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Experimental studies on the sloshing of fluid layers are usually performed in rectangular
tanks with fixed boundaries. In contrast, the present study uses a 4.76-m-long circular
channel, a geometry with open periodic boundaries. Surface waves are excited by means of
a submerged hill that, together with the tank, performs a harmonic oscillation. Laboratory
measurements are made using 18 ultrasonic probes, evenly distributed over the channel
to track the wave propagation. It is shown that a two-dimensional long-wave numerical
model derived via the Kármán–Pohlhausen approach reproduces the experimental data
as long as the forcing is monochromatic. The sloshing experiments imply a highly
complex surface wave field. Different wave types such as solitary waves, undular bores
and antisolitary waves are observed. For order one δhill = hhill/h0, where h0 is the mean
water level and hhill the obstacle’s height, the resonant reflections of solitary waves by
the submerged obstacle give rise to an amplitude spectrum for which the main resonance
peaks can be explained by linear theory. For smaller δhill, wave transmissions lead to major
differences with respect to the more common cases of sloshing with closed ducts having
fully reflective ends for which wave transmission through the end walls is not possible.
This ultimately results in more complex resonance diagrams and a pattern formation that
changes rather abruptly with the frequency. The experiments are of interest not only for
engineering applications but also for tidal flows over bottom topography.
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1. Introduction

This paper studies resonances and wave patterns in a circular channel with a submerged,
symmetrical hill. Surface waves are forced by a periodic motion of a circular tank. In
nature, periodic forcing can appear due to tidal motions stimulating nonlinear surface
waves such as solitons and bores. Tidal bores, for example, can be found in rivers when the
tide at the mouth of the river is rising above the river’s surface level, see Chanson (2009)
and Chanson (2010). In general, tidal flows over bottom topography is a process important
in shallow parts of the ocean. From the total amount of tidal energy from the Sun and
Moon (3.7 TW), 2.6 TW go into the shallow seas (Munk & Wunsch 1998). It is also
relevant in tidally influenced estuaries and the rivers or streams flowing into it. Localised
and breaking surface waves lead to mixing. This can influence the surface transport of
nutrients but also the dispersion of polluted water. Here we study ‘tide’ generated solitons
and undular bores experimentally and use a 3-D-printed submerged obstacle as a wave
maker.

Waves induced by stationary flows over single mountains are a well-studied subject.
For example Houghton & Kasahara (1968) used a hydrostatic shallow-water approach
to derive analytical nonlinear solutions with hydraulic jumps. This was later generalised
by Baines (1984) for two-layer flows. The results have been complemented by numerical
solutions using different numerical methods in Nadiga, Margolin & Smolarkiewicz (1996).
Considering the problem of sliding underwater landscapes, the effect of a temporally
changing topography located at the bottom of a fluid layer has been studied by Tinti &
Bortolucci (2000). Bathymetry is not only for making waves: it is well-known that in a
fluid at rest, wave scattering, reflection and transmission can be observed if waves pass
over topographies. A detailed analytical discussion is made in Mei (1985). Mei, Hara
& Naciri (1988) studied the so-called Bragg scattering of water waves propagating over
periodic bathymetries applying the Klein–Gordon equation. A detailed discussion of the
dependence of the reflection coefficient on the wavenumber was held by Nayfeh & Hawwa
(1994). The reflection of waves by a doubly sinusoidal bed was discussed by Rey, Guazzelli
& Mei (1996) and a clear dependency on the wave frequency could be proven.

