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Abstract

Adaptive management studies of invasive plants on non-agricultural lands typically employ an
empirical approach based on designed field experiments that permit rigorous statistical analysis
of results to quantify outcomes and assess the efficacy of management practices. When habitat
restoration is the primary goal of a project, traditional plot-based study designs (e.g., the
randomized complete-block design) are sometimes infeasible (this is often true in aquatic
habitats) or inappropriate (e.g., when the goal is to assess effects of management practices on
survival or resprouting of individual plants, such as trees or shrubs). Moreover, the assumptions
of distribution-specific parametric statistical methods such as ANOVA often cannot be
convincingly verified or are clearly untenable when properly assessed. For these reasons, it is
worthwhile to be aware of alternative study designs that do not employ plots as experimental
units and nonparametric statistical methods that require only weak distributional assumptions.
The purpose of this paper is to review several of these alternative study designs and
nonparametric statistical methods that we have found useful in our own studies of invasive
aquatic and terrestrial plants. We motivate each statistical method by a research question it is
well suited to answer, provide corresponding references to the statistical literature, and identify
at least one R function that implements the method. In the Supplementary Material, we present
additional technical information about the statistical methods, numerical examples with data,
and a set of complete R programs to illustrate application of the statistical methods.

Introduction

Adaptive management is a general approach to managing natural resources, the guiding
principle of which is “to treat management as an adaptive learning process, where management
activities themselves are viewed as the primary tools for experimentation” (Walters 1986, p. 3). It
is often employed in studies of invasive plants that combine site restoration with field
experiments designed to assess project outcomes and improve future management. The details
of how adaptive management is implemented vary considerably among studies, but there are
two main types of approaches. One is a formal, mathematically rigorous approach based on
adaptive control theory (e.g., Bellman 1961) that is discussed at length in the seminal book by
Walters (1986). The other is an informal, purely empirical approach in which management
activities are viewed as experiments and therefore are designed in such a way that outcomes can
be objectively assessed using rigorous statistical methods. With its empirical approach and
emphasis on valid experimental designs and statistical methods, the informal type of adaptive
management is by far the most common in studies of invasive plants and is the sole focus of the
present paper.

Adaptive management studies of invasive plants are often designed to answer questions
regarding the absolute efficacy of a given management practice, the relative efficacies of two or
more alternative management practices, or the degree to which a restoration project reduced the
abundance or spatial extent of a target population. Especially when the focal species are
terrestrial, these studies commonly employ traditional plot-based experimental designs that use
test and negative control plots as experimental units, random assignment of treatments,
replication, and spatial blocking, as in the early applications of adaptive management in forestry
byHerring and Pollack (1985), Pollack andHerring (1985), and Simard (1993). Such designs are
structured around what Kaltenbach (2021, p. 1) calls the “three main pillars of experimental
design”—randomization, replication, and blocking—which are intended to ensure the validity
of an experiment and permit rigorous and sensitive statistical analysis, typically by ANOVA
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(e.g., Hinkelmann and Kempthorne 2008; Kaltenbach 2021; Mead
et al. 2012; Montgomery 2013).

There are many situations, however, where the use of plots is
not feasible (this is often true in aquatic habitats) or not
appropriate (e.g., when the main focus is on assessing effects of
management practices on individual plants such as trees or
shrubs). Additionally, statistical methods that require strong
assumptions about the probability distribution from which
the data were sampled (e.g., ANOVA, parametric t-tests) are
susceptible to violations of those assumptions that invalidate use of
the method. How, then, are we to design studies and analyze the
resulting data in cases where experimental plots are not feasible or
appropriate, or the assumptions of distribution-specific statistical
methods cannot be convincingly verified or are clearly violated?

The purpose of the present paper is to review several alternative
study designs and nonparametric statistical methods we have
found useful for addressing these problems but which have been
used less frequently in published studies of invasive plants than we
think their utility merits. As background, we begin with brief
descriptions of three alternative study designs, then explain what
we mean by nonparametric statistical methods and why they are
sometimes preferable to parametric methods. We then turn to the
main part of the paper, which is an overview of several useful
nonparametric statistical methods for the three alternative study
designs we consider. For each design, we present a set of research
questions that are of interest in applied studies of invasive plants
and that the design is well suited to answer. For each of these
research questions, we present at least one appropriate non-
parametric statistical method and provide corresponding refer-
ences to the statistical literature. For each statistical method, we
identify at least one function from the standard or contributed
packages of the R programming language and computing
environment (R Core Team 2023) that implements the method,
and in the Supplementary Material, we provide an example where
we apply themethod to real or simulated data, as well as a complete
R program that illustrates how the method can be used in R.

Throughout this paper, we use the term “treatment” in a
manner consistent with the terminology of Hinkelmann and
Kempthorne (2008). Thus, treatments include test treatments as
well as the null (or negative control) treatment and any positive
control treatments, if used. In the present context, the null
treatment is the “do nothing” management option, while test
treatments include all management options that involve physical,
chemical, or biological manipulations, such as manual removal of
individual plants, foliar application of particular herbicides, or
introduction of a biological control agent. With this terminology,
“random assignment of treatments” explicitly includes assignment
of null and positive control treatments with no abuse of language,
and we refer to statistical comparisons between “test and null
treatments” instead of “treatments and negative control.”

Examples of Useful Study Designs

We now give three examples of useful adaptive management study
designs that yield data of types that often are best analyzed with
nonparametric statistical methods. For practical reasons related to
the fact that restoration typically is the central goal of these studies,
all three types of study design often employ an area that is spatially
separated from the site to be restored and receives only the null
treatment—usually called a reference area—as the experimental
device for providing evidence that reductions in frequency or
abundance of the target species in areas where a test treatment was

applied are actually due to the test treatment instead of some
unknown factor such weather that may have affected the entire
study area. We close this section with a brief explanation of why
reference areas are not true negative controls.

Fate of Marked Plants

When feasible, one of the most useful alternative designs for
adaptive management studies of “large” invasive plants (e.g., trees,
shrubs) consists of marking individual plants and following their
fates, as illustrated in Figure 1 (left). Here we briefly describe how
such designs are implemented so the link between the type of data
produced and the statistical methods suggested in a later section
will be clear.

Before any treatments are applied, a workable number of target
plants in the study area (all, if feasible) are marked in a way that will
not affect their growth, survival, or response to treatment. A single
test treatment can be applied to all marked plants or, alternatively,
two or more different test treatments can be randomly applied to
subsets of the marked plants. After an appropriate amount of time
following treatment application, eachmarked plant is checked and its
status (treatment outcome) is recorded. The status of a plant usually
is the outcome of a binary event (e.g., alive or dead, resprouted or not
resprouted), and the goal is to estimate the probability of the desired
outcome (e.g., dead) and its 95% confidence interval, or to compare
these probabilities for different treatments. One of the treatments can
be the null treatment, in which case plants that receive it are negative
controls. In this case, however, some of the invasive plants in the
restoration area will be left untreated.

The issue of how long to wait after treatments are applied before
assessing outcomes is important but is a biological rather than
statistical problem and therefore will not be discussed in detail
here. The basic point is that treatment outcomes must be assessed
at a time that is sufficiently long after treatment and at an
appropriate point during the growing season so the assessment
provides conclusive evidence regarding treatment efficacy, as
defined by the management goals. For example, if the goal of
management is to kill invasive Japanese knotweed (Polygonum
cuspidatum Siebold & Zucc.) plants via foliar application of a
particular herbicide, then it would not be appropriate to assess
efficacy amonth after treatment, because one could only determine
whether the herbicide had killed the aboveground portion of the
plant. Instead, one must wait until the growing season in the
following year to determine whether new shoots sprout from the
existing root stocks or rhizomes.

