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Food liking-disliking patterns may strongly influence food choices and health. Here we assess: (1)
whether food preference patterns are genetic/environmentally driven; and (2) the relationship between
metabolomics profiles and food preference patterns in a large population of twins. 2,107 individuals from
TwinsUK completed an online food and lifestyle preference questionnaire. Principle components analysis
was undertaken to identify patterns of food liking-disliking. Heritability estimates for each liking pattern
were obtained by structural equation modeling. The correlation between blood metabolomics profiles
(280 metabolites) and each food liking pattern was assessed in a subset of 1,491 individuals and replicated
in an independent subset of monozygotic twin pairs discordant for the liking pattern (65 to 88 pairs).
Results from both analyses were meta-analyzed. Four major food-liking patterns were identified (Fruit and
Vegetable, Distinctive Tastes, Sweet and High Carbohydrate, and Meat) accounting for 26% of the total
variance. All patterns were moderately heritable (Fruit and Vegetable, h2[95% CI]: 0.36 [0.28; 0.44]; Distinc-
tive Tastes: 0.58 [0.52; 0.64]; Sweet and High Carbohydrate: 0.52 [0.45, 0.59] and Meat: 0.44 [0.35; 0.51]),
indicating genetic factors influence food liking-disliking. Overall, we identified 14 significant metabolite
associations (Bonferroni p < 4.5 × 10-5) with Distinctive Tastes (8 metabolites), Sweet and High Carbohy-
drate (3 metabolites), and Meat (3 metabolites). Food preferences follow patterns based on similar taste
and nutrient characteristics and these groupings are strongly determined by genetics. Food preferences
that are strongly genetically determined (h2 � 0.40), such as for meat and distinctive-tasting foods, may
influence intakes more substantially, as demonstrated by the metabolomic associations identified here.
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Food preferences are formed by myriad of factors, includ-
ing environmental (e.g., food exposure during childhood
(Ventura & Worobey, 2013), economics (Novakovic et al.,
2014) and genetic determinants (particularly related to tast-
ing; Feeney et al., 2011; Pirastu et al., 2012). Individual food
preferences have shown to be correlated with reported food
intakes (Drewnowski et al., 1999; Duffy et al., 2009), sug-
gesting they are prominent determinants of food intake and
subsequently may have implications for the development of
long-term chronic diseases that are increasingly prevalent
in Western countries today.

The employment of statistical methods for food intake
data reduction to population-specific dietary patterns and
connecting these patterns with metabolic health and disease
outcomes has surged in recent years. However, application
of these methods to food hedonic (i.e., the degree of ‘lik-

ing’ or ‘wanting’ a food) questionnaires is limited within
the literature. Recently, subject hedonic ratings of food
images were reduced to seven components through PCA
and then assessed against BMI and reported intakes (John-
son et al., 2014). Drewnowski et al. (1999) evaluated food
preferences in young women and utilized factor analysis
to reduce food preferences to categories and subcategories,
and assessed these against reported nutrient intakes. These
studies demonstrate that food liking tends to cluster into
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statistically reliable groupings based on nutritional value
and/or taste characteristics, offering a potentially powerful
tool to assess the genetic influence on these traits.

Studies including our UK and Finnish twin cohorts have
identified groupings of food hedonics based on taste tend
to be significantly and strongly heritable (Keskitalo et al.,
2007; Tornwall et al., 2012a; 2012b). Using multiple mea-
sures of chemosensory traits, additive genetic effects have
been found to explain variation in hedonic ratings between
0.49 and 0.53 for sweet foods (Keskitalo et al., 2007), 0.18
and 0.58 for oral pungency (spicy foods) (Tornwall et al.,
2012a), and 0.34 and 0.50 for sour foods (Tornwall et al.,
2012b). Although well designed, these studies have pro-
vided a narrow assessment of the heritability of chemosen-
sory traits by focusing on a subset of taste phenotypes rather
than food preferences based on the whole diet. Moreover,
the impact of these strongly genetically determined traits
on metabolic health, potentially through modifying food
intake, has rarely been examined.

The degree to which food preferences influence in-
take has been evaluated by examining the correlations be-
tween preference of foods and reported intakes previously
(Drewnowski et al., 1999; Duffy et al., 2007; 2009; Johnson
et al., 2014; Peracchio et al., 2012), although the validity
and precision of intake measurements is affected by self-
reporting (Westerterp & Goris, 2002). The food preference
questionnaire developed by Duffy et al. (2007) and utilized
for the current study has been shown to produce statisti-
cally reliable food groups (Duffy et al., 2007; 2009) and to
correlate well with objective measures, including consistent
associations between adiposity with sweet-and-fatty food
liking (Duffy et al., 2007; 2009; Peracchio et al., 2012) and
carotenoid status with fruit and vegetable liking (Scarmo
et al., 2012). Further assessment of the food preference
questionnaire against objective biomarkers would provide
greater insight into the degree to which food preferences
influence metabolic health and food consumption habits.
In this instance, metabolomics, the global measurement of
metabolites in a biological sample at one time point would
provide a strong advantage. Novel candidate biomarkers
of dietary intake have been identified by assessing tissue
metabolomic profiles against intake frequency-derived di-
etary patterns (Altmaier et al., 2011; Menni et al., 2013c;
O’Sullivan et al., 2011), validating this approach for use
in epidemiological studies. However, replicating results in
independent populations is challenging due to the wide-
ranging genetic influence on metabolite levels (Shin et al.,
2014); therefore, usage of the co-twin control method (first
used to investigate the impact of smoking on mortality;
Friberg et al., 1970) provides an advantage through segre-
gating the non-genetic component and adjusting for known
and unknown biases including age and cohort effects.

The objectives of this article were to identify food pref-
erence patterns in a UK twin population, to determine if
these food preference patterns are primarily genetic or envi-

ronmentally determined and to identify if patterns of food
liking influence the long-term blood metabolomics profiles
of individuals.

Materials and Methods
Subjects

Subjects included in the analysis were twins enrolled in the
TwinsUK registry, a national register of UK adult, predom-
inantly female twins (Moayyeri et al., 2013). In this study,
we included twins who had completed the food preference
questionnaire and had blood metabolomic profiling avail-
able. The study was approved by the St. Thomas’ Hospital
Research Ethics committee and all subjects provided in-
formed written consent. Measured BMI (kg/m2) was taken
by trained research assistants at the visit time nearest to
questionnaire completion. Income was evaluated by ask-
ing subjects to estimate their total yearly household income
before taxes according to the following categories: (1) Less
than £10,000; (2) £10,000–£14,999; (3) £15,000–£19,999;
(4) £20,000–£24,999; (5) £25,000–£49,999; (6) £50,000–
£74,999; (7) £75,000–£99,999; 8, £100,000 or more.