A submerged hill in a channel with periodic boundary conditions and with periodic
forcing represents a generalisation of sloshing in a rectangular channel (Chester & Bones
1968; Bouscasse et al. 2013; Harlander et al. 2024). In addition, it combines features of
topographic overflow with the scattering of waves, since the periodic excitation of the
flow at the obstacle generates not only stationary but also propagating waves, which in
turn interact with the topography. The hill can thus be seen as a partially blocking barrier,
which can reflect but also transmit waves and it is of interest to change the aspect ratio

δhill = hhill

h0
, (1.1)

whereby h0 is the mean fluid depth away from the hill and hhill denotes the height
of the hill. This height variation is relevant for investigating the range of resonances
between complete blocking, i.e. a classic sloshing experiment, and the gradual transition
to complete transmission at small δhill. The linear investigation of the closed channel
sloshing problem shows that a sloshing system has the fundamental eigenfrequency
ω0 = π

√
gh0/L (Faltinsen, Rognebakke & Timokha 2006), where g is the constant of

gravity and L the channel length. For δhill of O(1) this eigenfrequency should also play
a role for the submerged hill system, however, deviations can be expected when δhill
becomes significantly smaller since then reflected waves can interact with waves passing
the obstacle.
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Resonant surface waves in an oscillating periodic tank

The oscillating circular channel is part of a wave tank at the Fluid Centre of the authors’
university mounted on a rotating platform. It was previously used for rotating convection
experiments (Rodda et al. 2020) but later the outer heating chamber with its ideal circular
shape was taken to investigate internal waves (Le Gal et al. 2021) and surface waves
in circular channels (Borcia et al. 2020). The latter investigated undular bores and their
collision, produced by initial water level differences. In Borcia et al. (2023), sloshing with
a fully blocking barrier was studied.

To accompany the experiments numerically we use a model derived by using the
long-wave approximation by means with a Kármán–Pohlhausen approach (Bestehorn, Han
& Oron 2013). Because of the weak curvature of the channel 2πd/L = 0.11, where d is the
channel width, the model geometry is considered to be rectangular, hence curvature effects
were neglected at first order. Therefore, a two-dimensional (2-D) flow with velocity vector
v = (u, w)T is assumed. The incompressible Navier–Strokes equation for Newtonian fluids
reads

∂tv + (v · ∇)v = ν�v − ∇p + f e, (1.2)

where p denotes the pressure divided by the constant density, ν the kinematic viscosity
and f e = (b(t), −g)T the external force. Here b(t) is the periodic external forcing.

The velocity at mid-channel in the experiment is

vex(t) = A sin(ωt). (1.3)

Therefore, the horizontal term of external acceleration in (1.2) can be found with

b(t) = ∂tvex(t) = Aω cos(ωt). (1.4)

The amplitude of velocity is A and the angular frequency is ω. The characteristic aspect
ratio of the system is

δ = h0

L
. (1.5)

The ratio of velocity amplitude to wave speed is expressed with the Froude number

FrA = A
c0

, (1.6)

whereby c0 = √
gh0 is the shallow-water wave speed. The conservation of mass is in that

case expressed through incompressibility

∇ · v = 0, (1.7)

and the bottom boundary condition is given by

v = 0, at z = f (x). (1.8)

Here, f (x) is the bottom topography. The topography used in the experiment is represented
by the topographic function

f (x) = hhill

2

⎡
⎢⎢⎣1 − cos

⎛
⎜⎜⎝

2π

(
x − Lhill

2

)
Lhill

⎞
⎟⎟⎠
⎤
⎥⎥⎦
[
Θ

(
x + Lhill

2

)
− Θ

(
x − Lhill

2

)]
, (1.9)

whereby Θ denotes the Heaviside function and Lhill the mountain length. Equation (1.9)
represents a stand-alone submerged mountain. Due to the periodic boundaries in the x
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direction, the topography can more accurately be seen as a group of mountains having a
distance L from each other. Note that the chosen topographic function guarantees that f
is smooth at ±Lhill/2, which increases the durability of the numerical calculation. On the
surface of the fluid layer, the kinematic boundary condition is given by

∂th = w − u∂xh. (1.10)

Here h = h(x, t) denotes a stress-free deformable surface, where the stress-free assumption
can be expressed by

p = p0 − nT · 2ηD · n, at z = h(x, t), (1.11)

where p0, n and Dij = (∂ivj + ∂jvi)/2 denote environmental pressure, the surface normal
vector and shear rate, respectively. Note that the numerical model described is an
established model in the context of thin-film fluid mechanics heavily used for microfluids,
e.g. lubrication problems and thin-liquid-film instabilities. With respect to the specific
problems considered here, this has not been applied much. We show that the model is
able to reproduce the resonance frequencies and the variety of patterns at the fluid surface
observed experimentally. Moreover, the model is tested against the 2-D Navier–Stokes
model by Borcia et al. (2023). Hence, with this simple long-wave model we can resolve
the parameter space in greater detail compared with the rather elaborate experiments. This
will be important in particular for future research on more theoretical aspects.