The practical goals of an adaptive management study might not
permit leaving untreated invasive plants in the restoration area. In
such cases, it is often possible to employ a nearby reference area
instead. Marked plants in the reference area receive the null
treatment (meaning that no test treatment is applied to them) and
play a role somewhat like negative controls. These plants become
important if, as is usually the case, a significant proportion of
marked plants in the restoration area exhibit the desired outcome
after application of the test treatment(s). If the proportion of
marked plants exhibiting this outcome in the reference area is
substantially lower, then it is reasonable to attribute the elevated
proportion in the restoration area to the test treatment(s). If,
however, the proportion of marked plants exhibiting the desired
outcome is as high or higher in the reference area as in the
restoration area, it is likely that some unrelated factor that was not
intentionally manipulated (e.g., weather conditions) affected both
areas, and the management experiment is therefore uninformative.
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Point Intercept Surveys

Conducting point intercept surveys before and after application of
alternative management practices (treatments) is a particularly
useful approach in adaptivemanagement studies of invasive plants,
because it allows one to conduct large-scale site restoration
simultaneous with rigorous assessment of the efficacy of a given
management treatment or the relative efficacies of two or more
alternative treatments. Another benefit is that field crews typically
do not know the locations of the survey points when applying test
treatments, thus removing any temptation to increase treatment
effort at locations where efficacy will be measured (this is a form of
blinding, another basic principle of good experimental design
intended to reduce bias: Kaltenbach [2021, pp. 9–10]; Mead et al.
[2012, p. 236]). This method is commonly used in studies of
invasive aquatic plants (e.g., Gannon et al. 2022; Parks et al. 2016;
Thum et al. 2012; Wersal et al. 2006, 2010) but to date has only
rarely been used in studies of invasive terrestrial plants (for an
example, see Rice et al. 2020). As we did for studies that follow the
fate of marked plants, we will briefly describe how point intercept
surveys are conducted so the link between the type of data
produced and the corresponding statistical methods suggested in a
later section will be clear.

The basic idea behind point intercept surveys is illustrated in
Figure 1 (center and right). Typically, a grid of survey points is
created using GIS software, with equal spacing between rows and
columns of points. Point locations are then transferred to handheld
GPS receivers, which are used to navigate to the points in the field.
Some form of sampling is conducted at each survey point, the exact
nature of which depends on the size of the focal invasive plant,
whether the study site is aquatic or terrestrial, and whether one
wishes to merely determine local presence–absence (Figure 1,
center) or to make quantitative estimates of local abundance or
density (Figure 1, right). For example, in their study of invasive

baby’s breath (Gypsophila paniculata L.) in dune habitats of coastal
western Michigan, USA, Rice et al. (2020) employed survey grids
with a spacing of 50 m between rows and columns of points and
counted the number of G. paniculata plants within a 2-m radius
around each survey point.

Point intercept surveys are conducted before and after
management treatments are applied, typically using the same
survey grid to maximize the ability to detect changes between
surveys. The resulting data therefore consist of matched pairs.
(This procedure assumes that pretreatment sampling does not
measurably reduce abundance of the target species at survey
points; if the chosen sampling method measurably reduces
abundance of the target species, then separate pre- and
posttreatment survey grids must be employed, data no longer
consist of matched pairs, and less-powerful statistical methods
must be used.) With quantitative data, the differences in local
density before and after treatment at the various sampling points
can be used to assess the efficacy of a given management
treatment or to compare efficacies of two or more treatments.
Changes in presence or absence at the various sampling points
can be used in a similar fashion, although with different statistical
methods. Because each matched pair of observations is made at
the same survey point, the role of spatial habitat variability across
the restoration area in inflating the variability of outcomes is
partially controlled, thus increasing the ability of the experiment
to detect temporal differences, compared with surveys using
different pre- and posttreatment sampling points. (As with
studies that follow the fate of marked plants, the issue of how long
to wait after treatments are applied before conducting the
posttreatment survey is important but is a biological rather than
statistical problem.) If feasible, an additional survey grid should
be established in a reference area outside the restoration area for
the same reason as in studies that follow the fate of marked plants.

Figure 1. Examples of useful study designs and data types for adaptive management studies of invasive plants. “Ref” denotes the reference area. Left, Determining the fate of
marked plants following treatment. Black symbols, marked plant is alive; gray symbols, marked plant is dead. Center, Pre- and posttreatment point intercept surveys with binary
data. Filled dots, live plants of the target species are present at the survey point; open dots, live plants of the target species are not present at the survey point. Right, Pre- and
posttreatment point intercept surveys with quantitative data. Darker dots correspond to higher local densities of the target species.
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Plot-Based Experiments with Nonnormal Data

As a third and final example, we mention classical plot-based
experimental designs such as the randomized complete-block
design, where plots (quadrats) are the experimental units and all
treatments are randomly assigned to plots within spatial blocks. If
the strong assumptions of ANOVA (normality of residuals,
homogeneity of variance, independence of residuals) are found to
be reasonable approximations when carefully assessed, then data
from such an experiment would be analyzed using standard
parametric ANOVA with some type of pairwise comparisons to
assess or compare efficacies of different management treatments. It
is our experience, however, that data from field experiments with
plants in non-agricultural terrestrial habitats often plainly violate
the normality and variance homogeneity assumptions, even when
transformations of the data are applied. In such cases, some of
the same nonparametric or distribution-free statistical methods we
review in this paper can be employed instead. (If only the variance
homogeneity assumption is violated, treatment outcomes can
be compared pairwise using the parametric Games-Howell test in
R package PMCMRplus [Pohlert 2023].) Additionally, negative
control plots within the restoration area can be replaced with plots
receiving the null treatment in a reference area outside the
restoration area.

Why Reference Areas Are Not True Negative Controls

Adaptive management field studies designed in accordance with
standard statistical principles of experimental design require
negative control plots if, as is usually the case, it is necessary to
provide objective evidence that changes observed in plots to which
test treatments were assigned are actually due to the test treatments
instead of some unknown factor that was not controlled. In such
cases, a significant portion of the study area will be left unrestored.
By contrast, governmental agencies and other organizations that
fund applied studies of invasive plants typically require restoration
to be the main goal of the projects they elect to fund, and the key
measure of project success is the number of hectares restored.
Thus, there is a partial conflict between the requirements of good
experimental design and the necessity of maximizing the area
restored.

A pragmatic way to address this problem is to employ an
alternative study design with a reference area outside the area
targeted for restoration. In practice, the reference area often is an
area that for some reason is not available for restoration at the time
the study is conducted. For example, it might be an area within the
study site that contains a threatened or endangered species that
would be decimated by the test treatment(s), a portion of a large
park—too large to be restored in its entirety in a single year with
available resources—that will be restored in a future year, or a
separate lake where the target aquatic species occurs but funding
for herbicide application is not available in the current year. The
key points are that the reference area is spatially distinct from the
restoration area and that the restoration area receives only the test
treatment(s), while the reference area receives only the null
treatment.

Habitat characteristics in natural lands typically exhibit
substantial spatial variability. As a result, the fact that the
restoration and reference areas are spatially distinct implies it is not
reasonable to assume the only meaningful difference between the
two areas is that one receives the test treatment(s) and the other
receives the null treatment. Mainly for this reason, the reference

area is not a valid negative control. In terms of classical
experimental design, the restoration area is a spatial block to
which only test treatments are applied, while the reference area is a
spatial block to which only the null treatment is applied. The block
and treatment effects are therefore confounded.

However, provided the restoration and reference areas are
similar in habitat, are subject to similar levels of human and natural
disturbance, and are close enough to each other so both are likely to
be subject to the same levels of key weather variables (e.g.,
photosynthetically active radiation, temperature, and precipita-
tion), it is reasonable to assume that the temporal change in
abundance or density of the target species in the two areas would be
approximately the same if the test treatment was not applied.
Therefore, if the restoration area shows a statistically significant
decrease in abundance or density of the target species following
application of the test treatment, and if the reference area either
shows no statistically significant decrease or, as is not uncommon,
shows a decrease that is statistically significant but is significantly
smaller than in the restoration area, then it is reasonable to
attribute the greater decrease in the restoration area to the test
treatment. If, however, both restoration area and reference area
show a decrease and the decrease is not significantly smaller in the
reference area, then there is no sound evidence that the test
treatment was effective.

It is apparent that a reference area mainly serves as a check to
determine whether there is evidence that some factor other than
the test treatment might be responsible for an observed decrease in
abundance or density of the target species in the restoration area.
The evidence clearly is not as strong as the evidence provided by
classical plot-based designs that use proper spatial blocking and
valid negative controls, but these designs often are undesirable
because, as noted earlier, they leave a significant portion of the
study area unrestored.

What Are Nonparametric Statistical Methods, and Why Are
They Useful?

Data produced using the study designs outlined in the previous
section are often best analyzed with statistical methods that do not
require verification of an assumed type of probability distribution
from which the data were sampled, either because the appropriate
type of distribution is known (e.g., binary data characterizing the
fate of marked plants or the presence–absence status at survey
points in a point intercept survey; such data necessarily come from
a Bernoulli distribution, with “success” and “failure” probabilities
that sum to 1) or because the appropriate distribution is
determined computationally from the data by a statistical
resampling method (e.g., bootstrap or permutation tests for
quantitative data characterizing local abundance at survey points
in a point intercept survey). For methods that do require such
verification, the assumed distribution may or may not be normal;
the problem is that validity of the statistical method requires one to
verify convincingly that the empirical distribution of the data or
residuals closely approximates the assumed distribution. Such
methods are variously described in the statistics literature as
parametric, fully parametric, or distribution specific. None of these
terms, however, is entirely satisfactory, as each implies a distinction
that is blurred for certain statistical methods. There seems to be no
way around this terminological problem, so for convenience, we
will simply refer to all such methods as parametric statistical
methods.

