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Abstract
In order to complete many complex operations and attain more general-purpose utility, robotic grasp is a neces-
sary skill to master. As the most common essential action of robots in factory and daily life environments, robotic
autonomous grasping has a wide range of application prospects and has received much attention from researchers in
the past decade. However, the accurate grasp of arbitrary objects in unstructured environments is still a research chal-
lenge that has not yet been completely overcome. A complete robotic grasp system usually involves three aspects:
grasp detection, grasp planning, and control subsystem. As the first step, identifying the location of the object and
generating the grasp pose is the premise of successful grasp, which is conducive to planning the subsequent grasp
path and the realization of the entire grasp action. Therefore, this paper conducts a literature review focusing on
grasp detection technology and concludes two significant aspects: the analytic and data-driven methods. According
to the previous grasp experience of the target object, this paper divides the data-driven methods into the grasp of
known and unknown objects. Then it describes in detail the typical grasp detection methods and related character-
istics of each classification in the grasp of unknown objects. Finally, current research status and potential research
directions in this field are discussed to provide some reference for related research.

1. Introduction
In recent years, with the continuous development of robotics and the increasing cost of labor, it has
become a development trend to replace human beings with robots [1]. At present, intelligent robots
have been widely used in various fields such as industry, agriculture, medical care, and life. Humans
have always hoped that intelligent robots can perceive and interact with the environment in differ-
ent application scenarios, which can make the work efficient, accurate, and safe [2, 3]. Therefore, the
research and development of robot operation skills have important practical significance for transform-
ing and upgrading the manufacturing industry and the improvement of the current situation of social
labor shortage.

In robot control, the grasping skill of the robot arm is an important part, which is also the basis for the
robot to move and transport objects [4]. As the most commonly used primary action of robots, robotic
arm autonomous grasp has a wide range of application prospects. Compared with traditional manual
operation, it can perceive the external environment in the process of grasping, and there is no need to
set the pose of the target before each grasp, which dramatically improves the work efficiency. However,
it is still an unsolved challenge to accurately grasp arbitrary objects when the robotic arm is working in
unstructured environments or affected by other uncertain factors [5–7].

To solve these problems, many researchers are devoted to improving the interaction perception ability
of robots with the external environment, and the emergence of machine vision makes up for the defects
in the ability of robots to perceive the external environment to some extent. In recent years, with the
successive appearance of Microsoft Kinect, Intel RealSense, and other visual sensing devices [8, 9],
as well as the continuous development of relevant visual algorithms, the perception ability of robots in
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Figure 1. The robotic grasping system. Left: The robot is equipped with an RGB-D camera and end
effector for grasping target objects in the workspace. Right: The whole system mainly includes three
parts: the grasp detection subsystem, the grasp planning subsystem, and the control subsystem.

different scenes has been significantly improved, which makes the robot achieve breakthrough progress
in the field of intelligent grasp.

In addition, the proposal of deep learning makes artificial intelligence technology more widely inte-
grated into machine vision. Deep learning relies on the powerful computing ability of computers to
autonomously learn relevant information from large datasets, which can enable robots to better adapt to
unstructured environments and is widely used for general target detection with ideal results [10]. The
emergence of deep learning has promoted the process of robot intelligence. When faced with different
task scenarios and target poses, the robot arm can execute grasp operations autonomously, effectively
improving the working efficiency of the system. Therefore, using deep learning is the main research
direction of robot intelligent grasp, which has far-reaching significance for developing the robot control
field. Generally speaking, a complete robotic grasping system mainly includes three parts [11], as shown
in Fig. 1:

• Grasp detection subsystem: To detect the target object from images and obtain its position and
pose information in the image coordinate system.

• Grasp planning subsystem: To map the detected image plane coordinates to the robot base
coordinate system and generate a feasible path from the manipulator to the target object.

• Control subsystem: To determine the inverse kinematics solution of the previous subsystem and
control the robot to execute the grasp according to the solution results.

As the starting point of the whole system, the primary purpose of grasp detection is to detect the
target objects and generate the grasp poses to achieve a stable and effective grasp. The grasp planning
and the control subsystem are more relevant to the motion and automation discipline, which are not the
focus of this paper.

At present, there are many review papers about robotic grasping technology. However, most are based
on introducing the entire grasping process, and there are few specific discussions on robotic grasp detec-
tion. For example, refs. [12–15] mainly introduced robotic grasping based on the mechanics of grasping
and the finger–object contact interactions, which focus on the essence of grasping, but are not novel
enough. Refs. [8, 10] mainly reviewed the current research progress of generalized robotic grasping
from machine vision and learning perspectives. Refs. [16, 17] focused on the review of robotic grasp
detection, but the classification of grasp detection is not detailed enough. Therefore, this paper firstly
classifies the robotic grasp detection technology in detail. Then, many classical or novel grasp detection
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techniques and related research progress are introduced. Finally, we analyze the future research direction
and development trend of robotic grasp detection technology, which provides a certain reference for the
research and practical application in this field.

2. Categorization of methods
Current robot grasp detection methods have various classification methods according to different crite-
ria, which can generally be divided into two major categories [14, 18]. The first category is the traditional
analytic method (sometimes called the geometric method) [10], whose basic principle is to determine
the appropriate grasp pose by analyzing the geometry, motion state, and force of the target object. The
second category is the data-driven method based on machine learning (sometimes called the empirical
method) [10], the basic principle of this method is to let the robot imitate the human grasp strategy
for grasp detection, which does not need to establish complex mathematical or physical models before
grasping, but the calculation is relatively complex. However, with the increase in data availability, com-
puter performance, and the improvement of related algorithms, more and more researchers chose to use
the data-driven method. Therefore, this paper will focus on introducing the data-driven method. As for
the analytic method, this paper will briefly introduce it.

3. Grasp detection technology based on analytic methods
The analytic methods usually require the kinematic and dynamic modeling of the grasp operation to
find stable grasp points that can satisfy the constraints (such as grasp flexibility, balance, and stability).
Generally, according to the multi-objective optimization methods, to find a stable grasp point needs
to consider all the constraints. However, due to the high dimension of the grasp search space and the
nonlinearity of the constraint conditions, only some of the limitations are considered and others are
assumed as known or ignored. By reviewing relevant papers, the analytic methods can be divided into
form-closure grasp, force-closure grasp, and task-oriented grasp [14], which will be introduced in the
following sections.

3.1. Form-closure grasp
Form-closure and force-closure are two major bases for judging the stability of a robot grasp [19].
Form-closure means the robot can completely restrain the object’s motion in any direction without any
positional change by configuring a suitable grasping position. As for how to judge whether a grasp
is a form-closed, Salisbury and Roth [20] have demonstrated that a necessary and sufficient condition
for form-closure is that the origin of the wrench space lies inside the convex hull of primitive contact
wrenches. Liu [21] further demonstrated that the problem of querying whether the origin lies inside the
convex hull is equivalent to a ray-shooting problem, which is dual to an LP problem based on the duality
between convex hulls and convex polytopes. Ding et al. [22] studied higher-dimensional form-closure
grasp and represented the n-finger form-closure grasp by two sets of inequalities involving the friction
cone constraint and the form-closure constraint. The authors [23] simplified the above problems and
defined a distance function to represent the distance between the manipulator and the target, as shown
in Eq. (1):

d =ψi (u, q) , 1 ≤ i ≤ nc →

⎧⎪⎨
⎪⎩

d> 0, no contact

d = 0, contacted

d< 0, penetrated

(1)

where u and q represent the configurations of the target and manipulator for a given grasp, respectively,
nc indicates the number of contacts between the manipulator and the object. Based on the definition of
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Figure 2. The three-finger stable grasping strategy for convex polygons and nonconvex polygons pro-
posed in ref. [24]. (a) For convex polygons, the maximal inscribed circle touches the polygon at three
points. (b) For convex polygons, the maximal inscribed circle touches at two parallel edges. (c) For
nonconvex polygons, the inscribed circle intersects a concave vertex or a linear edge of the expanded
polygon.

the distance function, they further proposed a judgment formula about the form-closure grasp. When the
object’s position produces a differential change�u, it is necessary to satisfy that there is no penetration
between the manipulator and the object (d ≥ 0). Solving this inequality, if there exists only a solution
for �u = 0, it means that the current grasp action is a form-closure grasp. The whole process can be
represented by Eq. (2):

ψi (u +�u, q)≥ 0
sove the inequality→ �u =

{
0

others
(2)

Early studies on form-closure mainly focused on objects with simple geometry. Baker et al. [24]
presented a method that achieves a stable grasp for 2D polygonal objects with a hand consisting of
three spring-loaded fingers and with five degrees of freedom (DOFs). In this method, they proposed
corresponding grasping strategies for convex polygons and nonconvex polygons, as shown in Fig. 2.
On this basis, Markenscoff et al. [25] proved that any polygon object (except the circle) can always be
form-closed with four frictionless contacts. They also indicated that a spatial object can be form-closed
with only seven frictionless contacts in three dimensions.