Food and Lifestyle Preference Questionnaire

Figure 1 contains the study pipeline. Male and female twins
(n = 2569), aged 19 to 88 years, provided responses to the
food and lifestyle preference questionnaire between July
and August 2014 via Qualtrics, an online questionnaire
platform. Twins were sent an email and asked to com-
plete the questionnaire by following an anonymized link.
The questionnaire was adapted from Duffy (2007) to suit the
large UK twin cohort. Modifications to the questionnaire
included: conversion from a paper to online survey format,
modification of the food items to suit a UK diet, and the
addition of a box to the left of the scale for the subject to in-
dicate if they had not tried a food or non-food. In our study,
degrees of liking-disliking for 87 foods and beverages and 18
non-foods (9 activities and 9 experiences/sensations) were
rated on a horizontal continuous line scale labeled with five
faces (Peracchio et al., 2012). The scale ranged from ±100
(0 = neutral/neither like nor dislike; +100 = strongest liking
of any kind; -100 = strongest disliking of any kind). A picture
of each food was placed to the left of the scale. Subjects with
incomplete questionnaires were excluded from the analysis
(n = 76).

Metabolomics

Non-targeted metabolomics mass spectrometry profiling
was conducted by the metabolomics provider Metabolon,
Inc. (Durham, NC) on 1,491 fasting blood samples, as previ-
ously described (Menni et al., 2013a; 2013b). Blood samples
were taken an average of 7 years (SD: 3 years; range: 4–17
years) prior to food preference questionnaire completion.
In this study, we analyzed 280 structurally named biochem-
icals (known metabolites) categorized into the following
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FIGURE 1

(Colour online) Pipeline of study design.

broad groups: amino acids, carbohydrates, vitamins, lipids,
nucleotides, peptides, and xenobiotics.

Statistical Analysis

All statistical analyses were conducted in Stata, unless other-
wise noted. We inverse normalized the metabolite data as the
metabolite concentrations were not normally distributed.
Metabolites were excluded from the analysis if more than
20% of the values were missing to avoid false-positive asso-
ciations. Missing values for the remaining metabolites were
imputed using minimum run day measures.

Dietary pattern generation. We removed foods from the
analysis if 5% or more of the respondents had not tried
them (Figure 1). Due to the wide age range included in the
sampling population, all food items were residual adjusted
for age prior to analysis. A small portion of the subjects
were male (11%) and ratings were found to differ signifi-
cantly by sex for many foods so all ratings were also resid-
ual adjusted for sex. Ratings of liking-disliking for most
foods did not follow a normal distribution and therefore all
items were transformed by rank-based inverse normaliza-
tion. Principal component analysis (PCA) was conducted

on liking-disliking ratings for 83 foods, and only twins who
had tried all of these foods were included in the analysis
(n = 2,107). Components were retained by reviewing the
inflection point of the scree plot and rotated using varimax
rotation.

Heritability. Heritability of the food liking-disliking
scores was determined using linear structural equation
modeling in Mx (Neale & Cardon, 1992; Neale et al., 2003).
Univariate ACE models decompose the phenotypic variance
into additive genetic effects (A), common (C) environmen-
tal effects, and non-shared environmental effects (E). Ad-
ditive genetic influences are indicated when MZ twins are
significantly more similar than DZ twins. The common en-
vironmental component estimates the contribution of fam-
ily environment, which is assumed to be equal in both MZ
and DZ twin pairs (Kyvik, 2000). By comparison, the unique
environmental component does not contribute to twin sim-
ilarity; rather, it estimates the effects that apply only to each
individual and includes measurement error. Any greater
similarity between MZ twins than DZ twins is attributed to
greater sharing of genetic influences. Heritability is defined

TWIN RESEARCH AND HUMAN GENETICS 795

https://doi.org/10.1017/thg.2015.69 Published online by Cambridge University Press

https://doi.org/10.1017/thg.2015.69


Tess Pallister et al.

TABLE 1

Characteristics of the Study Population and Trends With Food-Liking Patternsa

Fruit and Distinctive Sweet and high
vegetable tastes carbohydrate Meat

All subjects
(N = 2,107) Beta (SE) p Beta (SE) p Beta (SE) p Beta (SE) p

Age (years) 57.4 (12.5)
Sex (M:F) 238:1869
BMI (kg/m2) 26.0 (4.8) -0.03 (0.04) 0.465 -0.13 (0.04) 0.004 0.27 (0.05) 7.02 × 10-9 0.34 (0.05) 2.55 × 10-10

Smoking-liking -82.0 (41.7) -0.05 (0.01) 1.96 × 10-10 0.03 (0.01) 8.88 × 10-5 0.02 (0.01) 0.020 -0.01 (0.01) 0.874
Physical activity-likingb 15.4 (36.8) 1.12 (0.08) 1.21 × 10-39 0.70 (0.08) 1.70 × 10-17 -0.07 (0.08) 0.361 -0.07 (0.07) 0.315
Age finished education

(years)
18.2 (3.3) -0.01 (0.02) 0.602 0.08 (0.02) 4.16 × 10-5 -0.09 (0.02) 5.25 × 10-6 -0.04 (0.02) 7.38 × 10-3

Household income
levelc

4.9 (1.7) -0.02 (0.04) 0.610 0.16 (0.04) 1.18 × 10-4 -0.13 (0.04) 0.001 0.02 (0.04) 0.592

Ever followed a diet to
lose weight? (Y:N)

910:1161 0.003 (0.004) 0.452 0.003 (0.004) 0.512 0.01 (0.004) 0.025 0.02 (0.005) 0.001

Note: aCharacteristics are expressed in mean (SD) for age, BMI, smoking-liking, physical activity-liking, age finished education and household income level,
the male to female ratio (M:F) for sex (1, male; 2, female) and the yes to no (Y:N) ratio of subjects who had ever followed a diet to lose weight (0, no; 1,
yes). Smoking-liking and physical activity-liking were assessed on a scale ranging from -100 to +100. A simple linear regression was conducted between
each food-liking score and descriptive phenotype. bSubject reported liking for seven physical activities (taking the stairs, going to the gym, exercising
alone, playing sports, exercising with others, bicycling and working up a sweat) formed a statistically reliable group (Cronbach’s alpha: 0.83) and were
summed. cSubjects were asked their level of yearly household income as follows: (1) Less than £10,000; (2) £10,000–£14,999; (3) £15,000–£19,999; (4)
£20,000–£24,999; (5) £25,000–£49,999; (6) £50,000–£74,999; (7) £75,000–£99,999; (8) £100,000 or more.

as the proportion of the phenotypic variation attributable
to genetic factors and is given by the equation, h2 = (A)/(A
+ C + E). Akaike’s information criterion (AIC) was used to
determine the best fitting model (among ACE, AE, CE, and
E models). The model with the lowest AIC reflects the best
balance of goodness of fit and parsimony (Neale & Cardon,
1992). All variables were residual-adjusted for age and sex.

