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PRODUCTS OF DECOMPOSABLE POSITIVE OPERATORS 

TERRANCE QUINN 

ABSTRACT. In recent years there has been a growing interest in problems of factor­
ization for bounded linear operators. We first show that many of these problems prop­
erly belong to the category of C*-algebras. With this interpretation, it becomes evident 
that the problem is fundamental both to the structure of operator algebras and the ele­
ments therein. In this paper we consider the direct integral algebra J® (B(9~[) dji with tH 
separable and infinite dimensional. We generalize a theorem of Wu (1988) and charac­
terize those decomposable operators which are products of non-negative decomposable 
operators. We do this by first showing that various results on operator ranges may be 
generalized to "measurable fields of operator ranges". 

Introduction. Let 9i be a separable infinite dimensional Hilbert space and U a uni­
tary operator on H. In 1958 [9] Halmos and Kakutani showed that U may be factored as 
a product of 4 symmetries. Later it was proven by Radjavi [17] than any normal operator 
is the product of 4 Hermitian operators. More recently, using non-trivial results on op­
erator ranges [6], Wu was able to bring these theorems together while showing that the 
set of finite products of nonnegative operators coincides with both the set of products of 
normal operators and the set of products of Hermitian operators [21]. 

With regard to the finite-dimensional case, facts of this kind include that T is a product 
of 5 positive operators if and only if det T > 0 [2]; and that a unitary operatory U is a 
product of four involutions if and only if det U = ±1 [16]. 

Over the years there has been a growing interest in such factorization theorems. A 
good survey paper here is by Wu [22] and a good expository paper, "Bad Products of 
Good Matrices", is by Halmos [8]. In general the problems are twofold: with S a set 
of (distinguished) operators it is asked which operators T may be either factored as, or 
approximated by, a finite product of operators, with each factor belonging to S. 

As it turns out, of particular importance are the sets (Pk = {Te $(-?T) : T is a finite 
product of k positive invertible operators}, k= 1,2,3,.. . , (P^ = (J£i % ar»d % = the 
norm closure of fy. 

So in addition to the factorization theorems mentioned thus far, certain approximation 
theorems have been obtained in [ 13]. For example, Theorem 1 of that paper characterizes 
those normal operators in fy, while Theorem 3 gives the equality of the norm closure of 
the following five collections: fp5, T^, the invertibles, Fredholm operators of index zero, 
and the collection of operators T with the property that dim ker T = dim ker T*. 

At this point we may now broaden our perspective. Problems of factorization are 
(topologico-) algebraic, while determining the norm closure of distinguished subsets 
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(such as (POQ or the invertibles) is (algebraico-) topological. Therefore, since positivity 
is essentially an operator-theoretic notion, we find that our questions properly belong 
to the category of C*-algebras, and those specifically concerning the sets (Pk should be 
rephrased as follows: Letting A be an C*-algebra, which elements of A can be factored 
as, or approximated by, finite products of k positive operators, with each factor also from 
511 (In this framework it is seen that Ballantine [2] and Wu [21] were considering factor­
ization in the relatively large and well-structured C*-algebra (B(9{), for 9f respectively 
finite and infinite dimensional.) We note that to answer this requires insight into both the 
algebra and the elements therein. Hence the question is fundamental, for it concretely 
intertwines single operator theory with the theory of operator algebras, and implicitly 
concerns deep structure theorems for both. 

It has been the object of our current research to begin dealing with these matters. 
In doctoral work (to appear) we considered families of algebras obtained from finite-
dimensional C*-algebras by such constructions as direct integrals and direct limits. Thus 
we obtained our so-called "APN-algebras" along with, for example, a characterization 
of which of these have Q dense (See discussion preceding Corollary 2.14). In our next 
two papers we pursue these questions of factorization and approximation by products 
of positive operators, but in a different class of C*-algebras. As opposed to our thesis 
work, the underlying Hilbert spaces for this new class of algebras are all separable and 
infinite-dimensional. So with (X, [i) a <7-finite standard measure space and 9i separable 
and infinite-dimensional, a basic object in our present study is the von Neumann algebra 
of decomposable operators, otherwise known as the direct integral J® ^{Of) d\i. 

Our main theorem of this paper, Theorem B, generalizes the result of Wu [21] by 
chracterizing those decomposable operators which may be factored as a finite product of 
decomposable non-negative operators. Much as in Wu's theorem, this set coincides with 
finite products of decomposable self-adjoint operators. 

Central to establishing Theorem B is a generalization of Dixmier's proof of a result 
of von Neumann. As stated by Dixmier, von Neumann's result is in terms of operator 
ranges, and can be found in [6] as Theorem 3.6. There it is proven that if ^ is a non-
closed operator range in a separable Hilbert space 9{, then there is a unitary operator U 
on H such that %, D U%^ = {0}. Our generalization of this is Theorem A, which we 
now state. 

THEOREM A. Let x i—> T(x) be a measurable field of bounded operators with %{x) = 
range T(x). If^Jx) is not closed a.e. then there exists a measurable field of unitary op­
erators x ^-* U(x) such that %{x) H U(x)%Jx) = {0}. 

