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Abstract
This paper presents a fault detection and diagnosis (FDD) algorithm for various faults in the primary air data sensors
(PADS) of an aircraft in the presence of external disturbances such as atmospheric turbulence. Rapid wind variations
due to turbulence induce excessive error in the externally fitted air data probe measurements, which may lead to
loss of control and misinterpretations by the flight crew. In adverse environmental conditions, the FDD of air data
prefers robust and adaptive air data estimates that use an analytical redundancy approach with fewer computations.
The proposed method considers the kinematics of the aircraft instead of the dynamics used in the state-of-the-art
algorithms. The advantage of using kinematics is that it can reduce modeling errors significantly, avoiding high
false alarm rates in the FDD process. For the estimation of stable and accurate air data under external disturbance,
the inertial navigation system and global positioning system (INS/GPS) output are considered instead of actual
air data probe or sensor measurements. The proposed algorithm uses estimates of air data using an exponentially
weighted adaptive extended Kalman filter (EW-AEKF) to detect and diagnose PADS faults, which can perform well
even in the presence of uncertain noise due to atmospheric turbulence experienced during flight. The simulation
was carried out to validate the algorithm with flight data obtained from the X-Plane flight simulator under moderate
atmospheric turbulence. The simulation experiments were carried out using the MATLAB programming platform.
The results show that the proposed method achieves satisfactory FDD performance with lower root mean square
error (RMSE) and computation time than traditional EKF-based algorithms.

Nomenclature
A accelerometers output
ax, ay, az acceleration components along body axes (m/sec2)
AD air data
AOA angle-of-attack (rad)
AOSS Angle-of-sideslip (rad)
Ax, Ay, Az specific force components
EW-AEKF exponentially weighted adaptive extended Kalman filter
f, h non-linear functions
FDD fault detection and diagnosis
FDI fault detection and isolation
g gravitational acceleration (m/sec2)
GPS global positioning system
i air data sensor index
IMU inertial measurement unit
IRU inertial reference unit
INS inertial navigation system
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JT threshold
k time instant
p, q, r body rotational rate components (rad/sec)
Q process noise covariance matrix
R measurement noise covariance matrix
PADS primary air data sensors
RMSE root mean square error
t time (sec)
ub, vb, wb true airspeed velocity components (m/sec)
u control input vector
Ug ground speed (m/sec)
Ub

gx,Ub
gy, Ub

gz ground speed velocity components along body axis (m/sec)
w & v input and measurement noise vector
Vwx, Vwy, Vwz wind velocity components in earth frame (m/sec)
Ut true airspeed (m/sec)
Vw wind speed (m/sec)
x & z state and measurement vector
ω rate gyros output
α angle-of-attack sensor
β angle-of-sideslip sensor
φ, θ , ψ ; attitude angles (rad)
eUt, eα eβ residual signals of air data sensors
μ & σ mean and standard deviation of error

