ax|2|az|

∫
a2(0,1,0,0)a(0,1,0) dµ = 120.949 · · · ,

(

∫
â2xâz dµ)

2 = (

∫
â2(0,1,0,0)â(0,1,0) dµ)

2 = (16.93 · · · )2 = 14628.7 · · · ,

using (48)

∫
â2(0,1,0,0)â(0,1) dµ = 38.2473 · · · ,

using (48)

∫
â2(0,1,0)â(0,1) dµ = 38.2473 · · · ,

using (49)

∫
â2(0,1,0,0)â(0) dµ = −1.34387 · · · ,

using (49)

∫
â2(0,1,0)â(0) dµ = −1.34387 · · · ,

and finally, using Equation (51)

∫
â2(0,1,0)â

0
[∅] dµ =

∫
â2(0,1,0,0)â

0
[∅] dµ =

1

|a(0,1,0)|2|V1|

∫
a2(0,1,0)V1 dµ = 4.13241 · · · .
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Using Equations (51) and (36) (note that x1 = 0), we get that the expression (45) can
be written in this case as

K(â(0,1,0), â(0,1,0,0)) =
1

4
(

∫
â2(0,1,0,0)â(0,1,0) dµ)

2

− 1

4
[

∫
â2(0,1,0,0)â(0,1,0) dµ

∫
â2(0,1,0)â(0,1,0) dµ]

− 1

4
[

∫
â2(0,1,0,0)â(0,1) dµ

∫
â2(0,1,0)â(0,1) dµ]

− 1

4
[

∫
â2(0,1,0,0)â(0) dµ

∫
â2(0,1,0)â(0) dµ]

− 1

4

∫
â2(0,1,0,0)â

0
[∅] dµ

∫
â2(0,1,0)â

0
[∅] dµ = 35.9142 · · · .

Taking r = 0.8, s = 0.5, we get K(â(0,1,0), â(0,1,0,0)) = −3.17713 · · · . When r = 1/2 =
s, we get K(â(0,1,0), â(0,1,0,0)) = −1/2.
♦

Example 7.20. Consider the case where z = (0) and x = (0, 0). Then, D[(0), (0, 0)] =
{â0, â0[∅]}. Therefore,

K(â(0), â(0,0)) =
1

4
(

∫
â2(0,0)â(0) dµ)

2

− 1

4
[

∫
â2(0,0)â(0) dµ

∫
â2(0)â(0) dµ]

− 1

4

∫
â2(0,0)â

0
[∅] dµ

∫
â2(0)â

0
[∅] dµ.

In this case, using Mathematica, one can show that K(â(0), â(0,0)) ≤ 0, for all values
r, s ∈ (0, 1). For r =0.1, s =0.3, we will show that K(â(0), â(0,0)) = −0.205714 · · · .
When, r = 0.1, s = 0.3, we get

|a0| = 3.333 · · · ,

|V1| = 0.086 · · · ,

∫
â2(0,0)â(0) dµ =

1

|a(0)|3∫
â2(0)â(0) dµ =

1

|a(0)|3∫
â2(0,0)â

0
[∅] dµ =

1

|a(0)|2|V1|

∫
a2(0)V1 dµ =

1

|a(0)|2|V1|
3.96.
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Finally, when r =0.1, s =0.3, we get K(â(0), â(0,0)) = −0.205714 · · · .
♦

8. Computations for the integral
∫
X2Y

Our purpose in this section is to evaluate the integral

∑
word y

∫
â2xây dµ

∫
â2zây dµ, (57)

for any given pair of words x, z. This corresponds to the second term in the sum given
by expression (44).
We assume that x is different from z.
From Proposition 7.5, if x is not a subprefix of y and y is not a subprefix of x, and

x 6= y, then:

â2xây = 0.

In the same way, if z is not a subprefix of y and y is not a subprefix of z, and z 6= y,
then:

â2zây = 0.

If y has the same length as x but y 6= x, then â2xây = 0.
In this way, for a fixed pair of words x, z, several words y do not contribute to the sum

(74).

