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Abstract

We obtain an algorithm computing the Chern–Schwartz–MacPherson (CSM) classes
of Schubert cells in a generalized flag manifold G/B. In analogy to how the ordinary
divided difference operators act on Schubert classes, each CSM class of a Schubert
class is obtained by applying certain Demazure–Lusztig-type operators to the CSM class
of a cell of dimension one less. These operators define a representation of the Weyl
group on the homology of G/B. By functoriality, we deduce algorithmic expressions for
CSM classes of Schubert cells in any flag manifold G/P . We conjecture that the CSM
classes of Schubert cells are an effective combination of (homology) Schubert classes,
and prove that this is the case in several classes of examples. We also extend our results
and conjecture to the torus equivariant setting.

1. Introduction

A classical problem in algebraic geometry is to define characteristic classes of singular algebraic
varieties generalizing the notion of the total Chern class of the tangent bundle of a non-singular
variety. The existence of a functorial theory of Chern classes for possibly singular varieties
was conjectured by Grothendieck and Deligne, and established by MacPherson [Mac74]. This
theory associates a class c∗(ϕ) ∈ H∗(X) with every constructible function ϕ on X, such that
c∗(1X) = c(TX)∩ [X] if X is a smooth compact complex variety. (The theory was later extended
to arbitrary algebraically closed fields of characteristic 0, with values in the Chow group [Ken90,
Alu06b].) The strong functoriality properties satisfied by these classes determine them uniquely;
we refer to § 3 below for details. If X is a compact complex variety, then the class c∗(1X) coincides
with a class defined earlier by Schwartz [Sch65a, Sch65b] independently of the work mentioned
above. This class is commonly known as the Chern–Schwartz–MacPherson (CSM) class of X.
In general, we denote by cSM(W ) the class c∗(1W ) ∈ H∗(X) for any constructible (e.g. locally
closed) subset W ⊆ X.

Let G be a complex simple Lie group and let B be a Borel subgroup. Denote by W the Weyl
group of G. The goal of this note is to provide an algorithm calculating the CSM classes of the
Schubert cells X(w)◦ := BwB/B in the generalized flag manifold G/B, as w varies in W . To
describe the answer, we need to recall two well-known families of operators on the homology
group H∗(G/B); we refer to § 2 below for details.
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Let s1, . . . , sr ∈ W be the simple reflections corresponding respectively to the simple roots
α1, . . . , αr of G, and let ` : W → N be the length function. Denote by X(w) := BwB/B the
Schubert variety corresponding to w; it is a subvariety of G/B of complex dimension `(w). For
each 1 6 k 6 r, the classical BGG operator [BGG73] is an operator ∂k : H∗(G/B) → H∗+2(G/B)
which sends the Schubert class [X(w)] to [X(wsk)] if `(wsk) > `(w) and to 0 otherwise. The
Weyl group admits a right action on H∗(G/B), which was originally used to define the BGG
operator ∂k. For 1 6 k 6 r, define the non-homogeneous operator

Tk := ∂k − sk : H∗(G/B) → H∗(G/B),

where sk denotes the (right) action of the simple reflection sk. The main result of this note is
the following.

Theorem 1.1. Let w ∈W be a Weyl group element and 1 6 k 6 r. Then

Tk(cSM(X(w)◦)) = cSM(X(wsk)
◦).

In the case w = id, the Schubert cell X(id)◦ is a point, and cSM([pt]) = [pt]. More generally, if
w = si1 . . . sik , then the theorem implies that the CSM class cSM(X(w)◦) is obtained by composing
the operators Tik · · · Ti1 . This is reminiscent of the classical situation in Schubert calculus, where
one generates all the Schubert classes by applying successively the BGG operators ∂k. To further
the analogy, ∂2k = 0 and the BGG operators satisfy the braid relations. An easy calculation shows
that T 2

k = 1, and then Theorem 1.1 can be used to show that the operators Tk also satisfy the
braid relations (Proposition 4.1). In particular, there is a well-defined operator Tw associated
with any w ∈ W , and this yields a representation of the Weyl group on H∗(G/B). The CSM
classes of the Schubert cells X(w)◦ are the values obtained by applying to the class of a point
[pt] the operators Tw−1 in this representation. Further, the action of each simple reflection Tk on
Schubert classes can be written explicitly using the Chevalley formula (Proposition 4.3). This
gives an explicit algorithm to calculate the CSM class of any Schubert cell.

We also note that Tk is related to a specialization of the Demazure–Lusztig operator defined
in [Gin98, § 12], in relation to degenerate Hecke algebras. We plan to investigate this connection
further in a future paper.

Perhaps the most surprising feature of the CSM classes (and of the operators Tk) is a
positivity property. It follows from the definition of CSM classes that

cSM(X(w)◦) =
∑
v6w

c(v;w)[X(v)],

where 6 denotes the Bruhat ordering and c(w;w) = c(id;w) = 1. Despite the fact that Tk does
not preserve the positivity of a combination of Schubert classes, we conjecture that c(v;w) > 0
for all v 6 w. We have checked this by explicit computations for all Schubert cells X(w) in type
A flag manifolds Fl(n) for n 6 7. We were also able to prove that this positivity holds for several
families of Schubert cells across all Lie types; see § 5 below.

Let P ⊂ G be a parabolic subgroup containing B and let p : G/B → G/P be the natural
projection. Then p(X(w)◦) = X(wWP )◦, where WP is the subgroup of W generated by the
reflections in P . The functoriality of CSM classes can be used to prove that

p∗(cSM(X(w)◦)) = cSM(X(wWP )◦)
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(see Proposition 3.5 below). In particular, the (conjectured) positivity of CSM classes of

Schubert cells in G/B implies the positivity of classes in any G/P . In the case when G/P

is a Grassmann manifold this was proved in several cases by the authors of this note

[AM09, Mih15], Jones [Jon10], Stryker [Str11], and it was settled for all cases by Huh [Huh16].

Huh was able to realize the homogeneous components of CSM classes as a class of an effective

cycle, but unfortunately his main technical requirements do not seem to hold for arbitrary flag

manifolds G/B.

Our calculation of CSM classes is based on a construction of these classes in terms of bundles

of logarithmic tangent fields. For every W ⊆ X, the class cSM(1W ) ∈ H∗(X) may be obtained by

pushing forward to X the total Chern class of T
W̃

(−logD), where W̃ is a resolution of W such

that D := W̃ rW is a simple normal crossing (SNC) divisor [Alu99, Alu06a]. We refer to § 3 for

details. This approach was used successfully in previous work by the authors [AM09] to compute

CSM classes of Schubert cells in the Grassmann manifold and prove partial positivity results. In

that case one can use a resolution of a Schubert variety which is a (smooth) Schubert variety, but

in a partial flag manifold. Jones [Jon10] gave an alternative computation of the classes, by means

of a different (small) resolution, and also obtained partial positivity results. The resolution used

in [AM09] has finitely many orbits of the Borel subgroup B, and this was a key fact in Huh’s

full proof of the positivity conjecture for CSM classes in that case [Huh16].

For generalized flag manifolds G/B a resolution is given by Bott–Samelson varieties. These

are iterated P1-bundles, and they can be constructed from any (possibly non-reduced) word

consisting of simple reflections. Section 2.3 is devoted to the definition and cohomological

properties of Bott–Samelson varieties. The key technical result in the paper is Theorem 3.3,

establishing the necessary cohomological formulas calculating the push-forward of the Chern

class of the logarithmic tangent bundle. The operators ∂k and sk, and Tk = ∂k − sk, appear

naturally in these push-forward formulas. Properties of the operators Tk are discussed in § 4, and

in § 5 we formulate the positivity conjecture and a related identity and provide partial evidence

for these statements. In § 6 we consider the torus-equivariant setting, and prove (Theorem 6.4)

that a direct analogue of Theorem 1.1 holds for the equivariant CSM classes of Schubert cells.

We also propose an equivariant generalization of the conjecture presented in § 5.

