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A WEIBULL LIMIT FOR THE RELIABILITY OF A CONSECUTIVE k-
WITHIN-m-OUT-OF-n SYSTEM

STAVROS G. PAPASTAVRIDIS,· University of Patras

Abstract

A consecutive k-within-m-out-of-n system consists of n identical and
stochastically independent components arranged on a line. The system will
fail if and only if within m consecutive components, there are at least k
failures. Let Tn be the system's lifetime. Then, under quite general
conditions we prove that there is a positive constant a such that the random
variable n lIkDTn converges to a Weibull distribution as n~ 00.

WEIBULL DISTRIBUTION

1. Introduction

Consecutive k-within-m-out-of-n systems were introduced by Griffith (1986), as a generali-
zation of consecutive k-out-of-n systems (see for example Tong (1985)). Essentially, in a
different context, the mathematical equivalent of a consecutive k-within-m-out-of-n system,
was studied much earlier (see for example, Saperstein (1973), (1975)).

A consecutive k-within-m-out-of-n system consists of n linearly ordered components. The
n components are identical and their failure times are stochastically independent. The system
will fail if and only if there are m consecutive components which include among them, at least
k failed components. Let T be the time of failure of an individual component and T,. be the
time of failure of the system. Let q be the failure distribution of an individual component,
i.e., q(t) = Pr {T ~ t}, for t ~ O. We are interested in studying the failure distribution of the
system, Pr {Tn ~ t}.

As Saperstein (1973), (1975) and Griffith (1986) explain, it is very difficult to compute the
failure distribution of the system.

Our main result is the following limit theorem.

Theorem. Let m ~ k ~ 2, and

q(t) = ADtD+ o(tD)

where a, Aare positive real constants. Then

Pr {n(lIkD)T,. ~ t}~ 1 - exp (_(Attk i (i=2
) ) as n~ 00.

]=k k 2

For the special case of a consecutive k-out-of-n system, this theorem has been proved by
Papastavridis (1987); the proof was based on the generating function of the failure
distribution, which was quite manageable for this special case.

Remark. The assumption that we made on the distribution q is a very mild one. Really,
since q(O)= 0, assuming the existence of a Taylor expansion of q, around zero, in a right
neighborhood of zero, implies the assumption of the theorem.
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2. Proof of theorem

The proof of our theorem is based on Theorem 2, p. 399 of Barbour and Eagleson (1984).
We consider the set

A = {(i - j + 1, i - j + 2, ... , i - 1, i): 1~ i - j + 1, i ~ n, k ~j ~ m}

which consists of j-tuples of numbers 1,2,···, n which represent the component of the
system in their ordering. Following the notation of Barbour and Eagleson (1984) p. 399, let
J = (i - j + 1, .. · , i) E A and let X, be the random variable which has the value 1 if and only
if components (i - j + 1) and i are failed and there are k failures among components,
i - j + 1, ... , i. In all other cases, X, has the value O. Let the random variables X = ~IEA Xl.
Clearly, the system fails if and only if X is greater than O. Let t; = tn -(lIka), where t ~ O. We
consider the system in the time interval from 0 to t.; Clearly

(1)

and

EX = (n - m + 1)q(tnt ~ (1 - q(tnW-k(i =~) + 2: Pl

where in the second summation J ranges over j-tuples of the numbers 1,2, ... .m, only.
It is easy to see that

(2) q(tn)k = (At)ak In + o(l/n)

(3)

so, as n~oo we have from (1)

EX~(Attk i: (i =2)
j=k k 2

because the summand ~ PI clearly goes to O. By Theorem 2, p. 399 of Barbour and Eagleson
(1984), the difference

(4)

is bounded absolutely by

Pr {Tn~ tn} - (1- exp (-EX»

(5)

where the first summation ranges over J E A and the second one ranges over J, K E A with
J =1= K and J and K have at least one common component. Clearly we have

PIPK = (At)2ak In 2 + o(1/n 2
) , for J, K E A

and for J, K E A, J =1= K and having at least one common component, we have

EXIXK = O(n- 1- (lIk» .

That means that quantity (5) goes to 0 as n~ 00. So (3) and (4) prove our theorem.
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