4 McNair et al.: Adaptive management statistics
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The main advantage of the alternative methods we will suggest
is that they do not require one to assume a specific type of
distribution for the data that must be convincingly verified.
Methods of this type are variously described as nonparametric,
semiparametric, or distribution free, depending on details of the
specific method, but all of these terms are imprecise. For
convenience, we will refer to such methods simply as non-
parametric statistical methods.

Conover (1999, p. 118) provides a useful definition of the term
“nonparametric” that reflects its usage in the statistics literature:

A statistical method is nonparametric if it satisfies at least one of the
following criteria: (1) Themethodmay be used on data with a nominal scale
of measurement. (2) Themethodmay be used on data with an ordinal scale
of measurement. (3) The method may be used on data with an interval or
ratio scale of measurement, where the distribution function of the random
variable producing the data is either unspecified, or specified except for an
infinite number of unknown parameters.

For future reference, we note that under Conover’s definition,
statistical methods for binary data are classified as nonparametric,
because they are used on data with a nominal scale of measurement
(e.g., “success” vs. “failure,” “alive” vs. “dead”). In the simplest case,
where one is directly estimating proportions or success proba-
bilities with no explanatory variables, the rationale for this
traditional classification is as follows. The empirical probability
distribution for the data is necessarily Bernoulli, because there are
only two possible outcomes for each observation. Thus, the
assumed type of distribution (Bernoulli) necessarily agrees with the
observed type of distribution and therefore does not require
verification. Moreover, the empirical probability mass function
and the fitted Bernoulli probability mass function also necessarily
agree, with the probabilities of success and failure for both being
the observed proportions n1/n and 1 − n1/n of successes and
failures, where n1 is the observed number of successes in n trials.

Somemethods for binary data, not addressed in this paper, use a
statistical model that represents effects of explanatory variables on
the success probability by including a parametric component that
specifies an assumed functional relationship between the success
probability and explanatory variables. Such methods are referred
to as semiparametric methods, which we here lump into the
nonparametric class (as noted earlier). Examples of semipara-
metric methods include logistic regression and its generalizations,
as well as various methods of statistical time-to-event analysis,
such as the Cox proportional hazards model and the accelerated
failure time model (Harrell 2015). In logistic regression, for
example, the observed outcome for each combination of
explanatory variables is either a “success” or a “failure.”
Therefore, the empirical probability distribution for each
combination is Bernoulli and necessarily agrees with the type of
distribution assumed by the statistical model. However, the
estimated success probabilities for different combinations of values
of the explanatory variables typically will not agree exactly with the
corresponding observed proportions of successes (here we assume
replication is employed; otherwise, no satisfactory estimate of the
observed proportions of successes for different combinations of
values of the explanatory variables is possible). The observed type
of distribution is still Bernoulli, but the estimated probabilities of
success and failure diverge from the empirical probabilities,
because the assumed functional form of the parametric component
of the model is not flexible enough to permit exact agreement.

Another potentially puzzling implication of Conover’s defi-
nition concerns the large-sample methods we will mention in

several places. These methods apply to nominal (binary) data and
are therefore nonparametric under Conover’s definition. However,
each is based on a statistic that is a standardized sum of random
variables that, as a consequence of the central limit theorem, has an
approximately (standard) normal distribution if the sample size is
sufficiently large (e.g., Chung 2001, chap. 7). These methods can be
used to construct approximate confidence intervals and hypothesis
tests that are based on a fully parametric distribution (the standard
normal distribution), yet they are commonly included under the
rubric of nonparametric methods and are covered by both Conover
(1999) and Hollander et al. (2014). They do, however, require
verification that the sample size is large enough for the normal
approximation to be adequate.

The variety and advantages of nonparametric statistical
methods are well known to many research statisticians but, based
on our interactions with colleagues over the years, seem to be less
well known among biologists. Hollander et al. (2014, p. xiii) state
without reservation that “the nonparametric approach is the
preferred methodology for statisticians.” This assertion obviously
may be questioned in certain areas of application (e.g., many
laboratory and agricultural experiments—basically, the types of
application that historically were the basis for developing ANOVA
as a statistical method), but it clearly is true in many others,
especially those involving human subjects. For example, despite the
availability of fully parametric distribution-specific methods that
allow one to specify any of a wide variety of probability
distributions for the data, statistical analyses of time–to–event
data in medical studies almost always employ nonparametric
methods as defined by Conover, including both fully non-
parametric methods like the Kaplan-Meier estimator of the
survival function and distribution–free semiparametric methods
like the Cox proportional hazards model, as well as related tests for
group differences (e.g., Klein and Moeschberger 2003; Therneau
and Granbsch 2000). The main reasons are that convincing
verification of any particular distribution often is very difficult or
impossible with available data, the statistical results often are
sensitive to the choice of distribution, and the possibility of
reaching erroneous conclusions based on an inappropriate choice
of distribution may have serious implications for human health
(e.g., Anderson-Bergman 2017, p. 2; Conover 1999, p. 2).

Hollander et al. (2014, pp. 1–2) provide an instructive list of 10
advantages of nonparametric statistical methods over parametric
methods. Paraphrasing and condensing their list somewhat, the
advantages that are most relevant to adaptive management studies
of invasive plants are the following. Nonparametric methods:

• require fewer assumptions about the underlying populations
from which the data are obtained (e.g., no specific probability
distribution, such as a normal distribution, is assumed for
ratio or interval data), and therefore are applicable to many
situations where parametric procedures are either invalid or
intractable;

• are relatively insensitive to outliers compared with para-
metric methods;

• permit computation of exact P-values for tests, exact coverage
probabilities for confidence intervals and bands, and exact
experiment-wise error rates for multiple-comparison proce-
dures without assuming the underlying populations have any
specific probability distribution; and

• are only slightly less efficient than classical normal-theory
methods when the underlying populations are approximately
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normal, and can be slightly to greatly more efficient than
these methods when the underlying populations are not
approximately normal.

For statistical tests, the last item in this list essentially means
that nonparametric tests require only slightly larger sample sizes to
achieve the same statistical power as the corresponding parametric
tests when the normality assumption for the underlying
populations is tenable, while slightly to much smaller sample
sizes may suffice when it is not tenable. This important point is
emphasized by Lehmann (1975, p. viii) in his classic text on
nonparametric statistical methods: “The feature of nonparametric
methods mainly responsible for their great popularity (and to
which they owe their name) is the weak set of assumptions required
for their validity. Although it was believed at first that a heavy price
in loss of efficiency would have to be paid for this robustness, it
turned out, rather surprisingly, that the efficiency of the Wilcoxon
tests and other nonparametric procedures holds up quite well
under the classical assumption of normality and that these
procedures may have considerable advantages in efficiency (as well
as validity) when the assumption of normality is not satisfied.”

Conover (1999, p. 2) gives the following balanced characteri-
zation of the role of nonparametric statistical methods in general,
which applies to adaptive management studies of invasive plants in
particular: “Nonparametric methods have become essential tools
in the workshop of the applied scientist who needs to do statistical
analyses. When the price for making a wrong decision is high,
applied scientists are very concerned that the statistical methods
they are using are not based on assumptions that appear to be
invalid, or are impossible to verify.” Thus, both parametric and
nonparametric methods are essential tools in the statistical
toolbox. Parametric methods are likely to be the best choice when
their strong assumptions can be convincingly verified; otherwise,
nonparametric methods are a better option.

Management Experiments Using Marked Plants

We turn now to a survey of selected nonparametric statistical
methods that we have found to be useful in adaptive management
studies of invasive plants, beginning with methods appropriate for
field experiments using marked plants. Here, there are one or more
groups of plants—typically either one group of a single species
receiving a single management treatment, two or more groups of a
single species receiving different management treatments or
different levels of the same treatment, or different species receiving
the same management treatment. A known number of well-spaced
plants are marked, and a management treatment is applied
individually to each plant in each group. If the experiment involves
two or more treatments or levels, they are assigned randomly to
individual plants, usually with the same number of plants in each
treatment group. All plants are then assessed at a later time to
identify those for which each management treatment was effective,
as defined in some unambiguous way. More generally, individuals
could be assessed at multiple times following treatment, yielding
data appropriate for statistical time–to–event analysis, but funding
levels for adaptive management studies of invasive plants rarely
permit this level of effort, and we therefore do not discuss this
approach here.