Equivariant Chern–Schwartz–MacPherson classes were defined by Ohmoto [Ohm06] and have

recently been the object of further study: Weber [Web12] proved localization formulas for these

classes, and in [RV15] Rimányi and Varchenko used Weber’s results to prove that equivariant

CSM classes of Schubert cells agree with the κ classes they studied in earlier work [RTV14]. The

κ classes are related to the stable envelopes of Maulik and Okounkov [MO12], which are classes

in the equivariant cohomology of the cotangent bundle of flag manifolds. In future work we plan

to investigate further the connection between the CSM classes and stable envelopes, both from

the localization point of view (cf. [RV15, Su15]) and from the point of view of Ginzburg’s theory

of bivariant Chern classes [Gin86].

2. Preliminaries

The goal of this section is to recall some basic facts on the cohomology of flag manifolds and on

Bott–Samelson resolutions. We refer to [BK05, §§ 2.1 and 2.2] for more details and references to

the standard literature.
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2.1 Flag manifolds and Schubert varieties

Let G be a complex simple Lie group and let T ⊆ B ⊆ G be a maximal torus included in a Borel

subgroup of G. Let h and g be the Lie algebras of T and G, and let R ⊆ h∗ be the associated root

system with the set of positive roots R+ determined by B. Denote by ∆ := {α1, . . . , αr} ⊆ R+

the set of simple roots. Let R∨ denote the set of coroots α∨ ∈ h and 〈·, ·〉 : R ⊗ R∨ → Z the

evaluation pairing.

To each root α ∈ R one associates a reflection sα in the Weyl group W = NG(T )/T . The set of

simple reflections si := sαi generates W ; thus, each w ∈W can be written as w = si1 · · · sik . The

minimal such integer k is denoted by `(w), the length of w. If k = `(w), then the decomposition

w = si1 · · · sik is said to be reduced. There is a partial order on W called the Bruhat ordering,

defined as follows: u < v if there exists a chain

u0 := u → u1 := usβ1 → u2 := u1sβ2 → · · ·→ un := v = un−1sβn ,

where the βi are roots in R such that `(ui) > `(ui−1). Let G/B be the generalized flag manifold.

This is a projective homogeneous space for G (hence a non-singular variety) and it is stratified

by Schubert cells X(w)◦ := BwB/B, where w ∈ W , and each such cell X(w)◦ is isomorphic

to C`(w). The closure X(w) := BwB/B is called a Schubert variety. Each Schubert variety

X(w) has a fundamental class [X(w)] ∈ H2`(w)(G/B), and these classes form a Z-basis for the

(co)homology. It may be verified that X(v) ⊆ X(w) if and only if v 6 w in the Bruhat order. In

fact, X(w) =
⋃
v6wX(v)◦. It follows [Ful98, Example 1.9.1] that any class in H∗(X(w)) may be

written uniquely as an integer linear combination
∑

v6w cv[X(v)].

Let h∗Z be the integral weight lattice and let λ ∈ h∗Z be an integral weight. Then one constructs

the G-equivariant line bundle over G/B

Lλ := G×B C−λ = (G× C)/B,

where B acts on G× C by b · (g, u) = (gb−1, λ(b)−1u) (and the action of B = UT on C extends

the action of T so that it is trivial over the unipotent group U).
The Chevalley formula states that

c1(Lλ) · [X(w)] =
∑
〈λ, β∨〉[X(wsβ)], (1)

where the sum is over all positive roots β such that `(wsβ) = `(w)−1. See e.g. [FW04, Lemma 8.1].

2.2 Two operators acting on H∗(G/B)

For each simple root αk ∈ ∆ one can construct the BGG operator ∂k : H∗(G/B) → H∗(G/B)

defined in [BGG73] as follows. Let Pk ⊆ G be the minimal parabolic subgroup corresponding

to αk. Then the natural projection π : G/B → G/Pk is a P1-bundle and there is a fiber square

G/B ×G/Pk
G/B

pr1 //

pr2

��

G/B

pk

��
G/B

pk // G/Pk.

The BGG operator is defined to be ∂k = p∗k(pk)∗. We record next two properties of this operator;

see e.g. [Knu03, Proposition 2] or [Tym08] for simple proofs.
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Proposition 2.1. The operator ∂k satisfies the following properties.

(a) For all Weyl group elements w ∈W ,

∂k([X(w)]) =

{
0 if `(wsk) < `(w),

[X(wsk)] if `(wsk) > `(w).
(2)

In particular, ∂2k = 0 and the BGG operators satisfy the same braid relations as the elements of
the Weyl group.

(b) For all γ1, γ2 ∈ H∗(G/B),

∂k(γ1γ2) = ∂k(γ1)γ2 + γ1∂k(γ2)− c1(Lαk
)∂k(γ1)∂k(γ2),

where c1(Lαk
) denotes the Chern class of Lαk

.

For each w ∈ W , there is a well-defined map rw : G/T → G/T obtained by multiplying on
the right with any lift of w in NG(T ). This induces an algebra isomorphism r∗w : H∗(G/T ) →

H∗(G/T ). Note that the projection G/T → G/B is a U ' B/T -bundle and because U is
contractible this implies that the cohomology rings H∗(G/B) and H∗(G/T ) are isomorphic.
This defines a right action of W on H∗(G/B), denoted again by w; it will be clear from the
context whether we refer to the Weyl group element or to its action on H∗(G/B). It is well
known (see e.g. [BGG73, § 1]) that for w = sk this operator satisfies

sk = id− c1(Lαk
)∂k, (3)

where the Chern class c1(Lαk
) acts on H∗(G/B) by multiplication. Combining this with the

Chevalley formula, we obtain an identity

sk[X(w)] =

{
[X(w)] if `(wsk) < `(w),

−[X(w)]−
∑
〈αk, β∨〉[X(wsksβ)] if `(wsk) > `(w),

(4)

where the sum is over all positive roots β 6= αk such that `(w) = `(wsksβ).
For use in § 4, we also record the following commutation relation of the operators ∂k and sk.

Lemma 2.2. With notation as above,

sk∂k = ∂k, ∂ksk = −∂k.

In particular, ∂ksk + sk∂k = 0.

Proof. The first equality follows immediately from the definition of sk and the fact that ∂2k = 0.
The second equality is a consequence of Proposition 2.1(b):

∂ksk = ∂k − ∂k(c1(Lαk
)∂k)

= ∂k − ∂k(c1(Lαk
))∂k − c1(Lαk

)∂2k + c1(Lαk
)∂k(c1(Lαk

))∂2k
= ∂k − ∂k(c1(Lαk

))∂k

= −∂k,

where we used the fact that ∂k(c1(Lαk
)) = 〈αk, α∨k 〉 = 2 as may be checked using

Proposition 2.1(a) and the Chevalley formula. 2
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2.3 Bott–Samelson varieties
For each word si1si2 · · ·ik for an element w ∈ W one can construct a tower of P1 bundles, the
Bott–Samelson variety Z := Zi1,...,ik , endowed with a map θ := θi1,...,ik : Z → G/B. If the word
is reduced, then this map is birational onto X(w), giving a resolution of singularities for X(w)
depending on the choice of the word for w. There are several ways to do this, but for our purpose
we present an inductive construction, which can be found e.g. in [BK05, § 2.2].

If the word is empty, then define Z := pt. In general, assume that we have constructed
Z ′ := Zi1,...,ik−1

and the map θ′ : Z ′ → X(w′) for w′ = si1 · · · sik−1
. Define Z = Zi1,...,ik so that

the left-hand square in the diagram

Z
θ1 //

π

��

G/B ×G/Pik
G/B

pr1 //

pr2

��

G/B

pik
��

Z ′
θ′ // G/B

pik // G/Pik

(5)

is a fiber square; the morphisms pr1, pr2, pik are the natural projections. From this construction
it follows that Zi1,...,ik is a smooth, projective variety of dimension k.