In the following, we show that changing the boundaries of a channel sloshing experiment
from closed to periodic opens the possibility of studying wave topography interactions by
installing a submerged hill. Such a hill can of course also be installed in a closed channel,
but then the surface wave field would mainly be determined by the wave reflection at the
end walls. A key point of the study is to generalise the resonance spectrum for a sloshing
experiment allowing for wave transmission. By changing the fluid height we can cover
Froude numbers that range from the case of a complete blockage to a flat topography
where mainly transient lee wave effects play a role. The parameter range covers values
ranging from locally subcritical to critical flow with strong nonlinearities. To the best of
the authors’ knowledge, this has not yet been investigated experimentally in such detail for
a sloshing experiment with periodic boundaries.

The main goal of the present study is to delineate surface wave patterns and resonances
for different surface–hill ratios δhill. For this purpose, we investigate five cases in the
following. Cases 1, 2 and 3 are in the transient region according to the stationary overflow
problem. Cases 4 and 5 are in the non-transient subcritical region of the stationary
topographic flow. Hereby, cases 3 and 4 lie near the marginal line separating subcritical
from critical behaviour. Case 0 is data we took from Borcia et al. (2023), for the
comparison with a case of complete blockage. All cases and their exact parameters are
given in table 1.

2. Methods

2.1. Experimental method
The experimental set-up is a circular tank made out of acrylic glass mounted on a rotating
table. The used topography is a 3-D-printed hill with height hhill = 2 cm and length Lhill =
30 cm. Its shape was adapted to the channel’s curvature. The relative mountain height is
denoted with δhill = hhill/h0, where h0 is the mean height of the water level. Surface height
measurements are conducted by means of 17 ultrasonic probes. All 17 of these identical
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Resonant surface waves in an oscillating periodic tank

Case h0 (cm) δ FrA f0(Hz) δhill Method

0 4 0.0084 0.044 0.0658 ∞ Borcia et al. (2023)
1 2 0.0042 0.358 0.0465 1.000 exp
2 3 0.0063 0.292 0.0570 0.667 exp
3 4 0.0084 0.253 0.0658 0.500 exp/sim
4 5 0.0105 0.227 0.0736 0.400 exp/sim
5 6 0.0126 0.207 0.0805 0.333 exp/sim

Table 1. Measurement parameters. Case 0 was taken from Borcia et al. (2023). The excitation amplitude and
the mountain height are kept constant for every measurement, with A = 0.159 m s−1 and hhill = 2 cm.

Figure 1. Experimental set-up, circular tank, with 17 ultrasonic probes mounted on the curved aluminium
profile.

sensors can be placed at any distance from each other at a circular aluminium profile fixed
above the circular channel (see figure 1). The channel width is d = 8.5 cm.

To measure wave propagation, it was decided to place the sensors equidistant over
one-half of the channel’s centreline with a total length of L = 476 cm. For this, we
introduced the x coordinate in centimetres, related to the length of the centreline instead
of using rad or degrees. Hereby, the first sensor is placed directly over the hill, which
is declared to be x = 0 cm. The 17th sensor is at the opposite side of the channel at
x = 238.0 cm. The remaining 15 sensors are placed in between these two sensors with
a distance of 14.9 cm. Due to the symmetry of the set-up, it is possible to reconstruct the
wave structures in the whole channel by mirroring the sensor signals and positions. To
control the symmetry, an additional 18th synch sensor is placed symmetrically to sensor 6
in the other half of the channel. The signals of sensors 6 and 18 should be shifted in phase
by a factor π. The position of the sensors is sketched in figure 2.