As for complex geometry, other researchers also gave the calculation methods of form-closure grasp.
Nguyen [26] proposed a simple test algorithm for two-finger form-closure grasps. Ponce and Faverjon
[27] developed several sufficient conditions for three-finger form-closure grasps and computed all grasps
satisfying those sufficient conditions. Cornellà and Suarez [28] performed 2D fixture planning of non-
polygonal workpieces based on the form-closure and proposed a method for computing the independent
form-closure region. They used the object presented in ref. [29] to validate the proposed method (as
shown in Fig. 3), and four frictionless contacts were selected from the object boundary within an
independent region to realize the form-closure grasp and improve the robustness of the grasp.

3.2. Force-closure grasp
Force-closure means that the appropriate contact force counteracts the external force on the object at
the grasp points to constrain the object’s movement completely. In past studies, there is a wide disparity
in the descriptions of terms such as equilibrium, stability, form-closure, and force-closure in related
literature [26, 30–32]. We adopt the terminology in [31] and summarize an equation to describe the
force-closure. A grasped object with an external wrench is in equilibrium if and only if:
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Figure 3. Independent regions (red edges) and frictionless contacts (blue points) on the object
boundary.

{∀i, ci
n > 0,
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Wλ+ Ŵ = 0, λ �= 0
(3)

In Eq. (3), ci
t, ci

n, ci
s, respectively, represent the tangential force, normal force, and torque at the ith

contact. μi
t and μi

s, respectively, represent the tangential and torsional friction coefficient. W indicates
the spiral consisting of force and moment, λ is a coefficient, and Ŵ represents the external spiral.

There is a specific relation between force-closure and form-closure grasp. Form-closure property
is usually a stronger condition than force-closure, and the analysis of form-closure is essentially geo-
metric [14]. More precisely, a grasp achieves form-closure if and only if it achieves force-closure with
frictionless point contacts. In this case, form-closure and force-closure are dual to each other [26, 33].
Hence, like form-closure, most of the early studies about force-closure focused on 2D objects due to the
geometric simplicity and low calculation cost. Related works can be found in [26, 27, 34]. As for 3D
objects, there are two main research aspects of force-closure grasp: (1) simplifying the contact model
between the manipulator and the target; (2) finding optimal fingertips locations such that the grasp is
force-closure.

Understanding the nature of contact is paramount to the analysis of grasping. Ciocarlie et al. [35]
discussed some possible contact models, such as point contact with friction and soft finger contact. They
also extended a simulation and analysis system with finite element modeling to evaluate these complex
contact types. Bicchi et al. [15] analyzed the interrelationship between the contact model and the grasp
contact forces in static grasping and found that not all contact internal forces need to be controlled, which
means the DOFs of the end effector can be less than the contact forces. Rosales et al. [36] established a
grasp contact model by introducing flexibility into the joint points and contact points of the robotic hand.
Then, they analyzed the contact accessibility, object impedance, and manipulation force controllability
as grasp constraints and finally achieved the force-closure grasp. Jia et al. [37] proposed a grasping
algorithm based on the volume and flattening of a generalized force ellipsoid. They used the maximum
volume of a generalized external force ellipsoid and the minimum volume of a generalized contact
internal force ellipsoid as the objective function to establish an optimal grasp planning method to achieve
the minimum internal force stable grasp of the three-finger dexterous hand, as shown in Fig. 4.

In general, multiple grasping methods exist for the same target to satisfy the force-closure. Mostly,
optimal force-closure grasp synthesis concerns determining the contact point locations so that the grasp
achieves the most desirable performance in resisting external wrench loads [14]. Many researchers have
used this as a heuristic method. They optimize the objective function according to the predefined grasp
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Figure 4. Schematic figure of the grasping method proposed in ref. [37]: grasping a sphere with a
three-finger dexterous hand.

quality criteria to compute the optimal force-closure grasp. For example, Lin et al. [38] used the elastic
deformation energy equivalent principle to calculate the optimal force-closed grasp and proposed a
quality metric theory based on the grasping stiffness matrix. Ferrari et al. [39] solved the problem of
optimal force-closure grasp by computing the maximum sphere in force screw convex space, which
is easy to calculate but has limited applications. Mo et al. [40] also took the maximum force screw
as a performance index to optimize the grasping position. Under the constraint of force-closure, an
optimization model between the grasping position and maximum force screw was established. This
method offsets the limitation that the generalized force ellipsoid is dimensionless to express the grasping
effect clearly.

All of these methods designed various stability criteria to find the optimal grasps. After studying a
variety of human grasps, the authors in [41] conclude that the choice of a grasp is determined by the tasks
to be performed with the object. As a result, many researchers studied and addressed the task-oriented
grasp, which will be introduced in the next section.

3.3. Task-oriented grasp
A good grasp plan is usually task-oriented, but there are few studies on task-oriented grasp for two main
reasons: (1) it is complicated for modeling tasks, and (2) a single criterion lacks generalization ability,
and different grasping criteria need to be designed for different tasks. Therefore, Li and Sastry [42]
modeled the task by setting a 6D ellipsoid in the object wrench space (OWS) and designed three grasp
criteria: the smallest singular value of the grasping matrix, the volume in wrench space, and the task-
oriented grasp quality, which achieved ideal evaluation results. The problem with this approach is how
to model the task ellipsoid for a given task, which the authors state to be quite complicated.

Pollard et al. [43] considered that a task is characterized as the wrench spaces that must be applied to
the object by the robot to complete the task objective. If nothing is known about the grasping task and
each wrench direction is assumed to occur with equal probability as a disturbance, the task wrench space
(TWS) can be modeled as a unit sphere. Nevertheless, this approach lacks a physical interpretation since
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Figure 5. An ellipsoid is used to approximate the object wrench space.

wrenches occurring at an object boundary are not uniform, and the computed grasps are unlikely to be
perfect for a given task or object. Therefore, they modeled the TWS as an OWS, incorporated the geom-
etry of the object into the grasp evaluation, and then considered the effect of all possible disturbances
on the object to the task and evaluated the grasping quality by scaling the TWS and OWS. Since OWS
contains all spirals generated by disturbing forces which could act anywhere on the surface of an object,
it is possible to generalize any task and model the TWS with OWS if the grasping task is unknown.
Borst et al. [44] approximated the OWS as an ellipsoid and fitted it to a linearly transformed TWS to
obtain another representation of the TWS. For a given TWS, the maximum scale factor is searched in
order to place it into the grasping wrench space (GWS) (as shown in Fig. 5), and the grasp quality is
then obtained by comparing the TWS with the GWS.

Considering the complexity of the TWS modeling process, some researchers have used novel devices
or technologies that can more easily complete the given grasping task. EI-Khoury et al. [45] proposed a
task-oriented approach based on manual demonstration and sensor devices. Firstly, the operator demon-
strated the given task and obtained the force or moment through the sensor. Then, they modeled the
task and calculated the grasp quality according to the task compatibility criterion. The experimental
results show that the proposed method can be adapted to different hand kinematics models. Deng et al.
[46] studied the reach-to-grasp (RTG) task and proposed an optimal robot grasp learning framework by
combining semantic grasp and trajectory generation. Through experimental verification, this learning
framework can enable a robot to complete the RTG task in the unstructured environment.

3.4. Summary
The application of analytic methods can accurately detect the robot grasp configuration with supe-
rior mechanical properties or satisfy task requirements from the image, which is widely used in early
research. However, the quality of the detection results largely depends on the exact geometric model of
the object and robotic hand, and there are certain limitations in the practical application:

1. First, it is not easy to obtain accurate geometric models of objects and manipulators, and there
are always subtle differences between the actual objects and the geometric models.