The Bott–Samelson variety Z is equipped with a SNC divisor DZ . We recall next an explicit
inductive construction of this divisor, which will be needed later. If Z = pt, then DZ = ∅. In
general, G/B is the projectivization P(E) of a homogeneous rank-2 vector bundle E → G/Pk,
defined up to tensoring with a line bundle. Define E := E ⊗ OE(1), a vector bundle over
G/B = P(E). Then we have the Euler sequence of the projective bundle P(E)

0 // OP(E)
// E // Q // 0, (6)

where Q is the relative tangent bundle Tpik . Note that E is independent of the specific choice
of E, and pr2 : G/B×G/Pik

G/B → G/B, that is, the pull-back of P(E) via pik may be identified

with P(E). Let E ′ := (θ′)∗E and Q′ := (θ′)∗Q, and pull back the previous sequence via θ′ to get
an exact sequence

0 // OZ′ // E ′ // Q′ // 0 . (7)

The inclusion OZ′ ↪→ E ′ gives a section σ : Z ′ → Z of π and therefore a divisor Dk := σ(Z ′) =
P(OZ′) in P(E ′) = Z. The SNC divisor on Z is defined by

DZ = π−1(DZ′) ∪Dk,

where DZ′ is the inductively constructed SNC divisor on Z ′. The following result is well known;
see e.g. [BK05, § 2.2].

Proposition 2.3. If si1 . . . sik is a reduced word for w, then the image of the composition
θ = pr1 ◦ θ1 : Zi1,...,ik → G/B is the Schubert variety X(w). Moreover, θ−1(X(w) r X(w)◦) =
DZi1,...,ik

and the restriction map

θ : Zi1,...,ik rDZi1,...,ik
→ X(w)◦

is an isomorphism.

Let hk := c1(OE ′(1)) ∈ H2(Z). For later use we record next the class of the divisor Dk in Z,
and the Chern classes of the relative tangent bundle Tπ = TP(E ′)|Z′ and of TZ .
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Proposition 2.4. The following identities hold in H∗(Z):

(a) Dk = c1(π
∗(Q′)⊗OE ′(1)) ∈ H∗(Z);

(b) hk ·Dk = 0;

(c) c(Tπ) = (1 +Dk)(1 + hk) and therefore

c(TZ) = π∗(c(TZ′))(1 + hk)(1 +Dk).

Proof. (a) follows from the definition of Dk and [Ful98, Example 3.2.17], since Q′ = E ′/OZ′ .
(b) holds, since hk|Dk

= c1(OOZ′ (1)) = 0.
To prove (c), note that by (7) the Chern roots of E ′ are 0 and c1(Q′); it follows from (a) that

the Chern roots of π∗E ′ ⊗OE ′(1) are hk and Dk. The Euler sequence

0 // OZ // π∗E ′ ⊗OE ′(1) // Tπ // 0

then implies that c(Tπ) = c(π∗E ′ ⊗OE ′(1)) = (1 + hk)(1 +Dk). The last statement follows from
c(TZ) = π∗(c(TZ′))c(Tπ). 2

3. Chern–Schwartz–MacPherson classes of Schubert cells in G/B

3.1 CSM classes
Let Y be an algebraic variety over C. Denote by F(Y ) the group of constructible functions
on Y : the elements of F(Y ) are finite sums

∑
ci1Wi , where ci ∈ Z, Wi ⊆ Y are locally closed

subvarieties and 1W denotes the characteristic function taking value 1 on p ∈W and 0 otherwise.
If f : Y →X is a proper morphism of varieties, one can define a push-forward f∗ : F(Y ) → F(X)
by setting

f∗(1W )(p) = χ(f−1(p) ∩W )

for W ⊆ Y a subvariety and p ∈ X, and extending by linearity to every ϕ ∈ F(Y );
this makes F into a covariant functor. Here χ denotes the topological Euler characteristic.
MacPherson [Mac74] proved a conjecture of Deligne and Grothendieck stating that there exists
a natural transformation c∗ : F → H∗ such that if Y is non-singular, then c∗(1Y ) = c(TY )∩ [Y ].
The naturality of c∗ means that if f : Y → X is a proper morphism, then the following diagram
commutes.

F(Y )
c∗ //

f∗
��

H∗(Y )

f∗
��

F(X)
c∗ // H∗(X)

That is,

f∗(c∗(ϕ)) = c∗(f∗(ϕ)) (8)

in H∗(X) for all constructible functions ϕ. Resolution of singularities and the normalization
requirement easily imply that c∗ is unique.

If Y is a compact complex variety, the class c∗(1Y ) coincides with a class defined earlier
by Schwartz [Sch65a, Sch65b]; this class is the CSM class of Y . Taking f to be a constant
map, the commutativity of the above diagram implies that

∫
c∗(1Y ) = χ(Y ), so this class

provides a natural generalization of the Poincaré–Hopf theorem to possibly singular varieties.
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Abusing language a little, we denote by cSM(W ) := c∗(1W ) ∈ H∗Y the CSM class of any
constructible set W in a variety Y ; by additivity of Euler characteristics,

∫
cSM(W ) = χ(W ).

Our main tool will be the observation that if Z is a non-singular variety and W ⊆ Z is an
open subvariety such that Z rW is a SNC divisor with components Di, then

cSM(W ) =
c(TZ)∏
i(1 +Di)

∩ [Z] ∈ H∗Z (9)

(cf. [GP02, Proposition 15.3] and [Alu99, Theorem 1]).
In fact, this observation may be used to extend the scope of the natural transformation c∗ to

arbitrary algebraically closed fields of characteristic 0, with values in the Chow group A∗. In this
generality, c∗ may be constructed as follows. Every constructible function on Y can be written as
a linear combination of characteristic functions 1W for W locally closed and non-singular in Y ,
so it suffices to describe cSM(W ) = c∗(1W ) for such W . By resolution of singularities, there exists
a desingularization π : Z →W of the closure W of W in Y such that D := π−1(WrW ) is a SNC
divisor in Z. Then one may take the push-forward of (9) to Y as the definition of c∗(1W ): one
can show that over algebraically closed fields of characteristic 0 the resulting c∗ is independent
of the choices and satisfies the Deligne–Grothendieck axioms mentioned above [Alu06a, Alu06b].

3.2 A recursive formula for CSM classes of Schubert cells
We will now apply the identity (9) to calculate the CSM class of a Schubert cell X(w)◦ ⊆ G/B.
This class may be viewed as an element of H∗(G/B), and in fact of H∗(X(w)), and hence it
can be written as an integer linear combination of classes [X(v)] for v 6 w in the Bruhat order,
as we observed in § 2.1. We will give an algorithm which yields this linear combination. All
the necessary ingredients were developed in § 2.3 and we keep the notation of that section. In
particular, we recall the fiber diagram (5):

Z
θ1 //

π

��

G/B ×G/Pik
G/B

pr1 //

pr2

��

G/B

pik
��

Z ′
θ′ // G/B

pik // G/Pik .

Let si1 · · · sik be any word (reduced or otherwise) and let Z := Zi1,...,ik be the corresponding
Bott–Samelson variety. Recall from § 2.3 that G/B×G/Pik

G/B = P(E) for a canonically defined

rank-2 vector bundle E on G/B; thus, Z = P(E ′) is the projectivization of the pull-back
E ′ = θ′∗(E). In H2(Zi1,...,ik), we have the tautological class hk = c1(OE ′(1)), as well as the
pull-backs of hj from Zi1,...,ij for j < k; we will omit the pull-back notation.

Let DZ be the SNC divisor defined in § 2.3 and denote by Z◦ = Z◦i1,...,ik the complement
Z rDZ . By (9),

cSM(Z◦) =
c(TZ)

(1 +D1) · · · (1 +Dk)
∩ [Z], (10)

where D1, . . . , Dk are the components of DZ .

Lemma 3.1. With notation as above, the following holds in H∗(Z):

cSM(Z◦) = (1 + hk) · π∗(cSM(Z ′
◦
)) =

k∏
j=1

(1 + hj) · [Z].