Liking pattern-metabolite associations. For each
metabolite, random intercept linear regression analysis was
first undertaken by excluding MZ twin pairs discordant for
each food preference pattern (MZ twins with measures one
SD apart in scores for the relevant food preference pattern)
adjusting for age, metabolite batch, sex, BMI, and family
relatedness:

Yi = �0 + �iXij + �i ageij + �iBMIij + �j + εij

where Yi is the metabolite and Xij the food preference pat-
tern of twin j from pair i, �j, is the family-specific error
component that captures the unobserved heterogeneity or
family characteristics.

We used a Bonferroni correction to adjust for multi-
ple testing, which gave a significant threshold of 4.5 ×
10−5 (0.05/[280 detected metabolites × 4 food preference
patterns]). For each significant metabolite-food preference
pattern association from the discovery sample, the same
linear regression analysis was undertaken in the MZ discor-
dant twin pair population. The MZ discordant twin pair
design provides a powerful means to examine the impact of
environmental and lifestyle exposures, while controlling for
age, sex, baseline genetic sequence, and shared upbringing
(van Dongen et al., 2012). Associations from the discordant
MZ pair analysis in the same direction as the discovery set
were considered replicated. Finally, we combined the results
using an inverse variance fixed effect meta-analysis.

To determine if food preference pattern-associated
metabolites were driven by the liking of single foods, we
repeated the same linear regression analysis as described for
the liking pattern associations (above) for all food-liking
variables against each significant metabolite (Bonferroni
p < 5.5 × 10−5 (0.05/[11 metabolites × 83 food liking
variables]).

Results
Demographic Characteristics

The demographic characteristics of the study population
are included in Table 1. Food liking-disliking data was com-
plete for 2,107 twins, of which a subset of 1,491 had blood
metabolomics profiling available. The mean age of the study
sample was 57.4 years (12.5 years SD; 19–88 years), and the
mean BMI was 26.0 kg/m2 (4.8 kg/m2 SD) and in the over-
weight range (>25 kg/m2).

Food Liking-Disliking Patterns

The first 20 components presented in the scree plot
(Figure 2) show an inflection point after the fourth com-
ponent, so only the first four components were retained.
The total variance explained by the first four components
was 26%. Figure 3 shows the component loadings for each
of the four components; the full rotated component matrix
with all variable component loadings can be found in Sup-
plementary Table S1. The four patterns were designated as
follows according to their top food preference loadings:

Fruit and vegetable (12.2% variance). High liking of
strawberries, spinach/greens, melon, raw carrot, banana,
pineapple, pear, cherries, fresh tomatoes, tuna or salmon,
beetroot, porridge, and broccoli.
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FIGURE 2

Eigenvalues for the first 20 principle components derived from the liking-disliking ratings for 83 foods from 2,107 subjects.

Distinctive tastes (6.7% of variance). High liking of
chili pepper, the burn of spicy foods, horseradish/wasabi,
olives, gherkins, blue cheese, curries, garlic, red wine,
aubergine, soy sauce, fresh coriander, beer, salty pretzels,
vodka/gin/scotch, and black pepper.

Sweet and high carbohydrate (4.2% of variance). High
liking for biscuits, cakes or pastries, carbonated drinks
and sweet drinks, cake icing, jam/jelly, cheesecake, ice
cream, bagels/rolls, sweet coffee drinks and whipped cream,
diet carbonated soft drinks, pizza, chips, cornflakes, and
ketchup.

Meat (2.6% of variance). High liking for beef steak,
chargrilled meats, pork chops, ham, crispy bacon, baked
chicken, sausage, fried chicken, prawns and shellfish, and
fried fish.

Pattern Scores and Population Characteristics

Trends for each pattern score and BMI, liking for smoking
and physical activities, age finished education, household
income level, and whether twins had ever followed a diet to
lose weight are presented in Table 1. Scoring highly on the
Fruit and Vegetable-liking pattern was strongly associated
with higher physical activity liking (Beta[SE]: 1.12[0.08],
p = 1.21 × 10-39), while associated with a lower liking for
cigarette smoking (-0.05[0.01], p = 1.96 × 10-10). Scoring
highly on the Distinctive Tastes pattern was associated with
higher scores for liking of cigarette smoking (0.03[0.01],
p = 8.88 × 10-5) and physical activities (0.70[0.08], p =
1.70 × 10-17), a higher age finished education (0.08[0.02],

p = 4.16 × 10-5) and household income (0.16[0.04], p =
1.18 × 10-4), and mildly associated with having a lower
BMI (-0.13[0.04], p = .004). Scoring highly on the Sweet
and High Carbohydrate pattern was associated with having
a higher BMI (0.27[0.05], p = 7.02 × 10-9), mildly asso-
ciated with higher ratings for liking of cigarette smoking
(0.02[0.01], p = .02) and ever following a diet for weight
loss (p = .01[0.004], 0.025). Higher scores on the Sweet and
High Carbohydrate pattern were associated with a lower
age finishing education (-0.09[0.02], p = 5.25 × 10-6) and
household income (-0.13[0.04], p = .001). Higher scores
on the Meat-liking pattern were associated with having a
higher BMI (0.34[0.05], p = 2.55 × 10-10) and ever fol-
lowing a diet for weight loss (0.02[0.005], p = .001), and
finishing education at a lower age (-0.04[0.02], p = .007).

Heritability
Heritability estimates for the four food preference scores
are presented in Table 2. The AE model was the best
fitting model for all liking-disliking groups. Variation
in food liking-disliking scores for the Distinctive Tastes
(h2[95% CI]: 0.61[0.53; 0.68]), Sweet and High Carbohy-
drate (0.52[0.44; 0.60]) and Meat-liking (0.45[0.35;0.54])
components were each strongly and significantly deter-
mined by additive genetic effects (a2 � 0.40) or non-shared
environmental factors. Variation in liking-disliking scores
for the Fruit and Vegetable group was less strongly deter-
mined by additive genetic effects (0.38[0.28; 0.48]).
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FIGURE 3

(Colour online) Rotated component loadings for liking-disliking ratings of foods. Loadings for each food liking-disliking pattern are
presented by food with each food pattern represented by a symbol: F&V (Fruit and Vegetable), green lettuce; Distinctive Tastes, glass
of red wine; Sweet and High CHO (carbohydrate), ice cream cone; Meat, hot dog. The red line indicates the top loadings (�0.16; �-0.16);
loadings that pass this line were used to assign names and decipher the pattern.

