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NSOP1-LIKE INDEPENDENCE IN AECATS

MARK KAMSMA

Abstract. The classes stable, simple, and NSOP1 in the stability hierarchy for first-order theories can
be characterised by the existence of a certain independence relation. For each of them there is a canonicity
theorem: there can be at most one nice independence relation. Independence in stable and simple first-order
theories must come from forking and dividing (which then coincide), and for NSOP1 theories it must come
from Kim-dividing. We generalise this work to the framework of Abstract Elementary Categories (AECats)
with the amalgamation property. These are a certain kind of accessible category generalising the category
of (subsets of) models of some theory. We prove canonicity theorems for stable, simple, and NSOP1-like
independence relations. The stable and simple cases have been done before in slightly different setups, but
we provide them here as well so that we can recover part of the original stability hierarchy. We also provide
abstract definitions for each of these independence relations as what we call isi-dividing, isi-forking, and
long Kim-dividing.

§1. Introduction. Independence relations are a central notion in model theory.
Work on independence in first-order theories was started by Shelah [30] through
the notions of forking and dividing. This was later generalised to simple theories in
work by Kim and Pillay [23, 26]. In NSOP1 theories dividing is no longer so well-
behaved in general. Inspired by ideas from Kim [24], Kaplan and Ramsey developed
the notion of Kim-dividing [20], which does yield a nice independence relation in
NSOP1 theories. Each of these classes admits a so-called Kim–Pillay style theorem,
after a result by Kim and Pillay [26, Theorem 4.2]. Roughly the statement is as
follows:

A theory is simple if and only if it admits an independence relation
satisfying a certain list of properties. Furthermore, in this case that
relation is given by forking independence.

In particular such a theorem gives us canonicity: there can be at most one nice
enough independence relation, which must be forking independence.

All of the above takes place in the classical framework of first-order logic.
However, there are many interesting classes of structures that do not fit in this
framework. Similar work has been done in different and more general logical
frameworks. For example, the stable and simple settings have been studied in positive
logic [4, 28, 29], continuous logic [6] and AECs [8, 13, 15, 31, 32]. More recently
the NSOP1 setting has been studied in positive logic [11, 14]. It also makes an
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NSOP1-LIKE INDEPENDENCE IN AECATS 725

appearance in continuous logic in [7], where a non-simple NSOP1 continuous theory
is studied. Even then there is a more general category-theoretic approach, unifying
all the previously mentioned frameworks. Lieberman, Rosický, and Vasey proved
a category-theoretic canonicity theorem for stable independence relations [27]. In
[18] a category-theoretic canonicity theorem for simple independence relations was
proved. In this paper we continue this work and prove a canonicity theorem for
NSOP1-like independence relations.

We work in the same framework as in [18], namely the framework of Abstract
Elementary Categories (AECats) with the amalgamation property. This generalises
both the category of models of some first-order theory T and the category of subsets
of models of T. The framework can also be applied to positive logic, continuous
logic, and AECs (Example 2.3).

An independence relation will be defined as in [18] and will be a relation on triples
of subobjects, where we use the notation A |�

M

C
B to say that subobjects A,B,C of

M are independent. However, it will be useful to restrict the objects that can appear
in the base of the independence relation (i.e., the C in A |�

M

C
B). For example, we

might only want to consider independence over models while allowing arbitrary sets
on the sides. We add this flexibility in this paper through the notion of a base class,
which will be the class of objects that is allowed in the base.

An independence relation will be called stable, simple, or NSOP1-like based on
the properties that it satisfies (Definition 4.10). These are the appropriate category-
theoretic versions of the properties that we know independence to have in the
corresponding classes in the classical first-order setting. In particular this means that
any stable independence relation is simple, and any simple independence relation is
NSOP1-like, reflecting (that part of) the original stability hierarchy.

In [18] the notion of isi-dividing was introduced, and the main result stated
that any simple independence relation comes from isi-dividing (i.e., any simple
independence relation is non-isi-dividing). As discussed before, in first-order NSOP1

theories the notion of dividing is no longer so well-behaved, and we should study
Kim-dividing instead. So if we think of isi-dividing as the analogue of dividing in
AECats, then we will need the right analogue of Kim-dividing to study NSOP1-
like independence relations in AECats. To this end we define long Kim-dividing
(Definition 6.13). In this definition we need a forking notion based on isi-dividing,
which we will then call isi-forking (Definition 6.7).

Before we move on to the main results we make a quick comment about some
terminology. Classically being stable or simple is defined as not having the order
property (NOP) or not having the tree property (NTP) respectively. In line with
this, NSOP1 means that we do not have SOP1, but there is no separate name
for NSOP1. We do not consider the combinatorial properties OP, TP, and SOP1

in this paper. It is not even directly clear what these should look like in settings
without compactness. A link between stable independence relations and a form of
the order property is established in [27] in a category-theoretic setting. There is
also [13], which studies the connection between various tree properties and simple
independence relations in AECs. For NSOP1 there is the work [11, 14] that does
consider the combinatorial property SOP1 in positive logic. However, this is not
nearly as general as the category-theoretic setting that we aim for here. This is why
we use the term “NSOP1-like independence relation”, because it is an independence
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726 MARK KAMSMA

relation that is classically found in NSOP1 theories, even though we do not consider
the relevant combinatorial property.

Main results. Our main result is canonicity of NSOP1-like independence relations.
In the statement below |�

lK denotes the independence relation obtained from long
Kim-dividing.

Theorem 1.1 (Canonicity of NSOP1-like independence). Let (C,M) be an AECat
with the amalgamation property and let B be some base class. Suppose that (C,M)
satisfies the B-existence axiom and suppose that there is an NSOP1-like independence
relation |� over B. Then |� = |�

lK over B.

For a discussion about the assumption of the B-existence axiom we refer to
Example 6.16. All we say now is that it is a reasonable, and necessary, assumption,
already in the very concrete setting of first-order logic.

We also slightly improve the main result from [18] on canonicity of simple
independence relations. In the statement below |�

isi–d and |�
isi–f denote the

independence relations obtained from isi-dividing and isi-forking respectively and
base( |� ) denotes the class of objects that are allowed in the base of |� . The slight
improvement over [18] is the fact that we can restrict the base of our independence
relation and the fact that we also get that |� = |�

isi–f .

Theorem 1.2 (Canonicity of simple independence). Let (C,M) be an AECat with
the amalgamation property, and suppose that |� is a simple independence relation.

Then |� = |�
isi–d = |�

isi–f over base( |� ).

Combining the two main theorems we can compare stable, simple, and NSOP1-
like independence relations, even without assuming the B-existence axiom. This
allows us to recover part of the original stability hierarchy based on independence
relations, see also Remark 7.5.

Theorem 1.3. Let (C,M) be an AECat with the amalgamation property and
suppose that |� is a stable or a simple independence relation in (C,M). Suppose
furthermore that |�

∗ is an NSOP1-like independence relation in (C,M) with
base( |� ) = base( |�

∗). Then

|� =
∗
|� =

isi–d
|� =

isi–f
|� =

lK
|� .

Overview. We start by recalling the framework of AECats in Section 2. To make
sense of types in this framework we also recall the notion of Galois types.

In Section 3 we will define what we call Lascar strong Galois types, based on the
notion of Lascar strong types in first-order logic. These are necessary for a property
called Independence Theorem for independence relations later.

We recall the notion of an independence relation in an AECat in Section 4. We
also recall the notion of an independent sequence in this section, and prove that these
exist assuming only very few basic properties for an independence relation.

In Section 5 we investigate the well-known equivalence between the properties
Independence Theorem and 3-amalgamation and we prove this fact for AECats.
We also recall that Stationarity implies both of them. All of this is over models.
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NSOP1-LIKE INDEPENDENCE IN AECATS 727

In Section 6 we recall the notion of isi-dividing and introduce the notions of long
dividing, isi-forking, and long Kim-dividing. We also discuss connections to the
classical analogues: dividing, forking, and Kim-dividing.

Section 7 contains the main results, the canonicity theorems. After those theorems
we discuss how this work extends and brings together previously known results in
different (less general) frameworks.

Finally, Section 8 explores the notion of Lascar strong Galois type further. Lascar
strong types are known to heavily interact with independence relations in first-order
logic and we prove that this is also the case for Lascar strong Galois types.

§2. AECats. In this section we recall definitions and basic results for AECats
from [18]. We assume that the reader is familiar with the framework of accessible
categories. A great reference for this is [1].

Convention 2.1. Throughout this paper we are only interested in regular cardinals,
which we usually denote by κ, �, and �.

Definition 2.2 [18, Definition 2.5]. An AECat, short for abstract elementary
category, consists of a pair (C,M) where C and M are accessible categories and M
is a full subcategory of C such that:

(i) M has directed colimits, which the inclusion functor into C preserves.
(ii) All arrows in C (and thus in M) are monomorphisms.

The objects in M are called models. We say that (C,M) has the amalgamation
property (or AP) if M has the amalgamation property.

We refer to [18] for the motivation of this definition and elaborate examples.
Below we just summarise some examples of AECats.

Example 2.3. The following are examples of AECats:

(i) For a first-order theory T we write Mod(T ) for the category of models with
elementary embeddings. Then (Mod(T ),Mod(T )) is an AECat with AP.

(ii) Fix some first-order theory T. Write SubMod(T ) for the category of subsets
of models of T. That is, objects are pairs (A,M ) where A ⊆M and M |=
T . An arrow f : (A,M ) → (B,N ) is an elementary map f : A→ B . The
inclusion Mod(T ) ↪→ SubMod(T ) sending M to (M,M ) is full and faithful.
Thus (SubMod(T ),Mod(T )) is an AECat with AP.

(iii) Examples (i) and (ii) generalise to positive logic, because any first-order
theory can be seen as a positive theory through Morleyisation. So we use the
same notation. That is, for a positive theory T we have the category Mod(T )
of existentially closed models and immersions and the category SubMod(T )
of subsets of existentially closed models with immersions between those
subsets. Then we have the following AECats with AP: (Mod(T ),Mod(T ))
and (SubMod(T ),Mod(T )).

(iv) A similar construction to examples (i) and (ii) is possible for continuous
logic. For a continuous theory T we can form categories MetMod(T ) of
models of T and SubMetMod(T ) of closed subsets of models of T, see
[18, Example 2.10] for more details. Then (MetMod(T ),MetMod(T )) and
(SubMetMod(T ),MetMod(T )) are AECats with AP.
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728 MARK KAMSMA

(v) LetK be an AEC. We viewK as a category by taking as arrowsK-embeddings.
Then (K,K) is an AECat and has AP iff K has AP.

In [18, Example 2.11] there is also a construction to consider subsets of the
structures in an AEC, similar to the construction of SubMod(T ). There is a simpler
construction that does not need the assumptions on K in that example.

Example 2.4. Let K be an AEC. We define the category of subsets of K, written
as SubSet(K), as follows. Objects are pairs (A,M ) where A ⊆M andM ∈ K. An
arrow f : (A,M ) → (B,N ) is then a K-embedding f :M → N such that f(A) ⊆
B . One easily verifies that (SubSet(K),K) is an AECat, and it has AP exactly when
K has AP.

Definition 2.5. We call an AECat (C,M) a κ-AECat if C and M are both
κ-accessible and the inclusion functor preserves κ-presentable objects.

Fact 2.6 [18, Remark 2.8]. For any AECat (C,M) there are arbitrarily large κ
such that (C,M) is a κ-AECat.

Proposition 2.7. Let (C,M) be a κ-AECat and let � ≥ κ. Then M is �-accessible
and the inclusion functor preserves and reflects �-presentable objects.

Proof. The claim about �-accessibility is exactly [2, Proposition 4.1]. Preser-
vation and reflection of �-presentable objects follows using the same proofs as [2,
Proposition 4.3] and [2, Lemma 3.6] respectively, where in the latter we use the
former and the fact that all arrows in C are monomorphisms, so the inclusion
functor reflects split epimorphisms (which are isomorphisms). �

Definition 2.8. Let M be a model in an AECat. An extension of M is an arrow
M → N , where N is some model.

Convention 2.9. Usually, there will be only one relevant extension of models. So
to prevent cluttering of notation we will not give such an extension a name. Given
such an extensionM → N and some arrow a : A→M we will then denote the arrow
A
a−→M → N by a as well.

Definition 2.10. Let (C,M) be an AECat with AP. We will use the notation
((ai)i∈I ;M ) to mean that the ai are arrows into M and that M is a model.