The proof of this relies on certain facts concerning "measurable fields of operator 
ranges" (to be defined below). We are therefore brought in a natural way to consider 
"measurable fields of closed operators", a notion which generalizes measurable fields of 
operators x i—> T(x) by allowing the function values T(x) to be closed but not necessarily 
bounded. Our paper thus divides into two sections. In Section 1 we treat "measurable 
fields of operator ranges" and provide generalizations of selected theorems from the 
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paper by Fillmore and Williams [6]—the objective here is to establish Theorem A. In 
Section 2 we then use Theorem A in the proof of Theorem B, our factorization theorem. 
We point out that because our setting is the algebra of decomposable operators, we could 
interpret Theorems A and B by saying that von Neumann's result and Wu's theorem are 
both "decomposable". 

1. Decomposable operator ranges. Let us begin by recalling a few facts from the 
theory of direct integrals. Our reference here is [19]. In what follows (X,/x), or some­
times just X, will stand for a standard Borel space with a-finite measure \i. (We suppress 
notation for the underlying a-field, or Borel structure.) 

DEFINITION 1.1. A measurable field of Hilbert spaces over (X, \L) is a family { 9f(x) : 
x G X] of Hilbert spaces indexed by x together with a subspace S of the product space 
Uxex 9i(x) with the following properties: 

(i) For any £ G S the function* \—> ||£(*)|| is /i-measurable. 
(ii) For any 77 G Uxex ^"W, if the function x 1—> (£(*), r](x)) is //-measurable for 

every £ G 5, then 77 G 5. 
(iii) There exists a fundamental sequence, i.e. a countable subset {£1, £2, • • •} °f ^ 

such that for almost every x G X the set {£I(JC), £2(X),...} is total in tt(x). 

TERMINOLOGY. Members of S are called measurable vector fields. 

Now let 9f' be the collection of measurable vector fields such that 

||Ç||2=/||ÉM||2rf/*<oo. 

With respect to the natural point-wise linear operations, Of1 is a vector space and the 
sesquilinear form 

(t,ri) = l(t(x)9Ti(x))dn 

gives a Hilbert space 9f in the usual way, that is, by identifying two fields £, 77 if £(JC) = 
7]{x) a.e. 

DEFINITION 1.2. We call this Hilbert space the direct integral of the measurable field 
of Hilbert spaces {9f{x) : x G X } and denote it by 

?{ = J® ?{(x)dii. 

Each vector £ G .7/ is written as 

or sometimes just 

where it is understood that this a representative for the equivalence class £. 
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When <H(x) = H° for some fixed Hilbert space H°, then the field {M(x) : x G X] 
is called the constant field and we have a natural isomorphism 

where L2(X, ji) is the usual Hilbert space of equivalence classes of L2-functions. 

DEFINITION 1.3. Given two measurable fields of Hilbert spaces {9fx(x) : x G X} 
and {9f2(x) : x G X}, a field of bounded operators 

x^T(x)e Q(Hu(x)9H2(xj) 

is called measurable if for any £ G 5i, the vector field 

x ^ r(x)£(jc) G ^ ( J C ) 

is measurable, i.e. belongs to 52-
If a measurable operator field is essentially bounded (in the sense that the function 

x i—> ||r(jc)|| is essentially bounded) then for each 

£ = / t(x)dne / ^Wrf/i 

T£ = f T(x)i(x) d\i G I® i^W J/i. 

We write this operator as 

T = J^T(x)dfi 

and call it the direct integral of the (essentially bounded) measurable field x i—> r(jc). 
The norm of T equals the essential supremum ess sup || T(x)\\. 

TERMINOLOGY. We call operators of this form decomposable. 

NOTATION, (i) For any subset S of a Hilbert space J{, [S] will denote its norm clo­
sure. 

(ii) For any operator A, ker A will denote the kernel of A and rg A will be the range of 
A. 

We use the next lemma to state some basic facts on measurable fields of bounded 
operators. 

LEMMA 1.4. Let x i—> T(x) be a measurable field of bounded operators. 
Then 
(i) x i—> ker T(x) is a measurable field of Hilbert spaces, 

(ii) x i—> [rg T(x)] is a measurable field of Hilbert spaces. 
Moreover, ifx\—> T(x) = (/(x)|r(jc)| is the canonical polar decomposition of T(x), then 

(iii) x i—> U(x) is a measurable field of partial isometries. 

PROOF. For (ii), let {in}™=\ be a fundamental sequence for the measurable field 
x H-> 94(x). Then {r\n = T^} defines a fundamental sequence for the field* \—> [rg T(x)], 
from which we conclude that this field is measurable. 
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For (i), let ICix) — [rg7*(x)]. We then have that since x \—> T{x) is measurable, 
so is x i—> T*(x). From (ii), x i—> 9C(x) is measurable, which implies that x i—> P^x) ls> 

measurable, where P^X) is the orthogonal projection onto %ix). But now x \—• 
^ ~~ Pyçxx) — PkerT(x) is measurable. So by (ii) again, it follows that x i—> rg(/\erru)) = 
ker T(x) is measurable. 

Finally, to prove (iii), let 

Xk = {xeX: \\T(x)\\ <k}, k = 1,2,3,... 

and 7* = T\Xk. 
Now just use the usual theorem for direct integrals together with the fact that X — 

U£iX*. 
Now, to get to Theorem A requires the notion of a measurable field of operator ranges. 