1.0 Introduction
Reliability and health status monitoring of air data system sensor (ADSS) measurements are critical for
the continuous operation and flight safety of aircraft that operate in the civil aviation sector. Faults on
these sensors may vigorously lead to level A (catastrophic) failures. Since all the mechanical compo-
nents of the sensor are exposed outside the aircraft’s fuselage, they can be affected by environmental
anomalies such as clogging, icing at high altitudes and airflow disruptions due to external disturbances
such as atmospheric turbulence. At high altitudes, the high-density ice crystals may not be able to be
tackled by the conventional heater mechanisms of air data probes such as Pitot probes and wind vanes
(α and β vanes), etc. The atmospheric turbulence during flight can produce low-to-heavy fluctuations
in the air data measurements, which may lead to poor decision-making by the pilot. Moreover, mal-
functions in the primary air data sensors, such as airspeed, angle-of-attack (α), and angle-of-sideslip
(β) will affect the aircraft’s performance and control. Some of the tragic accidents that happened in the
past due to air data sensor failures are evidence of the impact of faulty air data sensors on civil aircraft
flight control laws. The Pitot tubes of Air France’s flight number AF447 were affected by accumulated
ice crystals at a high altitude, which led to the aerodynamic stall. In the recent past, the two consecu-
tive accidents of the well-known Boeing 737 Max-8 flight suspected a synchro-based electromechanical
sensor (AOA) fault that wrongly indicated and activated the Maneuvering Characteristics Augmentation
System (MCAS) used to provide the pitch augmentation control law to the aircraft [1–3]. Therefore, the
estimation and availability of air data parameters are critical to ensure the safety of a flight and its pas-
sengers. The conventional approach depends on the availability of redundant air data sensors, where the
air data parameters are measured and faulty sensor measurements are voted out using a voter circuit.
However, all the air data probes are subjected to the same environmental conditions, which may lead to
common-mode failure followed by the wrong output to the sensor fault-tolerant control system (FTCS).
Based on the history of the accidents, it is evident that the redundant air data sensors are vulnerable to
adverse environmental conditions. In the case of the AF447 crash, all the redundant airspeed sensors
faulted, followed by a common-mode failure and a failure of de-icing mechanisms in the presence of
extreme weather conditions such as high-altitude icing. The main reason for the crash of the Boeing
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737 Max 8 was a lack of redundancy in the pitch augmentation system, which depended only on a sin-
gle AOA sensor measurement. For the monitoring of malfunctions in the redundant air data sensors,
a robust model-based approach with analytical sorts of measurements and reduced modeling errors is
highly preferred to increase the availability of air data in all flight conditions and to perform an effective
FDD in the presence of external disturbances. In general, an FDD of aircraft sensors is the problem of
autonomously detecting the presence, isolating the location, and identifying the type and severity of the
faults [4]. The block diagram presented in Fig. 1 shows the kinematic model-based estimation of air
data parameters and air data sensor FDD, where the input commands provided by the inertial reference
unit (IRU) measured linear accelerations (Ax, Ay, Az) and angular rates (p, q, r) instead of flight con-
trol surface inputs [5]. As can be noticed, only the blocks within the blue dashed line are run onboard,
and they are free from the influence of the sensor faults. The faults are injected into the recorded air
data measurements and diagnosed by the FDD block offline. There have been several studies carried
out on the fault detection and diagnosis (FDD) of air data sensors. The air data and inertial system
FDI were performed using a consolidation module and Kalman filter, which depend on the availability
of redundant sensors to compute the algorithm [6]. There are some approaches that provide analytical
redundancy when a simultaneous fault on a cluster of ADSS occurs [7,8]. The enhanced FDI algorithm
with model- and signal-based approaches was proposed with multiple AOA sensor fault cases that used
the IMU measurements [9]. However, the dependence on flight control system inputs may not guarantee
robustness against system uncertainties. Some researchers proposed observer-based sensor fault detec-
tion schemes with an analytical redundancy approach [10]. Due to the observer-based schemes, it may
not be able to provide a reliable output when the sensor noise increases during abrupt wind variations.
A physical-analytical redundancy approach was proposed by Antonio et al. [11] to estimate the aircraft
flow angles (AOA and AOSS). Since it considers several evaluation processes, the computational bur-
den may increase. Recently, the estimation of aircraft parameters along the longitudinal axis was studied
considering faults in the sensors of the air data system using Kalman filters [12,13]. Zahed et al. [14]
developed virtual sensors to detect faults in the airspeed and AOA sensors using the extended Kalman
filter (EKF) in the X-Plane flight simulator environment. However, the use of flight controls as inputs
will induce additional errors in the aircraft dynamics that cannot be tackled by the traditional EKF-
based algorithms. More recently, an air data FDI using machine learning was proposed using real flight
data [15]. With increasing demand for technological innovations, the high-fidelity digital twin approach
was proposed [16]. However, these methods cannot provide robustness against external disturbances.
Other researchers have proposed air data estimation in the presence of a wind field with the help of
the Kalman filter [17]. The Kalman filter (EKF) used for the estimation framework cannot deal with
increased system noise when the aircraft experiences atmospheric turbulence. Recently, Mohamed and
Joy [18] proposed the estimation of AOA and AOSS using an adaptive EKF under atmospheric turbu-
lence. Other researchers proposed the air data FDD in the presence of atmospheric turbulence using
the unscented Kalman filter (UKF) with real flight data from civil jet aircraft [19]. However, the com-
putational load due to UKF is not affordable for the mathematically intensive civil transport aircraft.
From the above methods, it is obvious that the challenging part of an air data sensor FDD that uses a
model-based approach is reducing the model uncertainty and improving the robustness against external
disturbances with less computation. In this paper, a robust FDD algorithm for primary air data sensors
(PADS) on commercial aircraft with less computation is proposed. This is possible because the aircraft
kinematics use modified equations of motion that do not consider stability and control derivatives. In
other words, the kinematics of an aircraft, which do not consider the forces and moments of the aircraft,
are considered. In addition, the adaptive version of the extended Kalman filter is used to estimate sta-
ble and accurate air data in the presence of external disturbances such as atmospheric turbulence. The
mathematical model is developed with the knowledge of aircraft kinematic relations and air data system
parameters, considering inputs from the specific forces (Ax, Ay, Az) and angular rates (p, q, r) measured
by the inertial reference unit (IRU) to reduce the system complexity. All the sensor measurements used
in the algorithm, such as the IRU and ground speed velocity components, are readily available from
the X-Plane sensor data output option. The estimation framework considers inputs to the mathematical
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Figure 1. Air data sensor FDD using kinematics.

model from IRU and outputs from ground velocity components (INS/GPS) to estimate true airspeed (Ut)
and airflow angles, namely angle-of-attack (α) and angle-of-sideslip (β). The specific reason behind the
selection of ground velocity components for the air data estimation is their lower sensitivity to external
influences such as atmospheric turbulence and other disturbances. The proposed mathematical model
tackles the modeling errors and the external disturbances with the estimation framework provided by the
exponentially weighted adaptive extended Kalman filter (EW-AEKF). The filtering process using EW-
AEKF does not consume large amounts of computation since the mathematical model was developed
with a lower state vector dimension and the adaptive process was done under the sliding time moving
window (N), which reduces the estimation error and computational load in the presence of atmospheric
disturbance (turbulence).

This paper is structured as follows: The problem statement that highlights the determination of resid-
ual signals in model-based FDD and air data in civil aircraft is outlined in Section 2. Section 3 defines
the kinematic model required for the estimation of air data parameters and the estimation framework
developed for the proposed algorithm. The relationship between the kinematic model and air data com-
ponents is presented first. Then, the state-space representation of the model and the air data estimation
using an adaptive version of EKF are established. The fault detection logic, the modelling of the sen-
sor faults, and the rationale behind the design of FDD thresholds are presented in Section 4. Section 5
presents the experimental setup and simulation results of estimation performance, robustness analysis
using Monte Carlo simulations, and various fault scenarios of air data sensors using flight data obtained
from the X-Plane flight simulator under atmospheric turbulence conditions. Concluding remarks are
presented in Section 6.

