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Abstract
Lamb waves are a growing method for the Non-Destructive Testing and Evaluation (NDT&E) and structural health
monitoring (SHM) of aerospace vehicles. These guided waves can propagate over large distances and have a strong
tendency to interact with damage. Whilst several methods exist for the modelling of Lamb wave propagation, this
paper is the first to introduce a first principles numerical model that can efficiently and accurately predict the
behaviour of Lamb waves. The numerical model is easier to understand and implement compared with analytical
solutions and significantly faster than discretised numerical methods. The numerical model is presented in detail
for an isotropic and homogenous plate, along with validation against the industry accepted, WaveForm Revealer 3
(WFR3) software. The results show a mean correlation across all assessed parameters of 90.4% and 96.6% for the
symmetric and antisymmetric modes, respectively. Further discussion is provided on future developments to the
model, including on the topic of high temperature effects, anisotropic materials and edge reflections.

Nomenclature
μ, λ Lamé’s parameters
ν Poisson’s ratio
ρ Density
u Longitudinal displacement
v Transverse displacement
A, B, C, D Arbitrary constants
p, q Dispersive wavenumbers
k Wavenumber
ω Circular frequency
f Linear frequency
cL Longitudinal wave velocity of the bulk material
cT Transverse wave velocity of the bulk material
E Young’s modulus
cg Group velocity
cp Phase velocity
φ Phase
T Temperature
α Coefficient of thermal expansion
Qij Stiffness coefficients along the ply axis
Aij

∗ In plane stiffness terms
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1.0 Introduction
Non-destructive testing (NDT) has been around for over 100 years, with one of the very first applications
being in the railroad industry [1]. The 1970s significantly changed the field of NDT with the emergence
of the discipline of fracture mechanics [1]. This enabled the prediction of whether a crack of a given
size would fail under a given load if the relevant material property or fracture toughness was known.
Laws to predict the rate of growth of cracks under cyclic loading were also developed. With these laws,
it became possible to use structures with known defects, if the sizes of the defects were known [2]. That
is, design incorporated a new approach, and they became “damage tolerant designs” [3]. Components
with known defects could be used as long as the defects did not grow past a critical limit, which could
result in a catastrophic failure. This presented a new challenge for NDT, ‘simple’ detection of flaws was
no longer enough, quantitative information was needed about the size of flaws to enable predictions of
the component’s residual life. That is, non-destructive evaluation (NDE) [1, 4].

Structural Health Monitoring (SHM) is an emerging area which brings together NDE with smart
technologies and materials [5]. The drive for SHM in the aerospace industry lies with the need to improve
safety, for both aerospace manufacturers and operators. Maintenance activities can account for as much
as 20% of the direct operating costs, and human error in maintenance contributes to 15% of all aircraft
accidents [5]. Beyond that, reliable SHM would allow for less conservative design philosophies to be
used, leading to significant weight savings on future aircraft whilst improving the safety of passengers.
The rapid advances that have been made in recent decades in sensor technology, smart materials and
innovative structural concepts are leading to the practical use of SHM. One such area is the use of
ultrasonic guided waves [6, 7], a direct evolution of traditional ultrasonic NDT.

Simulation of ultrasonic guided wave-based NDT and NDE for SHM is onerous [6]. While the use
of finite element analysis (FEA) has become more common [8], there are limitations and issues with
such a method. Specifically, FEA can be computationally intensive [9]. Reducing computational effort
is essential for airframe digital twins [10, 11], especially if an intelligent digital twin is used onboard, in
flight [12]. In this work, a simple numerical model for guided wave propagation in 2D plate structures
is presented. These structures made specifically of aluminium alloys are representative of those used to
skin aircraft [13, 14].

2.0 The numerical model
The original analysis of guided waves in thin plates was published by Lamb in 1917 [15] and
derives itself from an interrogation of the elastodynamic Navier-Cauchy equations for isotropic
materials [16].