From Theorem 1.1 of [6], this means we must have some definition of a measurable field 
of closed operators, for any operator range can be characterized as the range of some 
closed operator, or in fact as the domain of some closed operator. The key fact for our 
purposes is that, by definition, a closed operator A on 9{ has a closed graph in 0~C 0 H. 
Hence the orthogonal projection P of 9{ © 9{ onto the graph of A, graA, is bounded. 
Since P acts on the direct sum 9{ © 9i, it can be expressed uniquely in terms of a 2 x 2 
matrix (Pij) of bounded linear operators on 9{. Stone [18] called this the characteristic 
matrix of the operator A. Therefore, like Nussbaum in [14], we are led to the following: 

DEFINITION 1.5. A field of closed operators x \—> T(x) is said to measurable if the 
field of characteristic matrices x \—> (A>(x)) is measurable. 

This definition is justified by Proposition 6 of [14] where it is shown to agree with 
Definition 1.3 whenever it is the case that T(x) is bounded a.e. 

DEFINITION 1.6. A field x \—> T(x) of closed (not necessarily bounded) operators 
is said to be weakly measurable if for each measurable vector field x i—> f(x) such that 
f(x) G dom T(x) a.e., the new vector field defined by x i—• T(x)f(x) is also measurable. 

Corollary 2 of [14] states that a measurable field of closed operators is weakly mea­
surable. 

DEFINITION 1.7. Let x \—> T(x) be a measurable field of closed operators. Then 
dom T is the set of equivalence classes of all square integrable vector fields x \—> f(x) 
such that/(x) G dom T(x) a.e. and x \—> T(x)f(x) is square integrable. 

PROPOSITION 1.8. The mapping T:f^g where f e dom T and g(x) = T(x)f(x) is 
a closed linear operator in 0~i — J® 9~({x) d[i denoted T ~ T(x). 

PROOF. See [ 14], Proposition 7. 
Implicit in the above result is the precise relation between a closed operator A and its 

characteristic matrix PA — (P//). For the convenience of the reader we therefore pause to 
give a table of the basic equations, as also found in [20], p. 73: 

Pu = (A^A + l)"1 Pn = A*(AA* + l)"1 

P2\ =A(A*A + i r * P22 =AA*(AA* + i r * . 
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As well, we have that 

domA = rg((Pn,P12) : # 0 # -> # ) 

and 
rgA = rg((P21,P22) : ^ 0 M-^ <H). 

LEMMA 1.9. Suppose x 1—> T(x) is an essentially bounded measurable field of op­
erators, so that T = J® T(x) d\i is a bounded decomposable operator. Ifrg T(x) is dense 
a.e., then rg T is dense. 

PROOF. Suppose g = J®g(x)dfi and (g,Tf) = 0 for a l l / = J®f(x)dfi. Then 
(T*g,f) = 0 for a l l / = J®f(x)dn which implies r(x)g(x) = 0 a.e. Therefore g(x) E 
(rg r(jc)) = {0} a.e. so that g — 0. It follows that (rg T)1 — {0} and hence that rg T is 
dense. 

COROLLARY 1.10. (TO LEMMA 1.9). Suppose x \—> T(x) is a measurable field of 
bounded operators such that rg T(x) is dense a.e. Then 

[rgT]= Frttodn. 
Jx 

PROOF. Sincere 1—> ||7XJC)|| is measurable, 

Xk = {xeX:\\T(x)\\<k} 

is measurable for each k= 1,2,3, 
Suppose now that 

g = J^g(x)dfi and (g,Tf) = 0 

for a l l / G dom T. Then with 

and 7* = J® T(x) d\i we have, for each fixed k, {gk, Tjfk) = 0 for a\\fk G 9^. Therefore, 
by the lemma, gk = 0 for each k, from which it follows that g = 0. 

COROLLARY 1.11. L^ JC 1—• r(jc) be a measurable field of bounded operators. Then 

[rg71= / e [ rgrW]J/x . 

EXAMPLE 1.12. Let X be [0,1] with Lebesgue measure. Define T(x) = Mx — mul­
tiplication by x on C, x e [0,1]. Then vgT(x) = C, rg7 C X2[0,1] = J® Cd\i but 

[ rgn = i : 2 [ 0 , l ] - J ® r g r ( x ) ^ . 

We now provide a generalization of a result by Douglas, found as Theorem 2.1 in [6]. 

https://doi.org/10.4153/CJM-1994-048-4 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1994-048-4


860 TERRANCE QUINN 

THEOREM 1.13. Let x i—> A(x) and x i—> B(x) be measurable fields of bounded 
operators. Then the following conditions are equivalent: 

(1) rgA(x)CvgB(x)a.e. 
(2) A(x)A*(x) < \2(x)B(x)B*(x) a.e. for some positive measurable function x \—> 

X(x) > 0 a.e. 
(3) A(x) = B(x)C(x) for some measurable field ofbounded operators x i—> C(x). 

Moreover, the measurable field x H-> C(X) can be chosen to be essentially bounded if 
and only if the function in (2) can be chosen to be essentially bounded. 

PROOF. Suppose that ( 1 ) is true. Let 

B0(x) = B(x)\(keTB{x))±. 

By Lemma 1.4 this defines a measurable field of bounded operators, and by Theorem 3 
of [14], 

x H-> B0\x): rgB(x) —> (ktrB(x))L 

is a measurable field of closed operators. This implies that 

x^B0\x)A(x) = C(x) 

is also a measurable field of closed operators. By the closed graph theorem C(x) is 
bounded a.e. and A(x) = B(x)C(x) a.e. 

That (3) implies (1) is obvious. 
If (2) holds, then 

\\A*(x)f(x)\\ < \(x)\\B*(x)f(x)\\ for al l /W G H(x) a.e. 