2.0 Problem statement
In general, model-based FDD techniques of ADSS are evaluated through the residual signals, which
represent the inconsistency between the actual system behavior and the mathematical model of the sys-
tem. For the sensor FDD of the proposed method, it can be defined as the difference between true air
data sensor measurements and the estimated air data. The key advantages of using residuals are their
ease of implementation and the fact that they carry exact information about faults such as stuck, bias,
drift, increased noise faults, etc. It can be determined as,

e(k) = zk − ẑk (1)

where e (k) is the residual value at the kth time step, zk is the true sensor measurements, and ẑk is the
estimated measurement of the filter, such as an extended Kalman filter [20]. The kinematic model-based
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primary air data sensors FDD (PADS-FDD) proposed in this paper consider the residuals of each sensor
category of the air data system. Since the above Equation (1) is the generic form of residual signals, a
complete knowledge of the signals and underlying dynamics is required to provide good cross-platform
portability [21]. The residuals used in this FDD algorithm are presented as follows,⎧⎪⎨

⎪⎩
eUt = Ut − Ût

eα = α − α̂

eβ = β − β̂

(2)

where Ut , α, β are air data system components (true airspeed, AOA, and AOSS) and eUt , eα, eβare the
residuals of true airspeed, AOA, and AOSS, respectively. The calculated residuals are used to monitor
each sensor’s health status robustly. The air data is adaptively estimated, and residuals are generated
by the adaptive version of the EKF, namely the EW-AEKF. The predetermined thresholds are fixed to
detect various faults on the sensors. A fault occurs when residuals exceed the thresholds and are detected
using the detection logic (discussed in Section 5).

In this study, we tested various fault scenarios for air data sensors that include freezing (stuck)
fault, bias, drift and increased noise faults. To detect every fault efficiently, the threshold values are
carefully determined, considering the sensor’s impact on the aircraft’s performance and control. In
practice, the allowable error limit for sensors on civil aircraft is defined by civil aviation authorities
such as the Civil Aviation Authority (CAA, UK), the European Aviation Safety Agency (EASA), the
Federal Aviation Administration (FAA), etc. For example, the airspeed error limit that is allowable as
per EASA’s Certification Specifications (CS 25.1323) of subpart F is ± 3% or ± 2.5m/s [22,23]. With
this knowledge, the details of fixed thresholds are presented in Section 5 of this paper. In order to imple-
ment robust and reliable fault detection (PADS-FDD), we used the available sensor measurements other
than the redundant air data (AD) sensor measurements. More clearly, the proposed AD estimation and
FDD algorithm use measurements from the IRU and an integrated INS/GPS navigation system, which
is less sensitive to external disturbances and readily available on the air data and inertial reference sys-
tem (ADIRS) of modern aircraft. The following relationships are used to compute the air data from
the estimated parameters. Using the velocity triangle relationship, one can extract the true airspeed as
presented by,

Ug = Ut + Vw (3)

where Ug is the ground speed measured in the earth frame, Ut is the true airspeed measured in the
aircraft body frame, and Vw is the wind speed measured in the earth frame. The true airspeed can be
written in component form by using airspeed and airflow angles as,⎧⎪⎨

⎪⎩
u = Ut cos α cos β

v = Ut sin β

w = Ut sin α cos β

(4)

To extract the true airspeed without the aid of redundant Pitot tube measurements of the air data system,
the Equation (3) is rewritten with a direction cosine matrix [24] as,

Ut = Cb
eUg − Vb

w (5)

where Cb
n is the transformation matrix from the earth frame to the body frame, and Vb

w is the wind speed
represented in the body frame. The airflow angles of the aircraft air data system are computed using the
following relationship using body-axis velocity components:⎧⎪⎪⎨

⎪⎪⎩
α= tan−1

(
wb

ub

)

β = sin−1

(
vb

Ut

) (6)
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where α is the angle-of-attack, β is the angle-of-side slip, and ub, vb, and wb are the airspeed velocity
components represented in the aircraft body frame. In Section 3, we will present the mathematical model
for air data estimation.

3.0 Kinematic model and AD estimation
Kinematic models are indeed a special form of the general equations of motion (EOM) of an aircraft, for
which specific forces (the outputs of accelerometers in the center of gravity) and angular rates serve as
inputs. They can conveniently be written in state-space form. An aircraft EOM takes the form of three
sets of first-order differential equations, one each for translational velocities, angular velocities, and
attitude angles [25]. For the air data estimation of the proposed work, we considered only the differential
equations of velocities and attitude angles. The main advantage of a kinematic model is that it does not
take inputs from flight control surface deflections (rudder, elevator and aileron) and is free from modeling
uncertainties that degrade the model-based sensor FDD algorithms. Using the customary body-fixed
reference frame, the equations for the components u, v, and w of true airspeed (Ut) along the body axes
take the following form: ⎧⎪⎨

⎪⎩
X = m(u̇ + qw − rv) + mg sin θ

Y = m(v̇ + ru − pw) − mg cos θ sin φ

Z = m(ẇ + pv − qu) − mg cos θ cos φ

(7)

where p, q, and r denote the rotational rates about the aircraft body frame; θ and φ denote the pitch and
roll angles, respectively; m denotes the aircraft mass; and g denotes the local acceleration due to gravity.
X, Y and Z represent the components of the total aerodynamic forces, including the aerodynamic effects
of propulsion systems. The aircraft kinematic-based model is driven by specific forces measured by ideal
accelerometers and rotational rates measured by rate gyroscopes. In flight, such ideal accelerometers
would measure the specific aerodynamic forces according to:⎧⎪⎨

⎪⎩
X = Axm

Y = Aym

Z = Azm

(8)

where Ax, Ay, and Az denote the specific aerodynamic forces along the aircraft body axes. On substituting
Equation (8) into Equation (7) by eliminating the mass ‘m’ of the aircraft, we get⎧⎪⎨