8.1. The value of 〈â2
x, ây〉 when length of x is larger or equal than the

length of y

We want to compute 〈â2x, ây〉 =
∫
â2xây dµ in the case where the length of x is larger

or equal to the length of y.
Our computation is in fact for 〈a2x, ay〉 and after that, of course, to get 〈â2x, ây〉 it will

be necessary to divide by |ax|2|ay|.
We assume that [x] = [x1, x2, . . . , xk, xk+1, . . . , xn] ⊂ [y] = [x1, x2, . . . , xk], where

n ≥ k (otherwise we get zero).
Note that these assumptions include the integral

∫
â3x dµ, that is, the case x = y (see

(iii) below).
(i) Case n > k – We will assume first that xk+1 = 0 in the word [x].
Given the words z = (v1, . . . , vt) and v = (v1, v2, . . . , vt, vt+1, . . . , vm), assume vt+1 = 0,

then, from Equations (23) and (58)
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e2[v]e[z] = [
1

µ([v])

Pvm,1
Pvm,0

1[v1,...,vt,0,vt+2,...,vm,0]
+

1

µ([v])

Pvm,0
Pvm,1

1[v1,...,vt,0,vt+2,...,vm,1]
]

×[
1√
µ([z])

√
Pvt,1

Pvt,0
1[v1,...,vt,0] −

1√
µ([z])

√
Pvt,0

Pvt,1
1[v1,...,vt,1]]

= (
1

µ([v])

Pvm,1
Pvm,0

)(
1√
µ([z])

√
Pvt,1

Pvt,0
)1[v1,...,0,vt+2,...,vm,0]

+(
1

µ([v])

Pvm,0
Pvm,1

)(
1√
µ([z])

√
Pvt,1

Pvt,0
)1[v1,...,0,vt+2,...,vm,1]

. (58)

Note that in the above reasoning when going from the second to the third line the
term multiplying 1[v1,...,vt,1] disappear because we assume that vt+1 = 0.
We are going to apply the above when z = [0y], z = [1y], v = [0x], v = [1x],m = n and

t+ 1 = k.
Then, from Equations (27), (31) and (58) and using the fact that

e2[0,x1,x2,...,xk,0,xk+2,...,xn]
e[1,x1,x2,...,xk] = 0,

e2[1,x1,x2,...,xk,0,xk+2,...,xn]
e[0,x1,x2,...,xk] = 0,

we get

a2xay = [
πx1

π0P0,x1

e2[0,x1,x2,...,xk,0,xk+2,...,xn]
+

πx1
π1P1,x1

e2[1,x1,x2,...,xk,0,xk+2,...,xn]
]

×[

√
πx1√

π0
√
P0,x1

e[0,x1,x2,...,xk] −
√
πx1√

π1
√
P1,x1

e[1,x1,x2,...,xk]]

= (
πx1

π0P0,x1

)3/2[(
1

µ([0x])

Pxn,1
Pxn,0

)(
1√

µ([0y])

√
Pxk,1

Pxk,0
)1[0x0]

+(
1

µ([0x])

Pxn,0
Pxn,1

)(
1√

µ([0y])

√
Pxk,1

Pxk,0
)1[0x1]]

−(
πx1

π1P1,x1

)3/2[(
1

µ([1x])

Pxn,1
Pxn,0

)(
1√

µ([1y])

√
Pxk,1

Pxk,0
)1[1x0]

+(
1

µ([1x])

Pxn,0
Pxn,1

)(
1√

µ([1y])

√
Pxk,1

Pxk,0
)1[1x1]].
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Finally, as the matrix P is row stochastic∫
a2xay dµ = (

πx1
π0P0,x1

)3/2[(
Pxn,1√
µ([0y])

√
Pxk,1

Pxk,0
) + (

Pxn,0√
µ([0y])

√
Pxk,1

Pxk,0
)]

−(
πx1

π1P1,x1

)3/2[(
Pxn,1√
µ([1y])

√
Pxk,1

Pxk,0
) + (

Pxn,0√
µ([1y])

√
Pxk,1

Pxk,0
)]

= (Pxn,1 + Pxn,0)
√
Pxk,1{(

πx1
π0P0,x1

)3/2[
1√

µ([0y0])
]

−(
πx1

π1P1,x1

)3/2[
1√

µ([1y0])
]} =

√
Pxk,1{(

πx1
π0P0,x1

)3/2
1√

µ([0y0])
− (

πx1
π1P1,x1

)3/2
1√

µ([1y0])
}. (59)

(ii) Case n > k – If we assume xk+1 = 1 in the word [x], then we get in a similar way
as before ∫

a2xay dµ =

√
Pxk,0{−(

πx1
π0P0,x1

)3/2
1√

µ([0y1])
+ (

πx1
π1P1,x1

)3/2
1√

µ([1y1])
}. (60)

Indeed, given the words z = (v1, . . . , vt) and v = (v1, v2, . . . , vt, vt+1, . . . , vm), assume
vt+1 = 1, then, from Equations (23) and (58)

e2[v]e[z] = [
1

µ([v])

Pvm,1
Pvm,0

1[v1,...,vt,1,vt+2,...,vm,0]
+

1

µ([v])