Therefore the linear maps 
D(x):rgB\x)-^rgA*(x) 

defined by 
D(x)B*(x)f(x) = A*(x)f(x) 

are bounded by X(x) a.e. Therefore D(x) extends by continuity to [rg ZT(jt)]; then put 
D(x) = 0 on ker£0). As in [6] 

A(x) = B(x)D* a.e. 

so it's enough to show that 
x^C(x) = D*(x) 

is a measurable field of bounded operators, and since D(x) is bounded a.e., it is sufficient 
to prove that the field is weakly measurable (See Proposition 6 of [ 14]). For this, suppose 

/ G jx
e[vgB*(x)] dfi = [rg(/r - **(*))] 
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is of the form/ = £*g, g^9i. Then 

D(x)f(x) = D(x)B*(x)g(x) = A*(x)g(x) 

is measurable. Hence x H^ D(X) is a measurable field and (2) implies (3). 
Suppose now that (3) is true. Let/(x) £ 9{(x). Then, just as in [6], X(x) — ||C*(JC)||. 

This completes the proof. 

We now wish to generalize Theorem 1.1 of [6] by characterizing measurable fields of 
operator ranges arising from decomposable operators. We need the following definition: 

DEFINITION 1.14. A field x \—> V(x) of vector subspaces (not necessarily closed) is 
measurable if there exists a sequence {£«}£ii in J® J{(x)dfi such that 

(i) £n(x) e V(x) for all n = 1,2,3,... a.e. and 
(ii) {C»W}~ lis total in [ ^ ) ] a . e . 
For completeness we include the following: 
The lower direct integral is given by 

/ V ( * ) d / x = {/ G j\V(x)}dv :f(x) G V(x) a.e.j; 

the upper direct integral is given by 

7 V{x)dii= [e[^(x)]dfi 
J x Jx 

Clearly, the lower integral is a subspace of the upper integral. 

REMARK. Using the Lebesgue dominated convergence theorem it is straightforward 
to show that if 

V = fV{x)d[i 
z—x 

then [1/] = ~jfl/(x)dii = S?[V(x)] d\i. See also Corollary 1.11. 

REMARK. If T is decomposable, it does not follow that 

rgT= f vgT(x)d/i. 
z—x 

For example, let T be multiplication by x on £2[0,1]. In terms of direct integrals 

T = r Mxdii, 9i = [e Cda and rg T(x) = C a.e. 
J[0,1] ^ J[0,\] 

Hence, in this case, 

/ rgT(x)dii = ?{DrgT. 
Lx * 

Before proceeding to our theorem, we present two elementary results concerning the 
spaces just defined. 
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PROPOSITION 1.15. Let T = ff T(x)dji be a decomposable operator. Then the field 

of vector spaces x\—> rg T(x) is measurable. 

For a proof argue as in Lemma 1.4(H). 

THEOREM 1.16. Let x i—> %ix) Ç 9f{x) be a measurable field of vector subspaces 

(not necessarily closed). Then the following are equivalent: 

(1) There exists a measurable field of bounded operators x i—> T(x) such that 

ll(x) = vgT(x) a.e. 

(2) There exists a measurable field of closed operators x i—> T(x) such that 

<Kix) = xgT(x)a.e. 

(3) There exists a measurable field of closed operators x i—> T(x) such that 

%{x) — domT(x) a.e. 

(4) There exists afield of inner products (, )x on $Sx) such that x \—> (*HSx), (, )'x) is 

a measurable field ofHilbert spaces such that for all f(x) G ^(JC) , |[fW|| ' ^ |[/W|| a-e-

(5) There is a sequence of measurable fields x\—> 9~Ci(x) of closed subspaces of 9f{x) 

such that 

(i) the spaces ^d(x), n — 0, 1,2,.. . are all mutually orthogonal a.e. and 

(ii) KXx) = { E ~ 0 / n W -fn(x) £ H,(x) and Y^=0(2
n\\fn{x)\\)2 < oo}. 

PROOF. TO begin, observe that by Proposition 6 [14], (1) implies (2). Assume now 

that *Kix) = rg T(x) for a measurable field of closed operators. Let T>{x) — dom T(x) and 

put T\(x) = T(x)\*D(X)n(kcTT(Xfi±. Then T\(x) is closed, one-one and has range %Sx) a.e., 

so that T](x) is closed with domain %&). Moreover, since x \—> T(x) is measurable, 

it is easy to check that x \—> T\(x) is also measurable. Hence, by Theorem 3 of f 14], 

x i—> T]~l(x) is a measurable field of closed operators, so (2) implies (3). 

If %ix) = dom T(x) for a measurable field of closed operators, then %fx) is complete 

in the inner product defined by (f(x), g(x))x = (f(x), g(x))x + (T(x)f(x), T(x)g(x))x for all 

f(x), g(x) G %Sx). That the field of Hilbert spaces is measurable follows by considering 

the sequence 

in = Tr)n = j^ T(x)r)n(x) d/jL, n= 1 ,2 ,3 , . . . 

where rjn is a fundamental sequence for 9f = J® 94{x) dp,. Since the inequality is obvi­

ous, this completes the proof that (3) implies (4). 