⎪⎩
u̇ = ax + vr − wq − g sin θ

v̇ = ay − ur + wp + g cos θ sin φ

ẇ = az + uq − vp + g cos θ cos φ

(9)

The above set of equations represents the kinematical relations of aircraft velocities. The other set of
equations is that governed by the first-order differential equations for the attitude (Euler) angles in the
earth-fixed reference frame and is presented by⎧⎪⎨

⎪⎩
φ̇ = p + q sin φ tan θ + r cos φ tan θ

θ̇ = q cos φ − r sin φ

ψ̇ = q sin φ sec θ + r cos φ sec θ

(10)

The above Equations (9) and (10) can be called the kinematic model required for the estimation of air
data. The development of a robust air data model is further enhanced with available sensor measure-
ments, such as IRU and INS/GPS, to guarantee the reliability of estimation. Using Equation (9), the
velocity dynamics required for the proposed method is written in kinematical form as
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⎧⎪⎨
⎪⎩

U̇b
gx = ax + Ub

gyr − Ub
gzq − g sin θ

U̇b
gy = ay − Ub

gxr + Ub
gzp + g cos θ sin φ

U̇b
gz = az + Ub

gxq − Ub
gyp + g cos θ cos φ

(11)

whereUb
gx, Ub

gy, Ub
gz are the ground speed velocity components transformed from the earth frame to air-

craft’s body frame which are readily available from the flight simulator sensor data set (in the earth
frame). The above velocity dynamics include the effects of wind variations represented in the aircraft
body frame. With the knowledge of Equations (10) and (11), the rest of the paper will focus on estima-
tion of air data using the above kinematic relations. Note that the ground speed components Ugx, Ugy,
Ugz are readily available from the flight sensor data of aircraft, either from flight simulation or real flight.
Hence the output equations are presented as,

Ut =
√

Utx
2 + Uty

2 + Utz
2

α = tan−1

(
Utz

Utx

)

β = sin−1

(
Uty

Ut

) (12)

where Utx, Uty, and Utz are the true airspeed components computed using the ground velocities and wind
velocities in the body frame. Using Equations (4) and (11), the dynamics of air data variables [Ut , α,
β]T i.e., U̇t , α̇, and β̇ can be obtained as,

U̇t = U̇b
gx cos α cos β + U̇b

gy sin β + U̇b
gz sin α cos β (13)

α̇ = U̇b
gz cos α − U̇b

gx sin α

Ut cos β
(14)

β̇ = −U̇b
gx cos α sin β + U̇b

gy cos β − U̇b
gz sin α sin β

Ut

(15)

From the above information, the non-linear state-space model for the proposed AD estimation with
the kinematics of the aircraft can be presented as,

ẋ (t)= f [x (t)+ G (x (t)) (u (t)+ w (t))]

z (t)= h (x (t))

zm (t)= [h (x (t))+ v (t)] (16)

where x represents the state vector, u represents the input vector, z represents the measurement vec-
tor, and w and v represent the process and measurement noise vectors with zero-mean Gaussian with
covariance matrices Q and R, respectively. f and h are the non-linear functions. The variables of system
equations are written as follows:

x = [Ut, α, β, φ, θ ,ψ]T (17)

u = [A,ω]T + w (18)

z = [
Ut,α, β, φ, θ ,ψ

]T + v (19)

where A = [ax, ay, az]T is the output of accelerometers, and ω= [p, q, r]T is the rate gyroscope output of
the IRU or IMU. The air data variables, including true airspeed, angle-of-attack (α), angle-of-side slip
(β) and attitude angles (φ, θ , ψ ;) are represented by the state vector (x). The input vector (u) represents
the IRU output along the body axes. The measurement vector (z) represents the measured velocities
along the x, y, and z axes transformed into body axes and attitude angles provided by the INS/GPS
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navigation system. The process noise vector (w) consists of three elements, such as the input noise com-
ponents of accelerometers (wA), input noise components from rate gyros (wω) and the random process
noise of wind velocities (wVw), which is given by

w = [
wA wω wVw

]T (20)
Due to the random nature of the unknown disturbance (turbulence), it is difficult to predict the local
wind field variations. Moreover, considering wind velocity as a state will increase the computational
burden. The wind velocity due to turbulence is considered as a random walk process model. Note that,
the wind velocity due to turbulence is considered as an unknown input to the system, and it can be
isolated when there is no requirement of existence conditions. It is assumed to be a Gaussian random
process whose covariance can be estimated. When the noise level of the process varies intensely, an
optimal wind estimation is required to calculate accurate air data. Hence, the random variation of wind
velocities due to turbulence was captured using EW-AEKF and is represented as

V̇w = [V̇wx V̇wy V̇wz]
T = wVw (21)

where Vwx, Vwy, and Vwz are the components of wind velocities represented in the earth frame, and they
can be transformed into the body frame using the transformation matrix. The proposed work assumed
that all the sensors were fault-free throughout the PADS-FDD process, except the redundant air data
sensors. Specifically, the operation of the inertial measurement unit (IMU) that includes the rate gyro
sensors (p, q, r) and accelerometers (ax, ay, az) is assumed fault-free throughout the PADS-FDD, and
the noise variations of all the sensors are reduced by the EW-AEKF. In wind disturbance conditions, the
EW-AEKF adaptively tuned the noise covariance of the IMU. Hence, the noise effects of rate gyros and
accelerometers are well-tackled for the reliable estimation of air data, including Ut , α and β.