2610

https://doi.org/10.1112/S0010437X16007685 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X16007685


CSM classes for Schubert cells

Proof. The first formula follows from (10) and Proposition 2.4(c), and the second formula is an
immediate consequence. 2

Now let X(w) be the Schubert variety determined by w ∈ W , that is, the closure of
X(w)◦ in G/B, and fix a reduced decomposition si1 · · · sik of w and the corresponding Bott–
Samelson variety Z. As recalled in Proposition 2.3, the composition pr1 ◦ θ1 gives a proper
birational morphism (hence a desingularization) θ : Z → X(w), restricting to an isomorphism
on θ−1(X(w)◦) = Z◦.

Lemma 3.2. The CSM class of the Schubert cell X(w)◦ is given by

cSM(X(w)◦) = θ∗((1 + hk) · π∗(cSM(Z ′
◦
))).

Proof. By construction, θ∗(1Z◦) = 1X(w)◦ ; therefore, the functoriality of CSM classes (8) implies
that cSM(X(w)◦) = θ∗(cSM(Z◦)), and the stated formula then follows from Lemma 3.1. 2

Lemma 3.2 motivates the study of the quantity θ∗((1 + hk) · π∗(γ)) for γ ∈ H∗(Z ′). The
next theorem gives the key formulas needed for explicit calculations, in terms of the operators
introduced in § 2.2.

Theorem 3.3. Let γ ∈ H∗(Z ′). Then the following holds in H∗(G/B):

(a) θ∗(π
∗(γ)) = ∂ik(θ′∗(γ));

(b) θ∗(hk · π∗(γ)) = −sik(θ′∗(γ)).

Therefore,
θ∗((1 + hk) · π∗(γ)) = Tik(θ′∗(γ)),

where Ti : H∗(G/B) → H∗(G/B) is the operator given by Ti = ∂i − si.

Before proving the theorem, we note that if γ = cSM(Z ′◦), then θ′∗(γ) = cSM(X(w′)◦), where
w′ = si1 · · · sik−1

= wsik . Therefore, Theorem 3.3 gives a recursive formula to calculate the CSM
classes.

Corollary 3.4. Let w ∈ W be a non-identity element and let sk be a simple reflection such
that `(wsk) < `(w). Then the following recursive identity holds:

cSM(X(w)◦) = Tk(cSM(X(wsk)
◦)),

with the initial condition that cSM(X(id)◦) = cSM(pt) = [pt].

The explicit action of the operator Tk on Schubert classes [X(u)] is obtained by combining
identities (2) and (4) above. The resulting formula together with other properties of the operator
Tk will be presented in § 4 below.

Proof of Theorem 3.3. Both the left- and right-hand squares in (5) are fiber squares, and pik is
flat and θ = pr1θ1 is proper, so

θ∗π
∗(γ) = p∗ik(pik)∗θ

′
∗(γ) = ∂ik(θ′∗(γ))

by [Ful98, Proposition 1.7] and the definition of ∂ik given in § 2.2. This proves (a).
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For (b), let γ := θ′∗(γ) ∈ H∗(G/B) and

h̃k = c1(OE(1)) ∈ H2(G/B ×G/Pik
G/B),

so that hk = θ∗1(h̃k). Then

θ∗(hk · π∗(γ)) = (pr1)∗(θ1)∗(θ
∗
1(h̃k) · π∗(γ))

= (pr1)∗(h̃k · (θ1)∗π∗(γ))

= (pr1)∗(h̃k · pr∗2(θ′)∗(γ))

= (pr1)∗(h̃k · pr∗2(γ)).

In the second equality we used the projection formula, and in the third we used the fact that the

left-hand square in (5) is a fiber square and that pr2 is flat and θ′ is proper. Now recall that

G/B is the projectivization P(E) of a vector bundle E over G/Pik , and E is p∗ik(E)⊗OE(1) as a

bundle over G/B. We can compute the tautological subbundle OE(−1) of pr∗2(E), a bundle over

G/B ×G/Pik
G/B, by using [Ful98, Appendix B.5.5]:

OE(−1) = Op∗ik (E)⊗OE(1)(−1) = pr∗2Op∗ik (E)(−1)⊗ pr∗2OE(1) = pr∗1OE(−1)⊗ pr∗2OE(1).

Letting η = c1(OE(1)), this implies that

h̃k = c1(pr
∗
1OE(1)) + c1(pr

∗
2OE(−1)) = pr∗1(η)− pr∗2(η),

and the projection formula gives

(pr1)∗(h̃k · pr∗2(γ)) = (pr1)∗((pr
∗
1(η)− pr∗2(η)) · pr∗2(γ))

= η · (pr1)∗pr∗2(γ)− (pr1)∗pr
∗
2(η · γ)

= η · p∗ik(pik)∗(γ)− p∗ik(pik)∗(η · γ),

where the last equality follows since the second square in (5) is also a fiber square and pik is

both flat and proper. By definition, ∂ik = p∗ik(pik)∗. Putting all together, we have shown that

θ∗(hk · π∗γ) = η · ∂ik(γ)− ∂ik(η · γ).

Since OE(1) has degree 1 on the fibers of pik , and pik has relative dimension 1, we have

∂ik(η) = p∗ik(pik)∗(η) = [G/B].

We use this and part (b) of Proposition 2.1 to get

∂ik(η · γ) = ∂ik(η) · γ + η · ∂ik(γ)− c1(Lαik
) · ∂ik(η) · ∂ik(γ)

= γ + η · ∂ik(γ)− c1(Lαik
) · ∂ik(γ)

and finally

θ∗(hk · π∗γ) = −γ + c1(Lαik
) · ∂ik(γ) = (−id + c1(Lαik

))(γ) = −sik(γ)

by (3), concluding the proof of (b). 2
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3.3 Chern classes of Schubert cells in G/P
Fix a parabolic subgroup P ⊂ G containing the Borel subgroup B. Let WP ⊆ W be the
subgroup generated by the simple reflections in P . It is known (see e.g. [Hum90, § 1.10]) that
each coset in W/WP has a unique minimal length representative; we denote by WP the set
of these representatives. If w ∈ W , then one can define a length function ` : W/WP → N by
`(wWP ) := `(w′), where w′ ∈WP is in the coset of w.

The space G/P is a projective manifold of dimension `(w0WP ), where w0 is the longest
element in W . For each w ∈ WP , there are a Schubert cell X(wWP )◦ := BwP/P of dimension
`(wWP ) and the corresponding Schubert variety X(wWP ) := BwP/P ; see e.g. [BL00, § 2.6]. The
fundamental classes [X(wWP )] ∈ H2`(wWP )(G/P ) (w ∈ WP ) form a Z-basis for the homology
H∗(G/P ). The natural projection p : G/B → G/P satisfies p(X(w)) = X(wWP ) and the induced
map in homology is given by

p∗[X(w)] =

{
[X(wWP )] if `(w) = `(wWP ),

0 otherwise.
(11)

Proposition 3.5. With notation as above,

cSM(X(wWP )◦) = p∗(cSM(X(w)◦)) ∈ H∗(G/P ) (12)

for all w ∈W . Further, if u 6 w and `(u) = `(uWP ), then the coefficient of [X(u)] in cSM(X(w)◦)
equals the coefficient of [X(uWP )] in cSM(X(wWP )◦).

Proof. The topological Euler characteristic χ of the fibers of the restriction of p to X(w)◦ is
constant; hence, the push-forward p∗(1X(w)◦) equals χ·1X(wWP )◦ . By functoriality of CSM classes
(8), this implies that p∗(cSM(X(w)◦)) = χ · cSM(X(wWP )◦). Since the coefficient of [pt] in both
CSM classes equals 1, it follows that χ = 1. The last claim follows from (11). 2

Thus, the CSM classes of Schubert cells in G/P are determined by the corresponding
classes in G/B. For example, the CSM classes of Schubert cells in the ordinary Grassmannian,
determined explicitly in [AM09], can also be computed in principle using the recursive formula
obtained in Corollary 3.4; see Example 4.4 for a concrete example. Further, the push-forward
formula (11) implies that if the positivity conjecture discussed in § 5 is true for the CSM classes
of Schubert cells in G/B, then the analogous conjecture must be true for CSM classes of Schubert
cells in G/P for any parabolic P containing B.