The equidistant ultrasonic probes are mic +25 from microsonic GmbH, and the 18th
sensor is from a P47 series of PIL Sensoren GmbH. Ultrasonic distance sensors usually
work in three steps. First a pulsed sound wave is sent by a speaker with the constant sound
velocity. Then the time delay �t between emitted and received sound wave is measured by
the sensor. Finally, the transit time of the signal is converted into a distance.

The sensors used in our experiments have an analogue output of 0–10 V. This output is
connected to a data acquisition card, where the computer interprets the voltage as distance.
The mic +25 sensors produce a cone of sound which is 10 mm in diameter, at still water
level. Note that the cone in this particular instrument is almost cylindrical.
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L

d

hhill

17 Sensors

Synch-Sensor

Figure 2. Schematic sketch of the experiment, with the mid-channel length L = 4.76 m and gap width
d = 8.5 cm.

The surface wave excitation is performed by the rotating table whose rotation oscillates
with a given amplitude and frequency. During a measurement, the frequency increases in
steps. For each frequency step, the system was given 2 min time, which was enough to
reach a stable state. This steady state is reached after 3–5 oscillations.

2.2. Numerical method
Solving momentum equation (1.2) numerically can be computationally expensive. The
geometric shape of the problem allows the use of the long-wave approximation according
to Oron, Davis & Bankoff (1997). The long-wave approximation can be applied if the
characteristic ratio fulfils the condition |δ| � 1. Here, h0 is the medium depth and L is the
system length. The system coordinates can be scaled to this ratio as

x = h0

δ
x′, z = h0z′, t = h0

δc0
t′. (2.1a–c)

Furthermore, we scale the quantities

(h, f ) = h0(h′, f ′), u = c0u′, w = c0δw′, p = c2
0p′, A = c0FrA,

ω = δc0

h0
ω′, b = δc2

0
h0

b′,

⎫⎪⎬
⎪⎭ (2.2)

where the prime denotes dimensionless quantities. Now the dimensionless momentum
equation can be expressed (dropping all primes) as

δ
[
∂tu + (u∂x + w∂z) u

] = ν

c0h0
∇2

δ u − δ∂xp + δb (2.3)

and

δ3 [∂tw + (u∂x + w∂z) w
] = δ2ν

c0h0
∇2

δ w − δ∂zp − δg. (2.4)

Here ∇2
δ = δ2∂2

x + ∂2
z and b is an external excitation from (1.4). In the following, we

neglect all terms of O(δ2) or smaller. The w term in (2.3) can be eliminated with
the continuity equation. From (2.4) and stress-free condition (1.11), a solution of the
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Resonant surface waves in an oscillating periodic tank

(dimensionless) hydrostatic pressure equation is

p = −h0

c2
0

gz + h0

c2
0

gh. (2.5)

Inserting (2.5) in (2.3), gives the long-wave equation

∂tu + (u∂x + w∂z) u = 1
Re

∂zzu − ∂xh + b. (2.6)

The ratio between wave velocity, system size and viscosity is expressed by the Reynolds
number Re = c0h0δ/ν, which, for consistency, should be O(1). This is true in the Stokes
boundary layer that scales with 1/β = (2ν/ω)1/2, however, Re is larger outside this layer.
Here we still keep the small viscous term Re−1∂zzu because it stabilises the numerical
calculations. The results are not altered much by the small term. To further increase
the numerical performance of the model we separate the z coordinate by assuming
u = q(x, t)g(z). Here g(z) needs to fulfil the boundary condition (1.8). The flow rate is
defined as

q(x, t) =
∫ h(x,t)

f (x)
u dz, implying

∫ h(x,t)

f (x)
g(z) dz = 1. (2.7)