Metabolomic Associations

We identified 14 significant metabolite associations with
the food-liking patterns after adjusting for covariates and
multiple testing (Bonferroni p < 4.5 × 10-5) and repli-

cated them in the MZ discordant group (Table 3). Having
replicated these metabolites associated with food-liking pat-
terns using identical twins discordant for the correspond-
ing pattern, this substantiates the influence of food intake,
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TABLE 2

Heritability Estimates for the Food Liking-Disliking Patterns (364 MZ Pairs, 200 DZ Pairs and 979 Singletons)

MZ DZ

Best C
Variable Mean (SD) ICC [95% CI] Mean (SD) ICC[95% CI] model A [95%CI] [95%CI] E [95%CI]

Fruit & vegetable 0.08 (2.83) 0.39 [0.30; 0.47] -0.12 (2.64) 0.10 [-0.04; 0.24] AE 0.36 [0.28; 0.44] — 0.64 [0.56; 0.72]
Distinctive tastes 0.11 (2.61) 0.58 [0.51; 0.65] -0.17 (2.68) 0.33 [0.20; 0.45] AE 0.58 [0.52; 0.64] — 0.42 [0.36; 0.48]
Sweet & high CHO -0.01 (2.56) 0.53 [0.45; 0.60] 0.01 (2.48) 0.33 [0.20; 0.45] AE 0.52 [0.45; 0.59] — 0.48 [0.41; 0.55]
Meat 0.01 (2.23) 0.46 [0.38; 0.54] -0.003 (2.17) 0.12 [-0.02; 0.25] AE 0.44 [0.35; 0.51] — 0.56 [0.49; 0.64]

Note: MZ = monozygotic; DZ = dizygotic, ICC = intra class correlation coefficient. Values in the three rightmost columns indicate the amount of variance
attributed to the compartment of additive genetic factors (A or heritability), common environmental factors (C) and unique environmental factors.

as a product of food liking and an environmental effect,
on metabolite levels, independent of the genetic effects.
The Distinctive Tastes pattern was significantly associated
with 8 metabolites (5 lipids, 1 xenobiotic, 1 amino acid,
and 1 cofactor/vitamin). The furan fatty acid 3-carboxy-
4-methyl-5-propyl-2-furanpropanoate (CMPF) was most
strongly associated with this pattern (meta-analysis result:
0.084[0.009]; p = 5.24 × 10-19). The Sweet and High
Carbohydrate pattern was associated with three metabo-
lites and most strongly with CMPF (-0.051[0.010]; p =
1.72 × 10-7). Three metabolites were significantly associ-
ated with the Meat-liking group, including three amino
acids. The amino acid involved in glutamate metabolism,
pyroglutamine, was most strongly associated with meat-
liking scores (-0.088[0.011]; p = 1.76 × 10-15). No as-
sociation passed multiple testing correction for correla-
tions between the Fruit and Vegetable group and blood
metabolites.

To determine if food preference pattern associated
metabolites were driven primarily by the liking of single
foods, we repeated the same linear regression analysis for
all food-liking variables against each significant metabo-
lite (Bonferroni p < 5.5 × 10-5 (0.05/ [11 metabolites ×
83 food liking variables]). We identified 76 associations
between single food-liking variables and the pattern asso-
ciated metabolites after adjusting for covariates and repli-
cated these in the MZ discordant twin group (Table 4).
Overall, CMPF was associated with 17 food-liking variables
(top association, prawns and shellfish: 0.276[0.025]; p =
2.40 × 10-28), DHA with 14 foods (top association, tuna
or salmon: 0.238[0.026]; p = 1.85 × 10-19), EPA with 10
foods (top association, prawns & shellfish: 0.184[0.026]; p
= 5.35 × 10-13), tryptophan betaine with 6 foods (top as-
sociation, lentils/ beans: 0.199[0.030]; p = 2.93 × 10-11),
scyllo-inositol with 5 foods (top association, red wine:
0.247[0.026]; p = 8.03 × 10-21), myo-inositol with 1 food
(fresh coriander: 0.103[0.025]; p = 4.98 × 10-5), piperine
with 7 foods (top association, black pepper: 0.207[0.027];
p = 1.62 × 10-14), gamma-tocopherol with 1 food (bis-
cuits/cake/pastries: -0.125[0.030]; p = 2.81 × 10-5, pyrog-
lutamine with 7 foods (top association, chargrilled meats:
0.143[0.025]; p = 6.49 × 10-9), creatine with 6 foods (top
association, pork chops: 0.164[0.025]; p = 7.46 × 10-11),

and trans-4-hydroxyproline with 2 foods (top association,
pork chops: 0.143[0.026]; p = 6.13 × 10-8).

Discussion
This is the first UK study and the largest globally to ex-
amine patterns of reported food liking-disliking in adults
based on as assessment of the whole diet. Here, we show
that reports of food liking-disliking fall into unique pat-
terns each defined by similar types of foods. Moreover, we
found that patterns of food-liking defined by strong tastes
(particularly pungent and sour), sweet and high carbohy-
drate foods, and meats are strongly heritable, thus justifying
further examination into the genetic determinants of food
and taste preferences. In particular, we are the first to report
a strong heritability for meat liking in adults. Finally, indi-
viduals who report high liking for foods characterized by
distinctive tastes or meat have higher levels of multiple cir-
culating metabolites independent of the genetic influence
on levels of these metabolites.

