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Structured materials represent a challenge to decouple their fundamental defect and annihilation 
mechanisms that largely influence their defect accumulation rates under extreme environments [1–3]. 
Open scientific questions remain on the relative defect recovery rates in these materials, including 
effects of local density, connected porosity, and defect content in largely highly oriented two-
dimensional materials, such as graphite. Pending the atomic arrangements, incident energies, and 
chemistries, there are further varying outcomes on whether ion-induced defects can be annealed in the 
vertical, horizontal, or combination axes. Current post analysis TEM studies are not enough to support 
and report a conclusive understanding of the creation and annihilation of ion-induced defects and 
subsequent annealing mechanisms in graphite and similar anisotropic materials. Atomic level in situ 
characterization can begin to these answer questions, as well as augment our ongoing atomistic and first 
principles-based understanding of radiation damage. 
 
There are significant scientific reasons to suspect differences in how structured materials recover from 
ion-induced radiation damage. In situ ion beam transmission electron microscopy has proven to be one 
reliable and potentially high throughput approach to begin tracking microstructural evolution with 
adequate resolution to address these challenges [4]. To study the interplay between structure, chemistry, 
and defects, high temporal resolution imaging and diffraction has allowed for the collection of 
adequately resolved multimodal datasets for higher-level structural classifications by which materials 
damage and recover under extremes [5]. Pending activities include developing our understanding of ion-
induced defect production, accumulation, and remediation as shown in Figure 1 for graphite.  
 
In this presentation, we will discuss the additional benefits and challenges associated with studying 
structured materials with in situ ion beam irradiation. In addition to extracting meaningful data, it is 
necessary to create complex neural networks that utilize machine learning to decouple the information 
for these highly compressible images to suggest and validate potential per defect recovery mechanisms 
for each of these material systems. In this presentation, the basic approach to studying highly structured 
materials and analysis strategies that incorporate structure, chemistry, diffraction, and atomistic 
modeling data will be presented. Results showing the use of atomic scale imaging, modeling, and in situ 
ion beam irradiation to better classify resolved mechanisms with minimal a priori knowledge will be 
presented in detail and the potential insights gained by increasing acquisition speed and/or decreasing 
the electron dose will also be discussed.  
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Figure 1. Current damage accumulation and remediation model for irradiated graphite. 
The model is largely unconfirmed by current electron microscopy where for low damage levels 
we only have post-irradiated behavior that largely does not provide temporal information on the 
atomic rearrangements of graphite under irradiation. 
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