The statistical methods we review for experiments of this type
assume that the recorded outcome of applying any given
management treatment to an individual plant is binary and that
the treatment application can therefore be interpreted

unambiguously as either effective (“success”) or ineffective
(“failure”) in producing the desired outcome (e.g., death). The
statistical methods yield estimates, confidence intervals, or tests of
statistical hypotheses for a parameter that represents the
probability that a given treatment will be effective when applied
to a randomly chosen plant of the focal species. We will call this
parameter the probability of effective treatment (PET). For most
purposes, the PET can be thought of as the proportion of a large
number of plants for which the treatment would be effective. We
motivate the statistical methods we review by considering four
research questions they can be used to answer, dealing with the
PET for a single group of plants or comparing PETs for two groups.

Assessing the Efficacy of a Single Management Treatment on
a Single Species

We begin by considering two research questions involving a single
management treatment applied to a single target species. The
treatment can be the null treatment (the “do nothing”management
option) but usually will be a test treatment, and the “species”might
actually be a particular hybrid or genotype.

Question 1: What Is the PET and Its 95% Confidence Interval
for a Given Test Treatment?
The goal here is to estimate the PET and its 95% confidence
interval for a particular species, treatment type, and treat-
ment level.

Statistical method: The maximum-likelihood estimator for
(binomial) PET parameter p is N1/n, where random variable N1

represents the number of nmarked plants for which treatment was
effective. Thus, using the maximum-likelihood approach, the best
estimator of success parameter p is simply the commonsense
estimator: the proportion of marked plants for which the treatment
was effective. Numerous methods have been proposed for
estimating confidence intervals for a binomial success probability.
Two that are simple but perform very well are the Wilson interval
and the Agresti–Coull interval, with the former performing slightly
better than the latter except when p is very close to 0 or 1. The
traditional Wald confidence interval has poor statistical properties
and should not be used. Additional details are provided in section
1.1 of Supplementary Appendix S1.

Recommended references: Agresti (2013, sect. 1.4.2, exercise
1.25); Agresti and Coull (1998); Brown et al. (2001).

R functions:Wilson and Agresti-Coull confidence intervals can
be computed with the binom.confint() function in R
package binom (Dorai-Raj 2022).

Example: An example using real data from an adaptive
management study of invasive Norway maple populations (Acer
platanoides L.) is presented in section 1.1 of Supplementary
Appendix S1. The R program used in this example and its output
are provided in section 1.1 of Supplementary Appendix S2.

Question 2: Does the PET for a Given Test Treatment Exceed
Prescribed Management Threshold p⋆

The goal now is to determine whether there is strong evidence that
management objective p > p⋆ has been achieved for a particular
species, treatment type, and treatment level, where p is the PET and
p⋆ is a threshold value to be exceeded.

Statistical method: The null hypothesis here is that PET p equals
management threshold p⋆ (H0: p − p⋆= 0), and the relevant
alternative is the one-sided hypothesis that p exceeds p⋆ (H1:
p− p⋆> 0). (H0 and H1 here are the traditional shorthand for “null
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hypothesis” and “alternative hypothesis”.) The main tests are the
exact binomial test and the mid-P binomial test; for sufficiently
large samples, there is also a large-sample test for proportions.
Simulation studies show that the exact binomial test is unduly
conservative. The false-positive error rate of the mid-P binomial
test is closer to the nominal α (significance level) but may exceed it
slightly, so P-values less than α but very close to it are suspicious.
Additional details are provided in section 1.1 of Supplementary
Appendix S1.

Recommended references: Agresti (2013, pp. 13–14, 16–17);
Hollander et al. (2014, pp. 11–13).

R functions: The exact binomial test can be performed with R’s
pbinom() or binom.test() function. The resulting P-value
can be adjusted downward to obtain the mid-P P-value using R’s
dbinom()function (see section 1.2 of Supplementary Appendix
S1). The large-sample test can be performed with the prop.
test() function, or simply by using the pnorm() function. All
of these functions are included in the stats package (R Core
Team 2023), which is part of R’s standard library.

Example:An example using the A. platanoides data is presented
in section 1.1 of Supplementary Appendix S1 and the correspond-
ing R program and output in section 1.1 of Supplementary
Appendix S2.

Comparing Treatment Efficacy in Pairs of Treatments or
Species

We now consider two research questions involving comparisons
between two groups of individual plants. The groups usually will
consist of individuals receiving one or the other of two treatments
(two test treatments, or test and null treatments) but could instead
consist of two invasive species receiving the same test treatment.

Question 3: Do PETs pA and pB for Plant Groups A and B
Differ?
Here the goal is to determine whether there is strong evidence that
the PETs for two groups of plants differ. In the most common
situation, the two groups are plants of a target invasive species that
receive different management treatments, one of which might be
the null treatment. The null hypothesis is that there is no
difference; the alternative hypothesis can be either two-sided or
one-sided, depending on whether one or both alternatives are of
interest.

Statistical method: We are interested in testing the null
hypothesis that PETs pA and pB are the same (H0: pA − pB= 0)
against either the two-sided alternative hypothesis that pA and pB
are different (H1: pA − pB ≠ 0) or the one-sided alternative
hypothesis that pA is greater than pB (H1: pA − pB> 0), with group
labels A and B assigned appropriately. The best tests of H0 are the
mid-P version of the exact conditional binomial test and various
versions of Barnard’s exact unconditional binomial test; Fisher’s
well-known exact conditional binomial test should not be used, as
simulation studies have shown it produces P-values well above the
correct values. Large-sample tests of H0 are based on approximate
normality of the standardized difference between the maximum-
likelihood estimators of pA and pB. Additional details are provided
in section 1.2 of Supplementary Appendix S1.

Recommended references: Agresti (2013, pp. 78, 93–94);
Hollander et al. (2014, sect. 10.1, sect. 10.1 comments 4 and 5);
Mato and Andrés (1997); see also the documentation for the
exact.test() function in R package Exact (Calhoun 2022).

R functions: Various versions of the exact unconditional
binomial test can be performed using the exact.test()
function in R package Exact; the package author recommends
using Barnard’s original version of the test when computationally
feasible, as specified by option method=″csm″. The R function
prop.test() in the stats package tests H0 using a large-
sample test that handles both the two-sided and the one-sided H1.
It checks a condition for adequacy of the large-sample
approximation and reports a warning if it is violated. Function
prop.test() also computes the Newcombe confidence interval
for pA − pB.

Example:An example using the A. platanoides data is presented
in section 1.2 of Supplementary Appendix S1. The corresponding
R program and its output are displayed in section 1.2 of
Supplementary Appendix S2.

Question 4: What Is the Difference between the PETs for Plant
Groups A and B and Its 95% Confidence Interval?
The goal in this case is to estimate the difference pA − pB between
the PETs for groups A and B and to estimate its 95% confidence
interval.

Statistical method: PET difference pA − pB can be estimated by
the difference between the maximum–likelihood estimators for pA
and pB. The preferred methods for estimating confidence intervals
for pA − pB are the Newcombe hybrid score and Agresti-Caffo
estimators. The traditional Wald confidence interval has poor
statistical properties and should not be used. Details are provided
in section 1.2 of Supplementary Appendix S1.

Recommended references:Agresti (2013, note 3.1, exercise 3.27);
Agresti and Caffo (2000); Fagerland et al. (2015).

R functions: Newcombe hybrid score and Agresti-Caffo
confidence intervals for pA − pB can be computed using the
function pairwiseCI() in R package pairwiseCI
(Schaarschmidt and Gerhard 2019). The Newcombe confidence
interval can also be computed using the prop.test() function
in R’s stats package. For small samples, the exact.test()
function in the Exact package mentioned in discussing Question
3 has an option to compute an estimated confidence interval for pA
− pB. An alternative that seems to be computationally more
efficient is the BinomCI() function in the ExactCIdiff
package (Shan and Wang 2022), which estimates an exact
unconditional confidence interval due to Wang (2010). Neither
of these R functions is included in the review by Fagerland
et al. (2015).

Example:An example using the A. platanoides data is presented
in section 1.2 of Supplementary Appendix S1. The R program used
in this example and its output are provided in section 1.2 of
Supplementary Appendix S2.

Management Experiments Using Point Intercept Surveys

The second type of adaptive management study we consider is field
experiments using point intercept surveys conducted before and
after application of one or more management treatments. We
assume that the surveys employ a grid of survey points distributed
evenly over the study area, as described earlier in the overview of
point intercept surveys and that the same survey points are used
before and after treatment.