We say that two tuples ((ai)i∈I ;M ) and ((a′i )i∈I ;M
′) have the same Galois type,

and write

gtp((ai)i∈I ;M ) = gtp((a′i )i∈I ;M
′),

if dom(ai) = dom(a′i ) for all i ∈ I , and there is a common extensionM → N ←M ′

such that the following commutes for all i ∈ I :

N

M M ′

Ai .
ai a′i

Note that AP ensures that having the same Galois type is an equivalence relation.
For this reason, we are only interested in AECats with AP in the rest of this paper.
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Fact 2.11 [18, Proposition 3.8]. If gtp((ai)i∈I ;M ) = gtp((a′i )i∈I ;M
′) then:

(i) (restriction) we have gtp((ai)i∈I0 ;M ) = gtp((a′i )i∈I0 ;M ′) for any I0 ⊆ I ;
(ii) (monotonicity) given an arrow bi : Bi → dom(ai) for each i ∈ I , then

gtp((ai)i∈I , (aibi)i∈I ;M ) = gtp((a′i )i∈I , (a
′
i bi)i∈I ;M

′)

and thus gtp((aibi)i∈I ;M ) = gtp((a′i bi)i∈I ;M
′);

(iii) (extension) for any (b;M ) there is an extension M ′ → N and some (b′;N )
such that gtp(b, (ai)i∈I ;M ) = gtp(b′, (a′i )i∈I ;N ).

Fact 2.12 [18, Proposition 3.9]. If gtp(a, b;M ) = gtp(a′, b′;M ′) and a factors
through b, say as a = bi , then a′ factors through b′ in the same way, so as a′ = b′i .

Definition 2.13. Let (C,M) be an AECat with AP. For a tuple (Ai)i∈I of objects
in C, let S((Ai)i∈I ) be the collection of all tuples ((ai)i∈I ;M ) such that dom(ai) =
Ai . We define the Galois type set Sgtp((Ai)i∈I ) as

Sgtp((Ai)i∈I ) = S((Ai)i∈I )/ ∼gtp,
where ∼gtp is the equivalence relation of having the same Galois type.

Fact 2.14 [18, Proposition 4.6]. Sgtp((Ai)i∈I ) is really just a set.

Definition 2.15. Fix some AECat (C,M) with AP.
(i) A sequence is a tuple ((ai)i∈I ;M ) where every ai has the same domain and I

is a linear order.
(ii) A chain is a diagram of ordinal shape. We call a chain (Mi)i<κ continuous if
M� = colimi<� Mi for all limit � < κ. Given a chain (Mi)i<κ we say that M is
a chain bound for (Mi)i<κ if there are arrowsmi :Mi →M forming a cocone
for (Mi)i<κ.

(iii) A chain of initial segments for some sequence ((ai)i<κ;M ) is a continuous
chain (Mi)i<κ of models with chain bound M such that ai factors through
Mi+1 for all i < κ.

(iv) Let (Mi)i<κ be a chain with chain bound M and let c : C →M be some
arrow. We say that c embeds in (Mi)i<κ if c factors as C →M0 →M .

(v) We call a sequence ((ai)i<κ;M ) together with a chain of initial segments
(Mi)i<κ an isi-sequence (short for initial segment invariant) if for all i ≤ j < κ
we have

gtp(ai ,mi ;M ) = gtp(aj,mi ;M ).

For c : C →M we say this is an isi-sequence over c if c embeds in (Mi)i<κ.

Convention 2.16. For a chain of initial segments (Mi)i<κ for some sequence
(ai)i<κ in M we will abuse notation and view ai as an arrow into Mj for i < j.
Similarly, if c embeds in (Mi)i<κ, we view c as an arrow intoMi for all i < κ.

Lemma 2.17. Suppose that (C,M) is a �-AECat and let κ ≥ �. Suppose
furthermore that we are given a sequence (ai)i<κ in some M with a chain of initial
segments (Mi)i<κ and some c that embeds in this chain, such that dom(ai) (which
is the same for all i) and dom(c) are κ-presentable. Then there is a chain of initial
segments (M ′

i )i<κ in which c embeds, such that for all i < κ the inclusion ofM ′
i into

M factors throughMi (soM ′
i ≤Mi) andM ′

i is κ-presentable.
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730 MARK KAMSMA

Proof. We build the chain of initial segments (M ′
i )i<κ by induction. For the base

case we note that we can writeM0 as a κ-directed colimit of κ-presentable models
(using Proposition 2.7). As dom(c) is κ-presentable, c factors through someM ′

0 in
this diagram. The successor step is similar, using that M ′

i and dom(ai) are both
κ-presentable and must thus factor through some κ-presentable M ′

i+1 ≤Mi+1. In
the limit step we just take the colimitM ′

� = colimi<� M ′
i and the universal property

then yields an arrowM ′
� →M� . �

§3. Lascar strong Galois types. In this section we will give a definition of Lascar
strong Galois type. In the first-order setting this will coincide with Lascar strong
types, see Remark 3.2. This notion will be useful later in the property Independence

Theorem for independence relations, see Definition 4.9.
To place our definition in context, we recall a possible definition for Lascar strong

types in first-order logic. Working in a monster model, tuples a and a′ have the same
Lascar strong type over B if there are a = a0, ... , an = a′ and models M1, ... ,Mn,
each containing B, such that tp(ai/Mi+1) = tp(ai+1/Mi+1) for all 0 ≤ i < n.

Definition 3.1. Let (C,M) be an AECat with AP and fix some ((bj)j∈J ;M ).
We write ((ai)i∈I /(bj)j∈J ;M ) ∼Lgtp ((a′i )i∈I /(bj)j∈J ;M ) if there is some extension
M → N and somem0 :M0 → N , whereM0 is a model, such that bj factors through
m0 for all j ∈ J and gtp((ai)i∈I , m0;N ) = gtp((a′i )i∈I , m0;N ).

We write

Lgtp((ai)i∈I /(bj)j∈J ;M ) = Lgtp((a′i )i∈I /(bj)j∈J ;M )

for the transitive closure of ∼Lgtp and we say that ((ai)i∈I ;M ) and ((a′i )i∈I ;M ) have
the same Lascar strong Galois type over (bj)j∈J .

Remark 3.2. By definition having the same Lascar strong Galois type is the
same as having the same Lascar strong type in an AECat based on a first-order
theory. That is, they coincide in any AECat of the form (SubMod(T ),Mod(T )) or
(Mod(T ),Mod(T )) for some first-order theory T. We get a similar statement for
continuous logic, because the same standard proofs and definitions go through.

In positive logic the situation is more subtle, but in a broad class of reasonable
positive theories Lascar strong types and Lascar strong Galois types coincide. See
Fact 7.8 and the surrounding discussion for more details.

Classically multiple equivalent definitions are possible for Lascar strong types. We
recall these and prove similar conditions for Lascar strong Galois types in Section
8. Usually these proofs require compactness, but interestingly this can be replaced
by the use of a nice enough independence relation.

For ease of notation the following proposition is formulated for single arrows, but
everything goes through word for word if we replace those by tuples of arrows.

Proposition 3.3. Suppose that gtp(a1, a2, b;M ) = gtp(a′1, a
′
2, b

′;M ′). Then we
have Lgtp(a1/b;M ) = Lgtp(a2/b;M ) iff Lgtp(a′1/b

′;M ′) = Lgtp(a′2/b
′;M ′).

Proof. It suffices to prove that (a1/b;M ) ∼Lgtp (a2/b;M ) implies (a′1/b
′;M ′)

∼Lgtp (a′2/b
′;M ′). Let M → N with m0 :M0 → N witness (a1/b;M ) ∼Lgtp

(a2/b;M ). So we have that b = m0b
∗ for some b∗ : B →M0, and gtp(a1, m0;N ) =
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gtp(a2, m0;N ). Let N → N ′ ←M ′ witness gtp(a1, a2, b;N ) = gtp(a1, a2, b;M ) =
gtp(a′1, a

′
2, b

′;M ′). Then we get the following commuting diagram:

N ′

N M ′

M M0

A1 B A2.

m0

So we havem0 :M0 → N ′ and b′ factors thoughm0. This follows from the fact that
the above diagram commutes, so b′ : B →M ′ → N ′ and B →M0 → N → N ′ are
the same arrow. Furthermore, we have that gtp(a1, m0;N ′) = gtp(a2, m0;N ′) and
because a1 and a2 are the same arrows into N ′ as a′1 and a′2 respectively, we get
gtp(a′1, m0;N ′) = gtp(a′2, m0;N ′). So we conclude (a′1/b

′;M ′) ∼Lgtp (a′2/b
′;M ′),

as required. �

Lascar strong Galois types induce a bounded equivalence relation on arrows. We
again give a proof for single arrows, which also works for tuples of arrows.

Proposition 3.4. Given objects A and B there is � such that for any b : B →M the
relation of having the same Lascar strong Galois type over b partitions Hom(A,M )
into at most � many equivalence classes.

Proof. We will first prove the following claim: for any b : B →M there is �b
such that for any b′ : B →M ′ with gtp(b′;M ′) = gtp(b;M ) there are at most �b
many equivalence classes of Lascar strong Galois types over b′ in Hom(A,M ′).
By Fact 2.14 the collection Sgtp(A,M ) is a set. We pick �b = |Sgtp(A,M )|. Now
let M → N ←M ′ witness gtp(b′;M ′) = gtp(b;M ). For any two arrows a, a′ :
A→M ′ we have that gtp(a,m;N ) = gtp(a′, m;N ) implies that Lgtp(a/b′;M ′) =
Lgtp(a′/b′;M ′), by definition of Lgtp. The claim then follows by choice of �b .

By the claim we can take � to be the supremum of �b , where b ranges over the
representatives of the Galois types in Sgtp(B). �

Proposition 3.5. If Lgtp((ai)i∈I /b;M ) = Lgtp((a′i )i∈I /b;M ) then:

(i) (restriction) we have Lgtp((ai)i∈I0/b;M ) = Lgtp((a′i )i∈I0/b;M ) for any
I0 ⊆ I ;

(ii) (monotonicity) given an arrow ci : Ci → dom(ai) for each i ∈ I , then

Lgtp((ai)i∈I , (aici)i∈I /b;M ) = Lgtp((a′i )i∈I , (a
′
i ci)i∈I /b;M )

and thus Lgtp((aici)i∈I /b;M ) = Lgtp((a′i ci)i∈I /b;M );
(iii) (extension) for any (c;M ) there is an extension M → N and some (c′;N )

such that Lgtp(c, (ai)i∈I /b;N ) = Lgtp(c′, (a′i )i∈I /b;N ).

Proof. This is essentially the same Fact 2.11, but then for Lascar strong Galois
types. To prove it, apply the definition of Lascar strong Galois types to reduce to
some equality of Galois types and then apply Fact 2.11. �
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§4. Independence relations. Similar to [18, Section 6] we define an independence
relation in an AECat as a ternary relation on subobjects of models. However, there
will be some slight differences in our terminology, see after Definition 4.10.

We write Sub(X ) for the poset of subobjects of object X. If A ≤ B for A,B ∈
Sub(X ) we may also consider A to be a subobject of B, that is A ∈ Sub(B). On the
other hand, we always haveX ∈ Sub(X ) as the maximal element. So we will use the
notation A ≤ X to mean that A is a subobject of X.

Convention 4.1. We extend Convention 2.9 to subobjects: given an extension
M → N and a subobject A ≤M , we will view A as a subobject of N.

Definition 4.2. In an AECat with AP, an independence relation is a relation on
triples of subobjects of models. If such a triple (A,B,C ) of subobjects of a model
M is in the relation, we call it independent and write:

A
M

|�
C

B.

This notation should be read as “A is independent from B over C (in M)”.
We also allow each of the subobjects in the notation to be replaced by an arrow

representing them. For example, if a is an arrow representing the subobject A then
a |�

M

C
B means A |�

M

C
B .

We may want to restrict the objects that can appear in the base of the independence
relation.

Definition 4.3. Let (C,M) be an AECat with AP and let B be a collection of
objects in C, closed under isomorphic objects, with M ⊆ B. Then we call B a base
class. An independence relation |� is called an independence relation over B if it only

allows subobjects with their domain in B in the base. That is, A |�
M

C
B implies that

the domain of C is in B. We will also say that B is the base class of |� , written as
B = base( |� ).