4. The operators Tk and a Weyl group representation on H∗(G/B)

In this section we analyze the operator Tk = ∂k − sk : H∗(G/B) → H∗(G/B), which gives the
recursion for CSM classes of Schubert cells as proven in Corollary 3.4. We start by recording the
main algebraic properties of the operators Tk.

Proposition 4.1. The following identities hold.

(a) T 2
k = 1.

(b) The operators Tk satisfy the braid relations, i.e. (TiTj)mi,j = 1, where mi,j is the order of
the element sisj ∈ W . Also, if w = si1 · · · sik is a representation of an element w ∈ W as a
word in simple reflections, then the operator Tw := Ti1 · · · Tik is independent of the choice
of the word representing w.

(c) For any u, v ∈W , Tu · Tv = Tuv.
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Proof. First we note that
T 2
k = (∂k − sk)2 = s2k = 1,

since ∂2k = 0 and ∂ksk+sk∂k = 0 by Lemma 2.2. This proves (a). To prove the first part of (b), it
suffices to show that the relations hold after applying the operators to the classes cSM(X(w)◦),
since these form a basis for H∗(G/B). These relations then follow immediately from the fact
that for all w ∈W and all simple reflections sk,

Tk(cSM(X(w)◦)) = cSM(X(wsk)
◦) (13)

as a consequence of Corollary 3.4 and (a). The independence of Tw on the specific word for w is
also an immediate consequence of (13). Finally, (c) follows from the independence of Tw on the
word representing w. 2

The proposition implies that the operators Tw define a representation of the Weyl group
W on H∗(G/B). We record an immediate consequence of the identity (13) from the proof of
Proposition 4.1.

Corollary 4.2. Let u,w be two Weyl group elements. Then the identity

Tu(cSM(X(w)◦)) = cSM(X(wu−1)◦)

holds in H∗(G/B). In particular, cSM(X(w)◦) = Tw−1([pt]).

Combining the actions of ∂k and sk on Schubert classes found in the identities (2) and (4)
from § 2.2, we obtain the following explicit formula for Tk.

Proposition 4.3.

Tk([X(w)]) =

{
−[X(w)] if `(wsk) < `(w),

[X(wsk)] + [X(w)] +
∑
〈αk, β∨〉[X(wsksβ)] if `(wsk) > `(w),

where the sum is over all positive roots β 6= αk such that `(w) = `(wsksβ).

Example 4.4. Using Corollary 4.2 and Proposition 4.3, it is straightforward to implement
computations of CSM classes of Schubert cells in symbolic manipulation packages such as Maple.
For instance, we obtain that the CSM class for the open cell in the flag manifold Fl(4) (in type A)
is

cSM(X(4321)◦) = [X(4321)] + [X(4312)] + [X(4231)] + [X(3421)] + 2[X(4213)] + 2[X(4132)]

+ [X(3412)] + 2[X(3241)] + 2[X(2431)] + [X(4123)] + 5[X(3214)]

+ 5[X(3142)] + 3[X(2413)] + [X(2341)] + 5[X(1432)] + 3[X(3124)]

+ 4[X(2314)] + 6[X(2143)] + 4[X(1423)] + 3[X(1342)] + 3[X(2134)]

+ 4[X(1324)] + 3[X(1243)] + [X(1234)],

where we use the standard identification of the elements of W with permutations in indexing
the 4! Schubert classes.

Note that the terms corresponding to the ‘Grassmannian permutations’ (a1a2b1b2) with
a1 < a2 and b1 < b2 are

[X(3412)] + 3[X(2413)] + 4[X(1423)] + 4[X(2314)] + 4[X(1324)] + [X(1234)]

and push forward as prescribed by the identity (12) in § 3.3 to the CSM class for the open cell

in G(2, 4) (cf. the row corresponding to in [AM09, Example 1.2]).
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Remark 4.5. Even if `(wsk) > `(w), Tk([X(w)]) is in general not a positive combination of
Schubert classes. For example, let G = SL4(C), and let w = w0s3, where w0 is the longest element
in W = S4, the symmetric group with four letters. Using again the standard identification of the
elements of W with permutations, so that w0 = (4321) and s3 = (1243), we have that w = (4312)
and

T3([X(4312)]) = [X(4312)] + [X(4321)]− [X(4231)].

Nevertheless, substantial evidence suggests that the classes Tk(γ), and hence all classes Tw(γ),
are positive linear combinations of Schubert classes if γ is a positive combination of CSM classes
cSM(X(u)◦); see § 5.

5. Positivity of CSM classes

5.1 Positivity
Fix w ∈W and consider the CSM class cSM(X(w)◦). As we have shown, if si1 · · · sik is a reduced
decomposition for w, then

cSM(X(w)◦) = θ∗(cSM(Z◦)) = θ∗

( k∏
j=1

(1 + hj) · [Z]

)
, (14)

where θ : Z := Zi1,...,ik → X(w) is the Bott–Samelson resolution (Lemma 3.1). We have also
shown that

cSM(X(w)◦) = Tik · · · Ti1([pt])

(Corollary 3.4). Since cSM(X(w)◦) ∈ H∗(X(w)), we have

cSM(X(w)◦) =
∑
u6w

c(u;w)[X(u)], (15)

where c(u;w) are well-defined integers. In fact, c(w;w) = 1, since the map θ is birational, and
c(id;w) = 1, since X(w)◦ ∼= A`(w) and χ(A`(w)) = 1.

The operator Tk does not preserve positivity: Tk([X(sk)
◦]) = −[X(sk)

◦] by Proposition 4.3,
and in fact Tk([X(w)◦]) may have negative contributions from Schubert classes even if
`(wsk) > `(w) (Remark 4.5). Examples also show that cSM(Z◦) is not necessarily a positive
combination of strata of the normal crossing divisor DZ := Z r Z◦ (Z◦12321 is the smallest
such example). So one should not expect any positivity properties of the CSM class a priori.
Nevertheless, we conjecture that these classes are positive.

Conjecture 1. For all u 6 w, the coefficient c(u;w) from the expansion (15) is strictly positive.

Note that with notation as above, the class of the Schubert variety X(w) is given by

cSM(X(w)) =
∑
u6w

( ∑
u6v6w

c(u; v)

)
[X(u)]; (16)

indeed, 1X(w) =
∑

v6w 1X(v)◦ . So Conjecture 1 would imply that these classes are also necessarily
effective.

A positivity result analogous to Conjecture 1 was conjectured by the authors in [AM09] for
Schubert cells in the Grassmannian Gr(p, n) of subspaces of dimension p in Cn. This conjecture
was proved in [AM09] in the case p = 2, in [Mih15] for p = 3, and several classes of coefficients
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were proved to be positive by Jones [Jon10] and Stryker [Str11]. The full conjecture has recently
been proven by Huh [Huh16]. By Proposition 3.5, the CSM classes of Schubert cells in any
homogeneous space G/P are in fact push-forwards of CSM classes of Schubert cells in G/B;
therefore, Conjecture 1 would simultaneously imply the positivity of all CSM classes of Schubert
cells in all G/P , and in particular it would yield an alternative proof of Huh’s theorem.

By the same token, Huh’s theorem provides some evidence for Conjecture 1, since it implies
that c(u;w) > 0 in type A when u is a Grassmannian permutation (cf. Example 4.4). In fact,
Conjecture 1 in type A is also supported by explicit computations of several thousand cases. At
the time of this writing, we have verified that the CSM classes of all Schubert cells in Fl(n) are
positive for n 6 7 and for all words of length 6 15 in Fl(8).