Pvm,0
Pvm,1

1[v1,...,vt,1,vt+2,...,vm,1]
]

×[
1√
µ([z])

√
Pvt,1

Pvt,0
1[v1,...,vt,0] −

1√
µ([z])

√
Pvt,0

Pvt,1
1[v1,...,vt,1]]

= −[(
1

µ([v])

Pvm,1
Pvm,0

)(
1√
µ([z])

√
Pvt,0

Pvt,1
)1[v1,...,1,vt+2,...,vm,0]

]

+(
1

µ([v])

Pvm,0
Pvm,1

)(
1√
µ([z])

√
Pvt,0

Pvt,1
)1[v1,...,1,vt+2,...,vm,1]

. (61)

We are going to apply the above when z = [0y], z = [1y], v = [0x], v = [1x],m = n and
t = k + 1.
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Then, from Equations (27), (31) and (61) and using the fact that

e2[1,x1,x2,...,xk,1,xk+2,...,xn]
e[0,x1,x2,...,xk] = 0,

e2[0,x1,x2,...,xk,1,xk+2,...,xn]
e[1,x1,x2,...,xk] = 0,

we get

a2xay = [
πx1

π0P0,x1

e2[0,x1,x2,..,xk,1,xk+2,...,xn]
+

πx1
π1P1,x1

e2[1,x1,x2,...,xk,1,xk+2,...,xn]
]

×[

√
πx1√

π0
√
P0,x1

e[0,x1,x2,...,xk] −
√
πx1√

π1
√
P1,x1

e[1,x1,x2,...,xk]]

= −(
πx1

π0P0,x1

)3/2[(
1

µ([0x])

Pxn,1
Pxn,0

)(
1√

µ([0y])

√
Pxk,0

Pxk,1
)1[0x0]

+(
1

µ([0x])

Pxn,0
Pxn,1

)(
1√

µ([0y])

√
Pxk,0

Pxk,1
)1[0x1]]

+(
πx1

π1P1,x1

)3/2[(
1

µ([1x])

Pxn,1
Pxn,0

)(
1√

µ([1y])

√
Pxk,0

Pxk,1
)1[1x0]

+(
1

µ([1x])

Pxn,0
Pxn,1

)(
1√

µ([1y])

√
Pxk,0

Pxk,1
)1[1x1]].

Finally, as the matrix P is row stochastic

∫
a2xay dµ = −(

πx1
π0P0,x1

)3/2[(
Pxn,1√
µ([0y])

√
Pxk,0

Pxk,1
) + (

Pxn,0√
µ([0y])

√
Pxk,0

Pxk,1
)]

+(
πx1

π1P1,x1

)3/2[(
Pxn,1√
µ([1y])

√
Pxk,0

Pxk,1
) + (

Pxn,0√
µ([1y])

√
Pxk,0

Pxk,1
)] =

√
Pxk,0{−(

πx1
π0P0,x1

)3/2[
Pxn,1 + Pxn,0√

µ([0y1])
] + (

πx1
π1P1,x1

)3/2[
Pxn,1 + Pxn,0√

µ([1y1])
]} =

√
Pxk,0{−(

πx1
π0P0,x1

)3/2
1√

µ([0y1])
+ (

πx1
π1P1,x1

)3/2
1√

µ([1y1])
}. (62)
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(iii) Case n = k – We assume [x] = [x1, x2, . . . , xn] = [y], otherwise
∫
â2xây dµ = 0.

Then, one can show that ∫
a2xay dµ =

∫
a3x dµ = (63)

(
πx1

π0P0,x1

)3/2[
P

3/2
xn,1√

µ([0x0])
−

P
3/2
xn,0√

µ([0x1])
]− (

πx1
π1P1,x1

)3/2[
P

3/2
xn,1√

µ([1x0])
−

P
3/2
xn,0√

µ([1x1])
].

Indeed, note first that from Equation (58), v = [v1, v2, . . . , vm]

e2[v]e[v] = [
1

µ([v])

Pvm,1
Pvm,0

1[v1,...,vm,0] +
1

µ([v])

Pvm,0
Pvm,1

1[v1,...,vm,1]]

×[
1√
µ([v])

√
Pvm,1
Pvm,0

1[v1,...,vm,0] −
1√
µ([v])

√
Pvm,0
Pvm,1

1[v1,...,vm,1]]

= (
1

µ([v])

Pvm,1
Pvm,0

)(
1√
µ([v])

√
Pvm,1
Pvm,0

)1[v1,...,vm,0]

−(
1

µ([v])

Pvm,0
Pvm,1

)(
1√
µ([v])

√
Pvm,0
Pvm,1

)1[v1,...,vm,1]. (64)