Convention 4.4. For a base class B and some subobject C ≤M we will also write
C ∈ B to mean that the domain of C is in B, and similarly for C 
∈ B.

Definition 4.5. We call an independence relation |� a basic independence relation
if it satisfies the following properties.

Invariancea |�
M
c
b and gtp(a, b, c;M ) = gtp(a′, b′, c′;M ′) impliesa′ |�

M ′

c′
b′.

Monotonicity A |�
M
C
B and A′ ≤ A implies A′ |�

M
C
B .

Transitivity A |�
M
B
C and A |�

M
C
D with B ≤ C implies A |�

M
B
D.

Symmetry A |�
M
C
B implies B |�

M
C
A.

Existence A |�
M
C
C for all C ∈ base( |� ).

Extension If a |�
M
c
b and (b′;M ) is such that b factors through b′ then

there is an extension M → N with some (a′;N ) such that gtp(a′, b, c;N ) =
gtp(a, b, c;M ) and a′ |�

N
c
b′.
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Union Let (Bi )i∈I be a directed system with a cocone into some model M,
and suppose B = colimi∈I Bi exists. Then if A |�

M
C
Bi for all i ∈ I , we have

A |�
M
C
B .

Before we define some additional properties for independence relations, we first
need to translate the notion of a club set to categorical language.

Definition 4.6. Let (C,M) be an AECat. For a model M and a regular cardinal
κ we write SubκM(M ) for the poset of κ-presentable subobjects of M in M.

Note that if we are given a chain (Mi)i<� in SubκM(M ) with � < κ then its join
in SubκM(M ) exists and is given by colimi<� Mi . This is the reason why we restrict
ourselves to M, because there we have directed colimits. If C has directed colimits
as well then all these definitions would make sense for C as well.

Definition 4.7. Let F ⊆ SubκM(M ) be a nonempty set.

(i) We call F unbounded if for everyM0 ∈ SubκM(M ) there isM1 ∈ F such that
M0 ≤M1.

(ii) We call F closed if for any chain (Mi)i<� in F with � < κ its join colimi<� Mi
is again in F .

(iii) We call F a club set if it is closed and unbounded.

Fact 4.8. The following two facts are standard.

(i) The intersection of two club sets on SubκM(M ) is again a club set.
(ii) If M = colimi<κ Mi , where (Mi)i<κ is a continuous chain of κ-presentable

models, then {Mi : i < κ} is a club set on SubκM(M ).

Proof. Fact (i) is standard, see for example [17, Theorem 8.2]. We just apply
the argument to the poset SubκM(M ) instead of to a cardinal considered as a poset.
Fact (ii) is just unfolding definitions. The chain (Mi)i<κ is unbounded because it is
κ-directed, so any κ-presentable M ′ ≤M will factor through the chain, and
continuity is precisely saying that the chain is a closed set. �

Definition 4.9. We also define the following properties for an independence
relation.

Base-Monotonicity: A |�
M
C
B and C ≤ C ′ ≤ B with C ′ ∈ base( |� ) implies

A |�
M
C ′ B .

Club Local Character: For every regular cardinal � there is a regular cardinal
Υ(�) such that the following holds for all regular κ ≥ Υ(�). Let A,M ≤ N ,
with A �-presentable and M a model. Then there is a club set F ⊆ SubκM(M )
such that for allM0 ∈ F we have A |�

N
M0
M .

Stationarity: If gtp(a,m;N ) = gtp(a′, m;N ), where the domain of m is a model,
then a |�

N
m
b and a′ |�

N
m
b implies gtp(a,m, b;N ) = gtp(a′, m, b;N ).

Independence Theorem: Suppose we have a |�
M
c
b, a′ |�

M
c
b′, b |�

M
c
b′ and

also Lgtp(a/c;M ) = Lgtp(a′/c;M ). Then there is an extensionM → N with
(a∗;N ) such that Lgtp(a∗, b/c;N ) = Lgtp(a, b/c;N ), Lgtp(a∗, b′/c;N ) =
Lgtp(a′, b′/c;N ) and a∗ |�

N
c
M .
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734 MARK KAMSMA

Definition 4.10. Let |� be a basic independence relation. We call |� ...
• ... a stable independence relation if it also satisfies Base-Monotonicity, Club

Local Character, Stationarity and Independence Theorem.
• ... a simple independence relation if it also satisfies Base-Monotonicity, Club

Local Character and Independence Theorem.
• ... an NSOP1-like independence relation if it also satisfies Club Local

Character and Independence Theorem;

We briefly compare the terminology we use here to the terminology in [18]. The
notion of a base class is entirely new, so properties concerning the subobject in the
base have been adjusted accordingly.

The Existence and Transitivity properties are different now, and we have
added Extension. However, the formulation of existence and transitivity (together
with invariance and monotonicity) in [18] implies our new formulation, see [18,
Proposition 6.11]. The converse is also true: our new formulation of Existence,
Transitivity and Extension (together with invariance) implies existence and
transitivity there. So ultimately the two approaches are equivalent.

Remark 4.11. In a more traditional definition of local character, such as in
simple theories, one would just require that for A,M ≤ N as above there is some
Υ(�)-presentable M0 ≤M such that A |�

N

M0
M . This is (almost) the definition

that was used in [18], where we also have access to Base-Monotonicity. We then
get Club Local Character by considering the club set F = {M0 ∈ SubκM(M ) :
M0 ≤M}. In NSOP1-like settings we do generally not have Base-Monotonicity. So
Club Local Character then still gives us a good amount of Base-Monotonicity,
namely on a club set. These ideas are due to [22].

Proposition 4.12 (Strong extension). Let |� be a basic independence relation
and suppose that a |�

M

c
b. Then for any (d ;M ) there is an extension M → N and

(d ′;N ) such that Lgtp(d ′/b, c;N ) = Lgtp(d/b, c;N ) and a |�
N

c
d ′.

Proof. We first apply Extension to findM → N1 with m′ :M → N1 such that
a |�

N1
c
m′ and gtp(m′, b, c;N1) = gtp(m, b, c;N1). In particular this means that b

and c factor throughm′ by Fact 2.12. We apply Extension again to find an extension
n1 : N1 → N and n′1 : N1 → N with a |�

N

c
n′1 and gtp(n′1, m

′;N ) = gtp(n1, m
′;N ).

We define d ′ to be the composition D d−→M → N1
n′1−→ N . By Monotonicity we

then have a |�
N

c
d ′. We also have gtp(d ′, m′;N ) = gtp(d,m′;N ), so since b and c

factor throughm′, andm′ has a model as domain, we indeed get Lgtp(d ′/b, c;N ) =
Lgtp(d/b, c;N ). �

Corollary 4.13. Let |� be a basic independence relation and suppose
that a |�

M

c
b. Then for any (d ;M ) there is M → N and (a′;N ) such that

Lgtp(a′/b, c;N ) = Lgtp(a/b, c;N ) and a′ |�
N

c
d .

Proof. Apply Proposition 4.12 to findM → N ′ with (d ′;N ′) such thata |�
N ′

c
d ′

and Lgtp(d ′/b, c;N ′) = Lgtp(d/b, c;N ′). Then just pick (a′;N ) in an extension
N ′ → N such that Lgtp(a′, d/b, c;N ) = Lgtp(a, d ′/b, c;N ). �
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Convention 4.14. We call the class function Υ for Club Local Character a
local character function. For an object A we write Υ(A) for Υ(�) where � is the least
regular cardinal such that A is �-presentable.

Lemma 4.15 (Chain local character). Let |� be an independence relation satisfying
Club Local Character. Let A ≤ N and κ ≥ Υ(A). Suppose that we are given a
continuous chain (Mi)i<κ of κ-presentable models withM = colimi<κ Mi ≤ N . Then
there is i0 < κ such that A |�

N

Mi0
M .

Proof. Let F ⊆ SubκM(M ) be the club set from Club Local Character. By
Fact 4.8(ii) the chain (Mi)i<κ forms a club set on SubκM(M ). So by Fact 4.8(i)
{Mi : i < κ} ∩ F is nonempty. �

Remark 4.16. For all our results we only need chain local character. That is, the
conclusion of Lemma 4.15. In particular the canonicity theorems in Section 7 go
through even if we would just assume chain local character.

Given that we actually only need chain local character, as per Remark 4.16, it is
natural to ask whether the converse of Lemma 4.15 holds. That is, if chain local
character implies Club Local Character. This is not so clear, so we leave it at this.

We recall the following from [18, Definition 6.13].1

Definition 4.17. Suppose we have an independence relation |� . Let (ai)i<κ be
a sequence in some M and let c : C →M be an arrow. Suppose that (Mi)i<κ is a
chain of initial segments for (ai)i<κ and that c embeds in the chain. Then we call
(Mi)i<κ witnesses of |�c

-independence for (ai)i<κ if

ai
M

|�
c

Mi

for all i < κ. We say that a sequence is |�c
-independent if it admits a chain of

witnesses of |�c
-independence.

The following proposition is the standard argument showing that we can find
arbitrarily long independent sequences, assuming very few properties for our
independence relation (see, e.g., [25, Proposition 2.2.4]). The proposition after that
shows that if we additionally assume Union we can actually get arbitrarily long
independent isi-sequences.

Proposition 4.18. Let |� be an independence relation satisfying Invariance,
Existence and Extension. Then for any (a, c;M ) with dom(c) ∈ base( |� ) and any
κ there is some extension M → N containing a |�c

-independent sequence (ai)i<κ
with gtp(ai , c;N ) = gtp(a, c;M ) for all i < κ.

Proof. We construct the witnesses of independence (Mi)i<κ and sequence (ai)i<κ
by induction. At stage i we will construct ai and Mi+1. By Existence we have

1There is a slight improvement here. We additionally require here that c embeds in the chain. In [18]
this is the case for every such sequence that is considered. There are only two uses of such sequences. One
in Lemma 6.14 where they are constructed, and we indeed get that c embeds in the chain of witnesses of
independence. The other one is in the main proof, where such a sequence is found from an application
of Lemma 6.14.
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736 MARK KAMSMA

a |�
M

c
c, and so we will have a |�

Mi
c
c for all i < κ. At every stage we will apply

Extension to the latter.
For the base case we set M0 =M and use Extension to find a0 and M →M1

with gtp(a0, c;M1) = gtp(a, c;M ) and a0 |�
M1
c
M0. In the successor step we

use Extension to find Mi+1 →Mi+2 and ai+1 such that ai+1 |�
Mi+2
c
Mi+1 and

gtp(ai+1, c;Mi+2) = gtp(a, c;M ). Finally, for limit � < κ letM� = colimi<� Mi . We
use Extension to findM� →M�+1 and a� with gtp(a� , c;M�+1) = gtp(a, c;M ) and
a� |�

M�+1
c

M� . We finish the construction by taking N = colimi<κ Mi . �

Proposition 4.19. Suppose that |� is an independence relation satisfying
Invariance, Existence, Extension and Union. Then given (a, c;M ) with dom(c) ∈
base( |� ) and any κ, there is a |�c

-independent isi-sequence (ai)i<κ over c in some
extensionM → N such that gtp(ai , c;N ) = gtp(a, c;M ) for all i < κ.

Proof. This is just [18, Lemma 6.14]. The differences in terminology are
discussed after Definition 4.10. In particular, the monotonicity assumption there is
only necessary to get what we call Extension. Finally, there is no notion of base
class there, but this is only relevant in the application of Existence, which is only
applied with c in the base. Hence the assumption dom(c) ∈ base( |� ). �

§5. Independence theorem, 3-amalgamation, and stationarity. It is well known that
the property Independence Theorem can also be formulated as an amalgamation
property of some independent system. This allows for a more categorical statement
without any mention of Lascar strong Galois types. However, we need to restrict
ourselves to work only over models. We will give this property its own name and
prove its equivalence to Independence Theorem, modulo some basic properties,
in Theorem 5.2.

The contents of this section are not necessary for the results in the rest of this
paper, but we do refer to them a few times in remarks and discussions.