2. With the transformation of the robot operating environment from a structured environment to an
unstructured environment, there will be various errors in the environment, such as model errors,
control errors, and noise. Therefore, the grasp detection results based on analytic methods have
poor adaptability in an unstructured environment.

3. For complex geometric models, it is very time-consuming to calculate stable grasp poses by the
analytic methods, which significantly reduces the robot’s work efficiency, and it is difficult to
satisfy the real-time requirements of the actual grasp process of the robot, and it is impossible to
grasp objects with unknown models.
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Figure 6. Typical process for grasping known objects.

4. Grasp detection technology based on data-driven methods
The data-driven methods rely mainly on the previously known successful grasp experience and can
be classified in various ways. Firstly, it can be classified according to the applied algorithm, that is,
whether the system uses heuristic or learning methods for grasp detection [47]. Secondly, it can be
classified according to the perceived information as model-based and model-free grasp detection [48].
It can also be divided into single-object scene and multi-object scene grasp detection according to the
number of target objects [10]. Furthermore, the grasp detection of known and unknown objects can be
classified according to whether the system has previous grasp experience with the targets [18]. The last
classification methods better reflect the characteristics of data-driven methods, which will be introduced
specifically in the following sections.

4.1. Grasp detection of known objects
A known object usually has a complete 3D geometric model and grasp poses set. The robot can access
this set and choose a good grasp pose that already exist in the set before performing the grasp operation.
This set is generally constructed offline and called the grasp experience database. Figure 6 shows the
basic process of grasping a known object.

In the offline stage, the models in the object model database are first analyzed to generate a number of
grasp poses. Then, each grasp candidate was simulated and scored according to the simulation results.
Finally, each grasp position is sorted according to the score, and the mapping relationship between the
grasp pose and the grasp experience database is established for grasp retrieval in the online stage.

In the online stage, the target object is first segmented from the scene. Then, the recognition of the
object and the estimation of the grasp pose are performed. After that, an existing grasp pose is retrieved
from the grasp experience database according to the pose estimation results. Finally, the robot performs
the grasp operation based on the retrieved pose results.

For the grasping of known objects, its related research mainly focuses on two points. The first is how
to establish an offline grasp experience database. The second is how to execute object recognition and
pose estimation. According to the different ways of establishing the offline database, the grasp detection
methods of known objects can be divided into three categories: direct analysis methods based on 3D
models, demonstration methods, and trial-and-error methods, which will be introduced in the following
sections.

https://doi.org/10.1017/S0263574723001285 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574723001285


3854 Minglun Dong and Jian Zhang

Figure 7. The generation of grasp poses based on the shape primitive decomposition method. (a)
Decompose the target object (mug) into two basic geometric models: a cylinder and a cuboid. (b) For
models with complex geometric shapes, the superquadratic decomposition tree is established (the figure
is from ref. [51]).

4.1.1. Direct analysis methods based on 3D models
This kind of method needs to assume that the 3D model of the object is known, and the difficulties
include how to generate good grasp poses automatically, how to set the evaluation criteria of the grasp
poses, and how to sample the grasp poses on the object’s surface.

Early representative research methods include the pose generation method based on shape primitive
decomposition proposed by Miller et al. [49]. In this method, the target object is firstly decomposed into
simple basic geometric models (sphere, cylinder, cone, etc., as shown in Fig. 7(a)), and a series of robot
pre-grasp poses are generated by combining the grasp of these basic geometric models. Then use the
“Gasp It!” [50] grasp simulator to test the feasibility of the grasp poses and evaluates the grasp quality,
and finally the construction of the grasp experience database is completed. Goldfeder et al. [51] further
studied this method and proposed the concept of the superquadratic decomposition tree. For models
with complex geometric shapes, the whole grasp space of the model can be divided into multiple small
grasp subspaces and arranged in the form of a tree, as shown in Fig. 7(b).

Considering the shape primitive decomposition method has low computational efficiency and accu-
racy, Pelossof et al. [52] used support vector machine (SVM) algorithm [53] to establish a regression
mapping among object shape, grasp parameters, and grasp quality. After training, this regression map-
ping can effectively estimate the grasp parameters with the highest grasp quality for the new shape
parameters. However, this method is simulated and verified on a grasping simulator, which has cer-
tain limitations for grasping real objects. Hereto, a pre-grasp pose generation method based on abstract
image matching for grasping simple geometric models from unstructured scenes was proposed in
ref. [54]. Firstly, the 3D point cloud of the target object and scene is obtained and converted into an
annotated graph. Each node in the graph represents the detected simple shape or scene, and each edge
stores the relative pose of the primitives. Next, objects in the scene are located by matching parts of the
target graph in the scene graph, and a rigid transformation is calculated to verify the pose of the original
model in the scene (the whole object recognition process is shown in Fig. 8). Finally, the estimation
effect of the grasp poses is evaluated by comparing whether the point clouds between the rigid transfor-
mation results and the initial scanning results have enough overlap, and the evaluation results are sorted
and input to the grasp simulator to complete the construction of the grasp experience database.

https://doi.org/10.1017/S0263574723001285 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574723001285


Robotica 3855

Figure 8. The object recognition process: input scan → fast preprocessing, primitive detection →
abstract graph generation → match, transformation estimation, and verification.

4.1.2. Demonstration methods
The basic principle of this method is to let the robot learn how to grasp objects by observing and imitating
the operator’s grasping actions. During this process, two perceptual actions are carried out simultane-
ously: one is to recognize the object and the other is to record the grasp pose. Finally, the object model
and the corresponding grasp pose are saved as a grasp example.

In daily life, the human hand can easily grasp objects of various shapes and sizes. However, the
complexity and versatility of the human hand make the classification of grasp challenging. In gen-
eral, the human hand has 24 DOFs, and each DOF is not independent. Cutkosky [41, 55] conducted
a detailed classification study on the manual grasp of the target object and divided it into 16 grasp types.
Subsequently, Kjellström et al. [56] proposed a vision-based grasp classification method based on this
classification method, established a mapping relationship between manual grasp and robot grasp, and
stored the mapping relationship into a locality-sensitive hashing (LSH). It is shown that good grasp
results can be achieved by using LSH to retrieve the robot pre-grasp pose, which corresponds to a cer-
tain manual grasp type. Feix et al. [57] referred to the classification method in ref. [55] and classified
each grasp into three categories according to the precision or power of the manipulator when grasping
objects: power grasp, intermediate grasp, and precision grasp. Then, they further extended the taxon-
omy based on the number of fingers in contact with the object and the position of the thumb. At last, 33
unique prehensile grasp types were extracted. Subsequently, Cini et al. [58] optimized the taxonomies
in refs. [55] and [57] according to the shape of the object and the hand joints used in grasping, finally
classified the manual grasp into three major categories and 15 subcategories with a total of 28 grasp
types, as shown in Fig. 9.

The classification of grasp types has been used in human demonstration [57], where the human action
is to be imitated by a robot, as well as an intermediate functional layer mapping human hand grasp kine-
matics to artificial hands [59]. Balasubramanian et al. [60] guided the robot to produce different grasp
poses through the physical interaction between the human hand and the robotic arm and recorded these
poses. By comparing the grasp poses generated by manual guidance and the grasp poses independently
generated by the robot, it is found that they are similar in grasp effect, but the former has better stabil-
ity. Ekvall et al. [61] proposed a grasp pose generation method based on shape primitives and manual
demonstration, as shown in Fig. 10, where the demonstrator wears a data glove, which is used to collect
the motion data of the human hand when grasping the target object. After that, the whole grasp process
is mapped to the 3D space. By collecting a large amount of data, the robot can learn the grasp habits
of human beings and finally complete the grasp operation. The experimental results [62, 63] show that
when the number of objects in the grasp space is 5, the grasping success rate of this method is about
100%. When the number is 10, the grasping success rate is about 96%.

In order to better learn the experience of human hands, it is necessary to understand the deep meaning
and mechanism of human operation. Lin et al. [64] considered that the position of the thumb and the
grasp type of the human hand are two key characteristics of human hand grasping. Based on these
two critical features, they proposed a grasping strategy based on human demonstration learning. By
extracting these features from human grasp demonstrations and integrating them into the grasp planning
process, a feasible grasp for target objects was generated. This strategy is applied to the simulation
and real robot system to grasp many common objects in life, and the effectiveness of the algorithm is
verified. Deng et al. [65] built a visual analysis framework based on an attention mechanism for robot
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Figure 9. Classification method of grasp in ref. [58]. There are three top-level categories: power,
intermediate, and precision grasps. Power and precision grasps are both subdivided into prismatic and
circular types. According to further classification at a higher level of detail, 15 categories and a total of
28 grasp types are finally obtained (in Fig. 9, the images numbered C are from ref. [55], and the images
numbered F are from ref. [57]).