Then, from Equations (27), (31) and (61)

a2xax = [
πx1

π0P0,x1

e2[0,x1,x2,...,xn] +
πx1

π1P1,x1

e2[1,x1,x2,...,xn]]

×[

√
πx1√

π0
√
P0,x1

e[0,x1,x2,...,xn] −
√
πx1√

π1
√
P1,x1

e[1,x1,x2,...,xn]]

= (
πx1

π0P0,x1

)3/2[(
1

µ([0x])

Pxn,1
Pxn,0

)(
1√

µ([0x])

√
Pxn,1
Pxn,0

)1[0x0]

−(
1

µ([0x])

Pxn,0
Pxn,1

)(
1√

µ([0x])

√
Pxn,0
Pxn,1

)1[0x1]]

−(
πx1

π1P1,x1

)3/2[(
1

µ([1x])

Pxn,1
Pxn,0

)(
1√

µ([1x])

√
Pxn,1
Pxn,0

)1[1x0]

−(
1

µ([1x])

Pxn,0
Pxn,1

)(
1√

µ([1x])

√
Pxn,0
Pxn,1

)1[1x1]].
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Therefore,

∫
a2xax dµ = (

πx1
π0P0,x1

)3/2[(
Pxn,1√
µ([0x])

√
Pxn,1
Pxn,0

)− (
Pxn,0√
µ([0x])

√
Pxn,0
Pxn,1

)]

−(
πx1

π1P1,x1

)3/2[(
Pxn,1√
µ([1x])

√
Pxn,1
Pxn,0

)− (
Pxn,0√
µ([1x)

√
Pxn,0
Pxn,1

)] =

(
πx1

π0P0,x1

)3/2[
P

3/2
xn,1√

µ([0x0])
−

P
3/2
xn,0√

µ([0x1])
]− (

πx1
π1P1,x1

)3/2[(
P

3/2
xn,1√

µ([1x0])
)− (

P
3/2
xn,0√

µ([1x1])
] =

(
πx1

π0P0,x1

)3/2[
P

3/2
xn,1√

µ([0x0])
−

P
3/2
xn,0√

µ([0x1])
]− (

πx1
π1P1,x1

)3/2[
P

3/2
xn,1√

µ([1x0])
−

P
3/2
xn,0√

µ([1x1])
]. (65)

The above reasoning shows (iii).
Given the word [x] = [x1, x2, . . . , xk, xk+1, . . . , xn], we get n words y, such that the

cylinder [x] ⊂ [y] = [x1, x2, . . . , xk], where n ≥ k.
Given x and z, with length larger than y, then

∫
â2xây dµ

∫
â2zây dµ will be non-zero

only for the subprefixes y which are common to both x and z (see Proposition 7.5). If
there are no common subprefixes for x and z, then the contribution

∫
â2xây dµ

∫
â2zây dµ,

for words y of length strictly smaller than the length of x and z, in the sum (45) is null.

8.2. The values of 〈â2
x, â

0
[∅]〉 and 〈â2

x, â
1
[∅]〉 when x is a finite word

Denote [x] = [x1, x2, . . . , xn]. We assume that n ≥ 2.
In fact, we will compute 〈a2x, V1〉 and 〈a2x, V2〉. In order to compute 〈â2x, â0[∅]〉 and

〈â2x, â1[∅]〉, it will be necessary to normalize.

(i) Case 〈a2x, V1〉
We will consider first the case x1 = 0.
Denote y = (y1, y2, . . . , yk). If we assume y1 = 0, y2 = 0, then, from Equation (58)

e2[y]V1 = [
1

µ([y])

Pyk,1

Pyk,0
1[y1,y2,...,yk,0] +

1

µ([y])

Pyk,0

Pyk,1
1[y1,y2,...,yk,1]]

×[π1P1,01[0,0] − π0P0,01[1,0]] =

1

µ([y])

Pyk,1

Pyk,0
π1P1,01[y1,y2,...,yk,0] +

1

µ([y])

Pyk,0

Pyk,1
π1P1,01[y1,y2,...,yk,1]. (66)

If we assume y1 = 1, y2 = 0, then, from Equation (58)
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e2[y]V1 = [
1

µ([y])

Pyk,1

Pyk,0
1[y1,y2,...,yk,0] +

1

µ([y])

Pyk,0

Pyk,1
1[y1,y2,...,yk,1]]

×[π1P1,01[0,0] − π0P0,01[1,0]] =

−[
1

µ([y])

Pyk,1

Pyk,0
π0P0,01[y1,y2,...,yk,0] +

1

µ([y])

Pyk,0

Pyk,1
π0P0,01[y1,y2,...,yk,1]]. (67)