μvi,jj + (λ+μ)vj,ji + ρfi = ρv̈l (1)

The geometry is simple, the thin plate is a solid medium which is bounded on the top and bottom by
parallel planes which are a distance 2h apart, as depicted in Fig. 1 [17]. In the horizontal distance within
the plate, the dimensions are unbounded, and it is also assumed that there is no medium outside the
upper and lower bounds of the solid plate. In a bulk solid medium, mechanical waves can propagate as
longitudinal (pressure) waves, or as lateral (shear) waves. In a plate, the close nature of bounding planes
results in a mixing of these types of waves, and interestingly results in the production of two unique
propagation modes. These are the symmetric wave which is an even function of the displacement of the
medium in z, where u(z) = u(−z), and the antisymmetric wave, which is an odd function of the displace-
ment of the medium in z, where −u(z) = u(−z)(17). The longitudinal component of the displacement u
and a transverse component w have the form,

u = i(kA cos (pz) + qB cos (qz))eik(x−ct) (1.1)

w = (−pA sin (pz) − kB sin (qz))eik(x−ct) (1.2)
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Figure 1. The general setup and co-ordinate system for a guided Lamb wave.

for symmetric modes, and

u = i(kC sin (pz) − qD sin (qz))eik(x−ct) (2.1)

w = (pC cos (pz) − kD cos (qz))eik(x−ct) (2.2)

for antisymmetric modes. While A, B, C and D are arbitrary constants, the coefficients p and q represent
the dispersive wavenumbers, and are given by,

p2 = ω2

c2
L

− k2 (3.1)

q2 = ω2

c2
T

− k2 (3.2)

where ω is the circular frequency of the wave, k is the wavenumber determined by the phase velocity
of the wave at ω, cL is the longitudinal wave velocity of the bulk material and cT is the transverse wave
velocity of the bulk material.

cL =
√
λ+ 2μ

ρ
(4.1)

cT =
√
μ

ρ
(4.2)

The variables λ and μ represent the Lamé constants as given below [18].

λ= Eν

(1 + ν)(1 − 2ν)
(5.1)

μ= E

2(1 + ν)
(5.2)

The boundary conditions are that txz = szz = 0 on z = ±h [19]. The result of imposing these boundary
conditions is that Equations (1.1) to (2.2) only have nontrivial solutions if,

tan (qh)

tan (ph)
= − 4k2pq

(q2 − k2)2 (6.1)
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tan (ph)

tan (qh)
= − 4k2pq

(q2 − k2)2 (6.2)

for the symmetric and antisymmetric modes, respectively [19].
The important result is that Lamb waves are dispersive, given the velocity depends on the product

of h and ω, or the frequency-thickness product. That is, any arbitrary wave, which based on Fourier’s
theorem can be described as the sum of many sinusoidal waves, will experience dispersion, as well as
generating two wave modes that travel independently of each other. The group velocity given as cg = dω

dk

can be related to the phase velocity through Equation (7).

cg = c2
p

[
cp − (fh)

dcp

d(fh)

]−1

(7)

Where fh represents the frequency-thickness product of the case. The frequency-thickness product is
often used as the independent variable as it allows for calculation of the phase velocity independent of
the thickness of the plate. Modelling the propagation of an ultrasonic guided wave in a plate structure can
be achieved using the previously stated fact. Any signal is a sum of sinusoidal waves. Each sinusoidal
wave will have a velocity dictated by the dispersive relationship, which is a function of the material
properties and the plate thickness. Consider a typical Gaussian apodised sinusoidal signal,

f (t) = (A cos (ωt))e
t2/

2c2 (8)

The Fourier transform of this signal will be a Gaussian distribution of frequencies about the cen-
tral frequency, ω [20]. Rather than defining analytically what the Fourier transform of (8) is, a discrete
numerical approximation of the function can be defined with a set sampling rate. The fast Fourier trans-
form (FFT) of this discrete signal will then provide the phase and amplitude information for all the
sinusoids that sum together to form this signal. In the frequency domain, the spacing of these con-
stituent signals (df ) is derived from the sampling rate (1/dt) and the total number of samples (n), such
that,