Figure 10. The robot is guided to grasp by manual demonstration. Left: The human is moving a box.
The system recognizes which object has been moved and chooses an appropriate grasp. Right: The robot
grasps the same object using the mapped version of the recognized grasp (the images in Fig. 10 are from
ref. [61]).
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Figure 11. The attention-based visual analysis framework proposed in ref. [65]. Using RGB images
as input, the ROI was selected using the saliency map generated by a saliency detection model. Inside
the ROI, the grasp type and grasp attention points were calculated according to six probability maps
produced by the grasp-type detection network. The robot is guided to grasp according to the obtained
grasp type and grasp attention points.

grasp operations, as shown in Fig. 11. The framework takes the RGB image containing the target object
and scene as input, then use the computational visual attention model to select the regions of interest
(ROI) in the RGB image and use the deep convolutional neural network (CNN) to detect the grasp types
and key points of the target object which are contained in the ROI, as the basis for the execution of the
grasp operation.

4.1.3. Trial-and-error methods
This kind of method considers that the grasp pose of the target object is not constant but needs to be
improved by continuous debugging and repeated trials. Specifically, according to the type or shape of
the object, a new grasp pose is generated or selected in the grasp experience database, and the robot is
controlled to complete the grasp operation and evaluate the grasp performance. Finally, the database is
updated according to the evaluation results.

In essence, the trial-and-error method is a process of continuous learning of the existing grasp poses
of the known objects. According to this, Detry et al. [66] proposed a probabilistic method for learning
and representing the grasping ability of objects. This method uses the grasp density to build the grasp
affordances model of objects and connects the grasp pose of the target object with the probability of
successful grasping. By controlling the robot to repeatedly complete the grasp operation for an object, it
can constantly learn and update the obtained grasp pose. When a relative optimal solution is obtained, the
kernel density estimation (KDE) [67] is used to convert it into a grasp density. The experimental results
show that the robot can effectively select the grasp method with the highest probability of successful
grasp in most cases, even when the external environment is complex or the target objects are placed
irregularly. Kroemer et al. [68] proposed a hierarchical control architecture for the problems of “how to
determine the location of the grasping object” and “how to perform the grasping operation,” as shown
in Fig. 12. The controller consists of an upper level based on reinforcement learning and a lower level
based on reactive control, where the upper level decides the location of the grasped object and the
lower level decides how to execute the grasp operation. The generated grasp operation will be fed back
to the upper level in real time for the reward function calculation, and an ideal experimental effect is
obtained.
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Figure 12. The controller architecture proposed in ref. [68]. The controller consists of an upper level
based on reinforcement learning and a lower level based on reactive control. Both levels are supported
by supervised or imitation learning. The world and supervisor are external elements of the system.

However, applying model-free direct reinforcement learning to practical grasp operations remains
extremely challenging. The papers [69–72] illustrate several reasons for this.

1. Usually, the grasp operation involves physical contact, and the transition from noncontact to
contact leads to discontinuities in the cost function. Furthermore, using reinforcement learn-
ing to compute the discontinuous cost function can cause large errors and low learning speed
[69, 70].

2. In the actual grasping, the end point of the movement should adapt to the pose and shape of the
goal. However, direct reinforcement learning has only been applied to learning the path of the
movement, not the end point [71].

3. If the robot can complete the grasp operation at the expected position, then using reinforcement
learning for learning can achieve good results. However, the the object’s actual position may
deviate from the expected position for some reasons (as shown in Fig. 13). Then it requires
considering all possible positions of the target object and finding a grasp pose in these positions
that could maximize the expectation of successfully grasping the object [72]. Therefore, it is
necessary to use reinforcement learning based on the shape and goal to learn to maximize this
expectation in order to generate motion primitives that are robust to object position uncertainty.

Stulp et al. [71] proposed a simple, efficient, and object model-independent reinforcement learning
algorithm named Policy Improvement with Path Integrals (PI2). This algorithm can learn both the shape
and goal of the motion primitive. When the object’s pose is uncertain, the learning of shape and goal
can be used to obtain motion primitives with higher robustness. Experimental studies show that after
learning with the PI2, the robot can successfully grasp all the perceived objects in the 40 cm × 30 cm
area of the table (the position of the objects is uncertain).

The above is an introduction to the grasping detection technology of the known 3D model. Although
these methods have high accuracy, they still have certain limitations on how to build accurate 3D models
of objects and how to adapt to grasp in different environments. On the one hand, it is often difficult to
obtain an accurate 3D model of the object in practice, and the process requires a lot of time to sample
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Figure 13. Left: The manipulation platform used in ref. [71]. Right: The PI2algorithm is used to learn
the goal and shape of a motion primitive, to obtain a motion that can grasp the object in all possible
positions.

and model the object’s data. On the other hand, the grasp detection for a known 3D model has great
limitations in the practical application, and it is unsuitable for use in the unstructured environment with
a wide variety of objects.

4.2. Grasp detection of unknown objects
An unknown object usually has an uncertain physical model and no prior grasping experience. Different
from grasping a known object, when the robot grasps an unknown object, it needs to compare the
unknown object with the previously grasped object and estimate the grasp pose of the object through
relevant methods. In this paper, the grasp detection technology of unknown objects is divided into two
categories: perception-based and learning-based methods, which will be introduced in the following
sections.

4.2.1. Perception-based methods
In the actual grasp process of unknown objects, the robot can only perceive part of the information from
the outside world, such as RGB and depth information. Therefore, the robot needs to use incomplete
information to generate a good grasp pose. Perception-based approaches focus on identifying structures
or features in the data to generate and evaluate grasp candidates. By referring to the relevant paper, there
are mainly two ways to generate grasp poses through perception.

The first is to extract the 3D or 2D features from the segmented point cloud or image data and then
perform the grasp detection heuristically based on these features. Dunes et al. [73] sampled the contour
features of objects from multiple angles and generated a 2D curve according to the sample points. Then
the contour of objects was estimated through the quadratic curve. Finally, the robot’s grasp direction and
configuration are inferred by the long axis and center of mass of the curve. Detry et al. [74] proposed
a grasp strategy transfer method, which generated candidate objects by extracting fragments of the tar-
get point cloud, then clustered the generated candidates through nonlinear reduction and unsupervised
learning algorithm, and finally selected the center of clustering as the newly generated grasp prototype
to grasp new objects. The whole process is shown in Fig. 14.

In the process of heuristic grasping based on the extracted features, some researchers also pay atten-
tion to the grasping robustness and efficiency. Hsiao et al. [75] proposed a simple but robust reactive
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Figure 14. The generalizing grasp strategies proposed in ref. [74]. In the experimental data, three of the
objects are cylinders of different sizes, and one is a cuboid. According to the four kinds of objects, seven
grasps are demonstrated, and 27 grasp candidates are computed. By clustering the grasp candidates,
the central elements of the clusters are selected as the prototype parts for grasping new objects (the
images in Fig. 14 are from ref. [74]).

adjustment approach for grasping unknown objects, which acquires the target point cloud in the scene
by a 3D sensor and calculates the bounding box of the point cloud using principal component analy-
sis (PCA) algorithm, then generates the grasp candidates using a heuristic method based on the overall
shape and local features of the target, and finds the optimal grasp result by using a feature weight table
(such as the number of point clouds in the bounding box, whether to grasp at the boundary, the distance
between the fingertips and the object center along the approach direction, etc.). Finally, the tactile sensor
on the robot’s end effector is used for real-time monitoring of the grasp. When the shape or position of
the object is uncertain, it can be corrected in time to obtain a robust grasp. Liu et al. [76] proposed a
method to quickly grasp unknown objects. By installing a 2D depth sensor on the robot, partial shape
information of unknown objects was obtained, and then features were extracted from the partial shape
information to determine the grasp candidate points of unknown objects (as shown in Fig. 15). At last,
the feasibility of the grasp candidate points is judged by checking whether the robot can grasp and lift
the object successfully. This method does not need to acquire and process all the target information and
can reduce the grasp time. Relevant experimental results also verify the feasibility of this algorithm.