This is called the Kármán–Pohlhausen approach by Craster & Matar (2009). This method
was also used by Schön & Bestehorn (2023) and Bestehorn et al. (2013). A sketch of the
connection between u and q is shown in figure 3. Here, for g(z) a boundary layer profile is
chosen:

g(z; x, t) = K
H

(
1 − cosh β̃(h − z)

cosh β̃H

)
, (2.8)

with the factor

K(x, t) =
⎛
⎝1 −

tanh
(
β̃H

)
β̃H

⎞
⎠

−1

. (2.9)

The size of the boundary layer is the non-dimensional Stokes depth 1/β̃ = 1/(βh0). The
fluid layer thickness is denoted by H(x, t) = h(x, t) − f (x). Integration of (2.6) over z (see
Appendix A) leads to the equation

∂tq = H

(
−Kβ̃ tanh β̃H

Re
q

H2 − ∂xh + b

)
− 2Kq∂xq

H
+ Kq2

H2 ∂xH. (2.10)

Here we assume that the parameters K(x, t) ≈ 1 in the relevant range 5 ≤ β̃H ≤ 60. Note
that it is also possible to choose a parabola or a linear shape for g(z). The kind of profile
will only change the prefactors of convection, diffusion and viscous damping terms.
Note, further, that by skipping the viscous term Re−1∂zzu in (2.6), the (2.10) and (2.11)
would turn into the shallow-water equations with g(z) = 1, u = q/H and ∂zu|z=f = 0.
Here, the boundary layer profile (2.8) was chosen after the evaluation of the experimental
flow profile by particle image velocity measurements. These measurements have been
published in Borcia et al. (2024).
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f (x)

h(x,t)

u

q

Figure 3. Assuming that the horizontal velocity u has a hyperbolic shape with respect to z, the flow rate q is
an integral of u over z, covering the region from the bottom topography f (x) to the liquid surface h(x, t).

Equation (2.10) can be solved with the help of kinematic boundary condition (1.10)
which after integration turns into

∂th = −∂xq. (2.11)

Equations (2.10) and (2.11) describe the system of a 2-D channel with a free surface of
temporal changing force. It can be applied to a variety of different cases, just by choosing
different f (x) and b(t). Hereby, the long-wave character of the system under consideration
(|δ| < 1 ) must be guaranteed. It should be noted that numerical instability can appear if
H gets too small. This is the reason why the numerical results we present here show small
hhill/h0 ratios.

We apply two modifications to enhance the stability of the numerical model. First, we
use a logarithmic transform similar to Schmidt (1990) and Harlander (1997), i.e. solving

∂tp̃ = −∂xq
H

, (2.12)

where p̃ = ln(H), instead of (2.11). This method avoids negative or zero values of H.
Second, we use a damping term related to the disjoining pressure, namely −(Ã/H3) in
(1.11), see Bestehorn & Borcia (2010). This term causes strong damping of flow rates that
diverge for too low values of H near the hill. However, this method should be applied
with caution, because in contrast to (2.12) it can change the physics of the equation
fundamentally if Ã is chosen too high. We only applied the second method to case 3,
and chose Ã = 0.012.

3. Results and discussion

In this section, we discuss the main results and compare the findings from the experiment
and the numerical simulation. We start with a discussion on the amplitude spectra and
subsequently, we consider the surface wave patterns at the different resonance peaks.

3.1. Amplitude spectra
We assume that a wave propagates with the shallow-water wave speed c0 = ±(gh)1/2. At
t1 we accept that it starts to propagate when the excitation function is at an extreme value,
with phase ωt1. Then it travels from one side of the mountain, through the channel, to its
opposite side. The wave will reach its starting position at t2 = t1 + L/c0. At this time, the
phase of the excitation is ω(t1 + L/c0). The excitation will have an extremum at t2, if

ω = n
πc0

L
= nω0. (3.1)

Hereby, we denote the first eigenfrequency by ω0. The direction of the hill motion is
opposite to the wave motion if n is odd. If n is even, the wave and hill motion will
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Resonant surface waves in an oscillating periodic tank

be in the same direction. It can be concluded that even eigenfrequencies produce a
constructive resonance if the wave is able to cross the mountain. Odd eigenfrequencies
produce constructive resonance if the wave is reflected from the mountain. The reflecting
resonance at odd eigenfrequencies was shown for the total blocking case in several papers
(Faltinsen et al. 2006; Bouscasse et al. 2013; Bäuerlein & Avila 2021; Borcia et al. 2023,
e.g.).