Definition 5.1 [18, Definition 6.7]. An independence relation |� has
3-amalgamation if the following holds. Suppose that we have

A
N1
|�
M

B, B
N2
|�
M

C, C
N3

|�
M

A,

overloading notation for subobjects of different models. Suppose furthermore that
M is a model and that

gtp(a,m;N1) = gtp(a,m;N3),

gtp(b,m;N1) = gtp(b,m;N2),

gtp(c,m;N2) = gtp(c,m;N3),

where a, b, c, and m are representatives for the subobjects A, B, C, and M respectively
(again, overloading notation for different models). Then we can find extensions from
N1, N2, and N3 to some N such that the diagram we obtain in that way commutes:
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N1 N

A N3

B N2

M C .
Furthermore, these extensions are such that A |�

N

M
N2.

Theorem 5.2. Let |� be a basic independence relation. If |� satisfies Indepen-

dence Theorem then it also satisfies 3-amalgamation. Conversely, if |� satisfies
3-amalgamation then it satisfies Independence Theorem over models (i.e., we
require the base C to be a model ).

Proof. We first prove that Independence Theorem implies 3-amalgamation.
Let the set up be as in Definition 5.1. In the diagram below we find the dashed
arrows by using gtp(c,m;N2) = gtp(c,m;N3) and gtp(b,m;N1) = gtp(b,m;N2).

N1 N ′

A N3 •

B N2

M C

We write a1 for the arrow A→ N1 → N ′ and a3 for the arrow A→ N3 → N ′. Then
we have Lgtp(a1/m;N ′) = Lgtp(a3/m;N ′). We can thus apply Independence

Theorem to find some extension N ′ → N ∗ with some a∗ : A→ N ∗ such that
Lgtp(a∗, b/m;N ∗) = Lgtp(a1, b/m;N ∗), Lgtp(a∗, c/m;N ∗) = Lgtp(a3, c/m;N ∗)
and a∗ |�

N∗

M
N ′. So in particular we have a∗ |�

N∗

M
N2 by Monotonicity. Using

gtp(a, b,m;N1) = gtp(a1, b,m;N ∗) = gtp(a∗, b,m;N ∗) and gtp(a, c,m;N3) =
gtp(a3, c,m;N ∗) = gtp(a∗, c,m;N ∗) after each other we find an extensionN ∗ → N
together with extensions fromN1 andN3 to N and we just forget about the previous
extensions from N1 and N3 to N ∗. These two new extensions, together with
N2 → N ∗ → N , then form the solution to our 3-amalgamation problem.

Now we prove the converse. So we assume 3-amalgamation and we prove
Independence Theorem over models. So suppose that a |�

N

m
b, a′ |�

N

m
c and

b |�
N

m
c and Lgtp(a/m;N ) = Lgtp(a′/m;N ). Then we can form the commuting

diagram as below, where we find the dashed arrows by 3-amalgamation.

N N ∗

A N

B N

M C

f

a′
a g

b

b

h

c

c
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We take the extension N → N ∗ to be h and write a∗ for fa = ga′. The application
of 3-amalgamation yields a∗ |�

N∗

m
N . Furthermore, gtp(a∗, b,m;N ∗) =

gtp(a, b,m;N ) = gtp(a, b,m;N ∗), so Lgtp(a∗, b/m;N ∗) = Lgtp(a, b/m;N ∗)
because the domain of m is a model. Similarly, we also find Lgtp(a∗, c/m;N ∗) =
Lgtp(a′, c/m;N ∗), which concludes the proof. �

We recall that 3-amalgamation follows from Stationarity. This might for
example be useful in the case where base( |� ) = M, so one does not need to verify
the Independence Theorem property for a stable independence relation, as it follows
automatically. In particular this means that a stable independence relation in the
sense of [27] also yields a stable independence relation in our setting and vice versa,
see also [18, Remark 6.7] for further comparison.

Fact 5.3 [18, Proposition 6.16]. Let |� be a basic independence relation satisfying
Stationarity then it also satisfies 3-amalgamation.

§6. Long dividing, isi-dividing, and long Kim-dividing. In this section we introduce
various notions of dividing, each yielding its own independence relation. These
notions are based on the classical notion of dividing, as we know it from first-order
logic. For the convenience of the reader, and to compare it to the new definitions,
we recall the definition of dividing.

Definition 6.1. In the classical setting of first-order logic, we say that a type
p(x, b) = tp(a/Cb) divides over C if there is a C-indiscernible sequence (bi)i<	 such
that tp(bi/C ) = tp(b/C ) for all i < 	 and

⋃
i<	 p(x, bi) is inconsistent.

In many proofs, to use this definition, one has to apply compactness in one way or
another. For example to elongate the sequence (bi)i<	 , or to find a finite subsequence
along which p is inconsistent. This is generally an issue in AECats, because we do not
have compactness there. To solve this we introduce the notion of long dividing. The
name is due to the fact that we consider arbitrarily long sequences in the definition,
something that we would normally have to use compactness for. This is very close
to the notion of isi-dividing from [18, Definition 5.7]. In fact, isi-dividing is just
long dividing but then restricted to isi-sequences, so that we have some homogeneity
in the sequences involved. Of course, indiscernible sequences would be even more
homogeneous, but the little bit that isi-sequences offer us turns out to be enough.

We remind the reader of Fact 2.1, namely that all cardinals considered are regular.
So in the following definition we only quantify over regular cardinals.

Definition 6.2. Let (C,M) be an AECat with AP and fix some (a, b, c;M ).
(i) Suppose that we have some sequence ((bi)i∈I ;M ) such that gtp(bi , c;M ) =

gtp(b, c;M ) for all i ∈ I . We say that gtp(a, b, c;M ) is consistent for (bi)i∈I
if there is an extensionM → N and an arrow (a′;N ) such that

gtp(a, b, c;M ) = gtp(a′, bi , c;N )

for all i ∈ I . We call a′ a realisation of gtp(a, b, c;M ) for (bi)i∈I .
Being inconsistent is the negation of the above. So gtp(a, b, c;M ) is

inconsistent for (bi)i∈I if there is no extension of M with a realisation a′

of gtp(a, b, c;M ) for (bi)i∈I .
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(ii) We say that gtp(a, b, c;M ) long divides over c if there is � such that for
every � ≥ � there is a sequence (bi)i<� in some extension M → N with
gtp(bi , c;N ) = gtp(b, c;M ) for all i < �, such that for some κ < � and every
I ⊆ � with |I | = κ we have that gtp(a, b, c;M ) is inconsistent for (bi)i∈I .

(iii) We say that gtp(a, b, c;M ) isi-divides if it long divides with respect to isi-
sequences over c. That is, we require the sequence (bi)i<� to be an isi-sequence
over c.

Remark 6.3. We discussed how long dividing and isi-dividing are inspired by
dividing. A natural question would be whether or not they are actually the same.
This was discussed in [18] from Remark 5.8 and onwards. The discussion there is just
about isi-dividing but applies to long dividing as well. The summary is as follows,
restricting ourselves to AECats obtained from a first-order theory.

(i) Dividing implies isi-dividing implies long dividing.
(ii) Long dividing (and thus isi-dividing) implies dividing if we assume the

existence of a proper class of Ramsey cardinals.
(iii) Using the canonicity theorem, Theorem 1.2, we can actually drop the large

cardinal assumption and conclude that isi-dividing implies dividing in simple
theories.

(iv) The question remains: does long dividing (and thus isi-dividing) generally
imply dividing, without the large cardinal assumption?

In fact, dividing makes sense in positive logic as well (see [4, 28]), and the above
discussion applies to AECats obtained from a positive theory as well. There is an even
more general setting, namely that of finitely short AECats, where this discussion
applies. These are AECats where a Galois type of an infinite tuple of arrows is
determined by the Galois types of the finite subtuples, see [19, Section 4]. This is
more or less the same framework as that of homogeneous model theory in the sense
of [9] (see [18, Example 4.4]).

The point of these dividing notions is that they yield independence relations.
We can already prove some basic properties about these independence relations in
arbitrary AECats, similar to the basic properties that dividing always has.

Proposition 6.4. Let A,B,C ≤M be subobjects. Let (a, b, c;M ) and
(a′, b′, c′;M ) be two sets of representatives. Then gtp(a, b, c;M ) long divides over
c if and only if gtp(a′, b′, c′;M ) long divides over c′. The same statement holds for
isi-dividing.

Proof. This comes down to checking all the definitions, which is lengthy to
do in detail. However, there is only one trick that we repeatedly use, and that is
Fact 2.11(ii). To apply this trick we let f, g, h be isomorphisms such that a′ = af,
b′ = bg and c′ = ch. Then, using the above trick, we easily see that for any sequence
(bi)i<� witnessing long dividing of gtp(a, b, c;M ) we have that (big)i<� witnesses
long dividing for gtp(a, bg, c;M ) = gtp(a, b′, c;M ). Similarly we can replace c by
ch = c′ and a by af = a′. The same holds for isi-dividing, noting that any isi-
sequence over c is also an isi-sequence over ch = c′. �

Definition 6.5. For subobjects A,B,C ≤M we write A |�
ld,M
C
B if

gtp(a, b, c;M ) does not long divide for all (equivalently: some) representatives
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a, b, c of A,B,C . Similarly, we write A |�
isi–d,M
C

B if gtp(a, b, c;M ) does not
isi-divide.

As |�
ld and |�

isi–d do not generally satisfy Symmetry we have to distinguish
between “left” and “right” versions of certain properties, as we do below.

Proposition 6.6. Long dividing and isi-dividing always satisfy the following:
Invariance, Left-Monotonicity, Existence, and Base-Monotonicity. In addi-
tion, long dividing also satisfies Right-Monotonicity.

Proof. Everything is direct from the definition, except for Right-Monotonicity

for long dividing and Base-Monotonicity. For both we will prove the contraposi-
tion.

For Base-Monotonicity let (a, b, c, c′;M ) be such that gtp(a, b, c′;M ) long
divides over c′ and C ≤ C ′ ≤ B , where C,C ′, B are the subobjects represented by
c, c′, b respectively. Let � be as in the definition of long dividing and let � ≥ �. Then
there is (bi)i<� in some N that witnesses long dividing of gtp(a, b, c′;M ) over c′. We
will prove that it also witnesses long dividing of gtp(a, b, c;M ). Indeed we have for
all i < � that gtp(bi , c′;N ) = gtp(b, c′;M ) and thus gtp(bi , c;N ) = gtp(b, c;M ),
because C ≤ C ′. Let κ < � be such that for I ⊆ � with |I | = κ we have that
gtp(a, b, c′;M ) is inconsistent for (bi)i∈I . We claim that for such I we also have that
gtp(a, b, c;M ) is inconsistent for (bi)i∈I . Suppose that there would be a realisation
(a′;N ′) for some extension N → N ′, then gtp(a′, bi , c;N ′) = gtp(a, b, c;M ) for
all i ∈ I . Since c′ factors through b and bi in the same way for all i < �, see Fact
2.12, we then have gtp(a′, bi , c′;N ′) = gtp(a, b, c′;M ) for all i ∈ I , contradicting
that gtp(a, b, c′;M ) is inconsistent for (bi)i∈I . This proves Base-Monotonicity for
long dividing. We have shown that the same sequences that witness long dividing
of gtp(a, b, c′;M ) also witness long dividing of gtp(a, b, c;M ). As any isi-sequence
over c′ is an isi-sequence over c, the same proof shows that isi-dividing has Base-

Monotonicity.
Now we prove Right-Monotonicity for long dividing. Let (a, b, b′, c;M ) be

such that gtp(a, b, c;M ) long divides over c and b factors through b′. For any
sequence (bi)i<� in some N witnessing long dividing we can form (b′i )i<� by letting
b′i be such that gtp(b′i , bi , c;N ) = gtp(b′, b, c;M ) for all i < � (possibly replacing N
by an extension in the process). Then for I ⊆ � a realisation of gtp(a, b′, c;M ) for
(b′i )i∈I would also be a realisation of gtp(a, b, c;M ) for (bi)i∈I . So if we let κ < �
be such that for every I ⊆ � with |I | = κ we have that gtp(a, b, c;M ) is inconsistent
for (bi)i∈I , we also get that gtp(a, b′, c;M ) is inconsistent for (b′i )i∈I for any such
I. We conclude that gtp(a, b′, c;M ) long divides over c. �

We note that in the above proof we did not have to change the sequence involved
for Base-Monotonicity, which was why the same proof also works for isi-dividing.
In the proof of Right-Monotonicity we had to build a new sequence, which might
not be an isi-sequence again. This is why that proof only works for long dividing.