As we assume that x1 = 0, then, from Equations (27), (31) and (61), we get

a2xV1 = [
πx1

π0P0,x1

e2[0,x1,x2,...,xk,0,xk+2,...,xn]
+

πx1
π1P1,x1

e2[1,x1,x2,...,xk,0,xk+2,...,xn]
]

×[π1P1,01[0,0] − π0P0,01[1,0]] =

=
πx1

π0P0,x1

[
1

µ([0x])

Pxn,1
Pxn,0

π1P1,01[0,x1,x2,...,xn,0] +
1

µ([0x])

Pxn,0
Pxn,1

π1P1,01[0,x1,x2,...,xn,1]]+

πx1
π1P1,x1

[
1

µ([1x])

Pxn,1
Pxn,0

π0P0,01[1,x1,x2,...,xn,0] +
1

µ([1x])

Pxn,0
Pxn,1

π0P0,01[1,x1,x2,...,xn,1]].

Therefore, ∫
a2xV1 dµ =

πx1
π0P0,x1

[
1

µ([0x])

Pxn,1
Pxn,0

π1P1,0µ[0, x, 0] +
1

µ([0x])

Pxn,0
Pxn,1

π1P1,0µ[0, x, 1]]+

πx1
π1P1,x1

[
1

µ([1x])

Pxn,1
Pxn,0

π0P0,0µ[1, x, 0] +
1

µ([1x])

Pxn,0
Pxn,1

π0P0,0µ[1, x, 1]] =

πx1
π0P0,x1

[Pxn,1π1P1,0 + Pxn,0π1P1,0] +
πx1

π1P1,x1

[Pxn,1π0P0,0 + Pxn,0π0P0,0] =

πx1
π0P0,x1

π1P1,0 +
πx1

π1P1,x1

π0P0,0.

As we assumed that x1 = 0 we get∫
â2xâ

0
[∅] dµ =

1

|ax|2|V1|
(
π1P1,0

P0,0
+
π2
0P0,0

π1P1,0
). (68)

(ii) 〈a2x, V2〉
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Now we will compute
∫
a2xV2 dµ.

Denote y = (y1, y2, . . . , yk). If we assume y1 = 0, y2 = 0, then, from Equation (58)

e2[y]V2 = [
1

µ([y])

Pyk,1

Pyk,0
1[y1,y2,...,yk,0] +

1

µ([y])

Pyk,0

Pyk,1
1[y1,y2,...,yk,1]]

×[π0P0,11[1,1] − π1P1,11[0,1]] = 0.

If we assume y1 = 1, y2 = 0, then, from Equation (58)

e2[y]V2 = [
1

µ([y])

Pyk,1

Pyk,0
1[y1,y2,...,yk,0] +

1

µ([y])

Pyk,0

Pyk,1
1[y1,y2,...,yk,1]]

×[π0P0,11[1,1] − π1P1,11[0,1]] = 0.

As we assumed that x1 = 0, then, from Equations (27), (31) and (61), we get

a2xV2 = [
πx1

π0P0,x1

e2[0,x1,x2,...,xn] +
πx1

π1P1,x1

e2[1,x1,x2,...,xn]]

×[π0P0,11[1,1] − π1P1,11[0,1]] = 0.

Therefore, if x1 = 0, we get ∫
â2xâ

1
[∅] dµ = 0. (69)

The case x1 = 1 is left for the reader.

8.3. The value of 〈â2
z, ây〉 when length of y is strictly larger than the length

of z

Now we want to estimate 〈â2z, ây〉 =
∫
â2zây dµ in the case that the length of y is strictly

larger than the length of z. We will show that
∫
â2zây dµ = 0.

We assume that [y] = [x1, x2, . . . , xk, xk+1, . . . , xn] ⊂ [z] = [x1, x2, . . . , xk], where n > k
(otherwise we get that

∫
â2zâydµ is zero from Proposition 7.5).

In fact, we will show that
∫
a2zay dµ = 0.

(i) If we assume xk+1 = 0 in the word [y], then, from Equation (58)

e2zey = [
1

µ([z])

Pxk,1

Pxk,0
1[x1,...,xk,0] +

1

µ([z])

Pxk,0

Pxk,1
1[x1,...,xk,1]]

×[
1√
µ([y])

√
Pxn,1
Pxn,0

1[x1,...,xk,0,xk+2,...,xn,0]
− 1√

µ([y])

√
Pxn,0
Pxn,1

1[x1,...,xk,0,xk+2,...,xn,1]
]
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= (
1

µ([z])

Pxk,1

Pxk,0
)(

1√
µ([y])

√
Pxn,1
Pxn,0

)1[x1,...,xk,0,xk+2,...,xn,0]

−(
1

µ([z])

Pxk,1

Pxk,0
)(

1√
µ([y])

√
Pxn,0
Pxn,1

)1[x1,...,xk,0,xk+2,...,xn,1]
. (70)

Note that above, from the second to the third line, we use the fact that

1[x1,...,xk,1]1[x1,...,xk,0,xk+2,...,xn,0]
= 0

and

1[x1,...,xk,1]1[x1,...,xk,0,xk+2,...,xn,1]
= 0.