The potential energy of the wave field at a certain time is given by

Epot(t) = 1
2

∫ L/2

−L/2
gdρh2(x, t) dx. (3.2)

see Tinti & Bortolucci (2000). We see that the energy of the wave field depends on the
square of the wave amplitude h. To discuss the wave excitation at different excitation
frequencies ω, a local potential energy density (J/m) is calculated as follows

gh0ρ

2
〈h2(x)〉 = gh0ρ

2T

∫ t+T

t
h2(x, t) dt = gh0ρ

2T

∫ t+T

t
(�h(x, t))2 dt + e0. (3.3)

Here, the relative surface displacement �h(x, t) = h(x, t) − h0. Variations of 〈h2(x)〉 over
frequency can be understood as an amplitude spectrum. For convenience, we choose the
constant offset local energy e0 = 0.

The envelope of the amplitude spectra for the cases listed in table 1 is plotted in figure 4.
Case 0 is a fully blocking case (δhill � 1). It shows exclusively constructive resonance
at odd eigenfrequencies. In contrast, case 1 (δhill = 1) shows minor peaks at odd n and
no peaks at even eigenfrequencies. This is a partial blocking case, whereby the excited
waves are able to spill over the mountain. At all frequencies, 〈h2〉 is rather large. Case
2 has an almost flat spectrum. This means that waves with high amplitudes are excited
independent of the frequency, i.e. resonance plays no prominent role for the excitation of
surface waves. As can be seen from figure 5, cases 1 and 2 are located in the critical region
of the stationary flow regime. This means that local effects, i.e. the motion of the fluid
over the topography only, are already sufficient for a significant transfer of energy from
the flow to surface waves. So far, the only distinct peaks appear in cases 0 and 1 for odd
n, showing that wave focusing due to resonant wave reflection is the dominant process.
A further decrease of δhill, however, gives rise to new peaks. For case 3, regions of higher
amplitudes appear close to even but also, with smaller amplitudes, to odd eigenfrequencies.
This case is still in the critical regime as visible in figure 5, but the appearance of odd and
even peaks in the spectrum suggests that reflective and transitive resonating waves have
been excited. In case 4, peaks become more prominent. This case is in the subcritical part
of the regime (see figure 5), which means the Froude number is not large enough for a
wave excitation due to a pure non-resonant motion of the fluid. Note that even peaks are
the largest and that, compared with case 3, the ratio of odd peak height to even peak height
has decreased. The localisation of even peaks is further enhanced in case 5 but the peak
amplitudes become somewhat smaller. An increase of reflection at topographies, due to
an increase in topography height was found by Mei (1985), Mei et al. (1988), Nayfeh &
Hawwa (1994) and Rey et al. (1996). This confirms the observation of shrinking reflection
peaks with increasing δhill.

Borcia et al. (2023) observed that the odd peaks in case 0 decrease in height with
increasing frequency by a factor 1/ω. This factor can be traced back to the amplitude of the
oscillating barrier displacement. Because of the comparably small excitation amplitudes
for fully blocked cases, Borcia et al. (2023) were able to investigate the spectra up to
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Figure 4. Amplitude spectrum for different cases (see table 1 and figure 5), solid black line is the envelope
of 〈h2〉 from the experiment. The dashed line is the envelope of the numeric solution. Every dot is the
measurement of a Sensor, the colour represents its distance from the barrier. The dotted line in case 0 is
the full Navier–Strokes solution from Borcia et al. (2023).

the 7th eigenfrequency. In the present study, the same engine and gearbox are used in
the experiment, but with approximately 10 times higher amplitudes (see table 1). This
severely limits the maximum frequency we can apply without damaging the experimental
apparatus.