A proper statistical analysis of data from pre- and posttreat-
ment point intercept surveys must account for two important
properties of the data. First, because the same sampling points are
used for both surveys, the pre and post data from any given survey
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point cannot be assumed to be independent, even if the survey
points differ slightly due to navigation errors. The sources of this
property vary, depending on the particular habitat and invasive
species involved, but include the possibilities that the same
plants are being sampled, the plants are distinct but genetically
identical or correlated, and growth conditions that vary
meaningfully throughout the study area are the same or highly
correlated due to spatial autocorrelation of local habitat variables
that affect plant growth rates. This property implies that pre and
post data from each sampling point must be treated as
matched pairs.

The second important property is that because local physico-
chemical habitat properties, plant abundance, and plant genetics
typically exhibit spatial autocorrelation at sufficiently small
distances between sampling locations, presence–absence or local
abundance data from neighboring survey points in point intercept
surveys also are likely to exhibit spatial autocorrelation unless
adequately spaced. We discuss the problem of spatial autocorre-
lation further in a later section, where we offer some commonsense
suggestions for dealing with it. Meanwhile, we will proceed to
discuss several practical nonparametric statistical methods for
assessing treatment outcomes on the assumption that survey
points are spaced widely enough to prevent any meaningful spatial
autocorrelation.

Assessing the Efficacy of a Single Management Treatment on
a Single Species

We begin by addressing the case in which themanagement target is
a single invasive plant species and the efficacy of a single
management treatment and level is being assessed. The “species”
might actually be a particular genotype or hybrid. The statistical
methods that are appropriate for this case depend on whether the
data are binary or quantitative. We consider binary data first.

Statistical methods for binary data assume that each survey
point (or small sampling area surrounding the point) can be
unambiguously assigned to one of two mutually exclusive
management states, which we will call desirable and undesirable.
Usually, the desirable and undesirable states are absence and
presence, respectively, of live plants of the target species. The
statistical methods we review involve one or both of two
parameters, P1 and P1 0, that represent the probabilities that a
randomly chosen survey point will be in the desirable state before
the management treatment is applied (P1) or at an appropriate
time afterward (P1 0). For brevity, we will call these parameters the
pretreatment probability of the desirable state (PDS) and
posttreatment PDS. For most purposes, P1 and P1 0 can be thought
of as the proportions of a large treated area that will be in the
desirable state before and after treatment.

We present the statistical methods for binary data in the context
of four research questions dealing with the PDS for a single group
of plants before and after treatment. Each research question is
treated in the same manner as those for studies using marked
plants.

Question 5: What Is the PDS and Its 95% Confidence Interval
before or after Treatment?
The goal in this case is to simply estimate the probability that a
randomly chosen survey point will be in the desirable management
state at a particular time, which could be either before or after
treatment, and to estimate an appropriate confidence interval. This
question can be answered using the same method that was used to

answer Question 1, with survey points taking the place of
individual marked plants. In the present case, n is the total number
of survey points and N1 is the number of these points in the
desirable state.

Question 6: Does the Posttreatment PDS Exceed Prescribed
Management Threshold P1⋆?
The goal here is to determine whether there is strong evidence that
a management objective of the form P1 0 > P1⋆ was achieved for a
particular invasive species and treatment. It can be answered in the
same way as Question 2, with survey points taking the place of
individual plants and with P1⋆ (instead of p⋆) as the management
threshold. The states of survey points before treatment are not
utilized in the statistical analysis; the question is simply whether
the posttreatment condition of the restoration area satisfies the
prescribed management objective.

Question 7: What Is PDS Change P1 0 − P1 and Its 95%
Confidence Interval for Post- and Pretreatment PDS
Parameters P1 0 and P1?
The goal here is to estimate the change in PDS following treatment,
as well as its 95% confidence interval. Unlike the previous two
questions, the statistical analysis now utilizes information from
both pre- and posttreatment surveys.

Statistical method: Here we are interested in obtaining an
estimate of the difference P1 0 − P1 and its 95% confidence interval.
For reasons explained in section 2.1.1 of Supplementary Appendix
S1, an appropriate estimator for P1 0 − P1 is (N21 − N12)/n, where
random variableN21 is the number of survey points that were in the
undesirable state before treatment and the desirable state after,N12

is the number of survey points that were in the desirable state
before treatment and the undesirable state after, and n is the total
number of survey points. The Agresti-Min estimator of the
confidence interval for P1 0 − P1 has particularly good statistical
properties and is recommended. By contrast, the traditional Wald
confidence interval has poor statistical properties and should not
be used. Additional details are provided in section 2.1.1 of
Supplementary Appendix S1.

Recommended references: Agresti (2013, pp. 414–416); Agresti
and Min (2005).

R functions: Function diffpropci.mp() in R package
PropCIs (Scherer 2018) computes the Agresti-Min confidence
interval. Function scoreci.mp in the same package computes a
score confidence interval for P1 0 − P1 due to Tango (1998).

Examples: An example using real data from an adaptive
management study of invasive G. paniculata populations is
presented in section 2.1.1 of Supplementary Appendix S1. An R
program that analyzes a set of simulated data is presented in
section 2.1.1. of Supplementary Appendix S2.

Question 8: Is PDS Change P1 0 − P1 Positive, Meaning That
the PDS Increased following Treatment?
The goal here is simply to determine whether there is strong
evidence that the PDS increased following treatment. Question 7
deals with the issue of how large the increase (if any) was, which
usually is more important to know.

Statistical method: For this question, we are interested in testing
the null hypothesis that posttreatment PDS P1 0 is the same as
pretreatment PDS P1 (H0: P1 0 − P1= 0) against the one-sided
alternative hypothesis that P1 0 is greater than P1 (H1: P1 0 − P1> 0).
If the number of survey points that switch states (1→ 2 or 2→ 1)
following treatment is sufficiently large, a score test closely related
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to theMcNemar test can be used for this purpose. It is important to
note that the chi-square test recommended by Madsen (1999),
Parsons (2001), and Hauxwell et al. (2010) and used by Mikulyuk
et al. (2010) as the basis for a power analysis is not appropriate for
comparing pre- and posttreatment point intercept data when the
same sampling grid is used for both surveys, because the pre and
post observations for each survey point are paired and therefore
cannot be assumed to be statistically independent. The McNemar
test and the closely related score test are designed specifically for
this case and have been used by, for example, Wersal et al. (2006,
2010), Madsen et al. (2006, 2008), and Rice et al. (2020). Two
alternative tests that can be performed with R and do not require
the number of survey points that switch states to be large are the
exact conditional test and the mid-P McNemar test. Additional
details are provided in section 2.1.1 of Supplementary
Appendix S2.

Recommended references: Agresti (2013, pp. 416–417);
Fagerland et al. (2013); Hollander et al. (2014, pp. 506–508).

R functions: The mcnemar.test() in the stats package
performs the classical McNemar asymptotic test of the null
hypothesis against the two-sided alternative. Rather than dealing
with the problem of how to utilize this function to produce a
P-value for the appropriate one-sided alternative hypothesis, we
recommend performing the test more transparently by using
R function pnorm(), as explained in section 2.1.1 of
Supplementary Appendix S1. The exact conditional test is easy
to perform using R function pbinom(); Hollander et al. (2014,
p. 507) give an example. The P-value for the mid-PMcNemar test
also can easily be computed using pbinom(). Additional details
are provided in section 2.1.1 of Supplementary Appendix S1.

Examples: An example using G. paniculata data is presented in
section 2.1.1 of Supplementary Appendix S1. An R program that
analyzes a set of simulated data is presented in section 2.1.1 of
Supplementary Appendix S2.

Additional remarks: From a management perspective, it is
important to know whether P1 0 − P1> 0, because it provides
evidence as to whether the frequency of the invasive plant
decreased. It turns out, however, that having strong evidence that
P1 0 − P1> 0 for a site that received a test treatment does not
necessarily mean that the treatment caused the increase in PDS,
even if there is no evidence of an increase in PDS in the reference
area. Some additional statistical analysis is required if one wishes to
attribute an increase in PDS to the test treatment. This issue and
the additional statistical tests required to address it are discussed in
section 2.1.1 of Supplementary Appendix S1.

We now consider statistical methods for quantitative data.
These methods assume that a quantitative measure of the target
invasive plant’s local abundance or density (abundance per unit
area) has been acquired from the immediate vicinity of each survey
point, both before treatment and at an appropriate time afterward.
The measurements must be made in a such a way that the
measurement process does not measurably change (reduce) the
abundance or density at survey points, as the same points are used
in both surveys. A simple measure of local abundance that is often
suitable in studies of terrestrial plants is the number of live plants
or stems of the target species within a disk of fixed radius around
each survey point; a simple measure of local density is the local
abundance divided by the area of the sampling disk. Sampling
within defined disks or quadrats is often infeasible in lake studies,
but suitable measures of local abundance can still be obtained (e.g.,
using rake tosses from a boat in studies of invasive Eurasian
watermilfoil [Myriophyllum spicatum L.]). For convenience, we

focus on local density here, but the same statistical methods are
appropriate for local abundance.