Then, from Equations (27), (70) and (31)

a2zay = [
πx1

π0P0,x1

e2[0,x1,x2,...,xk]
+

πx1
π1P1,x1

e2[1,x1,x2,...,xk]
]

×[

√
πx1√

π0P0,x1

e[0,x1,x2,...,xk,0,xk+2,...,xn]
−

√
πx1√

π1P1,x1

e[1,x1,x2,...,xk,0,xk+2,...,xn]
]

= (
πx1

π0P0,x1

)3/2[(
1

µ([0z])

Pxk,1

Pxk,0
)(

1√
µ([0y])

√
Pxn,1
Pxn,0

)1[0y0]

−(
1

µ([0z])

Pxk,1

Pxk,0
)(

1√
µ([0y])

√
Pxn,0
Pxn,1

)1[0y1]]

−(
πx1

π1P1,x1

)3/2[(
1

µ([1z])

Pxk,1

Pxk,0
)(

1√
µ([1y])

√
Pxn,1
Pxn,0

)1[1y0]

−(
1

µ([1z])

Pxk,1

Pxk,0
)(

1√
µ([1y])

√
Pxn,0
Pxn,1

)1[1y1]].

Finally,
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a2zay dµ

= (
πx1

π0P0,x1

)3/2[
Pxk,1

µ([0z0])

√
µ([0y0])

√
Pxn,1 −

Pxk,1

µ([0z0]

√
µ([0y1])

√
Pxn,0]

+(
πx1

π1P1,x1

)3/2[−
Pxk,1

µ([1z0])

√
µ([1y0])

√
Pxn,1 +

Pxk,1

µ([1z0])

√
µ([1y1])

√
Pxn,0]

= Pxk,1
√
µ([y]){(

πx1
π0P0,x1

)3/2[

√
Pxn,1P0,x1

Pxn,0

µ([0z0])
−
√
Pxn,0P0,x1

Pxn,1

µ([0z0]
]

+Pxk,1(
πx1

π1P1,x1

)3/2[−
√
Pxn,1P1,x1

Pxn,0

µ([1z0])
+

√
Pxn,0P1,x1

Pxn,1

µ([1z0])
]} = 0. (71)

(ii) If we assume xk+1 = 1 in the word [y], then, from Equation (58)

e2zey = [
1

µ([z])

Pxk,1

Pxk,0
1[x1,...,xk,0] +

1

µ([z])

Pxk,0

Pxk,1
1[x1,...,xk,1]]

×[
1√
µ([y])

√
Pxn,1
Pxn,0

1[x1,...,xk,1,xk+2,...,xn,0]
− 1√

µ([y])

√
Pxn,0
Pxn,1

1[x1,...,xk,1,xk+2,...,xn,1]
]

= (
1

µ([z])

Pxk,0

Pxk,1
)(

1√
µ([y])

√
Pxn,1
Pxn,0

)1[x1,...,xk,1,xk+2,...,xn,0]

−(
1

µ([z])

Pxk,0

Pxk,1
)(

1√
µ([y])

√
Pxn,0
Pxn,1

)1[x1,...,xk,1,xk+2,...,xn,1]
(72)

Then, from Equations (27), (72) and (31)

a2zay = [
πx1

π0P0,x1

e2[0,x1,x2,...,xk]
+

πx1
π1P1,x1

e2[1,x1,x2,...,xk]
]

×[

√
πx1√

π0P0,x1

e[0,x1,x2,...,xk,0,xk+2,...,xn]
−

√
πx1√

π1P1,x1

e[1,x1,x2,...,xk,0,xk+2,...,xn]
]

= (
πx1

π0P0,x1

)3/2[(
1

µ([0z])

Pxk,0

Pxk,1
)(

1√
µ([0y])

√
Pxn,1
Pxn,0

)1[0y0]

https://doi.org/10.1017/S0013091524000725 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091524000725


50 A. O Lopes and R. O Ruggiero

−(
1

µ([0z])

Pxk,0

Pxk,1
)(

1√
µ([0y])

√
Pxn,0
Pxn,1

)1[0y1]]

−(
πx1

π1P1,x1

)3/2[(
1

µ([1z])

Pxk,0

Pxk,1
)(

1√
µ([1y])

√
Pxn,1
Pxn,0

)1[1y0]

−(
1

µ([1z])

Pxk,0

Pxk,1
)(

1√
µ([1y])

√
Pxn,0
Pxn,1

)1[1y1]].