The second is to directly fit or estimate the basic geometry of the object based on the existing seg-
mented results and then to plan the grasp based on the geometric shape. Morales et al. [77] used visual
feedback information to guide the robot to grasp and proposed an intelligent algorithm for two-finger
and three-finger grasping. The algorithm considers the force-closure and contact stability conditions
during grasping, and the grasp candidates of the planar objects can be selected directly according to the
geometry information. They also used this algorithm to control a Barrett hand to grasp a lot of nonmod-
eled planar extruded objects and obtained good grasping results. Richtsfeld and Vincze [78] developed
a novel vision-based grasp system for unknown objects based on range images and applied it to the
grasp of table objects. The system first uses a laser scanner to acquire the point cloud of the scene and
preprocess the raw data and then uses the RANSAC algorithm [79] and the 3D Delaunay triangulation
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Figure 15. Objects for robotic grasp used in ref. [76]. Top row: Every object has parallel surfaces or
parallel tangent planes, and the red points are the grasping points of the objects. Bottom row: The 2D
shapes of objects are obtained by projecting the 3D models into the XY or XZ plane.

Figure 16. Table scene with seven different objects in ref. [78]. Left: The actual models and 3D point
clouds of the objects. The green points represent the grasp points, and the red points are the calculated
centroids of different top surfaces. Right: Top surfaces of the seven objects. The red and green points
represent the same meaning as in the left figure. GP1 is the first grasp point with the shortest distance
to the centroid, and GP2 is the second grasp point.

algorithm [80] to segment the table and object point clouds, respectively. Finally, 2D Delaunay features
of the top surface of the object were obtained, the feature edge points and surface centroid of each object
were detected, and the location of the grasp point was determined according to the principle of mini-
mum distance between edge points and surface centroid, as shown in Fig. 16. Bohg et al. [81] proposed
a method to estimate the complete object model from a local view by assuming that the target object
satisfies the symmetry condition. In this way, the whole 3D model of the target object is estimated by
complementing the original 3D point cloud of the object so that the grasping ability can be estimated
by using the grasp method of the known object.

In summary, Table I organizes the methods presented above, mainly including the classification of
perception-based grasp detection methods, and the detection results of related methods.
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Table I. Summary of perception-based grasp detection methods.

Classification Method Result Reference
Perception-based

methods
Extracting image

features and
using heuristic
methods

2D curve
estimation

The fitting error of the object shape after 27 iterations
was 0.081 mm, and no robot grasp experiment was
conducted.

[73]

Grasp strategy
transfer

It has certain grasping generalization ability for cylinder
and cube shape objects of different sizes.

[74]

Reactive grasping Achieved 66 successful grasps and 60 open-loop grasps
out of 68 attempts.

[75]

Quickly grasp Six kinds of daily necessities were selected as
experimental objects, and the grasping success rate
was 91.6%. Compared with the method in ref. [134],
the execution time of grasping is reduced by 45%.

[76]

Direct estimation or
fitting

Visual feedback The two-finger hand and three-finger hand are used to
grasp six kinds of objects, and the candidate grasp
points of the target object in a single picture can be
successfully calculated within 0.04 s and 0.24 s.

[77]

Depth image-based
grasping

The grasp experiments were conducted for seven kinds of
objects, the grasping success rate was 85.71%, and the
grasp points detection took about 30 s.

[78]

Estimate the whole
from the parts

The average error of the overall point cloud estimated
from the local point cloud was 7 mm in all directions
for 12 household objects and toy models, but no robot
grasp experiment was conducted.

[81]
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Figure 17. Classification of learning-based robotic grasp detection methods.

4.2.2. Learning-based methods
At present, machine learning methods have been shown to be applicable to most perception problems
[82–86], which allow perceptual systems to learn mappings from datasets to various visual properties
[87]. Machine learning-based methods for robot grasp detection are also one of the current research
hotspots, which allow robots to better grasp known objects in occluded or stacked environments [88,
89], objects with known systems but uncertain poses [66], and objects with completely unknown systems
[90]. In recent years, with the booming development of deep learning in image processing [84, 91, 92],
more and more researchers have applied deep learning to robotic grasp detection [17, 93], allowing
computers to automatically learn high-quality grasp features from large amounts of image data, which
has greatly contributed to the development of unknown objects’ grasp detection technology.

For unknown objects, learning-based grasping detection can be divided into two main categories
[17], as shown in Fig. 17. One is the pipeline methods, through the relevant learning algorithm, to
generate the grasp pose and then use a separate path planning system to execute the grasp. The other is
an end-to-end grasp method based on a visual motion control strategy to map from image data to grasp
actions. The first method can be further divided into two categories according to the learning content:
one is to learn the structured output of the grasp parameters (such as grasp points and grasp rectangles);
the other is to learn the grasp robustness evaluation. The following will focus on Fig. 17 for a detailed
introduction.

(1) Learning the structured output of grasp parameters
Earlier researchers used the grasp points as a structured output of the grasp parameters. Saxena et al. [94,
95] used synthetic images as a training dataset to predict the location of the grasp points in 2D images by
the supervised learning method. Then, they estimated the grasp pose corresponding to the grasp points
by taking 2D images from different viewpoints. The method can complete the recognition of the grasp
points within 1.2 s with a detection accuracy rate of 94.2% and a grasping success rate of 87.8%, but
the grasp has some limitations because the depth images are not used. Rao et al. [96] used 3D data as
input and used supervised localization to obtain the graspable segments in the scene, then estimated the
target shape using local 3D information and trained the classifier using the SVM algorithm [53] with
Gaussian radial basis function (RBF) kernel as a way to find a pair of optimal grasp points, and finally
obtained a grasping success rate of 87.5%.
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Figure 18. Two-step cascaded system proposed in ref. [87]. Input an image of an object to grasp and
a small deep network is used to exhaustively search for potential rectangles, producing a small group
of top-level rectangles. A more extensive deep network is then used to find the top-ranked rectangle to
produce the best grasp for the given object.

The method of using grab points to represent structured output usually has arbitrary support areas
(such as the neighborhood centered on these points), which may not match the physical space occupied
by the gripper. Therefore, some researchers use the grasp rectangle as the structured output of the grasp
parameters, and the most commonly used method to obtain the grasp rectangle is the sliding window
method [87].

Jiang et al. [97] proposed a representation of the seven-dimensional grasp rectangle (3D location, 3D
orientation, and the gripper opening width), replacing the original representation of grasp points. Lenz
et al. [87] proposed a five-dimensional grasp rectangle based on the seven-dimensional grasp rectangle
and designed a two-step cascaded system with two deep networks, as shown in Fig. 18. First, a small
CNN is used to find all possible grasping rectangles and eliminate some of the rectangles with low
scores. Then, a large CNN is used to find the highest score among the retained grasping rectangles as
the optimal result to estimate the grasp pose. The grasping success rate of this method reached 75.6%, but
the processing time of a single image reached 13.5 s [17], indicating that this method requires massive
computation.

In recent years, due to the gradual development of relevant theories in deep learning, more and more
researchers can better apply it to robotic grasp detection to improve the efficiency and accuracy of grasp-
ing. Ten Pas et al. [98, 99] designed a novel grasp pose detection (GPD) method that can locate the target
object’s position directly from sensor data and does not require estimating the grasp pose. In this method,
the noise and partially occluded point cloud were taken as input. Then the obtained point cloud was nor-
malized to extract the 12-channel and 15-channel projection features of the robotic grasp closure region
and constructs a CNN-based grasp quality evaluation model to generate feasible grasp poses without
assuming the object CAD model. Compared with their previous research results [100], the success rate
of grasping unknown objects in complex environments was improved from 73% to 93%. Wei et al. [101]
proposed a multi-modal deep learning architecture for grasp detection. First, an unsupervised hierarchi-
cal extreme learning machine (ELM) was used to achieve feature extraction of RGB and depth images,
and a shared layer was developed by combining RGB and depth features. Finally, the ELM was used as
a supervised feature classifier for the final grasping decision. Guo et al. [102] proposed a hybrid deep
architecture with a mixture of visual and tactile sensing, which uses visual data (RGB images) as the
main input and tactile data as a supplement to assess the grasping stability, as shown in Fig. 19. For
feature extraction, they employed the ZF model [103] to extract features from the input image and used
the reference rectangle to identify all possible graspable regions in an image. In the intermediate layer,
they concatenated the visual and tactile features as a joint layer. Finally, a 1 × 1 kernel is applied to slide
across the joint layer, yielding the grasp detection results.