We motivate the statistical methods we review by presenting
them in the context of four research questions dealing with the
mean local density of a group of plants before and after treatment.
In practice, the groups usually will be plants in the restoration and
reference areas, or plants in separate restoration areas receiving
different test treatments. Thus, the groups will be located in
spatially distinct areas, with point intercept surveys being
conducted in each area before and after treatment application.
We denote the mean local pre- and posttreatment densities of
plants in group i by μi and μi 0, respectively.

Several standard nonparametric statistical methods are poten-
tially useful for characterizing mean local density or assessing
potential changes following treatment. These include theWilcoxon
sign-rank test (for one-sample data), Wilcoxon rank-sum test (for
two-sample data), permutation t-test, bootstrap t-test, and addi-
tional bootstrap methods that are available specifically for
estimating confidence intervals for the mean and quantiles.
While all of these methods are nonparametric, the assumptions
underlying the rank-sum test are slightly more restrictive than
those underlying the main permutation and bootstrap tests; most
importantly, the rank-sum test assumes that either the distribution
functions F(x) and G(x) for the two statistical populations are
identical for all x (the null hypothesis) or the distribution function
F(x) for one of the populations dominates the distribution function
G(x) for the other in the sense that F(x) ≥ G(x) for all x and F(x) >
G(x) for at least one x (the alternative hypothesis) (Lehmann 1975,
p. 66). Moreover, rank-based methods discard much of the
information that quantitative data contain and are therefore
expected to be less likely than permutation or bootstrapmethods to
detect small but real differences between the mean or median of a
statistical population and a prescribed management threshold, or
between the means or medians before and after treatment. Rank-
based methods are often good choices in applications where
sample sizes are very small, but point intercept surveys typically
yield sample sizes that are large enough to allay concerns about the
adequacy of permutation or bootstrap methods. For these reasons,
and also because some of the newer R packages contain functions
for performing permutation and bootstrap tests that are as easy to
use as those for performing Wilcoxon tests, we will emphasize
permutation and bootstrap methods in our presentation of
nonparametric methods for quantitative data.

The theory and numerical methods underlying permutation
and bootstrap tests and confidence intervals is not easily explained
in a few paragraphs, so we refer the reader to the lucid
presentations of both permutation and bootstrap methods by
Efron and Tibshirani (1993). The books by Davison and Hinkley
(1997) and Chernick (2008) are also useful. Both permutation and
bootstrap methods rely on computer resampling of the original
data instead of relying on assumed probability distributions. A key
difference between them is that permutation methods employ
sampling without replacement, while bootstrap methods employ
sampling with replacement. In our opinion, permutation methods
are somewhat simpler for nonexperts to use, mainly because there
are so many alternative ways to implement bootstrap methods.

Question 9: What Are the Mean Local Densities μi and μi 0 in
Plant Group i before and after Treatment and Their 95%
Confidence Intervals?
The goal here is simply to characterize the mean local density of an
invasive plant species in a restoration or reference area before and
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after treatment, focusing on one combination of plant species,
treatment type, and treatment level at a time.

R functions: The function meanCI() in R package MKinfer
(Kohl 2023) is a flexible and convenient function for constructing
bootstrap confidence intervals for the mean density (or abun-
dance) of an invasive plant. Its bootci.type argument provides
options for computing several different types of bootstrap
confidence intervals, which are explained by Efron and
Tibshirani (1993, chap. 14). To use this function, we suggest
setting argument boot=TRUE and accepting the default choice
for the others. This will produce an estimate of the mean density
and five different types of bootstrap confidence intervals (viewing
all of these is interesting and may stimulate you to read chapter 14
of Efron and Tibshirani [1993]), of which we suggest using the BCa

(bias-corrected and accelerated) interval.
Examples: An example using G. paniculata data is presented in

section 2.1.2 of Supplementary Appendix S1; an R program that
analyzes a set of simulated data is presented in section 2.1.2 of
Supplementary Appendix S2.

Question 10: Is the Mean Local Density μi 0 in Group i after
Treatment Less Than Prescribed Management Threshold μ⋆?
The goal in this case is to test the null hypothesis that
posttreatment mean local density μi 0 is the same as management
threshold μ⋆ (H0: μi 0 − μ⋆= 0) against the one-sided alternative
hypothesis that μi 0 is less than μ⋆ (H1: μi 0 − μ⋆< 0), where μ⋆ is an
appropriately low prescribed density of the target invasive plant.
Rejection of the null hypothesis at a confidence level of, say, 0.95
provides strong evidence that the management goal was achieved.

R functions: Useful R packages for bootstrap methods include
boot (Canty and Ripley 2021; originally created for the book by
Davison andHinkley [1997]),bootstrap (Tibshirani and Leisch
2019; originally created for the book by Efron and Tibshirani
[1993]), and the more-recent MKinfer package, which also
includes functions for permutation tests. We find the bootstrap
and permutation functions in the MKinfer package particularly
well designed and easy to use. The boot and bootstrap
packages provide greater flexibility for bootstrap methods but, in
our opinion, require more expertise to use properly. For this
reason, we will restrict attention to the bootstrap and permutation
test functions in the MKinfer package in this review.

The boot.t.test() function in the MKinfer package
performs bootstrap t-tests comparing the mean of one sample with
a benchmark mean or comparing the means of two independent
samples and also returns appropriate confidence intervals. The
perm.t.test() function in the same package provides similar
functionality for permutation t-tests. Both functions have a
convenient interface that is nearly identical to that of the standard
t.test() function in R’s stats package.

The input data from point intercept surveys are the local
densities (as a data vector) recorded for the various survey points in
a given survey. For Question 10, there will be a single data vector,
and the mean posttreatment plant density μi 0 is to be compared
with known threshold density μ⋆. The null hypothesis is H0: μi 0 −
μ⋆= 0, and we are interested in the one-sided alternative H1: μi 0
− μ⋆< 0.

Examples: An example using G. paniculata data is presented in
section 2.1.2 of Supplementary Appendix S1; an R program that
analyzes a set of simulated data is presented in section 2.1.2 of
Supplementary Appendix S2.

Question 11: Is the Change μi 0 − μi in Mean Local Density in
Plant Group i Negative, Meaning That the Mean Local Density
Decreased following Treatment?
The goal in this case is simply to determine whether there is strong
evidence that the mean local density decreased following
treatment. The null hypothesis is that posttreatment mean local
density μi 0 is the same as pretreatment mean local density μi (H0:
μi 0 − μi= 0), and the appropriate alternative hypothesis is that μi 0
is less than μi (H1: μi 0 − μi < 0). In testing the null hypothesis, it is
necessary to account for the fact that the point intercept data
consist of matched pairs, because they were collected at the same
survey points.

R functions: Functions perm.t.test() and
boot.t.test() from R package MKinfer can be used here.
There are now two sets of local density data: pre- and posttreatment,
each as a data vector. Both functions have a paired argument,
which should be assigned the value TRUE. Both functions also have
an alternative argument, which should be assigned the value
”less” if the first of the two data arguments is the one whose
density is asserted to be less in the alternative hypothesis. For
Question 11, we are interested in the reported P-values.

Examples: An example using G. paniculata data is presented in
section 2.1.2 of Supplementary Appendix S1; an R program that
analyzes a set of simulated data is presented in section 2.1.2 of
Supplementary Appendix S2.

Question 12: What Is the Change μi 0 − μi in Mean Local
Density in Plant Group i following Treatment and Its 95%
Confidence Interval?
The goal in this case is to estimate the change in mean density
before and after treatment and to estimate the 95% confidence
interval for the difference. The change will be negative if mean
density decreased.

R functions: Functions perm.t.test() and
boot.t.test() from R package MKinfer can be used here.
These functions produce P-values as well as confidence intervals,
so a single R program can conveniently be written to generate both
types of result. We are now interested in the confidence intervals.
We note that both functions can produce two different types of
confidence interval: one-sided and two-sided. These are obtained
by assigning values ”less” and ”two.sided” to function
argument alternative.

Examples: An example using G. paniculata data is presented in
section 2.1.2 of Supplementary Appendix S1; an R program that
analyzes a set of simulated data is presented in section 2.1.2 of
Supplementary Appendix S2.