Finally, ∫
a2zay dµ

= (
πx1

π0P0,x1

)3/2[
Pxk,0

µ([0z1])

√
µ([0y0])

√
Pxn,1 −

Pxk,0

µ([0z1]

√
µ([0y1])

√
Pxn,0]

+(
πx1

π1P1,x1

)3/2[−
Pxk,1

µ([1z0])

√
µ([1y0])

√
Pxn,1 +

Pxk,1

µ([1z0])

√
µ([1y1])

√
Pxn,0]

= Pxk,0
√
µ([y]){(

πx1
π0P0,x1

)3/2[

√
Pxn,1P0,x1

Pxn,0

µ([0z1])
−
√
Pxn,0P0,x1

Pxn,1

µ([0z1]
]

+Pxk,1(
πx1

π1P1,x1

)3/2[−
√
Pxn,1P1,x1

Pxn,0

µ([1z1])
+

√
Pxn,0P1,x1

Pxn,1

µ([1z1])
]} = 0. (73)

9. Computations for the integral
∫
XY Z

Our purpose on this section is: given x and z, we want to compute for all y∑
word y

(

∫
âxâzây dµ)

2, (74)

which corresponds to the first term in the sum given by expression (44).
Remember that from Corollary 7.12 if x is not a subprefix of z and z is not a subprefix

of x, we get that for any y ∫
âxâzây dµ = 0.

Without loss of generality, we assume that z is a subprefix of x (see Proposition 7.4).
The only possible non-zero value for Equation (74) is

∫
â2xâz dµ. This justify the first

term in the sum (45).
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We assume first that:
[y] = [x1, x2, . . . , xk, xk+1, . . . , xn, xn+1, . . . , xj ] ⊂ [x] = [x1, x2, . . . , xk, xk+1, . . . , xn] ⊂

[z] = [x1, x2, . . . , xk], where j > n ≥ k.
We will show in all cases that

∫
axayaz dµ = 0. This includes the case∫

a2zax dµ = 0. (75)

(i) First we assume that xk+1 = 0 = xn+1.
Then,

axayaz =

[

√
πx1√

π0
√
P0,x1

e[0,x1,x2,...,xk] −
√
πx1√

π1
√
P1,x1

e[1,x1,x2,...,xk]]

×[

√
πx1√

π0
√
P0,x1

e[0,x1,x2,...,xj ] −
√
πx1√

π1
√
P1,x1

e[1,x1,x2,...,xj ]]

×[

√
πx1√

π0
√
P0,x1

e[0,x1,x2,...,xn] −
√
πx1√

π1
√
P1,x1

e[1,x1,x2,...,xn]]

= (
πx1

π0P0,x1

)3/2
1√

µ([0x])µ([0z])µ([0y])
[

√
Pxn,1Pxk,1Pxj,1

Pxn,0Pxk,0Pxj,0
1[0y0]

−

√
Pxn,1Pxk,1Pxj,0

Pxn,0Pxk,0Pxj,1
1[0y1]]

−(
πx1

π1P1,x1

)3/2
1√

µ([1x])µ([1z])µ([1y])
[

√
Pxn,1Pxk,1Pxj,1

Pxn,0Pxk,0Pxj,0
1[1y0]

−

√
Pxn,1Pxk,1Pxj,0

Pxn,0Pxk,0Pxj,1
1[1y1]].

Note that for all j√
Pxj,1

Pxj,0
µ([0y0]) =

√
Pxj,1Pxj,0µ([0y]) =

√
Pxj,0

Pxj,1
µ([0y1]) (76)

and √
Pxj,1

Pxj,0
µ([1y0]) =

√
Pxj,1Pxj,0µ([1y]) =

√
Pxj,0

Pxj,1
µ([1y1]). (77)
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Finally, from Equations (76) and (77)∫
axayaz dµ =

(
πx1

π0P0,x1

)3/2
1√

µ([0x])µ([0z])µ([0y])
[

√
Pxn,1Pxk,1Pxj,1

Pxn,0Pxk,0Pxj,0
µ([0y0])

−

√
Pxn,1Pxk,1Pxj,0

Pxn,0Pxk,0Pxj,1
µ([0y1])]