An important property that misses in Proposition 6.6 is Extension. Classically
(working in a monster model) this is fixed by considering forking instead of dividing.
This forces the Extension property as follows. Suppose that Extension fails for
some type p = tp(a/Cb). Then there is some parameter set, say D, such that every
extension of p to D divides over C. In other words, p implies a disjunction of types
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over D such that every type in that disjunction divides over C. Classically we could
even further reformulate this by using compactness and having p actually imply a
finite disjunction of dividing formulas, but that is not necessary and we want to
avoid compactness in our definitions. So our definition of isi-forking will be the
semantical way of saying “implies a (possibly infinite) disjunction of types that each
isi-divide”.

Definition 6.7. We say that gtp(a, b, c;M ) isi-forks over c if there is some
extensionM → N with ((aj)j∈J , (dj)j∈J ;N ) such that:

(i) gtp(aj, dj, c;N ) isi-divides over c for each j ∈ J ;
(ii) given an extension N → N ′ with some (a′;N ′) such that gtp(a′, b, c;N ′) =

gtp(a, b, c;N ) there is j ∈ J such that gtp(a′, dj , c;N ′) = gtp(aj, dj, c;N ).

Note that we do not require that b actually factors through the dj . This is because
we also want to force in Right-Monotonicity.

Of course, one could also define a notion of long forking by replacing isi-dividing
by long dividing in the above. However, we will have no use for this.

Remark 6.8. The definition of isi-forking is just the semantical way of saying
“gtp(a, b, c;M ) implies a (possibly infinite) disjunction of Galois types that each
isi-divide over c”. In the first-order setting and in the positive setting (see [28])
forking has been defined and can be formulated as follows: a type forks over C
if it implies a (possibly infinite) disjunction of types that each divide over C. It
should then be clear that forking implies isi-forking. This uses the fact that dividing
implies isi-dividing, see Remark 6.3(i). If isi-dividing and dividing coincide then the
converse is true, so isi-forking would then imply forking.

As before, we will prove various basic properties of isi-forking.

Proposition 6.9. Let A,B,C ≤M be subobjects. Let (a, b, c;M ) and
(a′, b′, c′;M ) be two sets of representatives. Then gtp(a, b, c;M ) isi-forks over c
if and only if gtp(a′, b′, c′;M ) isi-forks over c′.

Proof. We use the same trick as we did in Proposition 6.4. Let f be the isomor-
phism such that a′ = af. Let M → N be an extension with ((aj)j∈J , (dj)j∈J ;N )
witnessing isi-forking of gtp(a, b, c;M ). Then using Proposition 6.4 we have that
gtp(ajf, dj, c′;N ) isi-divides over c′ for all j ∈ J . We claim that isi-forking of
gtp(a′, b′, c′;M ) is witnessed by ((ajf)j∈J , (dj)j∈J ;N ), for which we are now left
to check (ii) from Definition 6.7.

Let g and h be isomorphisms such that b′ = bg and c′ = ch. Let N → N ∗ be an
extension with some (a∗;N ∗) such that gtp(a∗, b′, c′;N ∗) = gtp(a′, b′, c′;N ). Then

gtp(a∗f–1, b, c;N ∗) = gtp(a∗f–1, b′g–1, c′h–1;N ∗)

= gtp(a′f–1, b′g–1, c′h–1;N )

= gtp(a, b, c;N ),

so there is j ∈ J with gtp(a∗f–1, dj , c;N ∗) = gtp(aj, dj, c;N ). We conclude that
gtp(a∗, dj , c′;N ∗) = gtp(a∗f–1f, dj, ch;N ∗) = gtp(ajf, dj, c′;N ). �

Definition 6.10. For A,B,C ≤M we write A |�
isi–f,M
C

B if gtp(a, b, c;M ) does
not isi-fork for all (equivalently: some) representatives a, b, c of A,B,C .
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Proposition 6.11. Isi-forking satisfies the following: Invariance, Monotonicity

on both sides, Extension and Base-Monotonicity.

Proof. The properties Invariance and Right-Monotonicity are direct from
the definition. We prove the contraposition of the remaining three.

For Left-Monotonicity suppose that gtp(a′, b, c;M ) isi-forks over c and let
(a;M ) be such that a′ factors through a. Let ((a′j)j∈J , (dj)j∈J ;N ) in some extension
M → N witness the isi-forking. Let f be such that af = a′. The following is a set
by Fact 2.14:

F = {gtp(a∗, dj , c;N ∗) :N ∗ is an extension of N and j ∈ J and

gtp(a∗, b, c;N ∗) = gtp(a, b, c;M ) and

gtp(a∗f, dj, c;N ∗) = gtp(a′j , dj , c;N )}.

By Left-Monotonicity of isi-dividing, every Galois type in F isi-divides over
c. By inductively amalgamating things we find one extension N → N ∗ with
((ak)k∈K, (dk)k∈K ;N ∗) such that every Galois type in F is realised by (ak, dk, c;N ∗)
for some k ∈ K . This then witnesses isi-forking of gtp(a, b, c;M ) over c.

For Extension let (a, b, b′, c;M ) be such that b factors through b′ and for every
(a′;N ) in some extension M → N with gtp(a′, b, c;N ) = gtp(a, b, c;M ) we have
that gtp(a′, b′, c;N ) isi-forks over c. So the conclusion of the Extension property
for gtp(a, b, c;M ) fails. We have to prove that then gtp(a, b, c;M ) isi-forks over c.

For each Galois type in Sgtp(dom(a), dom(b′), dom(c)) we fix some witnesses of
isi-forking. By Fact 2.14 and the definition of isi-forking, the following is a set:

F = { gtp(a′, d, c;N ) : N is an extension ofM and

gtp(a′, b, c;N ) = gtp(a, b, c;M ) and

gtp(a′, d, c;N ) is a fixed witness of isi-forking of gtp(a′, b′, c;N )}.

By inductively amalgamating things we find one extension N → N ∗ together with
((aj)j∈J , (dj)j∈J ;N ∗) such that every Galois type in F is realised by (aj, dj, c;N ∗)
for some j ∈ J . This then witnesses isi-forking of gtp(a, b, c;M ) over c.

Finally, for Base-Monotonicity let (a, b, c, c′;M ) be such that gtp(a, b, c′;M )
isi-forks over c′ and C ≤ C ′ ≤ B , where C,C ′, B are the subobjects represented
by c, c′, b respectively. Let ((aj)j∈J , (dj)j∈J ;N ) witness this in some extension
M → N . We claim that this also witnesses isi-forking of gtp(a, b, c;M ) over c.
Indeed, let a′ : A→ N ′ for some extensionN → N ′ be such that gtp(a′, b, c;N ′) =
gtp(a, b, c;N ). We have C ′ ≤ B , so gtp(a′, b, c′;N ′) = gtp(a, b, c′;N ). So there
must be some j ∈ J such that gtp(a′, dj , c′;N ′) = gtp(aj, dj, c′;N ). As C ≤ C ′

this restricts to gtp(a′, dj , c;N ′) = gtp(aj, dj, c;N ), which concludes the proof. �

Proposition 6.12. For any A,B,C ≤M we always have

A
isi–f,M
|�
C

B =⇒ A
isi–d,M

|�
C

B.

The converse holds if and only if isi-dividing satisfies Right-Monotonicity and
Extension.
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Proof. The first implication is just the contrapositive of the trivial statement that
isi-dividing implies isi-forking. If the converse of this implication holds, then isi-
dividing and isi-forking coincide and so isi-dividing satisfies Right-Monotonicity

and Extension by Proposition 6.11.
We are left to prove that if isi-dividing satisfies Right-Monotonicity and

Extension then isi-forking implies isi-dividing. Suppose for a contradiction
that gtp(a, b, c;M ) isi-forks over c but does not isi-divide over c. Let
((aj)j∈J , (dj)j∈J ;N ) for some extension M → N witness the isi-forking of
gtp(a, b, c;M ). By Extension for isi-dividing we find an extension N → N ′ with
(a′;N ′) such that gtp(a′, b, c;N ′) = gtp(a, b, c;N ) and gtp(a′, N, c;N ′) does not
isi-divide. By isi-forking, there must be j ∈ J such that gtp(a′, dj , c;N ′) isi-divides
over c contradicting Right-Monotonicity of isi-dividing. �

When considering NSOP1-theories in first-order logic the useful notion of
independence is given by Kim-dividing, see for example [12, 20]. The idea is to
only consider dividing with respect to Morley sequences, that is, with respect to
indiscernible nonforking sequences. We adapt that definition to our earlier ideas.

Definition 6.13. We say that gtp(a, b, c;M ) long Kim-divides over c if it long
divides over c with respect to |�

isi–f
c

-independent sequences. That is, the definition

is exactly as long dividing, but we require the sequence (bi)i<� to be |�
isi–f
c

-

independent. We write A |�
lK,M
C
B if gtp(a, b, c;M ) does not long Kim-divide over

c for all (equivalently: some) representatives a, b, c of the subobjects A,B,C .

We implicitly used a combination of Proposition 6.4 and Proposition 6.9 to
conclude that long Kim-dividing is invariant under taking different representatives
of subobjects.

We have defined |�
lK
C

-independence using |�
isi–f
C

-independent sequences, but
these may not exist. For this we define the following axiom, from which the existence
of such sequences follows.

Definition 6.14. Let (C,M) be an AECat and let B be a base class. We say that
(C,M) satisfies the B-existence axiom if |�

isi–f with its base restricted to B satisfies

Existence. That is, for all A,C ≤M with C ∈ B we have A |�
isi–f,M
C

C .

Corollary 6.15. If (C,M) satisfies the B-existence axiom then for any (a, c;M )
with dom(c) ∈ B and any κ there is some extension M → N containing a |�

isi–f
c

-
independent sequence (ai)i<κ with gtp(ai , c;N ) = gtp(a, c;M ) for all i < κ.

Proof. Combine Proposition 4.18 and Proposition 6.11. �
Example 6.16. We discuss some examples of the B-existence axiom. These are

either settings where we have the axiom, or where it is natural to assume the axiom.
(i) For any first-order theory T we have the Mod(T )-existence axiom. This is

because any type over a model can be extended to a global invariant type,
which can then be used in a standard argument to show that such a type does
not isi-fork over M as follows.

Let q(x) ⊇ tp(a/M ) be a global M-invariant extension. Let α |= q, which
then lives in some bigger monster model. Suppose that tp(a/M ) isi-forks.
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Then there is d such that r(x, d ) = tp(α/Md ) isi-divides over M. However,
we will show that r(x, d ) cannot even long divide. So let (di)i<� be any infinite
sequence in tp(d/M ). Then by M-invariance tp(αdi/M ) = tp(αd/M ) for all
i < �. So

⋃
i<� r(x, di) is consistent, and so we conclude that r(x, d ) does not

long divide.
(ii) Analogous to the previous point, for a continuous theory T we have the

MetMod(T )-existence axiom.
(iii) For positive logic something similar to (i) is true, but we need an extra

assumption on T. We recall these assumptions in more detail in Definition
7.6. For now we just summarise what we get from them in terms of the
existence axiom. In a semi-Hausdorff positive theory T any type over an e.c.
model can be extended to a global invariant type (see [5, Lemma 3.11]), so
the proof in (i) goes through and we have the Mod(T )-existence axiom. In the
more general class of thick theories we still have the Mod(T )-existence axiom,
but we have to use global Lascar-invariant types instead, see [11, Lemmas 3.11
and 9.11].

(iv) For an NSOP1 theory T in first-order logic it is common to assume the
existence axiom for forking. It is still an open problem whether or not the
existence axiom for forking holds in every NSOP1 theory T, but it has been
proved in many specific instances, see [12, Fact 2.14].

If for such T we take (C,M) = (SubMod(T ),Mod(T )) then we are very
close to having the C-existence axiom. The only difference is that we work with
isi-forking, see Remark 6.8 for a comparison. In particular, the C-existence
axiom implies the existence axiom for forking. Furthermore, if there is a
proper class of Ramsey cardinals then isi-forking and forking coincide and so
the converse would hold as well. Additionally, it is quite likely that techniques
to prove existence for forking also work for isi-forking. For example, in [12,
Remark 2.15] it is shown that in the theory of parametrised equivalence
relations any type over any set A can be extended to a global A-invariant type.
Following point (i) we then see that such a type does not isi-fork over A.

(v) If (C,M) is an AECat with a simple independence relation |� then it will
satisfy the base( |� )-existence axiom. This follows from canonicity, Theorem

1.2, because then |� = |�
isi–f over base( |� ). This mirrors the fact that simple

theories in first-order logic (and even simple thick positive theories, see [5])
have the existence axiom for forking, see also the previous point.