To show that (4) implies ( 1 ), note first, exactly as in Theorem 1.1 [6], that the inclusion 

maps 

nx):(ui(x),(9yx)-+?{(x) 
are bounded a.e. Therefore, by Proposition 6 [14] this field is measurable if it is weakly 

measurable. But this is straightforward since the underlying measure spaces are the same. 
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We therefore obtain, by Theorem 3 [14], a measurable field of bounded operators x \—• 
T*(x). With T*(x) = U(x)\T(x)\ the canonical polar decomposition, Lemma 1.4(iii) gives 
us a measurable field of partial isometries 

x>-+U(x):!H(x)->(!lL(x),(,yx) 

such that 

[ i g r W ] = ( k e r r w ) X = ^(jc). 

As a field of operators from 9{{x) into H(x), U(x) has range 9{{x) and is bounded a.e., 
since 

H^w/wiî iif/w/wir îi/wii. 
Next we show that (1) implies (5). Recall that for any bounded operator T(x) on 9{(x), 

T(x) and A(x) = (T(x)r(xj) ' have the same range. (See Theorem 2.1 of [6]). Let 
E(x) be the spectral measure of A(x), En{x) = E(x)(2-n-l\\A(x)\\,2~n\\A(x)\\) and let 
Ht(x) = En{x)!H(x), n > 0. By Theorem 5.1 of [1] and Lemma 1.4, we obtain both 
a measurable field of projections and a measurable field of spaces. That (i) and (ii) are 
satisfied is the same as in [6]. 

To complete the proof, we show that (5) implies (1). With Pn{x) the orthogonal pro­
jection onto Jinix) and D(x) = £ ^ 0 2~nPn(x), then x i—• D(x) defines a measurable field 
of bounded operators with rg D(x) = ^(JC). 

COROLLARY 1.17. Let T(x), %XX) and (, )f
xbe as above, and suppose that the field is 

essentially bounded. Let T = J® T(x) d\i and %^ — xgT. Then the Hilbert space ( ^ , (, );) 
[6] is isomorphic to J® (^(x), (, )'x) dp and ^ = {ZZofn ' fn G Hr = J? HilA dp 
andZZo{22nSx\\fn(x)\\2dli)<oo}. 

We leave the proof to the reader. 

QUESTION. If x h—» T(x) is a measurable field of operators, then x H—> rg T(x) is a 
measurable field of operator ranges (vector spaces). If x \—• rg T(x) is a measurable field 
of operator ranges, does there exist a measurable field of bounded operators x \—• S(x) 
such that rg S(x) = rg T(x) a.e.? 

DEFINITION 1.18. An operator range is of type J s (Dixmier's notation) if it is dense 
and is determined, as in Theorem 1.1 [6] by an orthogonal sequence of infinite dimen­
sional closed subspaces. 

DEFINITION 1.19. Le t i ^ ^(JC) and x i—> S(x) be measurable fields of vector 
spaces. They are called (decomposably) unitarily equivalent if there exists a measurable 
field of unitary operators x H-> U(X) such that S(x) = U(x)$^(x) a.e. 

Generalizing Theorem 3.1 [6] it is possible to show that when %ix) = rgA(x) for 
some measurable field of bounded operators, we may replace "unitary" by "invertible" 
in the above definition. We leave the details to the reader. 
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LEMMA 1.20. Let x i—> T(x) andx i—> S(x) be measurable fields of operators such 
that rg T(x) and rg S(x) are of type J s a.e. Then the fields of operator ranges x\—> rg T(x) 
and x\—> rg S(x) are unitarily equivalent. 

PROOF. Let Hi(x) and %(x) be the spaces corresponding to T(x) and S(x) respec­
tively, as obtained in Theorem 1.1 [6]. Then for each n = 0,1,2, . . . 

dim ̂ Ci(x) = dim %j(x) a.e. 

a n d d i m ( E ? ^ t o ) = 0 = dim(£® %(*)) a.e. So (for each n) we obtain a measur­
able field of unitaries 

x ^ Vn(x): K(x) -> %(*). 

From here we can now construct the required field by setting 

V(x) = J2eVn(x). 
n 

The lemma now follows. 

LEMMA 1.21. Let x i—• T(x) be a measurable field of bounded operators such that 
%ix) — rg T(x) is non-closed a.e. Then there exists a measurable field of bounded oper­
ators x i—> S(x)for which rg S(x) is of type Js and rg S(x) ~D rg T(x) a.e. 

PROOF. Let ^(x) be determined by the sequence {^(x) : n > 0}. Because ^(x) 
is non-closed, O-^ix) ^ 0 for infinitely many n, a.e. Now let %)(x) = î o(jc) for all 
xeX0 = {x: Mo(x) ̂  0}, %(JC) = 9ix(x) for all x <E X{ = {x : H)(x) = 0, 9<\{x) ± 0} 
etc. 

By induction we obtain a sequence of measurable fields of Hilbert spaces %(x), n > 0 
satisfying 

(i) %(JC) ^ 0, n > 0 a.e. 
(ii) %(x) _L %,(*), n^m a.e. 

(iii) 5 ? > o W = 4 0 t o a . e . 
Let {nrs} be a double sequence of non-negative integers for which 

(i) each row n^, nr\, nr2,... is strictly increasing 
(ii) riro > r for all r 

(iii) the Air5 are all distinct and 
(iv) U M K } = {0,1,2,3,. . .}. 