�f = 1

n�t
(9)

Knowing each frequency, the dispersion for each can be determined. There are two options, root
finding algorithms can be used for Equations (6.1) and (6.2) to determine the valid wave speed at each
frequency, or a lookup table for the given material with a given thickness can be utilised. The second
provides a more computationally efficient means of determining the dispersion but is less general pur-
pose. For each signal, a time component can be determine based on the distance between the transmitter
and receiver, and the wave speed at that frequency. Importantly, the relative phase information from the
FFT is preserved and used as the initial phase offset of the sinusoid before adding the traveling wave
component.

For the received signal, there is no inverse problem that needs to be solved. That is, each of the
signals at the receiver location do not have their amplitude and phase information taken to for the FFT
of the received signal, which is the inverted (iFFT) to give the received time domain signal. Rather, the
direct sum of the array of sinusoids is the time domain signal. Effectively, the computationally intensive
solution to the inverse problem is solved with the novel application of first principles physics. The overall
procedure is illustrated in Fig. 2.

3.0 Other modelling approaches
Several numerical methods already exist for the modelling of Lamb waves in plate-like materials such
as the finite element method (FEM), spectral element method (SEM), and semi-analytical finite ele-
ment method (SAFE). These numerical modelling techniques are often time intensive in both setup and
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Figure 2. The process for the numerical model shown as a flow chart.

operation, requiring extensive resources. However, the use of such methods permits analysis of complex
structures such as composite materials, stepped geometries, assemblies and damage interaction.

3.1 Finite element analysis (FEA)
The finite element approach for the computation of Lamb wave behaviour is the most versatile and
resource intensive. Using FEA, the entire structural model is spatially discretised, and a series of partial
differential equations are solved using adequate boundary conditions for the time response of the model.
FEA is a powerful tool for the exploration of Lamb wave responses to various geometries [21], materials
[22], damages [23–25] and sensor-material interactions [26]. Analysis of Lamb waves using FEA is also
one of the most accessible methods due to the availability of commercial software. However, the high
resource demand has led to the development of various other numerical methods.

3.2 Spectral element analysis (SEA)
An alternative method to FEA is that of SEA developed principally for work with fluid flows [27].
SEA has a high degree of similarity to FEA, but offers large computational savings due to the use
of Lagrange interpolation functions [28]. The SEA method has been used in similar applications to
FEA such as material modelling [22], damage [29] and sensor-material interactions [30]. Ultimately,
SEA offers significant benefits over FEA but is otherwise less accessible due to the lack of commercial
software available.

3.3 Semi-analytical finite element analysis (SAFE)
The semi-analytical method for the simulation of Lamb wave propagation in elastic wave guides has
been studied intensively. The SAFE method offers computational savings over other, pure, finite element
methods [31]. The SAFE method was first formulated by Aalami [32] in 1973. Using SAFE, the waveg-
uide is discretised across the cross-section whilst an exponential function is used in the propagation
direction [31]. The SAFE method has been used for the efficient calculation of the dispersive properties
of a Lamb wave in anisotropic laminates and has been shown to have exact solutions for homogenous
materials [33]. The SAFE method is an effective tool for calculating the propagation of Lamb waves
in irregular and non-planar geometries [34–36]. Recent work with SAFE has involved the modelling
of more complex materials and interactions such as viscoelastic effects in composite mediums [37],
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boundary reflection interactions [32], reflection and transmission behaviour for damage and discontinu-
ities [38], pre-stressed materials [39] and leaky Lamb wave behaviour [40]. The SAFE method requires
integration of analytical equations with typically finite element methods and is generally developed for
individual cases.

3.4 WaveForm Revealer 3
As an alternative, WaveForm Revealer 3 (WFR3) developed by the University of South Carolina is
an analytical method for the modelling of Lamb wave propagation by the convolution of a user input
function with a structural transfer function in the frequency domain [41]. The structural transfer function
is derived by Giurgiutiu [18, 41] and given below.