3.1 Estimation framework of EW-AEKF
The optimality of traditional extended Kalman filter (EKF) algorithms depends on the a priori noise
statistics of process noises and measurement noises (Q and R) of sensors. Prabhu and Anitha [26] pre-
sented the air data FD using an iterated optimal extended Kalman filter (IOEKF) with the standard
deviations provided by the manufacturer of the sensors. However, in the case of large variations in the
sensor measurements caused by external disturbances, the known process noise (Q) cannot provide sat-
isfactory performance for the air data estimation using IOEKF. Usually, the choice of Qk-1 made by the
trial-and-error method may induce additional uncertainty due to the user’s expertise and background
[27]. As such, the selection of the process noise covariance matrix is a challenging part of using the
traditional EKF algorithms. To resolve this issue, an adaptive version of EKF is proposed that can auto-
matically tune the noise statistics of sensors. In this case, a computationally effective nonlinear filter
such as the exponentially weighted adaptive extended Kalman filter (EW-AEKF) is considered for the
estimation of air data to present the PADS-FDD algorithm. The more general form of an EKF filtering
algorithm is presented as follows:

Step 1: Initialisation {
x̂0 = E(x0)

P0 = E((x0 − x̂0)(x0 − x̂0)T)
(22)

Step 2: Prediction
x̂k/k−1 = Fk,k−1x̂k−1 + Gk−1uk−1

P = Fk,k−1Pk−1FT
k,k−1 + Qk−1

(23)

Step 3: Correction
Kk = Pk/k−1HT

k [Sk]−1

x̂k = x̂k/k−1 + Kk[vk]

Pk = (I − KkHk)Pk/k−1

(24)
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In Equation (22), X̂0 and P0 are the estimated initial state and state error covariance matrices, respec-
tively. In Equation (23), Fk is the state transition matrix, Gk is the control input matrix; uk is the control
input vector; and Qk represents the process noise covariance matrix. In Equation (24), Kk is the Kalman
gain matrix, Hk is the measuring matrix. Sk is the innovation covariance, and vk represents the mea-
surement noise with the covariance matrix, Rk. The residual ek is defined as the difference between true
measurements and its estimated values available at time step k, and it can be presented as

ek = zk − Hkx̂k/k−1 (25)

The theoretical covariance of innovation sequence (Cek) is presented by

Cek = E
[
eke

T
k

]
(26)

Using the maximum likelihood estimation (MLE) approach, the noise covariance can be estimated
and adjusted adaptively from the measurements with the maximum probability approach. As stated
in the MLE procedure, if k < N , the ideal value of the estimated Cek in a moving time window is
presented by

Ĉek = 1

N

k∑
j=j0

eje
T
j (27)

where N is the size of the moving time window, j0 = k-N+1 is the first stage inside estimation, and
j is the moving counter inside the estimation window. In general, the determination of system noise
aims to guarantee the accuracy of the filtering process. To overcome estimation error due to external
disturbances (turbulence), a moving time window (N) for robust and adaptive estimation of air data that is
insensitive to variation in the monitoring is process used. Note that the proposed method requires tuning
a Q matrix whose noise statistics are unknown. From the proposed system knowledge, it is clear that there
are possibilities for unexpected external disturbances to the system, such as atmospheric turbulence.
Therefore, a moving window with defined length N is considered. If k > N , the newest information will
be weighted to locate the significance of newly received data. Furthermore, the weight value will be
attenuated exponentially. Hence, the improved version of the Ĉek is written as,

Ĉek = λĈek−1 + 1 − λ

1 − λN
(eke

T
k
− λNek−NeT

k−N
) (28)

where λ is the attenuation factor. The improved Ĉek will be placed into the Kalman gain matrix to
strengthen the robustness of the EW-AEKF because of the filter gain tuned to the noise fluctuations.
Hence, the adaptive estimate of the process noise covariance matrix is given by

Q̂k = KkCekK
T
k

(29)

Based on the adaptive Q matrix estimation, the filter gain (Kk) was improved to strengthen the robustness
of the filtering algorithm. Note that the proposed method considers tuning of the Q matrix only. Tuning
of the R matrix is not required for the proposed algorithm as the measurement sensor’s noise covariance
is known, reliable, and less affected by external disturbances. Furthermore, avoiding the R matrix tuning
excludes the additional computations.

4.0 PADS-FDD algorithm
In this section, a simple fault detection (FDD) logic is presented to detect any type of fault on the primary
air data sensors (PADS) considered for the proposed work. The FDD scheme is shown in Fig. 2.

In general, residual-based FDD carries the fault information irrespective of fault types. In this study,
the residuals for the FDD scheme are calculated offline to simulate various types of fault scenarios by
injecting faults into the fault-free flight data measurements. In order to detect a fault, the residuals are
used as a fault detector or vector. The residuals calculated for the proposed PADS-FDD algorithm were
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Figure 2. PADS-FDD scheme.

calculated using the actual or redundant physical sensor measurements and the estimated data, i.e. the
analytically redundant measurements. For better FDD performance, a fault model is framed, which is
a formal representation of the knowledge of possible faults and how they influence the process. As far
as air data sensor fault detection is concerned, the fault types will vary depending on the various flight
conditions and sensor positioning on the aircraft. For example, Pitot tube ports are usually blocked by
foreign objects such as the entry of insects when aircraft are on the ground, icing at high altitudes,
volcanic ashes, rainwater entry, etc. Note that in all these cases, the Pitot tubes will be blocked, which
may cause frozen output or a stuck fault to occur. A fault model (f k) includes each sensor’s data for fault
types such as stuck, bias, drift and increased noise faults under abnormal conditions, including adverse
weather conditions and atmospheric turbulence. The faulty sensor output can be presented as

