A WEIBULL LIMIT FOR THE RELIABILITY OF A CONSECUTIVE *k*-WITHIN-*m*-OUT-OF-*n* SYSTEM

STAVROS G. PAPASTAVRIDIS,* University of Patras

Abstract

A consecutive k-within-m-out-of-n system consists of n identical and stochastically independent components arranged on a line. The system will fail if and only if within m consecutive components, there are at least k failures. Let T_n be the system's lifetime. Then, under quite general conditions we prove that there is a positive constant a such that the random variable $n^{1/ka}T_n$ converges to a Weibull distribution as $n \to \infty$.

WEIBULL DISTRIBUTION

1. Introduction

Consecutive k-within-m-out-of-n systems were introduced by Griffith (1986), as a generalization of consecutive k-out-of-n systems (see for example Tong (1985)). Essentially, in a different context, the mathematical equivalent of a consecutive k-within-m-out-of-n system, was studied much earlier (see for example, Saperstein (1973), (1975)).

A consecutive k-within-m-out-of-n system consists of n linearly ordered components. The n components are identical and their failure times are stochastically independent. The system will fail if and only if there are m consecutive components which include among them, at least k failed components. Let T be the time of failure of an individual component and T_n be the time of failure of the system. Let q be the failure distribution of an individual component, i.e., $q(t) = \Pr{T \ge t}$, for $t \ge 0$. We are interested in studying the failure distribution of the system, $\Pr{T_n \le t}$.

As Saperstein (1973), (1975) and Griffith (1986) explain, it is very difficult to compute the failure distribution of the system.

Our main result is the following limit theorem.

Theorem. Let $m \ge k \ge 2$, and

$$q(t) = \lambda^a t^a + o(t^a)$$

where a, λ are positive real constants. Then

$$\Pr\{n^{(1/ka)}T_n \leq t\} \to 1 - \exp\left(-(\lambda t)^{ak}\sum_{j=k}^m \binom{j-2}{k-2}\right) \quad \text{as} \quad n \to \infty.$$

For the special case of a consecutive k-out-of-n system, this theorem has been proved by Papastavridis (1987); the proof was based on the generating function of the failure distribution, which was quite manageable for this special case.

Remark. The assumption that we made on the distribution q is a very mild one. Really, since q(0) = 0, assuming the existence of a Taylor expansion of q, around zero, in a right neighborhood of zero, implies the assumption of the theorem.

Received 4 January 1988; revision received 2 June 1988.

^{*} Postal address: Department of Mathematics, University of Patras, 261 10 Patras, Greece.

This paper was written while the author was visiting Bell Laboratories (MH), in the fall of 1987-88.

2. Proof of theorem

The proof of our theorem is based on Theorem 2, p. 399 of Barbour and Eagleson (1984). We consider the set

$$A = \{(i - j + 1, i - j + 2, \dots, i - 1, i) : 1 \le i - j + 1, i \le n, k \le j \le m\}$$

which consists of *j*-tuples of numbers $1, 2, \dots, n$ which represent the component of the system in their ordering. Following the notation of Barbour and Eagleson (1984) p. 399, let $J = (i - j + 1, \dots, i) \in A$ and let X_j be the random variable which has the value 1 if and only if components (i - j + 1) and *i* are failed and there are *k* failures among components, $i - j + 1, \dots, i$. In all other cases, X_j has the value 0. Let the random variables $X = \sum_{J \in A} X_J$. Clearly, the system fails if and only if X is greater than 0. Let $t_n = tn^{-(1/k\alpha)}$, where $t \ge 0$. We consider the system in the time interval from 0 to t_n . Clearly

(1)
$$p_J = EX_J = q(t_n)^k (1 - q(t_n))^{j-k} {j-2 \choose k-2}$$

and

$$EX = (n - m + 1)q(t_n)^k \sum_{j=k}^m (1 - q(t_n))^{j-k} {j-2 \choose k-2} + \sum p_j$$

where in the second summation J ranges over j-tuples of the numbers $1, 2, \dots, m$, only. It is easy to see that

(2)
$$q(t_n)^k = (\lambda t)^{ak}/n + o(1/n)$$

so, as $n \rightarrow \infty$ we have from (1)

(3)
$$EX \to (\lambda t)^{ak} \sum_{j=k}^{m} {j-2 \choose k-2}$$

because the summand $\sum p_J$ clearly goes to 0. By Theorem 2, p. 399 of Barbour and Eagleson (1984), the difference

(4)
$$\Pr\{T_n \leq t_n\} - (1 - \exp(-EX))$$

is bounded absolutely by

(5)
$$\min(1, 1/EX)\left(\sum p_J^2 + \sum (p_J p_K + EX_J X_K)\right)$$

where the first summation ranges over $J \in A$ and the second one ranges over J, $K \in A$ with $J \neq K$ and J and K have at least one common component. Clearly we have

$$p_J p_K = (\lambda t)^{2ak} / n^2 + o(1/n^2), \text{ for } J, K \in A$$

and for J, $K \in A$, $J \neq K$ and having at least one common component, we have

$$EX_J X_K = O(n^{-1-(1/k)}).$$

That means that quantity (5) goes to 0 as $n \rightarrow \infty$. So (3) and (4) prove our theorem.

Acknowledgements

The author is grateful to Bell Laboratories (Murray Hill), where this paper was written, for the hospitality provided and for a very stimulating atmosphere. The author is also grateful to F. K. Hwang for making available to him bibliographical information about the topic of this paper.

References

BARBOUR, A. D. AND EAGLESON, G. K. (1984) Poisson convergence for dissociated statistics. J. R. Statist. Soc. B 46, 397-402.

GRIFFITH, W. S. (1986) On consecutive k-out-of-n failure systems and their generalizations. Reliability and Quality Control, 157–165.

PAPASTAVRIDIS, S. G. (1987) A limit theorem for the reliability of a consecutive-k-out-of-n system. Adv. Appl. Prob. 19, 746-748.

SAPERSTEIN, B. (1973) On the occurrence of n successes within N Bernoulli trials. Technometrics 15, 809–818.

SAPERSTEIN, B. (1975) Note on a clustering problem. J. Appl. Prob. 12, 629-632.

TONG, Y. L. (1985) A rearrangement inequality for the longest run with an application to network reliability. J. Appl. Prob. 22, 386-393.