Comparing Treatment Efficacy in Pairs of Treatments or
Species

The basic problem here is to compare the decreases in mean local
density following treatment in two groups, say A and B. The groups
can be two species (or hybrids or genotypes) within a restoration
area that receive the same treatment, two restoration areas
receiving different treatments (this is a weak experimental design
but is sometimes necessary for practical reasons), or a restoration
area and a reference area. The null hypothesis is always that the
decreases inmean local density in the two groups are the same. The
alternative hypothesis is either the two-sided alternative that the
decreases in the two groups are not the same (e.g., when comparing
two treatments when there is no sound reason to expect one

10 McNair et al.: Adaptive management statistics

https://doi.org/10.1017/inp.2024.17 Published online by Cambridge University Press

https://doi.org/10.1017/inp.2024.17
https://doi.org/10.1017/inp.2024.17
https://doi.org/10.1017/inp.2024.17
https://doi.org/10.1017/inp.2024.17
https://doi.org/10.1017/inp.2024.17
https://doi.org/10.1017/inp.2024.17
https://doi.org/10.1017/inp.2024.17
https://doi.org/10.1017/inp.2024.17
https://doi.org/10.1017/inp.2024.17


particular treatment to bemore effective than the other) or the one-
sided alternative that the decrease in a specified group is greater
than the decrease in the other (e.g., when comparing the decrease
in a restoration area with that in a reference area).

Question 13: Is the Decrease μA − μA 0 in Mean Local Density
in Plant Group A following Treatment Greater (or Different or
Less) Than the Decrease μB − μB 0 in Plant Group B?
This questionmost commonly arises when comparing the decrease
in mean local density in a restoration area with that in a reference
area when both areas show statistically significant decreases. The
main interest typically is in comparing the decrease (not simply
change) in one group of plants with that in another, as test
treatments are expected to cause mean local density to decrease,
and greater decreases indicate greater efficacy. To avoid confusion,
it is therefore best to pose the null and alternative hypotheses in
terms of decreases μi− μi 0 in the two groups (these estimates will be
positive for groups that show decreases in mean local density)
instead of changes μi 0 − μi (which will be negative for groups that
show decreases in mean local density). The potential confusion
arises from ambiguity in the intended meaning of the term
“greater” when applied to negative numbers. For example, is a
change of −1.234 plants m−2 greater than a change of −0.234,
bearing in mind that −1.234 < −0.234? The intended meaning
becomes clear if we deal with decreases instead of changes;
obviously a decrease of 1.234 is greater than a decrease of 0.234.

Statistical method: Unlike Questions 11 and 12, there are now
two sets of matched-pair data: before and after treatment for group
A and before and after treatment for group B.Wemay analyze such
data by finding the density changes for matched pairs in group A
and for matched pairs in group B separately, then performing a
two-sample bootstrap or permutation t-test of the null hypothesis
that the mean density changes in the two groups are equal, treating
the two groups as independent. The null hypothesis is that the
mean change in group A is the same as the mean change in group
B. Depending on the specific application, the alternative hypothesis
can be the two-sided “not equal” hypothesis (e.g., when comparing
the efficacies of two different herbicides on a particular invasive
plant species) or the one-sided “less than” or “greater than”
hypothesis (e.g., when comparing the decrease in density in a
restoration area with the decrease in a reference area).

R functions: Functions perm.t.test() and
boot.t.test() from R package MKinfer can be used to
answer Question 13. The two data vectors are the density decreases
for matched pairs in group A and matched pairs in group B. The
function argument paired should be set to FALSE (the default)
and the argument alternative should be set to either
”two.sided”, ”less”, or ”greater”, as appropriate.

Examples: An example using G. paniculata data is presented in
section 2.2 of Supplementary Appendix S1; an R program that
analyzes a set of simulated data is presented in section 2.2 of
Supplementary Appendix S2.

Management Experiments Using Plot-based Designs

Classical plot-based experimental designs are most appropriate for
studies where the primary goal is simply to compare the efficacies
of alternative management practices rather than to simultaneously
restore as large an area as possible. Such studies are often
conducted by governmental agencies or other organizations with
secure multiyear funding as a means of identifying the best
management practices to be employed in weed control or future

restoration projects. A common experimental design in studies of
this type is the randomized complete-block design (e.g., Herring
and Pollack 1985; Simard 1993), where blocking is used to partially
separate effects of spatial variation from statistical error, each block
is complete in the sense that it includes all treatments (test and
null), and treatments are randomly assigned to plots within each
block. This design is particularly useful when the response variable
can be measured nondestructively (e.g., number of target plants or
stems per plot), in which case measurements can be made both
before and after treatments are applied. The resulting data consist
of a matched pair for each plot, and statistical analysis can then be
performed on the differences.

Classical plot-based experimental designs were originally
developed by Fisher (1935) in parallel with his development of
the ANOVA. As we pointed out in the “Introduction,” this
statistical methodology rests upon several strong assumptions
regarding statistical properties of the data that, in our experience,
often fail in field studies of invasive plants. In particular, one or
both of the normality and variance-homogeneity assumptions are
often found to be untenable when residuals are properly assessed. If
all assumptions are found to be tenable (possibly after the data are
transformed), results of designed experiments should be analyzed
with ANOVA, supplemented with appropriate tests for pairwise
differences. If the normality assumption is tenable but the
variance-homogeneity assumption is not, then the (parametric)
Games-Howell pairwise comparison test is a good option. But if
normality fails, nonparametric statistical methods become
necessary.

The most useful and reliable methods for assessing the
assumptions of parametric statistical methods are diagnostic plots
that permit visual assessment. Formal hypothesis tests that
produce P-values can be useful supplements when visual assess-
ment is ambiguous but should not be used by themselves or as the
primary assessment tool because (among other reasons) they are
sensitive to sample size (small and large) and provide no guidance
for correcting problems via transformation. Useful accounts of
how to assess the key assumptions regarding residuals and specific
probability distributions are provided by, for example, Goodall
(1982) and Faraway (2015, chap. 6). The presentation by Faraway
(2015) is particularly thorough and informative and also shows
how to produce and interpret the most useful diagnostic plots
using R functions.

When nonparametric methods are required for traditional plot-
based study designs, group comparisons can be made using the
permutation or bootstrap methods presented earlier. When more
than one comparison is performed, the resulting P-values should
be adjusted in order to maintain the nominal experiment-wise
error rate. In most cases, the Holm adjustment should be used for
this purpose, because it is conservative but less so than the original
Bonferroni adjustment while remaining valid under equally
general assumptions. Alternatively, permutation tests for designed
experiments are available in R, including randomized complete-
block designs and many others (e.g., using function aovp() in R
package lmPerm byWheeler and Torchiano [2016]), although we
currently have no firsthand experience using any of these tests.

When assessing the assumptions of ANOVA or any other
distribution-specific statistical method, it is common to find the
assessment less than convincing. Bearing in mind that the data or
residuals should be considered “guilty” of violating the distribu-
tion-specific assumptions unless convincingly shown to be
“innocent,” the following practical advice by Ryan (1997, p. 14)
provides useful guidance: “With any statistical analysis (using
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regression or some other technique) it is a good idea to analyze the
data first assuming that the assumptions are met and then analyze
the data not assuming that the assumptions are met. If the results
differ considerably, then the results of the second analysis will
generally be the more reliable.”Of course, if the results closely agree,
then one knows that it makes no meaningful difference which type
of analysis is used and one can report the results of either.

The Problem of Spatial Autocorrelation

The two types of plot-less study design we have recommended—
determining the fate of marked plants and conducting point
intercept surveys—require that the state of numerous individual
plants or survey points be assessed before and after management
treatments are applied. By sampling the same marked plants or the
same survey points, these designs partially control the effects of
variation in age, size, and genetics of individual plants and of
spatial variation in physicochemical properties of the study area on
measures of treatment response, which otherwise might substan-
tially inflate statistical error.

A by-product of these methods for controlling effects of
individual and spatial variation is that they create two potential
sources of statistical dependence between samples:

• Response measurements made on the same plant or at the
same survey point before and after treatment cannot be
assumed to be statistically independent.

• Response measurements made on plants or at survey points
that are located close to one another often are positively
correlated and hence not statistically independent.

These potential sources of dependence must be taken into
account when choosing the locations of marked plants or the
spacing between survey points, and when choosing appropriate
statistical methods for analyzing the resulting data.

The first source of dependence can easily be handled by
analyzing data consisting of binary or quantitative changes in the
state of marked plants or survey points instead of data consisting of
separate before and after states. Examples include statistical
methods based on the PET or PDS for binary data or, for
quantitative data, one-sample bootstrap or permutation t-tests
where the single sample consists of the observed changes in local
abundance or density at the same survey points before and after
treatment. Alternatively, one can use statistical methods designed
specifically for matched-pairs data, such as the McNemar test for
binary data or two-sample bootstrap or permutation t-tests for
quantitative data.