Our results are in agreement with findings of previous
studies where food hedonic patterns tend to vary accord-
ing to taste and/or nutrient value (Drewnowski et al., 1999;
Johnson et al., 2014). Recently, Johnson and collaborators
(Johnson et al., 2014) applied PCA to subject hedonic rat-
ings (n = 129) of 104 foods and identified similar patterns
to our population, such as the groupings of high liking
for vegetables (Light Main Courses), fruits (Fruits), meats
(Meats), or sweet foods (Desserts). The Distinctive Tastes
pattern we identified characterized by strong tasting foods
appears to be somewhat novel. Though liking scores for
spicy food in Finnish twins has been shown to form a sta-
tistically reliable group previously (Tornwall et al., 2012a;
2014), to our knowledge it has not been shown that individ-
uals who like salty/sour fermented foods (olives, gherkins,
horseradish, and soy sauce) tend to also like spicy food,
as depicted by the loadings for the Distinctive Tastes com-
ponent. Higher scores on the Distinctive Tastes and lower
scores on the Sweet and High CHO components were as-
sociated with increased household income and age finished
education, implying food costs, education, and/or social en-
vironment may have influenced ratings; these areas require
further analysis.
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TABLE 3

Significant Food-Liking Pattern-Metabolomic Associations After Adjusting for Age, BMI, Batch Effects, Family Relatedness and Sex (n = 1,491)

Discordant MZ
Discovery replication Meta-analysis

Pattern Metabolite Sup-p Sub-p Beta (SE) p Beta (SE) p Beta (SE) p

Distinctive
tastes

Tryptophan betaine a-a Tryptophan metabolism 0.07(0.01) 6.16 × 10-9 0.08(0.03) 1.00 × 10-2 0.07(0.01) 1.20 × 10-10

3-Carboxy-4-methyl-5-propyl-2-
furanpropanoate
(CMPF)

l Fatty acid, dicarboxylate 0.09(0.01) 3.66 × 10-17 0.06(0.02) 9.00 × 10-3 0.08(0.01) 5.24 × 10-19

Scyllo-inositol l Inositol metabolism 0.07(0.01) 1.20 × 10-10 0.09(0.03) 2.00 × 10-3 0.07(0.01) 3.41 × 10-13

Myo-inositol l Inositol metabolism 0.05(0.01) 2.88 × 10-5 0.02(0.03) 4.86 × 10-1 0.04(0.01) 3.34 × 10-5

Docosahexaenoate (DHA; 22:6n3) l Essential fatty acid 0.08(0.01) 3.79 × 10-12 0.05(0.02) 4.50 × 10-2 0.07(0.01) 4.61 × 10-13

Eicosapentaenoate (EPA; 20:5n3) l Essential fatty acid 0.08(0.01) 1.67 × 10-11 0.03(0.03) 3.72 × 10-1 0.07(0.01) 3.58 × 10-11

Piperine x Food component, Plant 0.08(0.01) 6.94 × 10-13 0.04(0.03) 2.07 × 10-1 0.08(0.01) 3.01 × 10-13

Gamma-Tocopherol c&v Tocopherol metabolism 0.05(0.01) 1.49 × 10-5 0.05(0.03) 4.40 × 10-2 0.05(0.01) 1.47 × 10-6

Sweet and
high
CHO

3-Carboxy-4-methyl-5-propyl-2-
furanpropanoate
(CMPF)

l Fatty acid, dicarboxylate -0.05(0.01) 4.21 × 10-5 -0.07(0.02) 1.00 × 10-3 -0.05(0.01) 1.72 × 10-7

Docosahexaenoate (DHA; 22:6n3) l Essential fatty acid -0.05(0.01) 1.39 × 10-6 -0.03(0.02) 1.62 × 10-1 -0.05(0.01) 7.20 × 10-7

Eicosapentaenoate (EPA; 20:5n3) l Essential fatty acid -0.06(0.01) 1.12 × 10-6 -0.02(0.02) 4.45 × 10-1 -0.05(0.01) 2.55 × 10-6

Meat Pyroglutamine∗ a-a Glutamate metabolism -0.09(0.01) 2.66 × 10-14 -0.06(0.03) 3.50 × 10-2 -0.09(0.01) 1.76 × 10-15

Creatine a-a Creatine metabolism 0.10(0.01) 6.58 × 10-14 0.05(0.03) 6.90 × 10-2 0.09(0.01) 1.69 × 10-14

Trans-4-Hydroxyproline a-a Urea cycle; arginine-,
proline-, metabolism

0.07(0.02) 5.00 × 10-7 0.08(0.03) 6.00 × 10-3 0.08(0.01) 6.73 × 10-9

Note: a-a = amino-acid; c&v = cofactor and vitamin; l = lipid; x = xenobiotic; beta coefficients presented for the results of each linear regression analysis represent the food liking pattern score that corresponds to a 1 SD
increase in the metabolite level.
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TABLE 4

Significant Single Item Food-Liking Metabolomic Associations after Adjusting for Age, BMI, Batch Effects, Family Relatedness, and
Sex (n = 1,491) for Food-Liking Pattern Associated Metabolites

Discordant MZ
Discovery replication Meta-analysis

Pattern Metabolite Food-liking variable Beta(SE) p Beta(SE) p Beta(SE) p

Distinctive
tastes/Sweet
and high CHO

3-Carboxy-4-
methyl-5-propyl-
2-
furanpropanoate
(CMPF)

Prawns and shellfish 0.30(0.03) 3.35 × 10-27 0.13(0.07) 6.09 × 10-2 0.28(0.03) 2.40 × 10-28

Tuna or salmon 0.26(0.03) 7.55 × 10-18 0.21(0.07) 2.71 × 10-3 0.25(0.03) 1.63 × 10-20

Olives 0.22(0.03) 6.34 × 10-16 0.03(0.07) 6.74 × 10-1 0.19(0.03) 6.43 × 10-15

Aubergine 0.18(0.03) 1.03 × 10-10 0.15(0.06) 2.53 × 10-2 0.17(0.03) 5.04 × 10-12

Extra virgin olive Oil 0.17(0.03) 1.21 × 10-10 0.11(0.05) 1.97 × 10-2 0.16(0.02) 7.26 × 10-12

Garlic 0.16(0.03) 6.89 × 10-10 0.15(0.06) 1.06 × 10-2 0.16(0.02) 1.42 × 10-11

Blue cheese 0.16(0.03) 6.61 × 10-9 0.11(0.05) 4.19 × 10-2 0.15(0.03) 7.88 × 10-10

Fresh coriander 0.16(0.03) 4.93 × 10-9 0.11(0.07) 1.16 × 10-1 0.16(0.03) 1.33 × 10-9

Plain yoghurt 0.14(0.03) 5.82 × 10-8 0.16(0.07) 1.86 × 10-2 0.15(0.02) 2.42 × 10-9

Asparagus 0.16(0.03) 4.59 × 10-9 0.08(0.06) 1.95 × 10-1 0.15(0.03) 2.91 × 10-9

Red wine 0.15(0.03) 8.96 × 10-8 0.03(0.05) 5.15 × 10-1 0.13(0.03) 4.72 × 10-7

Horseradish/wasabi 0.13(0.03) 8.48 × 10-7 0.07(0.06) 2.96 × 10-1 0.12(0.03) 6.59 × 10-7