To finish the proof, we define 

(
oo x • oo x J_ 

(
oo x 

£ e %,(*)) 
( OO x 

Y^%is(x))etc. 
Then the ranges %!(x) determined by the measurable field 9~Q(x) are of type J s and 
contain ^(x) a.e. 
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LEMMA 1.22. Suppose x i—> S(x) is a measurable field of bounded operators for 
which S(x) = rg S(x) is dense and contains an infinite-dimensional closed subspace 
a.e. Then there exists a measurable field of bounded operators x i—> Sf(x) such that 
S'(x) — rgSf(x) Ç rgS(x) andS'{x) is of type J s a.e. 

PROOF. Let S(x) be determined by the measurable fields of Hilbert spaces %(JC), as 
in Theorem 1.1 [6], and note that %j(x) is infinite dimensional for some n(x), a.e. (for oth­
erwise, as pointed out in [6], the corresponding diagonal operator D(x) = J2n 2

_n<2n(*X 
where Qn(x) is the orthogonal projection onto %(JC), would be compact and S(x) would 
contain no infinite dimensional subspaces, by Theorem 2.5 [6]). For each x, \etp(x) be the 
smallest positive integer for which this is so, that is, for which dim 9Ç,(X)(x) — oo- Write 
%?(X) = E^ o

0 ^: ( •*) w n e r e x h~^ A W is a measurable field of infinite dimensional closed 
subspaces, for each / = 0,1,2, . . . . Put %\x) = <KL(x)eLi(x), i ^ p and 9Ç(x) = Lp(x). 
Then the range S'(x) determined by { 9Q(x)}™=0 is of type Js and is contained in S(x) a.e. 
We finish the proof by letting Sf(x) be the diagonal operator D'(x) (See Theorem 1.1 (5). 
[6]). 

We are now ready to end this section of the paper by proving Theorem A, stated in 
the Introduction. 

PROOF OF THEOREM A. Similar to Theorem 3.6 [6], the proof rests on two facts: 
(a) There exists a measurable field of bounded operators x H—> S(x) and a measurable 

field of unitaries x i—> V(x) such that S(x) — rg S(x) is dense, contains a closed infinite 
dimensional subspace and S(x) n V(x)S(x) — {0} a.e. 

(b) If S(x) is as in (a), and* i—> T(x) is any measurable field of bounded operators with 
%ix) — rg T(x) then W(x)^(x) Ç S(x) for some measurable field of unitaries x \—> W(x). 

The measurable field of unitaries needed in the statement of the theorem will then be 
x ^ U(x) = W*(x)V(x)W(x). 

To prove (a) we need only let A(x) = A, S(x) = rg A(x) and V(x) — V, where A and V 
are the operators given in Theorem 3.6 (a) [6]. 

For the proof of (b), suppose S(x) is as in (a), and ^(x) is as in the statement of 
the theorem, so non-closed a.e. Then by Lemma 1.28 there exists a measurable field of 
bounded operators x \—+ Rf(x) for which rgR'(x) is of type Js and rgRf(x) D %ix) a.e. 
By Lemmas 1.27 and 1.29 there exists a measurable field of bounded operators R"{x) for 
which xgR"{x) is of type Js, is contained in S(x) a.e. and such that the measurable field 
x i—> rgR"(x) is unitarily equivalent t o x ^ rgR'(x). 

But now (b) follows and Theorem A is established. 

2. Products of positive operators. For this section 9{° is a fixed separable infinite-
dimensional Hilbert space and 9f{x) = 9i° a.e. 

We begin with some elmentary results on the range function 7. 

DEFINITION 2.1. For each bounded operator A 

7(A) = inf{||A/*|| : \\h\ = 1 and h _L kerA}. 
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LEMMA 2.2. Suppose x \—> T(x) is a measurable field of bounded operators. Then 
x i—> l(x) = l(T(x)) defines a measurable function. 

LEMMA 2.3. IfT = Jj T(x)dp is a bounded operator, then T has closed range if 
and only if there exists e > 0 such thatl(T(x)} > e > 0 a.e. 

PROOF. The result follows from the facts that x i—> l(T(xj) is a measurable function 

and that 1{T) = ess inf l(T(x)). 

LEMMA 2.4. A decomposable operator T — Jj T{x)dji is invertible if and only if 
T(x) is invertible a.e. andl(T(xy\ is essentially bounded away from zero. 

The following proposition is a special case of Fillmore's theorem (Corollary to The­
orem 3 [51) which itself is a generalization of the Halmos-Kakutani Theorem [9] to the 
case of properly infinite von Neumann algebras. 

PROPOSITION 2.5. Let U be a decomposable operator. Then U is the product of four 
decomposable symmetries J\, J2, J3, J A satisfying U{x) = J\(x) Ji{x) J^(x) 1/4 (x) a.e. 

PROOF. The algebra ff ^{'H0) dp of decomposable operators is properly infinite. 

REMARK. Necessary for our purposes is that for / = 1, . . . , 4, +1 and — 1 are eigen­
values of infinite multiplicity a.e. This can be easily seen from Fillmore's proof in [5]. 

REMARK. Our original proof was longer but drew explicitly on measurable selection 
theorems and the measurable structure of decomposable operators. Because measurable 
selection theorems are at the core of direct integral theory, we at least give a sketch of 
our elementary proof, which "point-wise" generalizes that of Halmos and Kakutani [9] 
(See also [7] Problem 142). 