Although the sliding window method is simple in principle, it may repeatedly scan the graspable
region of the image during the sliding process [17], resulting in a long processing time. Therefore, the
one-shot detection method [104] emerged, which does not require iterative scanning but uses a direct
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Figure 19. The architecture of the deep visual network for grasp detection proposed in ref. [102]. In
grasp detection, there are two classes of labels (graspable and ungraspable) for each reference rectangle,
{tx, ty, tw, th} are the offset coordinates for the predicted initial grasp rectangle, {0◦, 10◦, · · · , 170◦} are
the 18 labels for the rotation angle, and n is the number of the reference rectangle used in each location.

regression method to predict the structured output of the grasp parameters, which improves the real-time
performance.

Zhang et al. [105] focused on the RGB features and depth features of images and proposed a multi-
modal fusion method to achieve regression of robotic grasp configuration from RGB-D images. The
calculation time of a single image was 117 ms, and the accuracy of image-wise split and object-wise
split was 88.90% and 88.20%, respectively. Redmon et al. [104] used a CNN to perform grasp prediction
of the complete image of an object, which does not use the standard sliding windows or region proposal
networks but performs single-stage regression directly on the grasp rectangle, with a processing speed
of 76 ms on the GPU for a single image and a detection accuracy of 88%. In addition, this method can
predict multiple grasp poses and classify them by using a locally constrained prediction mechanism.
However, it cannot evaluate these grasp poses quantitatively and still has some drawbacks. Using a
similar approach, Kumra et al. [11] proposed a novel multi-modal grasp detection system that uses deep
CNNs to extract features from images and predict the grasp pose of the target object by shallow CNNs,
achieving a detection accuracy of 89.21% on the Cornell dataset and running at 16.03 FPS, it is about
4.8 times faster than the method proposed in ref. [104].

In order to evaluate the structured grasp output more effectively, Depierre et al. [106] used a scorer
to score the grasping ability of a certain position in the image. Based on this scorer, an advanced deep
neural network (DNN) was extended to connect the regression of grasp parameters with the score of
grasp ability (as shown in Fig. 20). The architecture achieves detection accuracies of 95.2% and 85.74%
on the Cornell and Jacquard datasets, respectively, and is applied to actual robotic grasp with a grasping
success rate of around 92.4%. It is not difficult to find that most of the one-shot detection methods adopt
deep transfer learning techniques to use pretrained deeper convolutional networks to predict the grasp
candidates from images [107, 108] and finally achieve good results.
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Figure 20. A state-of-the-art grasp detection architecture proposed in ref. [106]. The architecture
takes RGB-D images as input and has three components: the feature extractor, the intermediate grasp
predictor, and the scorer network.

Although using direct regression to predict the structured output of the grasp parameter is the main-
stream method for one-shot detection, many researchers have combined the classification and regression
techniques for one-shot detection in some special cases.

Chu et al. [109] transformed the regression problem into a combination of region detection and orien-
tation classification problems, using RGB-D images as the input to a DNN to predict grasp candidates for
a single object or multiple objects. This method achieved 96.0% image-wise split accuracy and 96.1%
object-wise split accuracy on the Cornell dataset when dealing with a single object. As for dealing with
multiple objects, the method has a specific generalization capability and achieves 89.0% grasping suc-
cess rate when grasping a group of household objects, and the processing time of a single image is less
than 0.25 s. Based on ref. [102], Zhang et al. [110] proposed a real-time robotic grasp method based
on the fully CNN and used the oriented anchor boxes to predefine the region of the image. As shown
in Fig. 21, the network mainly consists of a feature extraction part and a grasp prediction part, and the
feature extraction part mainly takes RGB or RGB-D images as input to generate feature mappings for
grasp detection. At the same time, the grasp prediction part is divided into a regression layer and a
classification layer, which are mainly responsible for regressing grasp rectangles from predefined ori-
ented anchor boxes and classifying these rectangles into graspable and ungraspable parts. The proposed
method effectively improved the performance of capture detection and obtained 98.8% image-wise split
accuracy and 97.8% object-wise split accuracy in the Cornell dataset, respectively. In the context of
GTX 1080Ti, the fastest running speed can reach 118 FPS.

(2) Learning the grasp robustness evaluation
The grasp robustness is mainly used to describe the grasp probability of a certain position or area
in the image [111], and the related grasp robustness function is often used to identify the grasp pose with
the highest score as the output. Therefore, learning to grasp robustness evaluation is the core method
of many deep grasp detection research. In particular, binary classification [17, 98, 112, 113] is one of
the commonly studied methods. It classifies the grasp candidates into valid and invalid poses and then
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Figure 21. Top: The network architecture based on ResNet-Conv5 proposed in ref. [110]. The input is
an RGD image, and the output includes the regression and classification results. Bottom: The process
of using network output to compute the grasp prediction. First, find the oriented anchor box with the
highest graspable score according to classification results. Then, the grasp prediction is calculated by
the algorithm proposed in the paper.

Figure 22. Illustrations of grasp candidates were found using the algorithm proposed in ref. [98]. Each
image shows three examples of a gripper placed at randomly sampled grasp candidate configurations
(the figure is from ref. [98]).

learns and evaluates them based on neural networks and robustness functions to output the best grasp
poses. Ten Pas et al. [98] acquired the target point cloud based on two strategies (active and passive)
and optimized them, and then generated a large number of grasp candidates by calculating the geomet-
ric features such as curvature and normal of the point cloud (Fig. 22 shows several grasp candidates
generated based on this method). Subsequently, they used the end-to-end learning method to perform
binary classification on the generated grasp candidates to identify the graspable areas of objects in the
complex point cloud scene and finally obtained 89% detection accuracy rate and 93% grasping success
rate. Chen et al. [112] proposed an edge-based grasp detection strategy, which first used the geometric
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Figure 23. Dex-Net 2.0 architecture. When performing the grasp operation, a 3D point cloud is
obtained with the depth camera, where pairs of antipodal points identify a set of several hundred grasp
candidates. Then, GQ-CNN is used to quickly determine the most robust grasp candidate, and the robot
will perform the grasp (the figure is from ref. [116]).

relationship between edge points to determine the approximate area of grasp candidates. Then, they used
binary classification to train a lightweight CNN under a limited number of samples to identify feasible
grasps. The method uses only RGB images as input, and the training time for a single image on the
CPU is only 1.46 s, with a detection accuracy of 93.5%. Li et al. [113] regarded the prediction of grasp
stability as a binary classification problem. In order to achieve stable grasping, a training dataset that can
reflect the grasp contact force of various objects was constructed by multiple grasp operation feedback
from a tactile sensor array. The optimal grasp prediction model under different scenarios was obtained
by inputting the training data into different machine learning algorithms.

Besides the binary classification methods, many researchers also combined neural networks with
supervised learning to obtain a robust grasp. Seita et al. [114] used the Monte Carlo sampling esti-
mation algorithm to generate test datasets from the Dex-Net 1.0 dataset [115] and then trained them
through supervised learning to estimate the grasp robustness based on the mean absolute error (MAE)
and area under the curve (AUC) of the dataset. In the process of sampling estimation, they also adopted
two supervised learning methods: deep learning and random forest, which increased the training speed
by 1500 times and 7500 times, respectively. Mahler et al. [116] regarded the grasp robustness as a scaler
probability in the range of [0,1] and synthesized a dataset named Dex-Net 2.0 (as shown in Fig. 23),
which included 6.7 million point clouds and related grasp indicators. The dataset was input into a
Grasp Quality Convolutional Neural Network (GQ-CNN) for training as a way to predict the robust-
ness of grasping based on point cloud data, and the grasp detection accuracy of this method was around
93.7%, but the training process was very long due to the huge amount of data. Gariépy et al. [117]
improved the Spatial Transform Network (STN) [118] and proposed a one-shot detection network: the
Spatial Transform Network of Grab Quality (GQ-STN). Then, they use GQ-CNN as a supervisor and
train GQ-STN to obtain grasp candidates with high robustness scores. Compared with ref. [116], it
obtained a higher grasp detection accuracy (96.7%) and improved the detection speed by more than
60 times.