In the rest of this section we discuss more evidence for Conjecture 1 in all types. We prove
positivity in the following cases:
• c(u;w) > 0 if u < w and `(w)− `(u) = 1 (Corollary 5.2);
• c(u;w) > 0 for all u 6 w if w admits a decomposition into distinct simple reflections

(Corollary 5.4).
These two results will follow from more general considerations, which seem independently

interesting: the first one is an explicit computation of the codimension-1 term in the CSM class
of a Schubert cell (Proposition 5.1), and the second one highlights one case in which the operator
Tk does preserve positivity (Proposition 5.3).

Proposition 5.1. Let ρ = ω1 + · · ·+ωr be the sum of the fundamental weights, and let w ∈W .
Then

cSM(X(w)◦) = [X(w)] + c1(Lρ) · [X(w)] + lower dimensional terms.

Proof. Let w = si1 · · · sik be a reduced decomposition, and let Z := Zi1,...,ik with SNC divisor
DZ , as in § 2.3. By [BK05, Proposition 2.2.2],

KZ = OZ(−DZ)⊗ θ∗(c1(L−ρ))

and hence c1(TZ) = [DZ ] + θ∗(c1(Lρ)). On the other hand, c1(TZ) = [DZ ] +
∑k

i=1 hi by
Proposition 2.4(c). Therefore, h1+· · ·+hk = θ∗(c1(Lρ)), and the stated identity follows from (14)
and the projection formula. 2

Corollary 5.2. The coefficient c(u;w) > 0 if u < w with `(u) = `(w)− 1.

Proof. Recall that 〈ωi, α∨j 〉 = δij (the Kronecker symbol) and in particular 〈ρ, α∨j 〉 > 0 for all
simple roots αj . Consider u < w such that `(u) = `(w)− 1. Then u = wsβ for some positive root
β ∈ R+ (see e.g. [Hum90, § 5.11]). By the Chevalley formula (1), the coefficient of [X(wsβ)] in
c1(Lρ) ∩ [X(w)] equals 〈ρ, β∨〉 > 0, concluding the proof. 2

Proposition 5.3. Let w ∈ W be a Weyl group element, and assume that w admits a
decomposition into simple reflections other than sk.

(a) The homology class Tk([X(v)]) is a non-negative linear combination of Schubert classes
[X(u)] with u 6 vsk. In fact,

Tk([X(v)]) = [X(vsk)] + [X(v)] +
∑

u<vsk,u6=v
dk(u; v)[X(u)]

with dk(u; v) > 0 for all u < vsk.
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(b) Assume in addition that sk commutes with all simple reflections in a decomposition of v.
Then dk(u; v) = 0 for u < vsk, u 6= v, that is,

Tk([X(v)]) = [X(vsk)] + [X(v)].

Proof. Let Sv := {si1 , . . . , sit} be the set of reflections appearing in a reduced decomposition
of v; this set is independent of the choice of reduced decomposition, since it is preserved by
the braid relations in W (see e.g. [Hum90, § 5.1]). Since every decomposition of v into simple
reflections can be reduced to a reduced decomposition, the hypothesis of the proposition implies
that sk 6∈ Sv in part (a), and that further sk commutes with all sij ∈ S in part (b).

Since vsk > v, by Proposition 4.3 we have

Tk([X(v)]) = [X(vsk)] + [X(v)] +
∑
〈αk, β∨〉[X(vsksβ)], (17)

where the sum is over all positive roots β 6= αk such that `(v) = `(vsksβ). We have to prove that,
under the hypothesis of the proposition, 〈αk, β∨〉 > 0 for all β in the range of summation. In
fact, all the β in this range satisfy vsksβ < vsk, and we will verify that 〈αk, β∨〉 > 0 for all such
reflections β. By [Hum90, § 5.7], the condition vsk > v implies that v(αk) > 0, and vsksβ < vsk
implies that vsk(β) < 0, i.e.

v(β − 〈β, α∨k 〉αk) = v(β)− 〈β, α∨k 〉v(αk) < 0. (18)

If v(β) > 0, then we are done, because v(αk) > 0. So we assume that v(β) < 0, which is equivalent
to vsβ < v, and it follows that vsβ admits a reduced expression using only reflections in Sv. We
deduce that sk does not appear in a reduced expression for sβ, and hence that the simple root
αk does not appear in the support of the positive root β. Since sk 6∈ Sv, it follows that αk does
not appear in the support of v(β), and αk appears with coefficient +1 in v(αk). Then (18) forces
〈β, α∨k 〉 > 0, as claimed. This proves part (a).

To prove part (b), we use a similar argument. By (17), it suffices to show that 〈αk, β∨〉 = 0 for
all reflections sβ such that vsksβ < vsk. This relation implies that sβ has a reduced decomposition
containing only simple reflections in an expression for vsk. But β 6= αk, and no simple reflections
sj with αj adjacent to αk in the Dynkin diagram for G can appear in the decomposition of sβ:
otherwise such reflections would appear in Sv, contradicting the commutativity hypothesis. This
implies that the support of β does not contain any simple root adjacent to αk; thus, 〈αk, β∨〉 = 0,
concluding the proof. 2

Corollary 5.4. Let w ∈ W be a Weyl group element, and assume that w admits a
decomposition into simple reflections other than sk. If c(v;w)> 0 for all v 6 w, then c(u;wsk)> 0
for all u 6 wsk.

In particular, if w ∈ W admits a decomposition into distinct simple reflections, then
c(u;w) > 0 for all u 6 w.

Proof. The second statement follows from the first by an immediate induction. To prove the first
statement, note that if sk does not appear in a decomposition for w, then it does not appear in
a reduced decomposition for w, and hence it does not appear in a decomposition for v. Thus,
the hypothesis of Proposition 5.3 applies to all v 6 w. By Corollary 3.4, we have

cSM(X(wsk)
◦) = Tk(cSM(X(w)◦)) = Tk

∑
v6w

c(v;w)[X(v)]

=
∑
v6w

c(v;w)

(
[X(vsk)] + [X(v)] +

∑
u′<vsk,u′ 6=v

dk(u
′; v)[X(u′)]

)
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with c(v;w) > 0 by hypothesis and dk(u
′; v) > 0 by Proposition 5.3. The statement is immediate

from this expression, since u 6 wsk implies that u has a reduced expression which is a
subexpression of one for wsk; thus, either u = v 6 w or u = vsk with v 6 w. 2

A particular case of Corollary 5.4 is particularly vivid: if w = si1 · · · sik is a reduced
decomposition and the simple reflections si1 , . . . , sik commute with one another, then an
induction argument based on Proposition 5.3(b) implies that

cSM(X(w)◦) =
∑
u6w

[X(u)]. (19)

Notice that if w satisfies this condition, then so does every v preceding it in the Bruhat order.
Then (16) and (19) give the CSM class of the Schubert variety

cSM(X(w)) =
∑
u6w

2`(w)−`(u)[X(u)]

for every w ∈W decomposing into commuting simple reflections.

5.2 Constructible functions and fundamental classes
MacPherson’s natural transformation c∗ (see § 3.1) is surjective. Thus, for every subvariety V of
an algebraic variety Y there exist constructible functions ΘV such that

c∗(ΘV ) = [V ] ∈ H∗(Y ).

For example, if V is the closure of a torus orbit V ◦ and V admits a resolution by a toric variety
compactifying V ◦, then one may choose ΘV = 1V ◦ (see e.g. the proof of [Alu06a, Théorème 4.2]).
For flag manifolds G/B we have the following consequence of the properties of the operators Tk.

Proposition 5.5.

c∗

(∑
v∈W

(−1)`(w0)−`(v)1X(v)◦

)
= [G/B]. (20)

Proof. The left-hand side of (20) equals
∑

v∈W (−1)`(w0)−`(v)cSM(X(v)◦). By Theorem 1.1,

Tk
(∑
v∈W

(−1)`(w0)−`(v)cSM(X(v)◦)

)
=
∑
v∈W

(−1)`(w0)−`(v)cSM(X(vsk)
◦)

= −
∑
v∈W

(−1)`(w0)−`(v)cSM(X(v)◦).