Remark 6.17. The usual definition of Kim-dividing states that a type Kim-
divides if it divides with respect to nonforking Morley sequences, see, e.g., [12, 20].
To compare this to long Kim-dividing we first note that by Remark 6.8 any |�

isi–f -
independent sequence is also a forking-independent sequence, and the converse is
true if isi-dividing coincides with dividing. As before, if we assume that there is a
proper class of Ramsey cardinals then long Kim-dividing and Kim-dividing coin-
cide, using the same arguments as for long dividing and isi-dividing versus dividing.

If we do not want to assume large cardinals then we can again use canonicity,
this time Theorem 1.1, to see that long Kim-dividing and Kim-dividing coincide in
NSOP1-theories where it has been developed.
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§7. Canonicity. In this section we prove the main results, namely the canonicity
theorems for simple (Theorem 1.2) and NSOP1-like (Theorem 1.1) independence
relations. The former is just a slightly improved version of [18, Theorem 1.1]. The
results in this section up to and including Theorem 1.2 are then essentially just
the proof of [18, Theorem 1.1] cut up in smaller parts. However, we cannot really
just refer to that proof again. First of all because we work with slightly different
definitions. More importantly, the results here are actually improved versions. Most
notably Lemma 7.2 gives a lot more information, where the proof of [18, Theorem
1.1] only used the last sentence of that lemma.

Theorem 7.1. Let (C,M) be an AECat with AP and let |� be a basic independence

relation that also satisfies Club Local Character. Then A |�
isi–d,M
C

B implies

A |�
M

C
B for any C ∈ base( |� ).

If |� satisfies the same assumptions, except possibly Union, then we still have that

A |�
ld,M
C
B implies A |�

M

C
B for any C ∈ base( |� ).

Proof. Suppose that gtp(a, b, c;M ) does not isi-divide over c. Let κ ≥ Υ(A)
such that (C,M) is a κ-AECat and dom(a) and dom(c) are κ-presentable. By
Proposition 4.19 we find a long enough |�c

-independent isi-sequence (bi)i<� over
c in some M → N with � > κ and gtp(bi , c;N ) = gtp(b, c;M ) for all i < �. Let
(Mi)i<� be witnesses of independence. Since gtp(a, b, c;M ) does not isi-divide over
c there is I ⊆ � with |I | = κ such that gtp(a, b, c;M ) is consistent for (bi)i∈I .
Let a′ be a realisation for (bi)i∈I , which for convenience we may assume to be
in N. By possibly deleting an end segment from I we may assume that I has the
order type of κ. Using Lemma 2.17 we may assume that each object in the chain
(Mi)i∈I is κ-presentable, where Monotonicity implies that these are still witnesses
of independence. Then by chain local character, Lemma 4.15, we find i0 ∈ I such
that a′ |�

N

Mi0
MI where MI = colimi∈I Mi . By Monotonicity and Symmetry we

then have

bi0

N

|�
Mi0

a′.

We also have

bi0

N

|�
c

Mi0 .

So by Transitivity we have bi0 |�
N

c
a′ and the result follows by Symmetry and

because gtp(a′, bi0 , c;N ) = gtp(a, b, c;M ).
For the final claim we just note that if we do not have Union we can still

apply Proposition 4.18 instead of Proposition 4.19 to get an arbitrarily long |�c
-

independent sequence. It might just not be an isi-sequence. Then the rest of the proof
goes through as written. �

The following lemma generalises the Independence Theorem property to
independent sequences of any length. The original Independence Theorem can
roughly be viewed as just considering an independent sequence of length two.

https://doi.org/10.1017/jsl.2022.82 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2022.82


746 MARK KAMSMA

Lemma 7.2 (Generalised independence theorem). Suppose that |� is a basic
independence relation satisfying Independence Theorem. Let � be any (possibly
finite) ordinal. Suppose we have (a, b, c;N ) such that a |�

N

c
b and a |�c

-independent
sequence (bi)i<� in N with Lgtp(bi/c;N ) = Lgtp(b/c;N ) for all i < �. Then there
is an extension N → N ′ with (a′;N ′) such that a′ |�

N ′

c
N and Lgtp(a′, bi/c;N ′) =

Lgtp(a, b/c;N ′) for all i < �.
In particular, gtp(a, b, c;N ) is consistent for (bi)i<� .

Proof. Let (Mi)i<� be witnesses of independence for (bi)i<� , which we may
assume to be subobjects of N. We will add one more linkM� to the chain. If � is a
limit ordinal we setM� = colimi<� Mi . If � is a successor ordinal we setM� = N .

We will by induction construct a chain (Ni)i≤� with N0 extending N, together
with extensions {m′

i :Mi → Ni}i≤� and an arrow (a′′;N0) such that m′
0 = m0 and

Lgtp(a′′/c;N0) = Lgtp(a/c;N0) while at stage i we have:

(i) the extensions {m′
j :Mj → Nj}j≤i are natural in the sense that

Nj Ni

Mj Mi

m′
j m′

i

commutes for all j ≤ i ;
(ii) if i is a successor, say i = j + 1, then Lgtp(a′′, b′j/c;Ni) = Lgtp(a, b/c;Ni ),

where b′j is the composition B
bj−→Mi

m′
i−→ Ni ;

(iii) a′′ |�
Ni
c
m′
i .

Base case. By Existence we have a |�
N

c
c, so we can apply strong extension (Corol-

lary 4.13) to find N → N0 and (a′′;N0) with a′′ |�
N0
c
M0 and Lgtp(a′′/c;N0) =

Lgtp(a/c;N0).
Successor step. Suppose we have constructed Ni and m′

i . As Mi is an
amalgamation base we have gtp(mi ;Ni) = gtp(m′

i ;Ni). By (i) we have that
m′

0 factors through m′
i in the same way that m0 factors through mi ,

so gtp(m′
i , m

′
0;Ni) = gtp(mi,m0;Ni). Since m′

0 = m0 have gtp(m′
i , m0;Ni) =

gtp(mi,m0;Ni), so Lgtp(m′
i /c;Ni) = Lgtp(mi/c;Ni). We thus find (a∗, m∗

i+1;N ∗)
for some Ni → N ∗ such that Lgtp(m∗

i+1, m
′
i /c;N

∗) = Lgtp(mi+1, mi/c;N ∗)

and Lgtp(a∗, b∗i /c;N
∗) = Lgtp(a, b/c;N ∗), where b∗i is given by B

bi−→

Mi+1
m∗
i+1−−−→ N ∗. For this last construction we used that Lgtp(bi/c;N ) =

Lgtp(b/c;N ) and that bi factors through mi+1. Then a′′ |�
N∗

c
m′
i , a

∗ |�
N∗

c
b∗i and

b∗i |�
N∗

c
m′
i . So by Independence Theorem we find N ∗ → Ni+1 and (a∗∗;Ni+1)

with Lgtp(a∗∗, b∗i /c;Ni+1) = Lgtp(a∗, b∗i /c;Ni+1), Lgtp(a∗∗, m′
i /c;Ni+1) =

Lgtp(a′′, m′
i /c;Ni+1) anda∗∗ |�

Ni+1
c
N ∗. By Monotonicity we geta∗∗ |�

Ni+1
c
m∗
i+1.

Using Lgtp(a∗∗, m′
i /c;Ni+1) = Lgtp(a′′, m′

i /c;Ni+1) we find m′
i+1 :Mi+1 → Ni+1

(after replacing Ni+1 by an extension) such that Lgtp(a∗∗, m∗
i+1, m

′
i /c;Ni+1) =

Lgtp(a′′, m′
i+1, m

′
i /c;Ni+1). We verify the induction hypothesis:
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(i) we have by construction that gtp(m′
i+1, m

′
i ;Ni+1) = gtp(m∗

i+1, m
′
i ;Ni+1) =

gtp(mi+1, mi : Ni+1), so m′
i factors through m′

i+1 in the same way that mi
factors through mi+1 by Fact 2.12, and naturality follows;

(ii) using Lgtp(a∗∗, m∗
i+1/c;Ni+1) = Lgtp(a′′, m′

i+1/c;Ni+1) and that b∗i and

b′i are B
bi−→Mi+1

m∗
i+1−−−→ Ni+1 and B

bi−→Mi+1
m′
i+1−−−→ Ni+1 respectively

by definition, we have Lgtp(a′′, b′i /c;Ni+1) = Lgtp(a∗∗, b∗i /c;Ni+1) =
Lgtp(a∗, b∗i /c;Ni+1) = Lgtp(a, b/c;Ni+1);

(iii) by a∗∗ |�
Ni+1
c
m∗
i+1 and Invariance.

Limit step. For limit � let N� = colimi<� Ni . By (i) from the induction hypothesis
the arrowsm′

i composed with the coprojectionsNi → N� form a cocone on (Mi)i<� .
By continuityM� = colimi<� Mi , so there is a universal arrow m′

� :M� → N� . This
directly establishes (i). Property (ii) is vacuous. Property (iii) follows from the
induction hypothesis and Union.

Having finished the inductive construction, we have two arrowsM� → N� , namely
m� :M� → N → N� and the m′

� we just constructed. By (i) from the induction
hypothesis we have gtp(m�,m0;N�) = gtp(m′

� , m0;N�). So we find an extension
N� → N ′ and some (a′;N ′) such that gtp(a′, m�,m0;N ′) = gtp(a′′, m′

� , m0;N�).
Using that c factors throughm0 and (ii) from the induction hypothesis, we find that
for any i < � we have Lgtp(a′, bi/c;N ′) = Lgtp(a′′, b′i /c;N

′) = Lgtp(a, b/c;N ′).

By (iii) from the induction hypothesis we also have a′ |�
N ′

c
M� . So if � was a

successor ordinal we had M� = N and we are done. Otherwise we can just apply
Extension and relabel things to get a′ |�

N ′

c
N .

The final claim follows because a′ is a realisation of gtp(a, b, c;N ) for (bi)i<� . �

Remark 7.3. In the context of Lemma 7.2 if C is a model then there is no need
to concern ourselves with Lascar strong Galois types. That is, the proof as written
then goes through if we replace “Lascar strong Galois type” by just “Galois type”
everywhere. We also only apply Independence Theorem with C in the base. So if
C is a model then it would be enough to just have Independence Theorem over
models. Or equivalently, to have 3-amalgamation, see Theorem 5.2.

The following is a slightly improved version of [18, Theorem 1.1]. The
improvement is in the fact that we can restrict our independence relation to a
base class and the fact that we also get |� = |�

isi–f .

Theorem 1.2, repeated. Let (C,M) be an AECat with the amalgamation property,
and suppose that |� is a simple independence relation. Then |� = |�

isi–d = |�
isi–f

over base( |� ).

Proof. The implication |�
isi–d =⇒ |� is already given by Theorem 7.1. For

the converse we will assume that A |�
M

C
B and we will prove that A |�

isi–d,M
C

B .
Pick some representatives a, b, c ofA,B,C . Let � be such that (C,M) is a �-AECat
and let � > Υ(B) + �. Let (bi)i<� be an isi-sequence over c in someM → N , with
chain of initial segments (Mi)i<� and gtp(bi , c;N ) = gtp(b, c;M ) for all i < �. Let
Υ(B) + � ≤ κ < �. By Lemma 2.17 we may assume that Mi is κ-presentable for
all i < κ. We can thus apply chain local character, Lemma 4.15, to find i0 < κ
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such that bκ |�
N

Mi0
Mκ. We will aim to show that gtp(a, b, c;M ) is consistent for

(bi)i0≤i<κ. We use gtp(bi0 , c;N ) = gtp(b, c;M ) to find a common extensionM →
N ′ ← N where b = bi0 as arrows intoN ′. By applying Extension to the assumption
a |�

M

c
b we then find (a′;N ′) (possibly after replacingN ′ by an extension) such that

a′ |�
N ′

c
N and gtp(a′, b, c;N ′) = gtp(a, b, c;M ). Then by Base-Monotonicity and

Monotonicity we find a′ |�
N ′

Mi0
b. For any i0 ≤ i < κwe have gtp(bi ,mi ,mi0 ;N ′) =

gtp(bκ,mi ,mi0 ;N ′) because (bi)i<� is an isi-sequence. So by Monotonicity and
Invariance and the earlier fact that bκ |�

N

Mi0
Mκ, we find

bi
N ′

|�
Mi0

Mi

for all i0 ≤ i < κ. So (bi)i0≤i<κ is a |�Mi0
-independent sequence. We can thus

apply the generalised independence theorem, Lemma 7.2, to conclude that
gtp(a′, b, c;N ′) = gtp(a, b, c;M ) is indeed consistent for (bi)i0≤i<κ. As κ was
arbitrarily large below �, � itself was arbitarily large and (bi)i0≤i<κ is a subsequence
of an arbitrary isi-sequence of length � we conclude that indeed A |�

isi–d,M
C

B .