The key fact is that for each decomposable normal operator TV = ff N(x) d\i on 9f = 
j j !H{x) dp,, there exists a measurable field x\—> Of\{x) of subspaces which reduce N(x) 
a.e. and such that both 9f\{x) and ^/i(x)1 are infinite dimensional. To prove this, note 
that the map x 1—> o{N(x)) is measurable. By analysing the original Halmos-Kakutani 
proof, and invoking the results of [11] and [1], the result follows. Now proceed as in [9] 
and observe that the symmetries obtained are decomposable. 

LEMMA 2.6. If T is a decomposable operator and dimker T(x) — dimker T(x) a.e. 
then T is the product of two decomposable normal operators and the product of five 
decomposable Hermitian operators. If in addition, rg T is closed a.e. then the normal 
and Hermitian operators may also be chosen to have closed ranges a.e. 

PROOF. Since dim ker T(x) = dimker r* a.e. T = UP where U is decomposable and 
unitary and P = (T*T)~-. Now invoke Proposition 2.5. 

The next result is Lemma 2.3 of [21], which we record as 
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LEMMA 2.7. Suppose A G ^(Of0) and T = N\---Nn where dimkerN/ = 

dim ker TV*, / = 1 , . . . ,n. If T is one-sided invertible (one-sided Fredholm) then T is 

invertible (Fredholm). 

PROPOSITION 2.8. Let T be a decomposable operator. Then if rg T(x) is closed a.e., 

the following are equivalent: 

(1) T is the product of finitely many decomposable normal operators; 

(2) T is the product of finitely many decomposable Hermitian operators; 

(3) T — SP, for decomposable operators S, P for which S(x) is invertible and P(x) is 

an orthogonal projection a.e. 

(4) dim ker 7 0 ) = dimker F ( x ) a.e. 

PROOF. We have that (3) implies (2), by Lemma 2.6; and that (2) implies (1) is 

obvious. 

Next we show that (1) implies (4). Since x \—> dimker T(x) is a measurable function, 

the measure space X is partitioned into the disjoint union of measurable sets Xk, Xk = 

{x : dim ker T(x) = k},k = 0 , 1 , 2 , . . . , oo. If dim ker T(x) = dim ker T*(x) = oo a.e., 

then we are done. If dimkerT(x) < oo then, by Proposition 2.4 [21], dimker T*(x) — 

dimkerT(x). 

We conclude by showing that (4) implies (3). Let P be the orthogonal projection onto 

(kerF) 1 . The operator P is decomposable with P = ff P(x)dfi, P(x) the orthogonal 

projection onto (ker T(x)^J a.e. Let x \-^ R(x) be a measurable field of partial isometries 

with initial space ker T(x) and final space ker T*(x). Define S(x)(f(x) + k(x)^) = T(x)f(x) + 

R(x)k(x), iorf(x) G (ker 7(JC)) and k(x) G ker T(x). Then it is an easy exercise to show 

that x i—> S(x) defines an essentially bounded measurable field of invertible operators. 

Letting S — ff S(x) d\i we obtain T = SP, as needed for (3). 

Following Wu [21], the next situation we consider is where rg T(x) is not closed a.e. 

Since the condition of having closed range is measurable (x \—> 7(r(x)) is a measur­

able function), X will partition into disjoint measurable sets, according to whether or not 

7(T(JC)) > 0. We will then put these together to obtain our main factorization theorem, 

Theorem B. 

PROPOSITION 2.9. If rg T(x) is not closed a.e. then T is the product of three decom­

posable normal operators and six decomposable Hermitian operators. 

PROOF. Because of Lemma 2.6 we need only consider the case where dim ker T(x) ^ 

dim ker T*(x) a.e. And since rg T(x) is closed if and only if rg T*(x) is closed, we further 

assume that dimker7(x) > dimkerT*(x) a.e. Let P be the orthogonal projection onto 

(ker T)1, so that P = ff P(x) dfi with P(x) the orthogonal projection onto (ker T(x)) 

a.e. 

As in Proposition 2.6 of [21] we will construct an operator S with dim ker S = 

dim ker 5*, such that T = SP. However, the operator S in our paper will have the ad-
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ditional properties of being decomposable with dim ker S(x) — dim ker S* a.e. To ac­

complish this, let 

ker TO) = # ! ( * ) © ^ ( J C ) 

where 

x^%(x), Z = l , 2 

are measurable fields, and 

ker T = f® ker T(x)d[i = f® ttx(x)dfi® f® M2(x)d\i. 
JX J X JX 

Invoking Theorem A, let 

x >— Kix) 

be a measurable field of closed infinite dimensional subspaces of 

x i-+ [rg T(x)] 

such that 

^ ( x ) n r g r ( i ) = {0}a.e. 

We let S(x) be a measurable field of operators which maps 9~t\{x) to {0}, 9ti(x) isomet-

rically into %{x) a n d equals T(x) on (ker T(x)) . As in [21], it follows that 

dim ker S(x) — dim^/j(x) = dimkerT*(x) = dim ker S* (x) a.e. 

Define 
/•© 

S = / S(x)dfi. 

By Lemma 2.6, applied to S, the result follows. 

The next lemma allows us to treat products of positive operators. Recall from [21] 

that every symmetry (in ® ( ^ 0 ) ) is the product of six positive invertible operators. Be­

cause of the work of Azoff and Clancey on direct integrals of normal operators [ 1 ], this 

factorization also holds in the algebra of decomposable operators. Thus, we have 

LEMMA 2.10. Every decomposable symmetry is the product of six decomposable 

positive operators. 