Cornflakes -0.13(0.03) 9.00 × 10-7 -0.04(0.06) 5.34 × 10-1 -0.11(0.02) 2.11 × 10-6

Dark chocolate 0.13(0.03) 7.93 × 10-7 0.02(0.07) 7.28 × 10-1 0.12(0.02) 2.14 × 10-6

Chili pepper 0.13(0.03) 4.82 × 10-6 0.09(0.08) 2.28 × 10-1 0.13(0.03) 2.24 × 10-6

Soft/sweet drinks -0.12(0.03) 2.29 × 10-5 -0.13(0.08) 7.63 × 10-2 -0.12(0.03) 3.96 × 10-6

Soy sauce 0.12(0.03) 1.61 × 10-5 0.01(0.07) 8.98 × 10-1 0.11(0.03) 4.17 × 10-5

Docosahexaenoate
(DHA; 22:6n3)

Tuna or salmon 0.25(0.03) 2.39 × 10-17 0.18(0.06) 6.01 × 10-3 0.24(0.03) 1.85 × 10-19

Prawns and shellfish 0.24(0.03) 3.26 × 10-18 0.15(0.07) 4.10 × 10-2 0.23(0.03) 1.85 × 10-19

Olives 0.18(0.03) 3.39 × 10-10 0.05(0.06) 3.47 × 10-1 0.16(0.03) 1.18 × 10-9

Aubergine 0.17(0.03) 3.98 × 10-9 0.09(0.06) 1.14 × 10-1 0.15(0.03) 1.54 × 10-9

Asparagus 0.14(0.03) 1.91 × 10-6 0.14(0.07) 4.07 × 10-2 0.14(0.03) 1.75 × 10-7

Plain yoghurt 0.13(0.03) 2.89 × 10-6 0.17(0.08) 2.43 × 10-2 0.14(0.03) 1.90 × 10-7

Extra virgin olive oil 0.14(0.03) 3.53 × 10-7 0.07(0.06) 2.24 × 10-1 0.13(0.03) 2.32 × 10-7

Dark chocolate 0.14(0.03) 1.36 × 10-6 0.11(0.06) 7.25 × 10-2 0.14(0.03) 2.39 × 10-7

Fresh coriander 0.15(0.03) 3.43 × 10-7 0.06(0.07) 3.77 × 10-1 0.14(0.03) 4.65 × 10-7

Garlic 0.13(0.03) 6.70 × 10-6 0.1(0.05) 6.43 × 10-2 0.13(0.03) 1.09 × 10-6

Biscuits/cake/pastries -0.11(0.03) 5.39 × 10-5 -0.14(0.06) 1.30 × 10-2 -0.12(0.03) 1.99 × 10-6

Red wine 0.15(0.03) 1.69 × 10-6 0.05(0.06) 4.43 × 10-1 0.12(0.03) 3.69 × 10-6

White wine 0.12(0.03) 2.98 × 10-5 0.07(0.05) 1.40 × 10-1 0.11(0.03) 1.31 × 10-5

Spinach/ greens 0.13(0.03) 1.97 × 10-5 0.04(0.06) 5.75 × 10-1 0.11(0.03) 3.77 × 10-5

Eicosapentaenoate
(EPA; 20:5n3)

Prawns and shellfish 0.21(0.03) 1.79 × 10-13 0.06(0.06) 3.58 × 10-1 0.18(0.03) 5.35 × 10-13

Tuna or salmon 0.20(0.03) 1.59 × 10-11 0.12(0.07) 9.15 × 10-2 0.19(0.03) 3.99 × 10-12

Olives 0.19(0.03) 3.58 × 10-10 0.04(0.06) 5.14 × 10-1 0.15(0.03) 3.22 × 10-9

Aubergine 0.15(0.03) 3.14 × 10-7 0.07(0.05) 1.76 × 10-1 0.13(0.03) 2.39 × 10-7

Asparagus 0.15(0.03) 7.33 × 10-7 0.07(0.06) 2.45 × 10-1 0.14(0.03) 5.68 × 10-7

Plain yoghurt 0.14(0.03) 1.97 × 10-6 0.11(0.08) 1.59 × 10-1 0.13(0.03) 6.33 × 10-7

Fresh coriander 0.15(0.03) 1.81 × 10-6 0.01(0.07) 9.47 × 10-1 0.13(0.03) 1.10 × 10-5

Extra virgin olive Oil 0.13(0.03) 1.42 × 10-5 0.04(0.06) 4.47 × 10-1 0.11(0.03) 2.64 × 10-5

Dark chocolate 0.13(0.03) 4.39 × 10-5 0.07(0.06) 2.42 × 10-1 0.12(0.03) 2.83 × 10-5

Red wine 0.13(0.03) 2.79 × 10-5 0.04(0.05) 4.35 × 10-1 0.11(0.03) 4.95 × 10-5

Distinctive tastes Tryptophan
betaine

Lentils/ beans 0.22(0.03) 8.85 × 10-12 0.04(0.08) 6.07 × 10-1 0.20(0.03) 2.93 × 10-11

Unsalted nuts 0.18(0.03) 9.51 × 10-9 0.19(0.07) 5.70 × 10-3 0.18(0.03) 1.01 × 10-10

Curries 0.17(0.03) 1.81 × 10-6 0.07(0.08) 3.78 × 10-1 0.15(0.03) 2.02 × 10-6

Chili pepper 0.15(0.03) 4.56 × 10-6 0.06(0.11) 6.09 × 10-1 0.14(0.03) 4.73 × 10-6

Ham -0.15(0.03) 2.21 × 10-6 -0.03(0.08) 7.12 × 10-1 -0.13(0.03) 5.34 × 10-6

Fresh coriander 0.14(0.03) 2.57 × 10-5 0.08(0.08) 3.04 × 10-1 0.13(0.03) 1.61 × 10-5

Scyllo-inositol Red wine 0.25(0.03) 1.75 × 10-17 0.26(0.07) 8.58 × 10-4 0.25(0.03) 8.03 × 10-21

White wine 0.21(0.03) 1.64 × 10-12 0.03(0.07) 6.77 × 10-1 0.18(0.03) 1.13 × 10-11

Beer 0.16(0.03) 1.95 × 10-7 0.09(0.07) 1.62 × 10-1 0.15(0.03) 9.14 × 10-8

Chili pepper 0.14(0.03) 3.60 × 10-6 0.14(0.08) 8.12 × 10-2 0.14(0.03) 6.10 × 10-7