Zk = zk + fk (30)

where Zk is the faulty sensor data, with an added fault model at time t being the fault-free sensor data
(zk). It is assumed that the estimated air data is free of faults throughout the FDD process. A residual is
a computed quantity that is used to alarm if a fault is present in the supervised air data sensors (PADS)
or not. The residuals (ek) of each sensor category of the air data system are calculated using the more
general form of the residual equation as follows:

|ek| =
∣∣Zk − ẑk

∣∣ (31)

where|ek| is the absolute value of the residual signal, which can be explored using Equation (2) to
differentiate each category of faulty sensors in the air data system. It can be presented as,⎧⎪⎪⎪⎨

⎪⎪⎪⎩

∣∣eUt

∣∣ =
∣∣∣(Ut + fi) − Ût

∣∣∣
|eα| =

∣∣(α+ fi) − α̂
∣∣∣∣eβ∣∣ =

∣∣∣(β + fi) − β̂

∣∣∣
(32)

where Ut,α, and β are the physical air data sensor measurements such as airspeed, AOA and AOSS,
respectively, and f i represents the fault added to the ith physical sensor measurements at time t. In order
to detect a fault, a predetermined threshold (JT ) is assigned to each sensor. The objective of the proposed
method is to minimise the number of false alarms and avoid false detections in fault-free conditions.
When setting a fault detection threshold, it is crucial to keep the false alarm rate (FAR) and the missed
detection rate (MDR) under control. For example, a too-low threshold value will lead to an increased
false alarm rate, and a too-high threshold will lead to more missed detections [28]. Note that increased
false alarms indicate a poorly designed mathematical model, which may enable unwanted control actions
that could adversely affect the system’s performance. The rationale behind this philosophy is that we
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Figure 3. X-Plane flight simulator setup.

only focus on detecting faults that may help to design a reliable FDD for the application of aircraft
control systems related to the air data system. An alarm signal (FA) is used to indicate faulty situations
using binary decision logic (0 and 1). When a fault occurs, the FA will set logic 1. When there are no
faults, the FA will be set to logic 0. If any of the air data sensor residual values exceed the JT , FA will be
set to 1, and a fault is detected. It can be represented as∣∣ei

k

∣∣< JT , Fault alarm, FA set to 0∣∣ei
k

∣∣>JT, Fault alarm, FA set to 1 (33)

where
∣∣ei

k

∣∣ is the absolute (modulus) of the residuals of ith sensor of the air data cluster (Ut , α, β)
considered to be a non-negative quantity without regard to its sign. In Section 5, we will present the
various fault scenarios of the sensors to simulate the proposed PADS-FDD algorithm.

5.0 Experimental setup and simulation results
In this study, we used the X-Plane 10 flight simulator to carry out an experimental flight and generate
flight sensor data for the proposed PADS-FDD. The simulation setup consists of the X-Plane version
10.32 simulator software, a Logitech Extreme Pro Joystick, a Mobile Workstation Laptop with a Core
i7-6820HQ CPU, and an Nvidia Quadro graphics card used as shown in Fig. 3. X-Plane is a compre-
hensive and powerful flight simulator that can simulate the flying characteristics of aircraft accurately.
In addition to being used for certified flight simulations in accordance with FAA regulations, X-Plane
has been the subject of numerous studies [29–32]. The turbulence generated by the X-Plane simulator
is based on overlaid sinusoidal waves with various frequencies. The aircraft models provided in the X-
Plane simulator are based on the blade element theory (the airplane is divided into many small elements,
and the forces acting on each element are calculated with a frequency of several hertz). It includes the
effects of atmospheric disturbances such as turbulence, wind shear, wind gust, etc. For different layers of
the atmosphere, we can set the wind speed, its direction and the turbulence level. X-Plane can transmit
and receive flight data using the User Datagram Protocol (UDP). The data I/O window of the X-Plane
is employed to choose the parameters that will be communicated to Simulink in the form of data pack-
ets. UDP is used for data transmission between Simulink and X-Plane. We ran the simulator via UDP
communication incorporated in Matlab/Simulink and recorded flight data under various turbulence con-
ditions. To obtain flight data, a software-in-the-loop (SITL) simulation was performed with a Boeing
B737-800 aircraft that is readily available in the X-Plane’s aircraft folder. The B737-800 aircraft is a
large fixed-wing commercial transport aircraft with twin jet engines. To complete the autopilot’s fun-
damental operational loops, including pitch control loop (PCL), roll control loop (RCL), altitude hold
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Table 1. Comparison of filter estimation performance

Parameter Unit of Measurement RMSE

EKF EW-AEKF
True airspeed (Ut) m/s 2.328340 0.092810
Angle-of-attack (α) rad 0.007377 0.000019
Angle-of-sideslip (β) rad 0.007697 0.000020

(AH) and heading hold (HH), the controller receives feedback from the X-Plane flight data. The PID
controller was used to implement each of these loops. UDP send and receive blocks were accessed with
two independent unidirectional transmissions and an Internet Protocol (IP) address. For the UDP con-
nection between Matlab/Simulink and X-Plane, the IP address used was 127.0.0.1 with the output ports
49,000 and 49,004. The frame rate was set to 50 packets per second (pps) during flight simulation.

The flight data was collected with the required variables. Data outputs are recorded by using the
data output option in X-Plane with a text (.txt) file. The flight simulation was carried out with take-off,
climb and cruise phases under atmospheric turbulence. The atmospheric turbulence magnitude was set
to 2 using the weather setting under the environment tab, as shown in Fig. 4. Before implementing the
proposed approach, the accuracy and stability of the filtering mechanisms were studied to verify the air
data estimation algorithms using traditional EKF and the proposed EW-AEKF.