Training a suitable neural network for grasp detection usually requires a large amount of manu-
ally labeled data, but this requires even higher volumes of domain-specific data [89]. Therefore, some
researchers have opted to collect data with self-supervised methods. Fang et al. [119] proposed a Task-
Oriented Grasping Network (TOG-Net) model, which realized the joint optimization of grasp robustness
and subsequent operational tasks through self-supervised learning. Based on this model, they guided
the robot to grasp relevant tools and complete actual tasks (sweeping and hammering, as shown in
Fig. 24), achieving a success rate of 71.1% and 80.0%, respectively. ŠEGOTA et al. [120] used the
multilayer perceptron (MLP) algorithm to regress the values of grasp robustness from a robotic grasp
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Figure 24. For different requirements, the robot has different grasp ways. A task-agnostic grasp can
lift a hammer, but it may not be appropriate for particular manipulation tasks, such as sweeping or
hammering. According to the method proposed in ref. [119], the grasp selection can be directly optimized
by jointly selecting a task-oriented grasp and subsequent manipulation actions.

dataset [121] containing torque, velocity, and position information and finally obtained a high-quality
regression model.

(3) The end-to-end grasp based on the visual motion control strategy
The classical machine learning approach is to extract relevant features of the original data and classify
them according to the prior knowledge of human beings and then use these features as input to a model
for training, which in turn outputs the final result. Usually, the training result depends on the extracted
features, so early researchers spent much time on feature extraction. With the development of deep
learning, it is often better to use the end-to-end method to let the network model learn by itself and
extract the features. Only the original data need to be labeled at the starting stage, and then the original
data and the corresponding labels are input into the model for learning to get the final result.

For robotic grasp, end-to-end can be understood as the mapping from image data to the grasp pose.
By associating the end-to-end learning method with the visual motion control strategy, the visual motion
controller is trained by using deep learning to iteratively correct the grasp points until the robot completes
the grasp operation successfully.

In the earlier work, Zhang et al. [122] mapped the grasp operation in the 3D space to the 2D synthetic
image and then used the deep Q network (DQN) [123] for training to obtain the poses of the robot’s end
effector when it reached the target. However, when the authentic images taken by the camera were used
as input to the DQN, the probability of successfully reaching the target was only 51%. It can be seen that
the learning results in the synthetic scene usually cannot be directly applied to the real environment. In
this regard, Zeng et al. [124] proposed a visual control method that can identify and grasp objects in a
cluttered environment. First, an object-agnostic grasping framework was used to complete the mapping
from visual observation to action, and the dense pixel-wise probability maps of the affordances for four
different grasping primitive actions (as shown in Fig. 25) were inferred. Then, it executed the grasp with
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Figure 25. Four motion primitives proposed in ref. [124] include suction and grasping to ensure
successful picking for a wide variety of objects in any orientation (the figure is from ref. [124]).

Figure 26. The semantic grasping model proposed in ref. [125]. (a) Considering the task of learning to
pick up objects from 16 object classes. (b) The robotic arm with a two-finger gripper. (c) A two-stream
model that shares model parameters between a grasp branch and a class branch, which comprise the
dorsal (blue box) and ventral streams (pink box).

the highest affordance and identified the target object by using the cross-domain image classification
framework, which matches observed images to product images without any additional data collection or
retraining. The detection accuracy of this method is 88.6%, and the capture success rate is 96.7%. The
detection time of a single image is related to the number of graspable angles.

Jang et al. [125] focused on robot semantic grasping and proposed an end-to-end learning method.
By combining spatial and semantic reasoning into a neural network, the network is divided into ventral
and dorsal streams, which are used to classify and select good grasping targets, respectively, as shown
in Fig. 26.
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Table II. Summary of learning-based grasp detection methods.

Classification Detection accuracy Algorithm
of methods Reference or grasping success Speed or model Input Dataset
Learning the

structured
output of
grasping
parameters

Grasp points [95] Detection accuracy: 94.2% Single Supervised
learning
(SL)

RGB Customized
datasetGrasping success: 87.8% image:

1.2 s

[96] Grasping success: 87.5% — SL; SVM RGB-D Customized
dataset

Grasp rectangles
(sliding
window
methods)

[97] Detection accuracy: 96.8%
Grasping success: 87.9%

— Two-stage deep
network; SL;
SVM

RGB-D Customized
dataset

[87] Grasping success: 75.6% Single
image:
13.5 s

Two-stage deep
network;
sparse
auto-encoder
[135]

RGB-D Cornell

[101] Detection accuracy: 92.58% — Extreme
learning
machine
auto-encoder
[136]

RGB-D Cornell

[102] Image-wise split: 93.2%
Object-wise split: 89.1%

— Hybrid deep
architecture;
ZF model
[103]

RGB-D Cornell &
THU
grasp
dataset
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Table II. Continued.

Classification Detection accuracy Algorithm
of methods Reference or grasping success Speed or model Input Dataset
Learning the

structured
output of
grasping
parameters

One-shot
detection
methods

[104] Image-wise split: 88.0%
Object-wise split: 87.1%

Single
image:
76 ms

AlexNet [137] RGB-D Cornell

[105] Image-wise split: 88.9%
Object-wise split: 88.2%

Single
image:
117 ms

VGG-16 [138] RGB-D Cornell

[11] Image-wise split: 89.21%
Object-wise split: 88.96%

16.03 FPS ResNet-50
[139];
multi-modal
grasp
predictor
[140]

RGB-D Cornell

[106] Cornell Detection
accuracy:
95.2%

— ResNet-50;
primary grasp
predictor
[141]

RGB Cornell
Jacquard

Jacquard Detection
accuracy:
85.74%

Grasping success: 92.4%
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Table II. Continued.

Classification Detection accuracy Algorithm
of methods Reference or grasping success Speed or model Input Dataset

Combining
regression
with
classification

[109] Single Image-wise
split: 96.0%

Object-wise
split: 96.1%

8.33 FPS ResNet-50;
region
proposal
network
[142];

RGB-D Cornell

Multi Grasping
success:
89.0%

≤3.0 FPS

[110] VGG-16 Image-wise
split: 98.2%

Object-wise
split: 96.4%

118 FPS VGG-16;
ResNet-50;
ResNet-101
[138];
oriented
anchor box
detection;
angle
matching

RGB-D Cornell

ResNet-50 Image-wise
split: 98.8%

Object-wise
split: 97.0%

105 FPS

ResNet-101 Image-wise
split: 98.8%

Object-wise
split: 97.8%

67 FPS
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Table II. Continued.

Classification Detection accuracy Algorithm
of methods Reference or grasping success Speed or model Input Dataset
Learning the

grasp
robustness

Binary
classification

[98] Active strategy Detection
accuracy:
89.0%

Grasping
success:
93.0%

Generate
grasp
poses:
0.8∼1.7 s/
1000 pcs;
Grasp
poses clas-
sification:
0.3∼6.2 s/
1000 pcs

Geometric
algorithms;
force-closure
analysis;
classification
learning based
on CNN

3D point
clouds

BigBird

Passive
strategy

Detection
accuracy:
77.0%

Grasping
success:
84.0%

[112] Detection
accuracy:
93.5%

Single image:
1.46 s

Image edge
detection;
force-closure
analysis;
grasp
recognition
based on
CNN

RGB Cornell

[113] SVC Detection
accuracy:
98.24%

Single image:
8 ms ∼ 50 ms

Tactile signal
perception;
SVC [143];
KNN [144];
LR [145]

RGB Customized
dataset

KNN Detection
accuracy:
95.0%

LR Detection
accuracy:
97.4%
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Table II. Continued.

Classification Detection accuracy Algorithm
of methods Reference or grasping success Speed or model Input Dataset

Others [114] — Single
prediction:
1.05 ms
(deep
learning)
and
0.21 ms
(Random
Forests)

Monte Carlo
sampling;
dupervised
learning
based on deep
learning and
random
forests

3D point
clouds

Dex-Net
1.0

[116] Dex-Net 2.0 Detection
accuracy:
93.7%

— GQ-CNN 3D point
clouds

Dex-Net
2.0
Cornell

Cornell Detection
accuracy:
93.0%

Learning the
grasp
robustness

Others [117] Detection accuracy: 96.7%
Robust probability: 61.7%

Single image:
24 ms

GQ-STN;
GQ-CNN

RGB-D Dex-Net
2.0

[119] Sweeping Grasping
success:
71.1%

— TOG-Net; self-
supervised
learning

RGB-D Dex-Net
1.0
MPI
[18]Hammering Grasping

success:
80.0%
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Table II. Continued.