G(u,ω) = S(ω)eikSu + A(ω)eikAu (10)

Where the superscript S and A and functions S(ω) and A(ω) correspond to the symmetric
and anti-symmetric components, respectively. These are given below.

S(ω) = − i aτ0
μ

sin (kSa)NS(kS)

D′
S(kS)

(11.1)

A(ω) = − i aτ0
μ

sin (kAa)NA(kA)

D′
A(kA)

(11.2)

The analytical model for WFR3 is programmed in MATLAB and operated through a graphical user
interface (GUI). WFR3 is also capable of modelling Lamb wave damage interactions such as trans-
mission, reflection and conversion behaviour. WFR3 has been validated against FEM and experimental
testing such that it is now favoured by industry and academia [41]. Moreover, the analytical method
offered significant computational time savings over typical numerical techniques. As a result of the low-
resource requirement of WFR3, it has been used in later sections to verify the proposed first principles
numerical model.

4.0 Validation
The first step in deploying the numerical model is to determine the dispersion relationships for the given
material. Firstly, a range of phase velocities must be selected in which the solution to the Rayleigh-Lamb
equation is predicted to exist. These selected phase velocities are used to calculate the predicted wave
numbers for the inputted frequency range, which are then used to determine the p and q constants as given
in Equations (3.1) and (3.2). To begin solving the Rayleigh-Lamb equation, it is better to rearrange it into
a more useful form suitable for solving with a numerical method. The rearranged forms of Equations
(6.1) and (6.2) are given below in subscript notation.

tan (qnh)

tan (pnh)
+ 4k2

nqnh(
k2

n − q2
n

)
2
= f S

n (12.1)

tan (qnh)

tan (pnh)
+

(
k2

n − q2
n

)
2

4k2
nqnh

= f A
n (12.2)

The exact solution for the wavenumber and hence, phase velocity occurs when fn = 0, representing
a root of the rearranged Rayleigh-Lamb equation. A variety of numerical solvers can be applied at this
point such as the bisection, secant or Newton-Raphson method. For most solvers, an interval must be
determined in which the root is known to lay. Hence, the range [n, n+1] in which a root is found is
determined for the case that fn+1 · fn < 0. Discovery of this range restricts the search field, rendering the
ability to apply the desirable solver. For the case of higher order wave modes, it must be acknowledged
that more than one root may exist within the search field, requiring more rigorous methods. The search
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Figure 3. Flow chart depicting the first principles numerical method.

Figure 4. The time domain input signal (left) and its frequency spectrum (right).

resolution for the root can be coarse as the Rayleigh-Lamb equation has high smoothness and hence, a
cubic spline may be fitted to the roots to improve the efficiency of the process. Once the phase velocities
have been found for the given frequency range, the group velocities may be determined by applying a
suitable finite difference approximation to Equation (7).

Following determination of the dispersive relationship, the numerical model may be applied as shown
in Figs. 2 and 3. To validate the proposed method and evaluate it against common practices, a parametric
study was performed for a range of variables. The numerical model was compared with the industry
accepted and peer-reviewed software WFR3, developed by the University of South Carolina. The study
was conducted using a Gaussian windowed sinusoid centred at a peak frequency of 200 kHz with a
fractional bandwidth of 30% as the input signal, shown in Fig. 4. A Gaussian windowed function is
used to reduce signal ringing effects [42, 43].

In performing the parametric study, the symmetric and antisymmetric wave modes were compared
separately. The choice of sensor has a dramatic impact upon the amplitude ratio between the two modes,
most notably; fibre Bragg gratings are much more sensitive to the symmetric mode as they measure in-
plane displacement whilst piezoelectric transducers are generally more sensitive to the antisymmetric
mode due to their measurement of out-of-plane displacement [44]. Hence, the amplitude relationship
between the two modes would greatly differ dependent upon the sensor choice. Moreover, it has been
shown that piezoelectric transducers can be carefully selected such that they may be tuned for the detec-
tion of selected wave modes [45]. Ultimately, separation of the two modes allows for normalisation and
for a sensor agnostic comparison. The relationship between the two wave modes is commutative and
hence, separation will not affect the results.
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Figure 5. A comparison of the propagated wave using the numerical model with different sampling
frequencies.