The numerical solution of cases 3–5 shows slightly higher envelopes (dashed lines in
figure 4) for lower frequencies and lower ones for higher frequencies. This effect intensifies
with increasing δhill. The reason could be a shortcoming of the long-wave approximation
since higher excitation frequencies cause more shortwave structures not represented by
the model assumptions. Moreover, the peaks of the numerically calculated resonances are
slightly shifted towards larger frequencies compared with the experimental data. It should
be mentioned that the dotted line in case 0 of figure 4 is the solution taken from a different
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Figure 5. Regime diagram, reproduced from Houghton & Kasahara (1968). The cases from table 1 are plotted
according to their excitation amplitude. Note that subcritical (supercritical), denotes a constant flow velocity u0
lower (higher) than the surface wave phase velocity c0.

numerical model and was reproduced here from Borcia et al. (2023). The dashed line is
(2.10) and (2.11) calculated by applying fixed boundaries and f (x) = 0.

3.2. Wave patterns
Inside the rather broad region of a resonance peak, a wide variety of patterns can be
observed. Therefore, it is important to first clarify the used designation of the different
wave types. We call a wave-train with multiple peaks propagating in the same direction
with the same speed an undular bore. A high-amplitude single propagating wave is coined
a soliton, a travelling dent in the surface an antisoliton and a wide low-intensity wave a
cnodial wave. The latter three are inspired by eponymous solutions of the Korteweg–de
Vries equation. To discuss these wave patterns in an efficient way, we use space–time
plots where the wave field is plotted over the whole channel (x/L axis) and two periods
of excitation (t/T axis). In figure 6, it is shown how a single wave reflected at a fixed
barrier (case 0) is represented in such a space–time plot. The localised crest (red colour)
propagates back and forth between the barrier located at x/L = ±0.5. It is obvious that
the wave amplitude is largest at the barrier and becomes smaller during propagation
until it reaches the opposite side of the barrier where the wave is reinforced again by
the moving barrier. Next, to explain reflection and transmission at the topography we
exemplary display two space–time diagrams taken from case 2, because in this case, the
waves have rather similar heights for the chosen forcing frequencies. An example of an
almost full wave reflection at the hill at x/L = 0 is shown in figure 7. It can be observed
that an incident wave at the mountain splits into two parts. A small part of the wave energy
can pass the hill but the main part is reflected. Clearly, this diagram looks rather similar
to figure 6 when the position of the hill is mapped to the barrier position x/L = ±0.5.
Essentially, the wave energy is reflected back and forth between the hills as for the situation
displayed for the barrier. A very different picture emerges when we consider the same δhill
but force the flow by approximately twice the frequency (see figure 8). Now we find a
weak reflection and a prominent wave transmission. The reflected part manifests itself in
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Figure 6. A reflected wave calculated with the long-wave model with parameters from case 0. Fixed
boundary is located at x/L = ±0.5.

2

1

0
–0.5 0

TransmittedTransmitted ReflectedReflected

IncomingIncoming

Transmitted Reflected

Incoming

0.5

0.38

0.19

0

–0.19

–0.38

�
h/
h 0

t/T

x/L

ω/ω0 = 1.011

Figure 7. A reflected wave patten from case 2 (experiment). Bathymetry is located at x/L = 0.
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Figure 8. A transmitted wave pattern from case 2 (experiment). Bathymetry is located at x/L = 0.

fine lines, however, those fine structures are in fact difficult to recognise in the figure due
to its very low amplitude.

Equipped with this basic understanding of wave reflection and transmission in a
space–time representation we are now in a position to discuss the variety of wave patterns
that occur for forcing frequencies in a range that covers four resonance peaks. We focus
here on case 4 since it is representative for cases where wave transmission becomes more
and more important for decreasing δhill. Moreover, case 4 is very suitable for our purpose
since for this case we have experimental and numerical data. Comparing case 4 to cases
2, 3 and 5, the main differences concern, as mentioned before, amplitude and amplitude
ratio, and not so much the qualitative appearance of the wave patterns.