Classification Detection accuracy Algorithm
of methods Reference or grasping success Speed or model Input Dataset
End-to-end grasping based on

visual motion control strategy
[124] Detection accuracy: 88.6%

Grasping success: 96.7%
Single image:

N × 0.05 s
Two-stream

CNN
RGB-D Customized

dataset

[126] Detection accuracy: 93.3%
Grasping success: 85.0%

— GP Net;
PointNet++

3D point
clouds

Customized
dataset

[128] ShapeNetPart Grasping
success:
93.0%

Single
prediction:
0.365 s

L2G; DeCo
feature
encoder; self-
supervised
learning

3D point
clouds

ShapeNet-
Part
YCB
[146]YCB-8 Grasping

success:
53.4%

YCB-76 Grasping
success:
43.9%
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Figure 27. The classification method of robotic grasp detection technology proposed in this review.

Wu et al. [126] pointed out the shortcomings of heuristic sampling grasp strategies and proposed an
end-to-end Grasp Proposal Network (GP Net) for predicting 6-DOF grasps of unknown objects from
monocular cameras. With point cloud data as input and PointNet++ [91] as feature encoder, the network
constructs the grasp proposal set by connecting the defined grasp anchor with the point cloud succes-
sively and then trains the grasp proposal set in terms of antipodal validity [127], regress grasp prediction,
and score grasp confidence, and finally an ideal result is obtained. Alliegro et al. [128] referred to the
working mechanism of GP Net and proposed a more efficient end-to-end learning strategy L2G, which
is used for the 6-DOF grasp of local target point clouds. The method uses a differentiable sampling strat-
egy to identify visible contact points and a feature encoder [129] that combines local and global cues
for encoding and then generates a grasp set by optimizing contact point sampling, grasp regression, and
grasp classification. They used a self-supervised learning method on the ShapeNetPart dataset [130] to
train the generated grasp set, and a grasping success rate of 93.0% with a prediction time of around
0.365 s for a single grasp is achieved. L2G is slightly higher than GP Net in grasping success rate but
takes much less time than GP Net and has a certain generalization ability. It is more suitable for large
and diversified grasp datasets.

After the previous introduction, we can find that early studies [94, 95] mainly focused on 2D image
data and used relevant learning algorithms to detect the grasp points from 2D images to estimate the
grasp pose. In this paper, these methods are called 2D grasp detection methods, which usually use
ordinary RGB cameras to capture images and do not require additional sensing equipment, and the data
acquisition is inexpensive and convenient. In addition, 2D grasp detection has low algorithm complexity
and wide application. Due to its early appearance, many research results have been produced [106, 112,
113]. However, 2D grasp detection cannot directly obtain the depth information of objects and is more
sensitive to the change of illumination and viewing angle. In complex environments (such as occlusion
and overlap), the detection effect is usually not ideal. In contrast, 3D data has significantly improved
this problem [131]. With the advent of low-cost RGB-D sensors and structured light cameras, using
RGB-D or 3D point cloud data in robotic grasp has become more common [11, 101, 102, 104, 105,
114, 128]. Although 3D grasp detection has higher detection accuracy and is more robust in occlusion
or overlapping occasions, it also has the characteristics of high computational complexity and cost.
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Therefore, we need to choose the appropriate method according to the specific application requirements
and environments.

Table II summarizes the mentioned methods, including the detection accuracy rate and grasping suc-
cess rate of the methods, as well as the training datasets and related algorithms used, for the convenience
of readers.

5. Conclusion
According to the previous description, current robotic grasp detection techniques can be classified
according to Fig. 27. It can be mainly divided into analytic and data-driven methods. Among them,
the analytic methods were widely used in early research, but considering the defects of this kind of
method (see Section 3.3), it was gradually replaced by the data-driven method.

The data-driven methods can be applied to the grasp detection for known and unknown objects. The
grasp detection methods for known objects must require the target object to have a complete 3D model.
This kind of method has a simple principle, high detection accuracy, and easy implementation, but it has
significant limitations in the complex unstructured environment. Therefore, the grasp detection methods
for unknown objects have become a current research hotspot.

The classification of unknown object grasp detection techniques and related methods are shown in
Table II, which can be mainly classified into perception-based and learning-based methods. Perception-
based methods generate and evaluate grasp candidates by recognizing structures or features in image
data, which are usually only for objects of specific shapes, and the detection time and accuracy cannot
be guaranteed, so the practical application is limited. Learning-based methods are the focus of current
research in robotic grasping. Such methods are not limited to the complexity of the environment and
the shape of the target objects and can be divided into two categories: the pipeline methods and end-
to-end grasp based on visual motion control strategies. The former can be subdivided according to the
learning content into two approaches: learning the structured output of grasp parameters and learning
grasp robustness evaluation.

The methods of learning the structured output of grasp parameters do not consider the intermedi-
ate steps of grasping and only focuses on the grasp results. Typical strategies include sliding window
methods and one-shot detection methods. The sliding window methods have the advantages of sim-
ple structure, good detection accuracy, and certain generalization ability. The main limitation is that
the optimal solution is obtained by traversal search, so the efficiency is low. It has been improved by
using the one-shot detection methods, which mainly adopt the ResNet-based network model and greatly
reduce the detection time while ensuring higher accuracy. Although the one-shot detection methods do
not require an iterative search, it still consumes a lot of training time when the network model structure
is complex and needs to be trained on large datasets. Therefore, how to streamline the network struc-
ture while ensuring detection accuracy is the development trend of learning-based robot grasp detection
methods. In this regard, several ideas are proposed for the general reader: using lightweight models or
sparsely connected deep networks to improve detection speed; maintaining high detection accuracy by
adding residual modules to the network; using network pretraining to avoid overfitting, etc.

The methods of learning grasp robustness evaluation are able to observe intermediate steps of grasp
detection with high detection accuracy, but the computational process is more complex. In contrast to
the one-shot detection method, this kind of method usually consumes a lot of time during detection and
spends less time on post-training. Therefore, future research direction can focus on improving the speed
of the detection process.

The end-to-end grasp based on visual motion control strategies, which do not require independent
configuration for the planning control system, can directly realize the mapping from images to grasp
actions. A more representative strategy is to apply reinforcement learning to the method without pre-
labeling the dataset, but this approach will dramatically increase the training time. Therefore, further
work is needed to develop more time-efficient methods.
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5.1. Future work
Since this review focuses on data-driven methods, the discussion of future research directions is also
based on this. In the future, robots may be used more to grasp unknown objects in unstructured envi-
ronments, which is a great test for robotic grasp detection technology. In recent years, there have been
significant advances in robotic grasp detection, particularly in machine learning and computer vision.
However, there are still several challenges that need to be addressed to improve the performance and
robustness of robotic grasp detection systems. Some of the future research directions in this field include

1. Learning-based approaches. One of the key research areas in robotic grasp detection is the
development of learning-based methods to improve the accuracy and efficiency of grasp detec-
tion. Deep learning techniques such as CNNs and recurrent neural networks (RNNs) have shown
promise in this regard, and further research is needed to explore the potential of these techniques.

2. Processing of large datasets. The training of grasp detection networks usually requires a
large amount of manually labelled data, which is not readily available. At present, supervised
learning has been used to collect data, but there are still some drawbacks. In the future, self-
supervised learning will be more applied to data acquisition, and domain adaptation techniques
[132, 133] may be applied to generate application-specific datasets from 3D simulations. In
addition, very few researchers have autonomously created larger datasets by incorporating
reinforcement learning techniques, which is also a potential research direction.

3. Transfer learning. By using pretrained models and transfer learning techniques, it is possible
to improve the performance of the grasp detection system with limited training data.

4. Multi-modal sensing. Another important research direction is the integration of multiple sens-
ing modalities such as vision, touch, and force sensing to improve the accuracy and reliability
of grasp detection. Multi-modal sensing can provide additional information about the object and
its properties, which can be used to improve the grasp detection algorithm.

5. Real-time performance. This is a critical requirement for robotic systems that interact with the
environment. Future research in robotic grasp detection should focus on developing algorithms
and techniques that can operate in real time and provide reliable and efficient grasp detection in
unstructured environments.

Overall, future research directions in robotic grasp detection are focused on improving the accuracy,
reliability, and efficiency of grasp detection systems, as well as developing algorithms and techniques
that can operate in real time and in unstructured environments.
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