5.1 Filter estimation performance results
In this subsection, we present the simulation test results of conventional EKF and adaptive EKF (EW-
AEKF) to compare and verify the estimation performance. For the estimation of air data, the filtering
performance of a so-called non-linear filter (EKF) and EW-AEKF was tested under abrupt environmen-
tal variations such as atmospheric turbulence. The EKF performance was found to be insufficient due to
convergence errors. Therefore, an adaptive version of EKF (EW-AEKF) is preferred to estimate air data
and detect sensor faults. Figures 5 and 6 show the estimation plots of air data (true airspeed, angle-of-
attack, and angle-of-sideslip) under fault-free conditions. To test the filters, the simulated flight data was
logged with moderate atmospheric turbulence (turbulence magnitude of 2) at an altitude of 5,000m.

As can be seen, the estimation performance of EW-AEKF is better than the estimation using EKF
in terms of filter convergence error. Note that the filter estimation error is crucial for model-based
FDD methods to ensure reliable estimates of the aircraft parameters. The estimation performance was
compared with the root mean square error (RMSE) of the filters and is presented in Table 1.

5.1.1 Robustness analysis using Monte Carlo simulations
In this section, experiment results using Monte Carlo Simulations (MCS) are presented for the perfor-
mance evaluation of the developed FDD scheme with respect to the uncertainty acting on the system.
The analysis using MCS represents a further method for estimating the reliability and robustness of the
FDD scheme [33]. The simulation of different fault-free and faulty data sequences was carried out with
various turbulence conditions. The MCS was performed by varying the parameters of the kinematic
model developed for the proposed algorithm by exploiting the MATLAB platform. Table 2 summarises
the results obtained by considering the EW-AEKF estimation for the air data sensor FDD. As shown in
Fig. 7, the mean and standard deviations of estimation error are within the acceptable level. The per-
formance of the FDD method was evaluated on a number of Monte Carlo runs equal to 2,000. Based
on the outcome of MCS, performance metrics such as false-alarm rate (FAR) and missed detections are
analysed for the fault-free and each fault case. With the proper design of the fault detection filter and
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Figure 4. Environmental setup using X-Plane simulator.

Figure 5. Air data estimation using EKF.

choice of the FDD thresholds, we achieved FDD with better detectability and a FAR of 0.8% for air-
speed, 0.5% for AOA, and 1.75% for AOSS. The results demonstrate that the robustness of the proposed
FDD method can be effectively analysed using Monte Carlo simulations.
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Figure 6. Air data estimation using EW-AEKF.

Figure 7. MCS results of estimation error and FAR.
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Table 2. Monte-Carlo outcome of air data estimation and FDD performance

Mean Standard Deviation
Variable of Error (μ) of Error (σ ) FAR

Min. Max. Min. Max. (%)
Airspeed (Ut) 0.17847m/s 0.48751m/s 0.02378m/s 1.30121m/s 0.8
AOA (α) 0.00261rad 0.00339 rad 0.00004rad 0.00790rad 0.5
AOSS (β) 0.00372rad 0.00425rad 0.00007rad 0.00713rad 1.75

Figure 8. Airspeed sensor stuck fault at t = 66sec.

5.2 PADS-FDD results using simulated flight sensor data
In this subsection, we presented the results of the PADS-FDD algorithm using simulated flight sensor
data of a B737-800 aircraft with a turbulence magnitude of 2 at an altitude of 10,668m. To validate the
algorithm using captured flight data, the EW-AEKF estimated air data, and the physical sensor data of
the aircraft used. Note that the actual air data sensor measurements are not used in the filtering procedure
and are used only as a comparison reference with the estimated air data to detect and diagnose faults.
The PADS-FDD results for the various fault scenarios under atmospheric turbulence were considered.
The most common fault that occurs on Pitot tubes is the blockage fault, which leads to a stuck or frozen
output on the airspeed indications. Figures 8 and 9 show the Pitot tube blockage (stuck) fault in the flight
sensor data at time t = 66sec.

As can be noticed, the absolute value of the residual signal (eU t
) exceeds the predetermined threshold

of 2m/s at time t = 66sec, and it jumps beyond 30m/s. Hence, the fault is detected. During the sensor
fault, the RMSE of the filter (EW-AEKF) is 15.7612m/s. Note that the fixed threshold value is related
to the permissible error limit of an airspeed indicating system as mentioned in the EASA specifications.
Figures 10 and 11 show the simulation results of the drift fault and residuals of the airspeed sensor.

In Fig. 10, the drift fault of the airspeed sensor is presented by injecting the fault in the physical
airspeed sensor measurements at time t = 70sec.

Drift fault is a condition where the measurement error rises over time, which originates from the
loss of the sensor’s sensitivity. In Fig. 11, the residual (eU t

) exceeds the 2m/s threshold and reaches
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Figure 9. Airspeed sensor residual during stuck fault.

Figure 10. Airspeed sensor drift fault at t = 70sec.

beyond 3.5 m/s, which is not acceptable. The RMSE of the filter during the airspeed sensor drift fault
is 2.5129m/s. In Figs 12, 13, 14, and 15, the airflow angles (α and β) fault detection is presented as a
bias fault, which is the most common fault experienced by the commercial aircraft vane type α and β
sensors. A bias fault is the steady offset error between the actual and measured values. The results are
shown below.

In Fig. 12, the bias fault is introduced to the physical angle-of-attack sensor measurements at time
t = 65sec. The absolute value of the residual signal exceeds the predetermined threshold of 0.008rad.
As a result, the fault is detected at t = 65sec. Figure 13 shows the residual variations during bias fault

https://doi.org/10.1017/aer.2023.32 Published online by Cambridge University Press

https://doi.org/10.1017/aer.2023.32


The Aeronautical Journal 2039

Figure 11. Airspeed sensor residual during drift fault.