Burn of spicy foods 0.13(0.03) 2.00 × 10-5 0.18(0.08) 2.30 × 10-2 0.14(0.03) 1.32 × 10-6

Myo-inositol Fresh coriander 0.11(0.03) 4.50 × 10-5 0.05(0.06) 4.26 × 10-1 0.10(0.03) 4.98 × 10-5

Piperine Black pepper 0.22(0.03) 1.89 × 10-13 0.14(0.06) 3.43 × 10-2 0.21(0.03) 1.62 × 10-14

Chili pepper 0.22(0.03) 1.28 × 10-13 0.13(0.09) 1.44 × 10-1 0.21(0.03) 3.00 × 10-14

Burn of spicy foods 0.18(0.03) 8.67 × 10-10 0.14(0.09) 1.14 × 10-1 0.18(0.03) 1.69 × 10-10

Curries 0.15(0.03) 2.10 × 10-7 0.11(0.07) 1.29 × 10-1 0.15(0.03) 5.99 × 10-8

Garlic 0.13(0.03) 1.31 × 10-5 0.06(0.08) 4.78 × 10-1 0.12(0.03) 1.33 × 10-5

Vodka/gin/scotch 0.13(0.03) 4.19 × 10-5 0.09(0.07) 1.79 × 10-1 0.12(0.03) 1.64 × 10-5

Biscuits/cake/pastries -0.13(0.03) 2.40 × 10-5 -0.05(0.08) 5.09 × 10-1 -0.12(0.03) 2.96 × 10-5

Gamma-
Tocopherol

Biscuits/cake/pastries -0.13(0.03) 4.96 × 10-5 -0.09(0.08) 2.83 × 10-1 -0.13(0.03) 2.81 × 10-5
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TABLE 4

Continued.

Discordant MZ
Discovery replication Meta-analysis

Pattern Metabolite Food-liking variable Beta(SE) p Beta(SE) p Beta(SE) p

Meat Pyroglutamine∗ Chargrilled meats -0.18(0.03) 3.01 × 10-10 -0.02(0.05) 7.49 × 10-1 -0.14(0.03) 6.49 × 10-9

Beef steak -0.17(0.03) 3.66 × 10-9 -0.06(0.05) 2.42 × 10-1 -0.14(0.02) 1.09 × 10-8

White wine -0.15(0.03) 2.11 × 10-8 -0.07(0.05) 1.38 × 10-1 -0.13(0.02) 1.70 × 10-8

Ham -0.14(0.03) 1.96 × 10-7 -0.10(0.06) 1.12 × 10-1 -0.14(0.03) 5.08 × 10-8

Pork chops -0.13(0.03) 3.06 × 10-6 -0.12(0.05) 1.16 × 10-2 -0.13(0.02) 8.60 × 10-8

Prawns and shellfish -0.13(0.03) 2.70 × 10-6 -0.15(0.08) 7.09 × 10-2 -0.13(0.03) 4.18 × 10-7

Sausage -0.13(0.03) 2.59 × 10-5 -0.06(0.04) 1.75 × 10-1 -0.10(0.03) 2.33 × 10-5

Creatine Pork chops 0.18(0.03) 6.42 × 10-10 0.11(0.05) 3.62 × 10-2 0.16(0.03) 7.46 × 10-11

Ham 0.17(0.03) 6.84 × 10-9 0.06(0.06) 3.34 × 10-1 0.15(0.03) 1.27 × 10-8

Baked chicken 0.18(0.03) 3.44 × 10-9 0.05(0.06) 3.99 × 10-1 0.15(0.03) 1.47 × 10-8

Beef steak 0.17(0.03) 4.39 × 10-8 0.07(0.06) 2.63 × 10-1 0.15(0.03) 5.93 × 10-8

Bacon 0.14(0.03) 1.38 × 10-6 0.10(0.06) 7.42 × 10-2 0.13(0.03) 2.84 × 10-7

Sausage 0.14(0.03) 3.22 × 10-6 0.07(0.05) 1.57 × 10-1 0.13(0.03) 2.00 × 10-6

Trans-4-
Hydroxyproline

Pork chops 0.16(0.03) 2.75 × 10-8 0.05(0.06) 4.15 × 10-1 0.14(0.03) 6.13 × 10-8

Beef steak 0.15(0.03) 4.44 × 10-7 0.05(0.06) 3.92 × 10-1 0.13(0.03) 7.76 × 10-7

Note: Beta coefficients presented for the results of each linear regression analysis represent the food liking rating that corresponds to a 1 SD increase in the
metabolite level.

The high heritability of the Distinctive Tastes component
reflects findings from the Finnish twin group (n = 328)
where, through the usage of multiple ratings, heritability of
the preference for oral pungency (spicy foods) was found
to range from 18% to 58% (Tornwall et al., 2012a). In
the same cohort, investigations into the genetics of prefer-
ence for sour foods determined up to one half (34–50%)
of the variation in the pleasantness and use-frequency of
factor analysis derived sour food groups, although this was
based on ratings for sour fruits and berries and dairy prod-
ucts, not fermented vegetables or vinegar (Tornwall et al.,
2012b). In our group, previously (n = 663) additive genetic
effects explained 49%, 54%, and 53% of the variation in
liking for a sweet solution, liking for sweet foods, and use-
frequency of sweet foods respectively (Keskitalo et al., 2007).
The Fruit and Vegetable pattern was less strongly heritable;
as discussed below, this group appears to be a health-related
pattern more influenced by the environment.