−(
πx1

π1P1,x1

)3/2
1√

µ([1x])µ([1z])µ([1y])
[

√
Pxn,1Pxk,1Pxj,1

Pxn,0Pxk,0Pxj,0
µ([1y0])

−

√
Pxn,1Pxk,1Pxj,0

Pxn,0Pxk,0Pxj,1
µ([1y1])] =

(
πx1

π0P0,x1

)3/2
1√

µ([0x])µ([0z])µ([0y])
[

√
Pxn,1Pxk,1

Pxn,0Pxk,0

√
Pxj,1

Pxj,0
µ([0y0])

−

√
Pxn,1Pxk,1

Pxn,0Pxk,0

√
Pxj,0

Pxj,1
µ([0y1])]

−(
πx1

π1P1,x1

)3/2
1√

µ([1x])µ([1z])µ([1y])
[

√
Pxn,1Pxk,1

Pxn,0Pxk,0

√
Pxj,1

Pxj,0
µ([1y0])

−

√
Pxn,1Pxk,1

Pxn,0Pxk,0

√
Pxj,0

Pxj,1
µ([1y1])] = 0− 0 = 0.

(ii) Now we assume that xk+1 = 1 = xn+1. In a similar way as before

∫
axayaz dµ

= (
πx1

π0P0,x1

)3/2
1√

µ([0x])µ([0z])µ([0y])
[

√
Pxn,0Pxk,0Pxj,1

Pxn,1Pxk,1Pxj,0
µ([0y0])

−

√
Pxn,0Pxk,0Pxj,0

Pxn,1Pxk,1Pxj,1
µ([0y1])]
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−(
πx1

π1P1,x1

)3/2
1√

µ([1x])µ([1z])µ([1y])
[

√
Pxn,0Pxk,0Pxj,1

Pxn,1Pxk,1Pxj,0
µ([1y0])

−

√
Pxn,0Pxk,0Pxj,0

Pxn,1Pxk,1Pxj,1
µ([1y1])]

= (
πx1

π0P0,x1

)3/2

√
µ([0y0])Pxj,1√
µ([0x])µ([0z])

[

√
Pxn,0Pxk,0

Pxn,1Pxk,1
−

√
Pxn,0Pxk,0

Pxn,1Pxk,1
]

−(
πx1

π1P1,x1

)3/2

√
µ([1y0])Pxj,1√
µ([1x])µ([1z])

[

√
Pxn,0Pxk,0

Pxn,1Pxk,1
−

√
Pxn,0Pxk,0

Pxn,1Pxk,1
] = 0− 0 = 0.

(iii) Now if we assume that xk+1 = 0 and xn+1 = 1 or that xk+1 = 1 and xn+1 = 0,
we get that in a similar way that ∫

âxâyâz dµ = 0.

After all these computations, for fixed âx and âz, we want to compute K(âz, âx). In
this direction, we have to consider Equation (74) which is the first sum in expression
(44).
We wonder for which y we have that (

∫
âxâzây dµ)

2 6= 0. We assumed without loss of
generality that z is a subprefix of x. In this case, the length of x is strictly larger than
the length of z.
Considering first the case where the length of y is larger than z and x, it follows from

the above that ∑
word ywith length larger than x and z

(

∫
âxâzây dµ)

2 = 0.

Now we consider the case where the length of y is strictly smaller than the length of z
and x.
For the case where the length of y is strictly smaller than z and x, we need to assume

that y is a subprefix of z (otherwise âyâz = 0 and we get (
∫
âxâzây dµ)

2 = 0). If y
is a strict subprefix of z and z is a strict subprefix of s we get from the above that
(
∫
âxâzây dµ)

2 = 0.
Finally, we assume that the length of y is strictly smaller than x and strictly larger

than z. In this case, we have to assume that x is a subprefix of y and y is a subprefix of z
(otherwise by Proposition 7.4 we have

∫
âxâzây dµ

2 = 0). It follows from the above that
also in this case (

∫
âxâzây dµ)

2 = 0.
Therefore, in the estimation of expression (74), it follows from our reasoning that all

elements in this sum are zero up to expressions (
∫
â2xâz dµ)

2 and (
∫
â2zâx dµ)

2, that is,
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the cases where y = x or y = z. From Proposition 7.5, we have to assume that x is a
subprefix of z or vice versa. The explicit expressions for these two cases were analysed in
§ 8.1 and 8.3.
If the length of x is larger than the length of z, then, from Equation (73) we get

(
∫
â2zâxdµ)

2 = 0.
The final conclusion is that

∑
word y

(

∫
âxâzây dµ)

2 = (

∫
â2xâz dµ)

2 + (

∫
â2zâx dµ)

2 = (

∫
â2xâz dµ)

2. (78)
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