PROOF. Combine [1] with [21]. We leave the details to the reader. 

This now gives us 

LEMMA 2.11. Every decomposable unitary operator is the product of sixteen de­

composable positive invertible operators. 

PROOF. By Proposition 2.5, every decomposable unitary operator is the product of 

four decomposable symmetries, for which 1 and —1 are eigenvalues of infinite multi-

plicty a.e. From the proof of Lemma 2.10 the assertion follows. 
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PROPOSITION 2.12. //dimker 7Xx) = dimker T*(x) a.e. then T is the product of 
seventeen decomposable non-negative operators; ifrgT(x) is not closed a.e., then T is 
the product of eighteen decomposable non-negative operators. 

PROOF. The first part of the assertion follows from Lemma 2.11 and the proof of 
Lemma 2.6. If rg T(x) is not closed a.e., then using the factorization in Proposition 2.9, 
T = SP, where dim ker S*(x) = dim ker S*(x) and P(x) is non-negative a.e. So by the first 
part, S is the product of seventeen decomposable non-negative operators, which together 
with P gives eighteen, as claimed. 

COROLLARY 2.13. A decomposable operator T — J^T(x)dfi is the product of 
finitely many decomposable positive operators if and only ifT(x) is one-one with dense 
range a.e. In this case seventeen such factors will suffice. 

PROOF. Left to the reader. 

We can now state and prove our main theorem, which extends Wu's theorem [21] to 
the algebra of decomposable operators. 

THEOREM B. Let T be a decomposable operator, T = Jjf T(x) d[i acting on 9f = 
f® 9~((x)dn where Of{x) is separable and infinite dimensional a.e. Then the following 
are equivalent: 

(1) T is the product of finitely many decomposable normal operators; 
(2) T is the product of finitely many decomposable Hermitian operators; 
(3) T is the product of finitely many decomposable non-negative operators; 
(4) T(x) — S(x)P(x) orP(x)S(x) (depending on whether dim ker T(x) > dimker T* (x) 

or dimker T(x) < dimker T*(x))for some decomposable operator S = J® S(x) dp such 
that S(x) is one-one with dense range a.e. and P — J® P(x) d/i is an orthogonal projec­
tion; 

(5) The space X partitions measurably into Xj 0 Xr so that for almost all x in Xd 

dim ker T(x) = dim ker T*(x) and for almost all x in Xr, rg T(x) is not closed. 
(6) T is the norm limit of a sequence of decomposable invertible operators. 

Moreover, the number of factors required is bounded above; we need at most three 
normal operators, six Hermitian operators and eighteen non-negative operators. 

PROOF. We first establish the equivalence of (5) and (6). If (5) is true, then by Propo­
sitions 2.9 and 2.12, T is a finite product of decomposable non-negative operators. Using 
[1], we obtain that each factor is a norm limit of decomposable invertible operators; 
hence so is T. If (6) is true, that is, there is a sequence Tn = J® Tn(x) dp of decomposable 
invertible operators such that T = limn Tn, then T(x) — \\mTn(x) a.e., by elementary 
direct integral theory. We now call on [4] to conclude that dimker T(x) = dimker T*(x) 
or rg T(x) is not closed a.e. 

From what we have done so far, we need only show now that (5) implies (4). But for 
this we refer the reader to our Proposition 2.9 and Corollary 2.10 of [21]. This completes 
the proof of Theorem B. 
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One immediate corollary is on approximation, and is modeled on Theorem 3 of [ 13]. 

To state and prove the result we introduce some notation: Let A be a C*-algebra. Then 

for£= 1,2,3,... 

%{X) = {TeA:T=Pi--Pk, Pi positive invertible, and in A, i = 1,2,.../:} 

and 
oo 

ffoo(^) = U *kW 

Similarly, we have the sets Q&{A), defined like (P^A) except that the factors are allowed 
to be positive and not necessarily invertible. As usual, for a set S Ç A, S denotes its 
norm closure. 

COROLLARY 2.14. Let A be the algebra of decomposable operators. Then the clo­
sures of the following sets are equal to ^\-j(A). 

(1) The set ofT^A such that T(x) is Fredholm with index T(x) = 0 a.e. denoted 

(2) The set ofTeA such that dim ker T(x) = dim ker T*(x) a.e., denoted V{A). 

(3) The set of invertible operators in A, denoted Q(A). 

(4) Vn(A)forn>\l. 

(5) ^(A). 

PROOF. If n > 17, we have the following inclusions: 

¥n(A) Ç %{A) Ç ^(A) Ç Ç(A) Ç %(A) Ç V(A). 

Therefore it is enough to show that 

V{A) Ç <Pn(A). 

But, by Proposition 2.12, <V(A) Ç Qxi(A)\ and Qxi(A) Ç Qx^A) Ç 2>17(J3), by [1]. 

REMARK. In Theorem 3 of [ 13] it is shown that, for the algebra (B{9{°), five factors 
are enough in approximation by products of positive operators. Their proof depends on 
the result that a biquasitriangular operator is in fEj. ( (B(9-({))\ which in turn rests on a deep 
structure theorem of Herrero (Theorem 6.15 of [10]). So the following question arises: 
Can Herrero's structure theorem be extended to the algebra of decomposable operators, 
thereby reducing the number of factors required in Corollary 2.14 from 17 to 5? On the 
basis of preliminary evidence we conjecture that the answer here is "Yes". 
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