The Distinctive Tastes liking pattern, defined by a high
liking for foods with strong tastes (particularly fermented
and pungent foods), was marked by significant increases
in eight metabolites: CMPF, docosahexaenoic acid (DHA),
eicosapentaenoic acid (EPA), scyllo-inositol, myo-inositol,
piperine, tryptophan betaine, and �-tocopherol. Each of
these metabolites has been associated with habitual con-
sumption of particular foods in previous metabolomic
studies (Guertin et al., 2014; Zheng et al., 2014). The fu-
ran fatty acid CMPF is a potent uremic toxin (Miyamoto
et al., 2012) formed from the consumption of vegetables
and fish/shellfish and potential marker of habitual con-
sumption of these foods (Guertin et al., 2014; Zheng et al.,
2014); moreover, we confirmed liking of prawns and shell-
fish to be most strongly associated with CMPF in blood.
The essential fatty acids DHA and EPA are lipids found
in characteristically high-concentrations in fatty fish and

consistent markers of habitual fish and seafood consump-
tion (Guertin et al., 2014; Zheng et al., 2014), which we
found to be the most strongly associated with liking of
fatty fish and shellfish. Myo and scyllo-inositol are lipid
compounds found in particularly high-concentrations in
wine (Carlavilla et al., 2006) and citrus fruits (Mucci et al.,
2013) that have been associated with high intakes of these
foods (Guertin et al., 2014; Zheng et al., 2014) in other
metabolomics studies, we confirmed liking of red and white
wines to be most strongly associated with scyllo-inositol.
Piperine is the component responsible for the taste of black
pepper (Dutta & Bhattacharjee, 2015), which we found to
associate most strongly with black pepper liking; increased
alcohol intake in African Americans has previously been as-
sociated with elevated levels of this metabolite (Zheng et al.,
2014). We found a significant association with liking of
vodka/gin/scotch, suggesting subjects who consume more
alcohol may consume more spiced foods. Tryptophan be-
taine has been associated with nut consumption previously
(Guertin et al., 2014), and we confirmed the strongest as-
sociations with this metabolite were with lentils/beans and
unsalted nuts. The vitamin E form �-tocopherol is utilized
in corn and soybean oils to prevent PUFA oxidation. Higher
intakes of vitamins and supplements and increased scores
on the US Healthy Eating Index were inversely associated
with serum levels of �-tocopherol (Guertin et al., 2014).
Liking of sweet baked products (biscuits/cake/pastries) was
inversely associated with blood �-tocopherol; the origin of
this association requires further investigation.

The Sweet and High Carbohydrate food-liking pat-
tern was associated with lower levels of fish and seafood-
derived metabolites: CMPF, DHA, and EPA (Guertin et al.,
2014; Zheng et al., 2014). Liking of these items had very
low loadings on this component, suggesting individuals
who like sweet foods consume less fish. No metabolite
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associations were related to sugar or carbohydrate con-
sumption although the significant association with BMI
alludes to an increased consumption of such energy-dense
foods. Validated blood biomarkers of habitual sugar in-
take have yet to be defined in the literature, though one
recent metabolomic study using the same platform found
increased consumption of sugar-rich foods and beverages,
dietary sucrose and carbohydrate to associate negatively
with metabolites related to glutathione synthesis (Zheng
et al., 2014); these results have yet to be replicated.

Scores for the Meat-liking pattern were strongly associ-
ated with amino acids potentially derived from compounds
contained in meat. For instance, increased meat liking was
associated with higher levels of creatine, which red meat
contains in high quantities. Vegetarians have presented with
lower blood levels of this metabolite (Delanghe et al., 1989).
The urea cycle amino acid, trans-4-hydroxyproline is a ma-
jor component of connective tissue (Bienkowski, 1984) that
has been demonstrated to increase in the blood following
oral gelatin ingestion (Ohara et al., 2007) and was elevated
with increasing Meat-liking scores. Reduced levels of the
amino acid pyroglutamine was found with higher scores
on the Meat-liking group; serum levels previously have
shown to be reduced with increased consumption of poul-
try (Guertin et al., 2014). In our single association analysis
with these metabolites we confirmed top associated liking
variables to be meat items, although the Meat-liking pat-
tern was more strongly associated with circulating levels
of these amino acid metabolites than any of these items
alone, alluding to the power of the group to identify meat
consumers.

The Fruit and Vegetable pattern factor score was not
associated with any blood metabolite levels. We speculate
this may have occurred for a number of reasons. For one,
intakes of the foods loading highly on this pattern char-
acterized by bland, ‘healthy’ foods may be less reliant on
liking. For instance, reported liking and intake of less sour
fruits have been in lower agreement than intake and lik-
ing of sour fruits, whereas a pattern of high liking of Light
Main Courses (e.g., liking of mixed vegetables, salads, and
soup) was in low agreement with reported vegetable in-
take compared with other food groups (Johnson et al.,
2014). Additionally, within the time-between measurement
of blood metabolites and administration of the question-
naire (mean 7 years after blood sample), subjects scoring
highly on this component may have modified their habits
to adopt a healthier lifestyle. Supporting this reasoning,
the liking of tuna or salmon loads highest on this pattern
and is strongly associated with seafood-derived metabolites
(EPA and DHA) independently, though this pattern is not
significantly associated with these metabolites. Thus, this
relationship requires further exploration.

Our study has some limitations. First, utilizing liking-
disliking patterns against blood metabolomics profiles may
have been less powerful for identifying potential metabolite

associations than examining liking-disliking of single foods
or food groups. For instance, when applied to FFQs, single
exhaustive food analyses are more successful at strengthen-
ing diet-disease associations than dietary patterns derived
from principal components (Bakolis et al., 2014); this ob-
servation may translate into diet-metabolite associations as
well. Therefore, in our future work we aim to assess this.
Fasting blood samples were taken on average 7 years (SD: 3
years; range: 4–17 years) before the food preference ques-
tionnaire was administered, and the food environment or
eating habits and preferences of the twins may have changed
to some degree in this amount of time. Despite this time
difference and while using conservative testing methods,
we identified significant associations, suggesting food pref-
erences have a pervasive impact on food intake through
time; in particular, those we showed to be strongly genet-
ically determined. Moreover, metabolite levels have been
shown to have long-term stability (Yousri et al., 2014). Us-
ing a predominantly female sample we were not able to
investigate sex differences. Administration of the question-
naire in an online format may have resulted in responder
bias, especially considering that TwinsUK is an aging co-
hort. The underlying cultural, economic, educational, and
geographical determinants of the food preference patterns
were not extensively considered in this study but are areas
for future investigations. Moreover the questionnaire was
derived from an American population and may have not
been adapted adequately for use in a UK population. Partic-
ipants were not asked their degree of satiety at the beginning
of the questionnaire, which if increased may have lowered
ratings (Finlayson et al., 2008). Finally, a large number of
components had eigenvalues greater than one that poten-
tially loaded on very specific foods that could have major
gene effects; future analyses aim to investigate specific food
groups further.

Conclusions
We have found food preferences in our population tend
to follow patterns based on taste and nutrient characteris-
tics. Moreover, preferences for foods characterized by strong
tastes, sweetness or high-carbohydrate content and meats
are strongly determined by genetics. The metabolomics as-
sociations identified here suggest food liking may have an
impact on intake of foods for which preferences are strongly
determined by genetic factors, potentially as a function of
taste responses. These findings may have implications for
public health nutrition programs and nutritional epidemi-
ology.
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