Finally, the claim |�
isi–d = |�

isi–f follows from Proposition 6.12 because |�
isi–d =

|� has Extension and Right-Monotonicity. �

Remark 7.4. For the canonicity theorem for simple independence relations,
Theorem 1.2, we only need 3-amalgamation. Or equivalently, by Theorem 5.2,
Independence Theorem over models. Even if base( |� ) is more than just M, e.g.,
base( |� ) = C. In the proof of Theorem 1.2 we only applied the Independence

Theorem indirectly through Lemma 7.2. The base, i.e., C in that lemma, is by
construction always a model. So by Remark 7.3 it would be enough to only assume
3-amalgamation instead of Independence Theorem.

Theorem 1.1, repeated. Let (C,M) be an AECat with the amalgamation property
and let B be some base class. Suppose that (C,M) satisfies the B-existence axiom and
suppose that there is an NSOP1-like independence relation |� overB. Then |� = |�

lK

over B.

Proof. Suppose that A |�
M

C
B with C ∈ B and pick some representatives a, b, c

of A,B,C . There is a bound � on the cardinality of the set of Lascar strong Galois
types compatible with (b, c;M ), see Proposition 3.4. Let � > � and let (bi)i<� be
a |�

isi–f
c

-independent sequence in some M → N with gtp(bi , c;N ) = gtp(b, c;M )
for all i < �. Then (bi)i<� is also |�c

-independent, by Theorem 7.1 and Proposition
6.12. We have to show that for every κ < � there is I ⊆ � with |I | = κ such that
gtp(a, b, c;M ) is consistent for (bi)i∈I . So let κ < �. Then by the choice of � and �
there must be some I ⊆ �with |I | = κ such that Lgtp(bi/c;N ) = Lgtp(bj/c;N ) for
all i, j ∈ I . Let i0 be the least element of I. Let (a′;N ′) for some extensionN → N ′

be such that gtp(a′, bi0 , c;N
′) = gtp(a, b, c;M ). Then we can apply the generalised
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independence theorem, Lemma 7.2, to see that gtp(a′, bi0 , c;N
′) = gtp(a, b, c;M )

is consistent for (bi)i∈I . We conclude that indeed A |�
lK,M
C
B .

For the other direction, suppose that A |�
lK,M
C
B with C ∈ B. Let κ ≥ Υ(A) be

such that (C,M) is a κ-AECat and A and C are κ-presentable. Let (bi)i<� be a
long enough |�

isi–f
c

-independent sequence in some extensionM → N , with � > κ,
witnesses of independence (Mi)i<� and gtp(bi , c;N ) = gtp(b, c;M ) for all i < �.
Such a sequence exists by Corollary 6.15, because we assumed theB-existence axiom.
By Theorem 7.1 and Proposition 6.12 this is also a |�c

-independent sequence. By
definition of long Kim-dividing there is I ⊆ � with |I | = κ such that gtp(a, b, c;N )
is consistent for (bi)i∈I . Let a′ be a realisation for this (we may assume a′ is an
arrow into N). By possibly deleting an end segment from I we may assume that
I has the order type of κ. Using Lemma 2.17 we may assume that each object in
the chain (Mi)i∈I is κ-presentable, where Monotonicity guarantees that these are
still witnesses of independence. Then by chain local character, Lemma 4.15, we find
i0 ∈ I such that a′ |�

N

Mi0
MI where MI = colimi∈I Mi . So by Monotonicity and

Symmetry we have

bi0

N

|�
Mi0

a′.

Furthermore, we have

bi0

N

|�
C

Mi0 .

So by Transitivity we have bi0 |�
N

C
a′. The result then follows by Symmetry and

the fact that gtp(a′, bi0 , c;N ) = gtp(a, b, c;M ). �
By definition any stable independence relation is also simple, and any simple

independence relation is also NSOP1-like. The canonicity theorems then tell us that
these are indeed unique in a given AECat with AP and with what notion of dividing
they coincide. We make this precise in the following theorem.

Theorem 1.3, repeated. Let (C,M) be an AECat with the amalgamation property
and suppose that |� is a stable or a simple independence relation in (C,M).
Suppose furthermore that |�

∗ is an NSOP1-like independence relation in (C,M)
with base( |� ) = base( |�

∗). Then

|� =
∗
|� =

isi–d
|� =

isi–f
|� =

lK
|� .

Proof. This follows directly from Theorem 1.2 and Theorem 1.1. To apply the
latter we need the base( |� )-existence axiom. This is automatic, as |� = |�

isi–f over
base( |� ) by Theorem 1.2 and we have Existence by assumption. �

Remark 7.5. We can classify AECats based on the existence of certain
independence relations, just as we can classify theories in first-order logic in that way.
For example, suppose that we have an AECat (C,M) with AP and an NSOP1-like
independence relation |� where Base-Monotonicity fails. Then we can never find

https://doi.org/10.1017/jsl.2022.82 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2022.82


750 MARK KAMSMA

a simple independence relation in (C,M) (with the same base class). Because if we
would have such a simple independence relation |�

′ then by Theorem 1.3 we would
have |� = |�

′, but that is impossible because a simple independence relation must
satisfy Base-Monotonicity. So we can classify (C,M) as NSOP1, but non-simple.

We close out this section by discussing how this work extends and brings together
previously known results in the settings of first-order, positive and continuous logic.
We also describe precisely how to apply the canonicity theorems in these more
concrete settings.

We first recall some useful terminology for positive logic from [3, 5].

Definition 7.6. Let T be a positive theory. We call T :

• semi-Hausdorff if equality of types is type-definable;
• thick if being an indiscernible sequence is type-definable.

It quickly follows that any first-order theory is semi-Hausdorff as a positive
theory and that any semi-Hausdorff theory is thick. So whenever we mention semi-
Hausdorff or thick theories in the examples below this automatically includes the
first-order setting.

In a semi-Hausdorff theory T we have that having the same type over an e.c.
model implies having the same Lascar strong type (see [5, Proposition 3.13]), just as
we have for first-order theories. If T is thick this is no longer generally true, see [11,
Section 10.1]. In [11, Lemma 2.20] this is solved by considering �T -saturated models,
where �T = �(2|T |)+ . The problem for AECats is then that the full subcategory of
�T -saturated models in Mod(T ) is not closed under directed colimits. We solve this
with the following notion.

Definition 7.7. We call an e.c. model M of some positive theory T finitely
�-saturated if for every finite tuple a ∈M there is a �-saturated e.c. modelM0 ⊆M
with a ∈M0.

Clearly any �-saturated model is also finitely �-saturated. The point is that the full
subcategory of finitely �-saturated models in Mod(T ) is then closed under directed
colimits for any �. At the same time this notion is strong enough to give us the
following fact.

Fact 7.8 [19, Proposition 2.39]. In a thick positive theory T having the same
Lascar strong type over some parameter set C is the transitive closure of having the
same type over finitely �T -saturated models containing C.

Example 7.9. Let T be a thick theory. Let C be either SubMod(T ) or Mod(T ).
Following Fact 7.8 we take M to be the category of finitely �T -saturated models,
so that Lascar strong types and Lascar strong Galois types coincide. If T is semi-
Hausdorff, we can instead just take M = Mod(T ).

If T is stable or simple then there is respectively a stable or simple independence
relation |� in (C,M) with base( |� ) = C. This follows from a combination of [4,
5]. So Theorem 1.2 applies.

The Stationarity property in a stable theory follows from [4, Theorem 2.8]. In
their statement the base model M is assumed to be |T |+-saturated, which they need
for only two reasons. The first reason is that types over M should coincide with
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Lascar strong types over M, but by our choice of M and the thickness assumption
this happens for all M ∈ M. The second reason is that types over M should be
what they call extendible, but in a simple thick theory every type is extendible, see
[5, Theorem 1.15].

Example 7.10. Let (C,M) be an AECat based on some semi-Hausdorff or thick
theory T as in Example 7.9. By Example 6.16(iii) we have the Mod(T )-existence
axiom. If T is NSOP1 then it has an NSOP1-like independence relation |� with
base( |� ) = Mod(T ). For first-order logic this was proved in [20–22], which was
extended to thick positive theories in [11]. So Theorem 1.1 applies.

Here we had to restrict the base class to e.c. models, simply because Kim-
independence in positive logic has only been developed over e.c. models. For
theories in first-order logic Kim-independence has been extended to arbitrary
base sets, see [10, 12]. To make this work we need to assume the existence
axiom, see also Example 6.16(iv). So let T be an NSOP1 theory in first-order
logic and set (C,M) = (SubMod(T ),Mod(T )), which we assume to satisfy the
C-existence axiom. Then the aforementioned sources show that there is an NSOP1-
like independence relation |� with base( |� ) = C and so Theorem 1.1 applies.

Finally we note that there is a Kim–Pillay style theorem in [10, Theorem 5.1]
for Kim-independence over arbitrary sets. They still rely on a syntactical property
“strong finite character”, which could be replaced by just “finite character”. Theorem
1.1 gives us just the canonicity part. To conclude that a theory with such an
independence relation is NSOP1, without using strong finite character, we can
restrict ourselves to work over models and use the proof from [11, Theorem 9.1].

Example 7.11. Let T be a continuous theory, in the sense of [6]. Let C be either
SubMetMod(T ) or MetMod(T ), and let M be MetMod(T ). If T is stable or simple
then there is respectively a stable or simple independence relation |� in (C,M)
with base( |� ) = C. Every continuous theory is in particular a Hausdorff compact
abstract theory, and so the machinery of [4, 5] applies. This shows we can indeed
find an appropriate independence relation in any simple or stable continuous theory.
There is also [6, Section 14] for a further discussion about stability specifically in
continuous theories. So Theorem 1.2 applies.

In [6] some examples of stable continuous theories and their corresponding
independence relations are given, including Hilbert spaces and atomless probability
spaces.

Example 7.12. In this example we consider the continuous theory TN of Hilbert
spaces with a distance function to a random subset, as studied in [7]. They
prove that this theory has TP2 and thus cannot be simple. They also define
an independence relation |�

∗ over arbitrary sets that has all the properties of
an NSOP1-like independence relation. Except that they do not prove the full
Independence Theorem, but enough for 3-amalgamation (i.e., over models, see
Theorem 5.2). So settingC = SubMetMod(TN ) andM = MetMod(TN ), and taking
base( |�

∗) = MetMod(T ), we have that |�
∗ is an NSOP1-like independence relation

in (C,M). By Example 6.16(ii) we also have the MetMod(T )-existence axiom. So
Theorem 1.1 applies.
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§8. More on Lascar strong Galois types. In this section we will show that in
the presence of a nice enough independence relation there are some equivalent
definitions of Lascar strong Galois types, matching those we classically have for
Lascar strong types. To place this all in context we recall the relevant equivalent
definitions of Lascar strong types in first-order logic (see, e.g., [25, Proposition
3.1.5]).

Definition 8.1. Let a and b be tuples in some monster model of a first-order
theory and let C be some parameter set. We say that a and b have the same Lascar
strong type over C if the following equivalent conditions hold.

(i) There are a = a0, a1, ... , an = b and modelsM1, ... ,Mn, each containing C,
such that tp(ai/Mi+1) = tp(ai+1/Mi+1) for all 0 ≤ i < n.

(ii) We have a ∼ b for any bounded C-invariant equivalence relation ∼.
(iii) There are a = a0, a1, ... , an = b such that ai and ai+1 are on a C-indiscernible

sequence for all 0 ≤ i < n. In this case we say that a and b have Lascar distance
at most n (over C).