Data from the WFR3 software is exported with a sampling rate of 10 mega samples per second
(MSPS). Hence, as a matter of consistency, the sampling frequency of the proposed model has been
set to match this. Whilst the sampling frequency from the WFR3 software does not affect the overall
results, the sampling frequency in the numerical model is used for the constitutive frequency selection.
As such, varying the sampling frequency of the numerical model could have a minor effect on the results
of the study. Nonetheless, as the sampling frequency is increased, it produces results that are more like
the analytical solution. At a sampling frequency of 10 MSPS, it is expected that the numerical model
results should offer a high degree of similarity to the analytical solution. A comparison of three sampling
frequencies is shown below for the numerical model output in Fig. 5.

At a value of 1 MSPS it is evident that the wave packet is not smooth. At both sampling frequencies of
10 MSPS and 100 MSPS, the results are near identical, and the wave packets can hardly be distinguished
from one another. The effect of frequency selection between 1 MSPS and 10/100 MSPS is evident as
there is a phase delay between the signals. Ultimately, a sampling frequency between 10 MSPS and 100
MSPS should provide signal outputs that are akin to the analytical solution and any aliasing effects are
negligible.

To evaluate the similarity between WFR3 and the numerical model, two methods have been
employed. Firstly, the cross-correlation function has been used in the time domain. The cross-correlation
function is a method of determining the lag between the location of highest correlation of two signals.
A small lag indicates that the signals are very close to their highest point of correlation. If the lag value
across all the parametric trials is relatively constant, this is a possible indicator that there is a constant
phase delay between the two methods but that they otherwise produce very similar results. The cross-
correlation is a useful tool in determining this phase delay but is not a definite method for determining
similarity. The method for calculating cross-correlation is given below for two, time dependent signals
x1(t) and x2(t) where signal two is a copy of signal one separated by a time delay (lag) τ12 and attenuation
A. Both signals are assumed to have independent, Gaussian noise components given by n1(t) and n2(t).
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For the parametric study both signals have no noise and hence, n1(t) = n2(t) = 0.

x1 = s1(t) + n1(t) (13.1)

x2 = As1(t + τ12) + n2(t) (13.2)

A perfect cross-correlation between two signals can only be obtained over an infinite period and
hence, any calculation possesses a degree of truncation. The method for determining the cross-
correlation function for a pair of discrete signals is given below where −xn is the complex conjugate
of xn.

ψj = lim
N →∞

N∑
k=−N

x1k+j ·−x2k (14)

The cross-correlation can be more efficiently calculated in the frequency domain where the lag can
be determined as follows where X1(f ) is the Fourier transform of signal one and −X2(f ) is the complex
conjugate of the Fourier transform of signal two.

τ12 = max iFFT
(
X1(f ) · −X2(f )

)
(15)

The second measure of similarity used is Pearson’s linear correlation. The correlation coefficient
is a useful metric in determining a linear relationship between sets of data. As the time information,
given as the independent variable, will be constant between data sets, the correlation coefficient may
be used to compare the amplitude response of the two signals. However, if the signals are not properly
aligned due to a possible phase delay, this metric would not prove useful. Hence, the cross-correlation
is initially performed and then used to align the signals to the point of their maximum correlation before
the correlation coefficient is calculated to determine the magnitude of correlation at this location. In this
way, the combination of the two metrics should act as a robust way for determining similarity in both
amplitude and phase. The Pearson’s correlation coefficient is given below for two signals x1 and x2 with
means of x1 and x2.

r =
∑N

i=1 (x1 i − x1)
(
x2i − x2

)
√∑N

i=1

(
x1i − x1

)2 ∑N
i=1 (x2 i − x2)

2
(16)

A comparison of the dispersive relationships calculated from the numerical model and obtained from
WFR3 are shown in Fig. 6. The resultant curves are for aluminium alloy 2024-T3.