The second source of dependence—spatial autocorrelation—is
more problematic. To the best of our knowledge, no versions of the
statistical methods we have considered in this review have thus far
been developed that can accommodate spatial autocorrelation
among data from different plants or survey points or from
neighboring experimental plots (however, if different point
intercept survey points are used before and after treatments are
applied, one can employ a modified chi-square test developed by
Cerioli (1997, 2002) that accounts for spatial autocorrelation). The
usual approach to handling this problem, where feasible, is simply
to reduce or eliminate it by employing sufficiently wide spacing of
marked plants or survey points, because spatial autocorrelation
decays with distance between plants or points. A similar problem
and commonsense solution apply to plot-based experiments,
where data from neighboring plots are likely to be correlated unless

the spacing between them is sufficiently wide. The problem then
shifts to determining what “sufficiently wide” means, which takes
us into a gray area of spatial statistics.

Our recommendations for addressing the problem of spatial
autocorrelation are to be aware of it, to space marked plants, survey
points, or experimental plots as widely as feasible, to quantify
spatial autocorrelation when possible, and to consider “thinning”
marked plant or point intercept data by strategically deleting
observations for a subset of plants or points to increase nearest-
neighbor distances if spatial autocorrelation is statistically
significant. Quantifying spatial autocorrelation requires that the
locations of all data from individual plants or survey points be
recorded (e.g., with a GPS receiver) and projected to an appropriate
spatial coordinate system for which distances between locations are
accurate. To deal defensibly with the uncertainty that spatial
autocorrelation creates, it is important to be aware that the main
impact of positive spatial autocorrelation (the type usually
encountered) on statistical tests of the sort we have discussed is
to erroneously decrease the reported P-values. Intuitively, strong
positive spatial autocorrelation can be thought of as decreasing the
effective sample size (because neighboring plants or points provide
much of the same information), thereby increasing the true P-value
for hypothesis tests.

Ignoring the effect of positive spatial autocorrelation results in
an erroneously small P-value, meaning that the true P-value will be
larger than the value reported by the statistical test one performs. It
follows that if statistically significant positive spatial autocorrela-
tion is present but weak, and if the reported P-value is much less
than α (the significance level one is using), then the decision to
reject the null hypothesis based on the reported P-value is
defensible. If the reported P-value is greater than α, then regardless
of the strength of positive spatial autocorrelation detected, the
decision to accept the null hypothesis is defensible. But if
statistically significant positive spatial autocorrelation is detected
and the reported P-value is only slightly less than α, one should
consider thinning the data to eliminate the smallest nearest-
neighbor distances and then repeating the entire analysis.

Figure 2 shows an example from a study of invasive
watermilfoil (Eurasian watermilfoil [Myriophyllum spicatum
L.] and its hybrid with northern watermilfoil [Myriophyllum
sibiricum Kom.]) in Houghton Lake, MI, by Parks et al. (2016).
Point intercept surveys using the same survey points were
conducted before and after spot application of two herbicides
(2,4-D-amine and triclopyr) to watermilfoil patches comprising
either or both of the above taxa. Local abundance at each survey
point was estimated by averaging the yields of two rake-toss
samples. The first source of dependence mentioned above was
addressed by subtracting posttreatment abundance from pre-
treatment abundance at each survey point, yielding a single
sample of observed changes in local abundance. A simplified
version of the data is displayed in Figure 2, with increase,
decrease, and no change at survey points indicated by gray
triangles, black inverted triangles, and open circles, respectively.
As the figure suggests, local abundance exhibited positive spatial
autocorrelation, with points where local abundance decreased
tending to occur in clusters, and similarly for points where local
abundance increased or showed no change. This problem was
resolved by removing alternate survey points from the data set,
thereby increasing the distances between neighboring points.
This remedy also decreased the number of survey points by
roughly half, but the original survey size was large enough (996
points) for this consequence to be acceptable.
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There are several useful textbooks and monographs on spatial
statistics, but none of them address the types of statistical tests used
to assess treatment efficacy in adaptive management studies of
invasive plants. They do, however, address the issue of spatial
autocorrelation, which is fundamental to all of spatial statistics.
References we have found useful include Cliff and Ord (1981),
Ripley (1981), Cressie (1993), Bivand et al. (2013), and Plant
(2019), with the last two specifically addressing the use of R for
performing the various types of spatial analysis they cover. R
packages we have found useful include ncf (Bjørnstad 2022), sp
(Pebesma and Bivand 2023), and spatial (Ripley 2022). ncf is
mainly focused on spatial autocorrelation and provides an easy-to-
use function correlog() for estimating spatial autocorrelation,
assessing its statistical significance as a function of distance, and
plotting the results. The other two packages provide much broader
collections of tools for spatial statistics but, in our opinion, require
greater expertise for effective use. spatial is included in the
standard distribution of R.

Discussion

Three main themes run through our review of alternative study
designs and nonparametric statistical methods. The first is the
reality that alternative study designs are sometimes better choices
than traditional plot-based designs. For example, plot-based
designs often are infeasible in aquatic habitats and often
inappropriate in studies designed to assess effects of management
practices on individual plants. The second theme is that data
produced by these alternative study designs often are best analyzed
with nonparametric statistical methods, some of which may be

necessary even when a traditional plot-based design is used if the
assumptions of ANOVA or other distribution-specific parametric
statistical methods turn out to be questionable or clearly untenable
when properly assessed. The third major theme is that research
questions that arise in adaptive management studies of invasive
plants typically can be answered rigorously and efficiently using
nonparametric statistical methods available in R.

It is not our intent to deny the value of traditional plot-based
study designs coupled with ANOVA. To the contrary, this usually
is the preferred approach when funding is available strictly for
assessing the efficacies of alternative management practices, as is
often the case for studies conducted by governmental agencies
(e.g., the protocols for forest management developed by Herring
and Pollack [1985] and Simard [1993] for the Ministry of Forests,
Province of British Columbia, Canada) or at agricultural experi-
ment stations (e.g., the 14 years of agricultural experiments at
Rothamsted Experimental Station in the United Kingdom that
were the main basis for Fisher’s development of ANOVA and the
specialized statistical discipline of DOE or design of experiments).
However, in our experience with restoration projects involving
invasive aquatic plants and “large” terrestrial plants like trees and
shrubs that are distributed sparsely over large areas, plot-less study
designs or statistical methods that make only weak distributional
assumptions (or both) are often necessary or preferable. The main
purpose of this review is to make researchers and practitioners
aware of a few of the practical alternatives that are available for use
in such situations.

The main nonparametric methods we have reviewed for
estimating confidence intervals and testing statistical hypotheses
are summarized in Table 1. All of the research questions discussed

Figure 2. Map of changes in local abundance of invasiveMyriophyllum spicatum andMyriophyllum sibiricum in Houghton Lake, MI, following spot application of herbicides 2,4-D-
amine and triclopyr. Black inverted triangles, abundance decreased; gray triangles, abundance increased; open circles, no change. Based on data from a study by Parks et al.
(2016).
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in this paper are included in the table, as are most of the statistical
methods (we have omitted the large-sample methods to reduce the
size of the table, but these are approximations to some of the tests
that are included). While we obviously were not able to include all
potentially useful research questions and nonparametric statistical
methods in our review, those that we chose to discuss are ones we
have found useful for assessing the short-term efficacy of
management practices in our own studies. Assessing or predicting
long-term efficacy is another matter altogether and would carry us
into the realm of rapid evolution of herbicide resistance and related
phenomena, which are of great importance in adaptive manage-
ment of invasive plants but are beyond the scope of this review.

In our opinion, the most important unresolved problem with
statistical analysis of data from adaptive management studies of
invasive plants is that nearly all the methods for estimating
confidence intervals and testing statistical hypotheses require that
observations from different plants or survey points at any given
sampling time be independent. Cerioli’s (1997, 2002) modifica-
tions of the chi-square test to account for spatial autocorrelation
suggest a fruitful approach to resolving this problem, although
these particular tests are not appropriate for matched-pairs data
and therefore require one to forgo the statistical advantages of such
data. Another promising approach to this problem is to develop
bootstrap tests for spatially autocorrelated data, using ideas similar
to those used in bootstrap analyses of time series (e.g., Davison and
Hinkley 1997). To the best of knowledge, however, no tests of this
type for spatial data are currently available in R.

Supplementary material. For Supplementary Material accompanying this
paper visit https://doi.org/10.1017/inp.2024.17
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