Therefore, (Tk + id)
∑

v∈W (−1)`(w0)−`(v)cSM(X(v)◦) = 0; since Tk + id = c(Lαk
)∂k (by (3)) and

c(Lαk
) is invertible, this implies that

c∗

(∑
v∈W

(−1)`(w0)−`(v)1X(v)◦

)
∈ ker ∂k

for all k. It follows that

c∗

(∑
v∈W

(−1)`(w0)−`(v)1X(v)◦

)
= C · [X(w0)] = C · [G/B]

for some constant C. Since the coefficient of [X(w0)] on the left is 1, it follows that C = 1,
yielding the statement. 2
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For more general Schubert varieties X(w), we have evidence relating the values of

corresponding constructible functions ΘX(w) with coefficients c(u; v) of CSM classes. This

evidence suggests that Conjecture 1 should be equivalent to the statement that every Schubert

variety X(w) admits a function ΘX(w) whose sign at p ∈ X(w) is (−1)e(p), where e(p) equals

the codimension of the stratum X(v)◦ containing p. Explicit computations for low dimensions

in type A support this statement, and Proposition 5.5 proves it for w = w0 in all types.

6. Equivariant Chern–Schwartz–MacPherson classes of Schubert cells

In this section we extend our calculation of CSM classes to the T -equivariant situation. We will

show that the same difference ∂k−sk defines an operator T Tk on equivariant homology HT
∗ (G/B),

sending an (equivariant) CSM class cSM
T (X(w)◦) to the class cSM

T (X(wsk)
◦). The proof of

Lemma 2.2 extends to the equivariant setting, and shows that (∂k − sk)2 = id. In particular,

the operators T Tk give a representation of W on equivariant homology. The proof that T Tk acts

as expected on CSM classes is essentially identical to the proof in the non-equivariant case; we

only need to verify that no ‘equivariant corrections’ are introduced in the recursion formula from

Corollary 3.4.

6.1 Equivariant CSM classes

Recall that T ⊂ B is the maximal torus in the Borel subgroup B. If X is a variety with a T -action,

then the equivariant cohomology H∗T (X) is the ordinary cohomology of the Borel mixing space

XT := (ET ×X)/T , where ET is the universal T -bundle and T acts by t · (e, x) = (et−1, tx). It is

an algebra over H∗T (pt), the polynomial ring Z[t1, . . . , ts], where ti, . . . , ts form generators for the

weight lattice of T . We address the reader to [Knu03] or [Ohm06] for basic facts on equivariant

cohomology. Since X is smooth, we can and will identify the equivariant homology HT
∗ (X) with

the equivariant cohomology H∗T (X). Every closed subvariety Y ⊆ X that is invariant under the

T -action determines an equivariant fundamental class [Y ]T ∈ HT
∗ (X).

Ohmoto defined the group of equivariant constructible functions FT (X) (for tori and for

more general groups) in [Ohm06, § 2]. We recall the main properties that we need.

(i) If W ⊂ X is a constructible set which is invariant under the T -action, its characteristic

function 1W is an element of FT (X). (The group FT (X) also contains other elements, but this

will be immaterial for us.)

(ii) Every proper T -equivariant morphism f : Y → X of algebraic varieties induces a

homomorphism fT∗ : FT (X) → FT (Y ). The restriction of fT∗ to characteristic functions of

constructible T -invariant sets coincides with the ordinary push-forward f∗ of constructible

functions. See [Ohm06, § 2.6].

Ohmoto proved [Ohm06, Theorem 1.1] that there is an equivariant version of MacPherson’s

transformation cT∗ : FT (X) → HT
∗ (X) that satisfies cT∗ (1Y ) = cT (TY )∩ [Y ]T if Y is a projective,

non-singular variety, and that is functorial with respect to proper push-forwards. The last

statement means that for all proper T -equivariant morphisms Y → X the following diagram

commutes.

FT (Y )
cT∗ //

fT∗
��

HT
∗ (Y )

fT∗
��

FT (X)
cT∗ // HT

∗ (X)
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We denote by cSM
T (X(w)◦) := cT∗ (1X(w)◦) the equivariant CSM class of the Schubert cell

corresponding to an element w ∈W .
Finally, we note that both the BGG operator ∂i and the right Weyl group action si are

induced by morphisms which commute with the T -action. It follows that they both determine
H∗T (pt)-module endomorphisms of H∗T (G/B), for which we will use the same notation. (The
right Weyl group action is also an H∗T (pt)-algebra automorphism.) Further, Proposition 2.1 and
formula (3) extend to the equivariant setting after replacing the Chern class c1(Lαk

) by its
equivariant version cT1 (Lαk

). We refer to [Knu03, § 3] for details. The analogue of the identity (4)
can be found in [Knu03, § 4, Corollary]; the equivariant version includes additional terms.

6.2 Equivariant CSM classes via the operator T T
k = ∂k − sk

In this section we give the proof of the equivariant version of Theorem 1.1.
Recall the diagram (5) from § 2.3:

Z
θ1 //

π

��

G/B ×G/Pik
G/B

pr1 //

pr2

��

G/B

pik
��

Z ′
θ′ // G/B

pik // G/Pik .

(21)

Recall that Z ′ is the Bott–Samelson variety for a Weyl group element w′ ∈W and that Z is the
Bott–Samelson variety corresponding to w′sik , where `(w′sik) > `(w′).

Recall also that G/B is a P1-bundle P(E) for some rank-2, equivariant vector bundle over
G/Pik , and that we defined E := E⊗OE(1), a vector bundle over G/B. This bundle fits into the
exact sequence (6) of equivariant vector bundles

0 // O // E // Q // 0,

where the action on O is trivial, and Q = Tpik . The inclusion O ⊂ E determines an equivariant
section σik : G/B → P(E) = G/B ×G/Pik

G/B, inducing the section σ of π introduced in § 2.3.

Lemma 6.1. The image of the section σik is the diagonal ∆ ⊂ G/B ×G/Pik
G/B.

Proof. The image of σik is P(O), which maps identically to G/B via both pr1 and pr2. 2

Proposition 6.2. (a) We have an isomorphism of equivariant bundles

OE(1) = pr∗2OE(−1)⊗ pr∗1OE(1).

(b) The diagonal ∆ is the zero locus of a homogeneous section of the bundle

OG/B×G/Pik
G/B(∆) = pr∗2(Q)⊗OE(1).

(c) Let [∆]T ∈HT
∗ (G/B×G/Pik

G/B) be the equivariant fundamental class determined by ∆.
Then

[∆]T = cT1 (OG/B×G/Pik
G/B(∆)) ∩ [G/B ×G/Pik

G/B]T .

Proof. Part (a) was proved within the proof of Theorem 3.3. The inclusion ∆ ⊂ G/B×G/Pik
G/B

is given by P(O) ⊂ P(E). Then by [Ful98, Appendix B.5.6] ∆ is the zero locus of a section of the
bundle Q⊗OE(1). This establishes (b).
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Part (c) follows from a general fact: if an equivariant divisor D is the zero scheme of a
homogeneous section of an equivariant line bundle L on G/B, then [D]T = cT1 (L) ∩ [G/B]T .
This follows from the analogous non-equivariant statement in the corresponding Borel mixing
space. 2

The next observation is that (9) extends to the equivariant case.
Let Z be a variety with a T -action, and let D ⊆ Z be a divisor with simple normal crossings

and equivariant components Di. Then

cSM
T (Z rD) =

cT (TZ)∏
j(1 +DT

i )
∩ [Z]T , (22)

where DT
i = cT1 (O(Di)) (so that DT

i ∩ [Z]T = [Di]T ).
This may be proven by the same method used in the proof of [Alu99, Theorem 1].
Now let Z = Zi1,...,ik and let D = DZ be the SNC divisor defined in § 2.3. Recall that

D = π−1(DZ′) ∪Dk. The following is the equivariant analogue of Lemma 3.2.

Lemma 6.3. The following identity holds in HT
∗ (G/B):

cSM
T (X(w)◦) = θ∗((1 + hTk ) · π∗(cSMT (Z ′◦))),

where hTk = (θ′)∗cT1 (OE(1)).