The Pearson’s linear correlation coefficient has been used to compare the two dispersion relation-
ships. As can be seen, both wave modes are perfectly correlated with a correlation value of one. Hence,
the dispersion information from both the proposed technique in the numerical model as well as the
WFR3 software can be considered identical.

The remainder of the numerical model is validated against WFR3 over a range of material properties
and variables as noted in Table 1. These variables are swept from the lower limit to the upper limit
with the spacing specified. These properties are assessed over a range that is suitable for most materials.
Symmetric and antisymmetric modes are compared independently as previously discussed.

The results of the parametric study are shown below in Fig. 7 with phase error, depicted as a time
delay on the left and amplitude error, depicted as the Pearson’s correlation coefficient shown on the
right. Both sets of data show that the numerical model is comparatively very similar to the results
obtained from WFR3. There are notably few outliers. WFR3 struggles to provide a solution as material
properties approach non-physical values. Most notably, a Poisson’s ratio of 0.05 produced a bad result.
However, the numerical model continues to perform well in this regime and yields qualitatively accurate
results. Nonetheless, the results indicate that the numerical model is capable of accurately calculating
the propagation of Lamb waves.

The following sections detail several proposed improvements to the basic version of the numerical
model, including how higher levels of fidelity may be incorporated.
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Table 1. The range of variables assessed in the numerical model
validation

Lower limit Spacing Upper limit
Young’s modulus (E) 50 GPa 25 GPa 300 GPa
Density (ρ) 500 kg/m3 500 kg/m3 5,000 kg/m3

Plate thickness (h) 1 mm 1 mm 8 mm
Poisson’s ratio (ν) 0.05 0.05 0.45
Distance (D) 50 mm 50 mm 500 mm

Figure 6. A comparison of dispersion properties of aluminium from the numerical model and WFR3.

Figure 7. Time delay comparison between the numerical model and WFR3 (left) and the Pearson’s cor-
relation coefficient of the signals (right). Antisymmetric modes are shown as solid lines and symmetric
as dashed lines.
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5.0 Modelling extensions
5.1 High temperature effects
Whilst numerous advancements have been made in the fields of NDE and SHM, there remains several
challenges, including operation in extreme environments. High-temperature sensors that can withstand
such conditions are difficult and expensive to produce. Modelling of high-temperature Lamb waves
allows for the optimisation of sensing systems to overcome some of these challenges. Aerospace fields
that would see the biggest improvement from research in this area includes the health monitoring of
propulsive systems and hypersonic vehicles.

Propulsion systems have recently been shown as the most common cause of fatigue failure in aircraft
[46]. Moreover, whilst hypersonic flight has seen deployment of experimental vehicles (∼TRL 5), mass
production has been delayed, partly owing to the low reliability of some systems [47]. The extreme
environments in which these vehicles operate introduce large uncertainties and sensitivities of which
the use of SHM can aid in overcoming.

Whilst a suitable body of literature exists that explores the thermal effects on Lamb wave propagation,
little work has been completed at temperatures of interest (> 1,000◦C). Within this higher temperature
range, it is expected that additional phenomena may be encountered that have not been considered in
previous work. Materials for use in this temperature range including nickel-based superalloys, titanium
aluminides and Ceramic Matrix Composites (CMCs) exhibit phenomena such as viscoelastic behaviour
and creep that has not been characterised or modelled [48]. Moreover, accumulation of creep damage
results in higher void content and cracking that can further influence acoustic behaviour and further
engenders reflection-transmission and mode conversion [48].