It is well known that Lascar strong types heavily interact with independence
relations in first-order logic. For example, independence relations can be used to
show that having the same Lascar strong type is type-definable in any simple theory
by showing that the Lascar distance within a Lascar strong type is at most 2, see [25,
Proposition 5.1.11]. The same technique applies to any NSOP1 theory in first-order
logic that satisfies the existence axiom [12, Corollary 5.9]. We essentially adapt this
technique in this section, while at the same time using independence relations to
build what we call “strongly 2-indiscernible” sequences (Definition 8.5), which take
the role of the usual indiscernible sequences.

Throughout this section we will work with single arrows a, b, c and objects A and
C, where dom(a) = dom(b) = A and dom(c) = C . This leads to cleaner notation
and when working with independence relations we can only work with single arrows
anyway (i.e., the sides and base of an independence relation do not allow tuples of
arrows in our definition). However, it is not too difficult to extend the main result
of this section (Theorem 8.7) to arbitrary tuples, see Remark 8.13.

Definition 8.2. Let (C,M) be an AECat with AP and fix some objects A and C.
Suppose that for each M and each c : C →M we are given an equivalence relation
≡c,M on Hom(A,M ). Then we say that the family ≡ is an equivalence relation
over C.

We call ≡ a bounded equivalence relation if there is � such that ≡c,M has at most �
many equivalence classes for any M and c : C →M .

We call ≡ an invariant equivalence relation if it is invariant under equality of
Galois types over C. That is, if gtp(a, b, c;M ) = gtp(a′, b′, c′;M ′) then we have
that a ≡c,M b if and only if a′ ≡c′,M ′ b′.

Convention 8.3. We will only deal with invariant equivalence relations. To further
simplify the notation we will drop the M from the notation. So we write a ≡c b instead
of a ≡c,M b. Because of invariance it does not matter if we consider a and b as arrows
into M or as arrows into an extension of M.
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Example 8.4. We give some familiar examples.

(i) Taking just equality as equivalence relation is an equivalence relation over any
C. This relation is invariant, but generally not bounded because Hom(A,M )
may become arbitrarily large.

(ii) The trivial equivalence where everything is equivalent is a bounded invariant
equivalence relation over any C.

(iii) Having the same Galois type is a bounded invariant equivalence relation
over any C. That is, we define ≡ as a ≡c b if and only if gtp(a, c;M ) =
gtp(b, c;M ). Clearly ≡ is invariant, and by Fact 2.14 it is bounded.

(iv) Having the same Lascar strong Galois type is a bounded invariant equivalence
relation. Similar to the previous point we define ≡ as a ≡c b if and only
if Lgtp(a/c;M ) = Lgtp(a′/c;M ). This is invariant by Proposition 3.3 and
bounded by Proposition 3.4.

(v) In any (positive or first-order) theory T, any hyperimaginary yields an
invariant equivalence relation. That is, if E(x, y) is a set of formulas that
defines an equivalence relation modulo T then we can define an invariant
equivalence relation ≡E over ∅ as follows: for tuples a, b ∈M we set a ≡E b
iffM |= E(a, b).

Usually bounded invariant equivalence relations are linked to Lascar strong types
using indiscernible sequences. This requires some compactness, which we generally
do not have. To solve this we will adapt the idea of strongly indiscernible sequences
from [16].

Definition 8.5. We call sequence (ai)i<κ in some M 2-c-indiscernible if for
any i1 < i2 < κ and any j1 < j2 < κ we have gtp(ai1 , c;M ) = gtp(ai2 , c;M ) and
gtp(ai1 , ai2 , c;M ) = gtp(aj1 , aj2 , c;M ). We call such a sequence strongly 2-c-
indiscernible if it can be extended to a 2-c-indiscernible sequence (possibly in some
extension model) of arbitrary length.

Given an independence relation |� we define a 2- |�c
-Morley sequence to be a

2-c-indiscernible sequence that is also |�c
-independent. Such a sequence is called

a strong 2- |�c
-Morley sequence if it can be extended to a 2- |�c

-Morley sequence
(possibly in some extension model) of arbitrary length.

Definition 8.6. For (a, b, c;M ) we write a ∼2
c b if a and b are on some strongly

2-c-indiscernible sequence. We write ≡2
c for the transitive closure of ∼2

c . Similarly,

given an independence relation |� , we write a ∼ |�
c b if a and b are on some strong

2- |�c
-Morley sequence and ≡ |�

c for its transitive closure. Finally, we write a ≡Bc b
if a and b are equivalent for every bounded invariant relation over c.

One easily verifies that ≡2 and ≡B are equivalence relations over any C. For ≡ |�

we may generally not have reflexivity, but we will have that in the situations we are
interested in. In particular, Lemma 8.11 shows that ≡ |� has reflexivity over models.

Theorem 8.7. Let (C,M) be an AECat with AP, and suppose that
|� is a basic independence relation that also satisfies 3-amalgamation.

Then the following are equivalent for any (a, b, c;M ):

(i) Lgtp(a/c;M ) = Lgtp(b/c;M );
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(ii) a ≡Bc b, so a and b are equivalent under every bounded invariant equivalence
relation over C;

(iii) a ≡2
c b, so a and b can be connected by strongly 2-c-indiscernible sequences.

Comparing the above statement to Definition 8.1 we see great similarity, but to
prove the equivalence in Definition 8.1 no independence relation was needed. In
this very general setting we use the independence relation as a replacement for the
uses compactness. Proving the equivalence of the above conditions without a nice
independence relation seems a lot harder, if not impossible in this generality.

Remark 8.8. In Theorem 8.7 we only required |� to have 3-amalgamation.
So the assumptions of the theorem do not mention anything about Lascar strong
Galois types. That means that, in the presence of such an independence relation,
we can take any of the equivalent conditions in Theorem 8.7 as the definition for
Lascar strong Galois types, without any circularity in the definitions.

The remainder of this section is devoted to proving Theorem 8.7.

Lemma 8.9. For any (a, b, c;M ) and any independence relation |� we always have

a ≡ |�
c b =⇒ a ≡2

c b =⇒ a ≡Bc b =⇒ Lgtp(a/c;M ) = Lgtp(b/c;M ).

Proof. The first implication follows because any strong 2- |�c
-Morley sequence

is in particular strongly 2-c-indiscernible. The final implication follows because
having the same Lascar strong Galois type is a bounded invariant equivalence
relation, see Example 8.4(iv). We prove the middle implication. So let≡be a bounded
invariant equivalence relation over C. It is enough to prove that a ∼2

c b implies a ≡c
b. Letκ be the bound of≡. Since a ∼2

c b we find a 2-c-indiscernible sequence (ai)i<κ+

in some extension N of M with a and b on it. Without loss of generality we may
assume a0 = a and a1 = b. By boundedness we find i < j < κ+ such that ai ≡c aj .
By 2-c-indiscernibility we have gtp(a, b, c;N ) = gtp(ai , aj, c;N ). So a ≡c b follows
from invariance. �

Lemma 8.10. Suppose that |� is a basic independence relation that also satisfies
3-amalgamation. Let m be an arrow with a model as domain and let � ≥ 2 be
any ordinal (possibly finite). Then any 2- |�m

-Morley sequence (ai)i<� is a strong

2- |�m
-Morley sequence. In particular a |�

N

m
b and gtp(a,m;N ) = gtp(b,m;N )

implies a ∼ |�
m b.

Proof. By Remark 7.3 we can apply Lemma 7.2, the generalised independence
theorem, while avoiding referring to Lascar strong Galois types. We can thus
inductively apply Lemma 7.2 to elongate (ai)i<� to any length we want. We do
this by letting a0, a1 and m play the roles of b, a and c respectively. The final claim
follows because in that case (a, b) is a 2- |�m

-Morley sequence of length two. �
Lemma 8.11. Suppose that |� is a basic independence relation that also satisfies

3-amalgamation. If gtp(a,m;N ) = gtp(b,m;N ), where dom(m) is a model, then
a ≡ |�

m b.

Proof. By Existence we have a |�
N

m
m, so we can apply Extension to findN →

N ′ and some (a′;N ′) such that a′ |�
N ′

m
N while gtp(a′, m;N ′) = gtp(a,m;N ′). By
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Monotonicity we then have a′ |�
N ′

m
a and a′ |�

N ′

m
b. So by Lemma 8.10 we have

a ∼ |�
m a

′ ∼ |�
m b, and we are done. �

Proof of Theorem 8.7. By Lemma 8.9 we only need to prove that
Lgtp(a/c;M ) = Lgtp(b/c;M ) implies a ≡2

c b. It is enough to prove that
(a/c;M ) ∼Lgtp (b/c;M ) implies a ≡2

c b. So let M → N be an extension and
let m0 :M0 → N be such that c factors through m0, M0 is a model and

gtp(a,m0;N ) = gtp(b,m0;N ). Then by Lemma 8.11 we get a ≡ |�
m0 b. So by Lemma

8.9 we have a ≡2
m0
b. Any strongly 2-m0-indiscernible sequence is also strongly 2-c-

indiscernible, because c factors throughm0. So we conclude that indeed a ≡2
c b. �

Remark 8.12. The proof of Theorem 8.7 also shows that if dom(c) is a model

then Lgtp(a/c;M ) = Lgtp(b/c;M ) is further equivalent to a ≡ |�
c b.

Remark 8.13. We have stated Theorem 8.7 for single arrows, rather than for
tuples of arrows. We briefly sketch how we can get the result for tuples of arrows as
well. That is, if we replace a, b and c by (ai)i∈I , (bi)i∈I and (cj)j∈J respectively.

First we extend the definitions of (strongly) 2-indiscernible, ≡2 and ≡B to tuples
of arrows in a straightforward way. Then following the same proof as in Lemma 8.9
we get:

(ai)i∈I ≡2
(cj )j∈J

(bi)i∈I =⇒

(ai)i∈I ≡B(cj )j∈J
(bi)i∈I =⇒

Lgtp((ai)i∈I /(cj)j∈J ;M ) = Lgtp((bi)i∈I /(cj)j∈J ;M ).

So we are left to prove that Lgtp((ai)i∈I /(cj)j∈J ;M ) = Lgtp((bi)i∈I /(cj)j∈J ;M )
implies (ai)i∈I ≡2

(cj )j∈J
(bi)i∈I . It is enough to prove that ((ai)i∈I /(cj)j∈J ;M ) ∼Lgtp

((bi)i∈I /(cj)j∈J ;M ) implies (ai)i∈I ≡2
(cj )j∈J

(bi)i∈I . So letM → N be an extension

and let m0 :M0 → N be such that all arrows in (cj)j∈J factor through m0, M0 is
a model and gtp((ai)i∈I , m0;N ) = gtp((bi)i∈I , m0;N ). Pick some d : D → N such
that every arrow in (ai)i∈I factors through d. We then find an extensionN → N ′ and
d ′ : D → N ′ such that every arrow in (bi)i∈I factors throughd ′ and gtp(d,m0;N ′) =
gtp(d ′, m0;N ′). Now we can apply the original result Theorem 8.7 to obtain d ≡2

m0

d ′ and hence (ai)i∈I ≡2
(cj )j∈J

(bi)i∈I , as required.

Remark 8.14. We only assumed 3-amalgamation. If we also assume Inde-

pendence Theorem together with base( |� ) = C we get a little bit more, namely

that Lgtp(a/c;M ) = Lgtp(b/c;M ) is further equivalent to a ≡ |�
c b. This happens

for example in any simple thick positive theory where |� is the usual dividing
independence (see Example 7.9).

The proof of this is largely the same as the proof in this section. We sketch where
some changes would need to be made. We adjust Lemma 8.10 as follows: any 2- |�c

-
Morley sequence (ai)i<� such that Lgtp(ai/c;M ) = Lgtp(aj/c;M ) for all i < j < �
is a strong 2- |�c

-Morley sequence. Here the extra assumption “Lgtp(ai/c;M ) =
Lgtp(aj/c;M )” is necessary to still apply Lemma 7.2, and so the proof goes through.
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Then Lemma 8.11 can be restated as Lgtp(a/c;M ) = Lgtp(b/c;M ) implies a ≡ |�
c

b. The only change in the proof is that we need to apply strong extension, Corollary
4.13. This then already concludes the proof.

This also tells us that in this case we will need at most two strong 2- |�c
-Morley

sequences to connect a and b, whenever they have the same Lascar strong Galois type.

That is, there is some a′ in an extension of M such that a ∼ |�
c a

′ ∼ |�
c b. In particular

this also means that we need at most two strongly 2-c-indiscernible sequences to
connect a and b, because strong 2- |�c

-Morley sequences are in particular strongly
2-c-indiscernible.
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