Proof. By Proposition 6.2(b), ∆T = cT1 (pr∗2(Q) ⊗ OE(1)). Pulling back by θ′, we obtain
DT
k = cT1 (π∗(θ′∗Q)⊗OE(1)), and this implies that

cT (TZ) = π∗(cT (TZ′))(1 + hTk )(1 +DT
k ),

arguing exactly as in the proof of Proposition 2.4(c). The stated identity follows then from (22)
by the same argument proving Lemma 3.2 from (9). 2

Theorem 6.4. Let T Tk : H∗T (G/B) → H∗T (G/B) be the operator

T Tk = (1 + cT1 (Lαk
))∂k − id = ∂k − sk.

Then T Tk (cSM
T (X(w)◦)) = cSM

T (X(wsk)
◦).

Proof. The same proof applies as in the non-equivariant case, taking into account that all maps
used are T -equivariant and that the statement of Proposition 2.1 extends without changes to
the equivariant setting. 2

6.3 Properties of equivariant CSM classes
In this section we will list a few basic properties of the equivariant CSM classes. Some of
these follow from general facts due to Ohmoto [Ohm06] and Weber [Web12]; we will give short
independent proofs based on the basic properties of the operator T Tk . We will also formulate an
equivariant generalization of the positivity conjecture (Conjecture 1).

The equivariant versions of the identities (2) and (4), as seen in e.g. [Knu03, § 3], yield the
following explicit formula for the class T Tk [X(w)]T :{

−[X(w)]T if `(wsk) < `(w),

(1 + w(αk))[X(wsk)]T + [X(w)]T +
∑
〈αk, β∨〉[X(wsksβ)]T if `(wsk) > `(w),

(23)
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where the sum is over all positive roots β 6= αk such that `(w) = `(wsksβ), and w(αk) denotes
the natural W action on roots. Recall that both operators ∂i and si are H∗T (pt)-linear; therefore,
so is T Tk .

Theorem 6.4 combined with the identity (23) and the fact that cSM
T (X(id)◦) = [X(id)]T =

[eid]T (where eid is the B-fixed point) give an effective way to compute equivariant CSM classes
of Schubert cells in G/B. Since the equivariant classes [X(u)]T form a basis of HT

∗ (G/B) over
H∗T (pt) = Z[t1, . . . , ts], we have an equivariant analogue of (15):

cSM
T (X(w)◦) =

∑
u6w

cT (u;w)[X(u)]T , (24)

where cT (u;w) are well-defined polynomials in the ti. The equivariant cohomology H∗T (pt) acts
on HT

∗ (G/B) by cap product; therefore, each weight ti decreases the homological degree by 1.

Proposition 6.5. The following properties hold.

(a) Each coefficient cT (u;w) is a polynomial of degree at most dimX(u) in the subring
Z[α1, . . . , αr] ⊆ H∗T (pt) generated by the positive simple roots α1, . . . , αr.

(b) The constant term of the polynomial cT (u;w) (i.e. the term independent of the αi) equals
the non-equivariant coefficient c(u;w). In particular, cT (id;w) = 1 for all w ∈W .

(c) Let w = si1 . . . sik be a reduced decomposition. Then the coefficient of [X(w)]T in
cSM

T (X(w)◦) equals

cT (w;w) =

k∏
t=1

(1 + si0 · · · sit−1(αit))

with the convention that si0 = id. In particular,

cT (w0;w0) =
∏

(1 + α),

where the product ranges over all positive roots α.

(d) Let w = si1 . . . sik be a reduced decomposition. Then the term of degree 0 in cSM(X(w)◦)
equals

cSM(X(w)◦)deg 0 = (−1)`(w)(sik . . . si1) · [eid]T = [ew]T ,

where [ew]T denotes the equivariant fundamental class of the T -fixed point corresponding to w.
In particular, one obtains an equivariant version of the classical Poincaré–Hopf theorem:

cTdimG/B(TG/B) ∩ [G/B]T =
∑
w∈W

[ew]T .

Proof. Parts (a), (b), and the first statement in part (c) follow from the fact that cSM
T (X(w)◦) =

T Tw−1 [eid]T , and by successive applications of formula (23). For the second statement in part (c),
notice that for any w ∈ W , `(wsk) > `(w) implies that w(αk) > 0 (see e.g. [Hum90, § 5.4]),
and thus the sequence of positive roots obtained from a reduced decomposition of the longest
element w0 coincides with the full set of positive roots. We now focus on part (d). The operator ∂k
increases the homological degree by 1 (i.e. it sends HT

m(G/B) to HT
m+1(G/B)), while the right

Weyl group action by sk is homogeneous. It follows that the degree-0 term of cSM
T (X(w)◦)

depends only on the contributions of the operators −sij ; this proves the first identity.
The second identity follows because sk[ew]T = −[ewsk ]T for any w ∈ W . This can be easily
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checked by localization, using the definition of the right action (cf. [Knu03, § 3]) and the fact
that

ι∗u[ew]T =


∏
α∈R+

w(−α) if u = w;

0 otherwise,

where ι∗u denotes the localization at the T -fixed point eu. (The minus sign is due to the fact
that the tangent space Teid(G/B) is Lie(G)/Lie(B) and its weights are the negative roots.) The
last statement follows because cT (TG/B) ∩ [G/B]T = cSM

T (G/B) =
∑

w∈W cSM
T (X(w)◦) by

additivity of cT∗ . 2

Remark 6.6. • Parts (a) and (b) of Proposition 6.5 also follow from Ohmoto’s construction of
equivariant CSM classes in [Ohm06].
• It is well known that the sequence of roots αi1 , si1(αi2), . . . , si1 . . . sit−1(αit) coincides with

the sequence of inversions of w−1 = sik . . . si1 ; see e.g. [Hum90, p. 14]. In particular, this confirms
that the sequence is independent of the choice of the reduced decomposition. Also, these are
the weights of the tangent space Tew(X(w)); one can use this formula to recover a formula
from [RV15] to localize cSM

T (X(w)◦) at the T -fixed point ew. In the particular case when w = w0,
the coefficient cT (w0;w0) can also be obtained from the general fact that

cT (TG/B) =
∏
α∈R+

(1 + cT1 (Lα)),

where Lα is the line bundle defined in § 2.1. (This follows e.g. by using localization.)
• Finally, part (d) can also be deduced from a localization result of Weber, which holds in a

more general situation; see [Web12, Theorem 20].

The following statement generalizes Conjecture 1.

Conjecture 2. For all u 6 w, the coefficient cT (u;w) is a polynomial with positive coefficients
in the simple roots αi and positive constant term.

This statement is supported by explicit computations for low dimensions in type A. It
would imply equivariant positivity of CSM classes for Schubert cells in all flag manifolds G/P .
(Computations in the Grassmann manifold Gr(4,C8) led Weber to suggest equivariant positivity
for Schubert cells in Grassmannians [Web12, § 12].) Proposition 6.5 also provides partial evidence
for Conjecture 2, across all Lie types.

Example 6.7. Let ΓT be the matrix whose (u,w)-entry is cT (u;w). For Fl(3), listing the elements
of S3 in the order (123), (132), (213), (231), (312), (321), we have

ΓT =


1 1 1 1 1 1
0 1 + α2 0 2 + α1 + α2 1 + α2 2 + α1 + α2

0 0 1 + α1 1 + α1 2 + α1 + α2 2 + α1 + α2

0 0 0 (1 + α1)(1 + α1 + α2) 0 (1 + α1)(1 + α1 + α2)
0 0 0 0 (1 + α2)(1 + α1 + α2) (1 + α2)(1 + α1 + α2)
0 0 0 0 0 (1 + α1)(1 + α2)(1 + α1 + α2)

 ,

verifying Conjecture 2 in this case. Explicit computations also confirm that Conjecture 2 holds
for all Schubert cells in Fl(4), Fl(5), and Fl(6).
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