First attempts can be made to model high-temperature Lamb waves by solving a temperature depen-
dent Rayleigh-Lamb equation. Here, λT and μT are the first and second temperature dependent Lamé’s
constants, respectively. The temperature change �T is taken as the difference between the current tem-
perature T and that of a reference temperature T0. The half-thickness of the plate h with respect to the
thickness at the reference temperature h0 is then determined by considering the linear coefficient of
thermal expansion α.

h(�T) = h0(1 + α�T) (17)

Likewise, the density of the material with respect to the density at the reference temperature can be
determined.

ρ(�T) = ρ0

(1 + α�T)3 (18)

The variation in Young’s modulus and Poisson’s ratio were empirically derived by Augereau et
al. [49] for aluminium 6061-T6 over a temperature range of 20◦C to 220◦C as given below. Material
properties at high temperatures is arguably one of the biggest limitations in this area.

E = 77.59 − 27.03 · T

103 − 13.78 · T2

106 (19.1)

ν = 0.317 + 54.79 · T

106 + 6.5 · T2

109 (19.2)

Taking the derivative of p and q with respect to temperature provides the following relationships.

p
∂p

∂T
= k

∂k

∂T
− kL

∂kL

∂T
(20.1)

q
∂q

∂T
= k

∂k

∂T
− kT

∂kT

∂T
(20.2)
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Figure 8. A comparison of dispersive phase velocities for aluminium (left) and the corresponding sen-
sitivity (right). The solid and dashed lines correspond to the room temperature and 500◦C solutions,
respectively.

Figure 9. Change in the signal time-of-flight (TOF) (left) and corresponding increase in sampling
frequency (right).

Where kL and kT are the longitudinal and transverse wave numbers, respectively. Finally, the group
velocity CG may be calculated as follows from the phase velocity CP.

∂CG

∂T
= ∂CP

∂T

(
1 − k

CP

∂CP

∂k

)
+ k

(
∂2CP

∂k∂T

)
(21)

A plot of the dispersive phase velocities for aluminium 6061-T6 as well as the corresponding tem-
perature sensitivities are shown in Fig. 8. It is clear that an increase in temperature results in a decrease
in the phase velocity of both wave modes but is more pronounced for the symmetric mode.

The change in the time-of-flight (TOF) of an acoustic signal as well as the corresponding increase in
frequency is shown in Fig. 9. An example of a 200 kHz wave in a 3 mm plate that is transmitted over
250 mm with an increase from the reference temperature of 20◦C would result in a change in the TOF
of the symmetric mode by 0.134 µs and the antisymmetric mode by 0.239 µs.

5.2 Anisotropic materials
A further extension of the numerical model may include consideration of anisotropic materials. Such
materials are commonplace in aerospace settings, primarily in the form of fibre reinforced polymers
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(FRPs) and cold-rolled aluminium [50]. Adjustments can be made to the original model by including
these effects in the form of directionally dependent material properties. The model can easily incorporate
this modification by calculating the dispersion relationships for each direction of interest. Whilst such
a method would account for the variation in wave speed, it would not capture the complex Lamb wave
and shear horizontal wave coupling effects [51].

To model the anisotropic material properties in FRPs, classical laminate theory (CLT) is used to deter-
mine the directionally dependent material properties. We begin with the reduced stiffness coefficients
of the material along the ply axis, knowing that ν12

E1
= ν21

E2
[52].

Q11(0) = E1

1 − ν12ν21

(22.1)

Q22(0) = E2

1 − ν12ν21

(22.2)

Q12(0) = ν21E1

1 − ν12ν21

(22.3)

Q66(0) = G12 (22.4)

These coefficients must then be transformed along the laminate axis, where c = cos (θ ), s = sin(θ ).

Q(θ ) = TQ(0), (23)

T =

⎡
⎢⎢⎢⎢⎢⎢⎣

c4 2c2s2 s4 4c2s2

c2s2 c4 + s4 c2s2 −4c2s2

s4 2c2s2 c4 4c2s2

c3s −cs
(
c2 − s2

) −cs3 −2cs
(
c2 − s2

)
cs3 cs

(
c2 − s2

) −c3s 2cs
(
c2 − s2

)
c2s2 −2c2s2 c2s2

(
c2 − s2

)2

⎤
⎥⎥⎥⎥⎥⎥⎦

, Q(0) =
Q11(0)
Q12(0)
Q22(0)
Q66(0)

(24)

Next, we calculate the in-plane stiffness matrix terms for the stress resultants.