Figure 12. Angle-of-attack (α) sensor bias fault at t = 65sec.

on the angle-of-attack (α) sensor. Figure 14 shows the bias fault on the angle-of-sideslip (β) sensor at
time t = 60sec.

In Fig. 15, the residuals after the bias fault on the β sensor, which exceed the threshold value of
0.0025rad, is presented. The RMSE of the filter during α and β sensors bias faults is 0.0074rad and
0.0012rad, respectively.

In Figs 16, 17, 18, 19, 20, and 21, an increased noise fault on the air data sensors is introduced
under the atmospheric turbulence. During turbulence, the air data sensors’ noise increases significantly
because of the heavy airflow distortion. The turbulence magnitude of 3 was set in the flight simulator
weather setup window. The results are shown below:
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Figure 13. α sensor residual during bias fault.

Figure 14. β sensor bias fault at t = 60sec.

Figure 16 shows the increased noise fault on the airspeed sensor under external disturbance (turbu-
lence). The residual variations found in Fig. 17 show that the fault detected at time t = 141.9sec, and the
residuals surpass the fixed threshold value of 2m/s. As can be noticed, the airspeed sensor residual jumps
beyond 16m/s after the occurrence of the fault. The RMSE of the filter during the fault is 3.5572m/s.

As seen in Figs 18 and 20, increased noise faults occurred on α and β sensor measurements at time
t = 141.95 and t = 141.9sec, respectively. As can be noticed, heavy airflow distortions caused by the
increased turbulence magnitude on the rotating vane type α and β sensors cause an increased noise fault.
In Figs 19 and 21, the AOA (α) and AOSS (β) sensor residuals indicate the occurrence of increased noise
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Figure 15. Angle-of-sideslip (β) sensor residual at t = 60sec.

Figure 16. Airspeed sensor increased noise fault at t = 141.9sec.

faults when they exceed the fixed thresholds of 0.01 and 0.005rad, respectively. The RMSEs of the filter
during α and β sensor noise faults are 0.0039 and 0.0021rad, respectively.

6.0 Conclusions
In this paper, fault detection and diagnosis of air data sensors are presented using estimated air data in
the presence of moderate atmospheric turbulence. The mathematical model was developed using aircraft
kinematics, which excludes the forces and moments of the aircraft. The proposed PADS-FDD algorithm
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Figure 17. Airspeed sensor residuals after noise fault.

Figure 18. α sensor increased noise fault at t = 141.95sec.

simulated various fault scenarios using the MATLAB platform. In order to estimate reliable air data, the
exponentially weighted adaptive Kalman filter (EW-AEKF) was designed and implemented with a lower
computational load. The estimation performance of the EW-AEKF was found to be consistent even in
a turbulent environment. The estimated data is used to generate residual signals and detect the actual
air data sensor faults using a simple residual equation. Before validating the FDD algorithm, a general
extended Kalman filter (EKF) and an adaptive version of the EKF (EW-AEKF) were designed to verify
the filter consistency checks. On comparison with the general EKF, the EW-AEKF has better estimation
performance in terms of less estimation error achieved for the true airspeed, AOA and AOSS, which are
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Figure 19. α sensor residuals after noise fault.

Figure 20. β sensor increased noise fault at t = 141.9sec.

0.092810m/s, 0.000019rad and 0.000020rad, respectively. An extensive experiment was carried out by
exploiting Monte Carlo simulations for assessing the overall capabilities of the developed EW-AEKF-
based PADS-FDD method in the presence of atmospheric turbulence and uncertainties. The outcome
of the Monte Carlo simulation shows that the reliability and robustness properties of the system were
achieved with lower false alarm probabilities. The PADS-FDD algorithm was validated with simulated
flight data under moderate atmospheric turbulence. The results show that the proposed algorithm can
provide a reliable FDD for air data sensor fault-tolerant control systems with less error and computational
complexity.
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Figure 21. β sensor residuals after noise fault.

The future work intends to carry out a real-time flight test with an air data sensor FDD while an aircraft
is flying under different atmospheric turbulence intensities to show the effectiveness of the proposed
algorithm. However, due to safety concerns, verification of the algorithm on a manned aircraft is not
recommended. Hence, it is recommended to verify the same on unmanned platforms such as fixed-wing
drones.
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Appendix
Figure A1. Air data sensor FDD using kinematics.
Figure A2. PADS-FDD scheme.
Figure A3. X-Plane flight simulator setup.
Figure A4. Environmental setup using X-Plane simulator.
Figure A5. Air data estimation using EKF.
Figure A6. Air data estimation using EW-AEKF.
Figure A7. MCS results of estimation error and FAR.
Figure A8. Airspeed sensor stuck fault at t = 66sec.
Figure A9. Airspeed sensor residual during stuck fault.
Figure A10. Airspeed sensor drift fault at t = 70sec.
Figure A11. Airspeed sensor residual during drift fault.
Figure A12. Angle-of-attack (α) sensor bias fault at t = 65sec.
Figure A13. α sensor residual during bias fault.
Figure A14. β sensor bias fault at t = 60sec.
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Figure A15. Angle-ofsideslip (β) sensor residual at t = 60sec.
Figure A16. Airspeed sensor increased noise fault at t = 141.9sec.
Figure A17. Airspeed sensor residuals after noise fault.
Figure A18. α sensor increased noise fault at t = 141.95sec.
Figure A19. α sensor residuals after noise fault.
Figure A20. β sensor increased noise fault at t = 141.9sec.
Figure A21. β sensor residuals after noise fault.
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