A∗
ij =

1

t

n∑
k=1

Qij (θk) (hk − hk−1) (25)

Finally, the stiffness properties of the material along the laminate axis may be obtained.

Ex = A∗
xx − A∗2

xy

A∗
yy

(26.1)

Ex = A∗
yy − A∗2

xy

A∗
xx

(26.2)

νxy = A∗
xy

A∗
yy

(26.3)

νyx = A∗
xy

A∗
xx

(26.4)

Gxy = A∗
ss (26.5)
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Table 2. Material properties of the composite for
the given example

Young’s modulus E1 137.4 GPa
Young’s modulus E2 11.71 GPa
Shear modulus G12 5.510 GPa
Poisson’s ratio ν12 0.250
Ply thickness tply 0.200 mm

Figure 10. Polar plots for modulus (left) and Poisson’s ratio (right) dependent upon the material
direction of orientation.

Let us consider an orthotropic laminate with the following layup [0, 0, 90, 90]2S, and material
properties given in Table 2.

The resulting CLT analysis provides polar plots of the material properties as shown in Fig. 10.
The resulting phase velocities for both the symmetric and antisymmetric modes at 200 kHz are plotted

in Fig. 11. As evident, the change in material properties has a marked effect upon the acoustic response
of the panel and should be considered in any form of analysis.

5.3 Edge reflections
Edge reflections of Lamb waves has not been implemented but a proposed addition to the original numer-
ical model is a raytracing method that would predict the path of the Lamb wave through a discrete number
of angles, like that shown in Fig. 12. Boundary conditions can be implemented by considering whether
the plate is fixed or free at an edge, resulting in an inverted or non-inverted reflection, respectively.
Likewise, a relationship for reflected energy could be used to predict the amplitude of reflected waves
as well as models for predicting mode conversion. Edge reflections are an important phenomenon, as
the colocation of waves would result in constructive and destructive interference, affecting the ability to
analyse and localise the emission.

Previous approaches including Monte Carlo simulations are computationally expensive, and hence,
the use of ray tracing algorithms that can accurately and efficiently analyse the path of the wave from
source to sink are desirable. Heinze et al. [53] developed a ray tracing algorithm for anisotropic compos-
ite materials based on Fermat’s principle. Zhang et al. [54] proposed a novel version of the linear travel
time interpolation method, which was also used to predict and visualise geometric defects in plates.
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Figure 11. Polar plot of the phase velocities of both Lamb wave modes.

Figure 12. The general principles of ray tracing edge reflections.

Balvantín et al. [55] also developed a ray tracing method based on Fermat’s principle by discretising the
plate into a grid of constant material properties and applying Snell’s law. A thickness reduction defect
was experimentally and numerically studied, which showed the ability to reconstruct the tomography of
a plate based upon the wave’s time of flight.

6.0 Conclusion
Ultimately, this work has presented a novel first principles numerical model for predicting the behaviour
of Lamb wave propagation in 2D plate structures. The model is easier to understand and implement
compared to analytical solutions and faster than traditional numerical methods. Validation against WFR3
shows excellent correlation. The presented numerical model opens opportunities for improved NDT&E

https://doi.org/10.1017/aer.2023.97 Published online by Cambridge University Press

https://doi.org/10.1017/aer.2023.97


2202 Pollock and Wild

and SHM of aerospace vehicles. The study also identifies potential avenues for future research and
improvements to the code, including the modelling of high temperature effects, anisotropic materials
and edge reflections. Overall, this research paper has contributed to the field of Lamb wave propagation
modelling and provides valuable insights for researchers and engineers in the aerospace industry.
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