Near the first eigenfrequency (figure 9 ω/ω0 = 0.940) undular bores are observed that
show reflecting behaviour. Every half-period (i.e. t/T = 1/2, 1, 3/2 and 2) a reflection
happens where the place of reflection changes each time from one side of the mountain
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Figure 9. Space–time plots in an oscillatory frame of reference for different frequencies, for case 4. Long-wave
model and experimental results are shown. The topography is placed at x = 0. The colourmap is given in
�h/h0. Time is normed to the last two periods measured before the frequency change.

to the other. A small part of the wave energy is transmitted over the hill. An increase of
frequency to ω/ω0 = 0.966 leads to a reduction of undulations in the bores.

With a frequency near the second amplitude peak (ω/ω0 = 1.670), it can be observed
that two wave structures propagate in opposite directions through the channel. In the
lower-frequency to the higher-frequency part of the peak, undular bores (figure 9,
ω/ω0 = 1.905), solitons (figure 9, ω/ω0 = 2.062) and cnodial waves (figure 9, ω/ω0 =
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2.349) are observed. The undular bore type covers the largest part of the spectrum.
Hereby, it should be mentioned that the number of undulations decreases with increasing
frequency. Solitons occur almost exactly at the second eigenfrequency. Cnodial waves
show no transmissive but reflecting behaviour only.

At the third eigenfrequency (ω/ω0 = 3.001) a quite regular quasi-square-shaped pattern
is observed. This pattern seems to result from collisions of a number of waves. It is hard to
say whether wave reflection is involved, expected for odd values of ω/ω0, or if a process
is involved at which waves are amplified not every, but every second oscillation. Likely we
see a superimposition of both effects.

The fourth natural frequency shows four wave structures, two propagating to the left
and two propagating to the right with similar structures. Crossing the resonance peak,
the change of wave types is qualitatively similar to what we already found for the second
peak. We see an undular bore with four crests at ω/ω0 = 3.706, and four solitons at a
slightly higher frequency, ω/ω0 = 4.071. In between the peaks in the amplitude spectrum,
wave structures can be observed reminiscent of antisolitons (see figure 9, ω/ω0 = 1.67
and 3.41).

Near x = 0, waves that are able to cross the mountain show a crinkle in their
trajectory. This crinkle is caused by a change in wave velocity under the influence of
the bottom topography as can be expected by linear theory for which the phase velocity
is

√
g(h0 − f (x)). This implies that in the region close to x ≈ 0, the wave speed shows

a minimum. Physical intuition suggests a splitting of the waves in a transmitting and a
reflecting part in regions with such a rather abrupt phase speed change. Note, finally, that
the envelope of simulation and experiment displayed in figure 4 shows a rather perfect
agreement between the second and fourth peaks of the amplitude spectrum. For lower
frequencies, the simulation shows larger amplitudes than the experiment. This is caused
by the formation of subcritical lee waves typical for stationary solutions. In the experiment,
we placed only one sensor above the mountain, which hampers a clear understanding of
the process. The lee wave in the simulation can be also seen in figure 9, at x = 0.

In summary, the long-wave model produces rather similar patterns compared to
the experiment and is hence a useful and numerically cheap tool to supplement the
experimental data. As expected, fine structures, visible especially for the undular bores
(see, e.g., the case ω/ω0 = 1.905 in figure 9), do not appear in the simulation due to
the long-wave approximation. Moreover, some of the patterns shown in figure 9 are
also very sensitive to frequency. That is, patterns do not look very similar for the same
excitation frequency but slight changes in frequency lead to a much better match between
the space–time patterns. This is demonstrated for the frequencies ω/ω0 = 0.966 and 2.010.
For the first frequency, we find a sign reversal in figure 9, for the second we see a much
stronger localisation in the experiment compared with the simulation. Figure 10 exhibits
the effect of a slight frequency change for these two examples and the frequency sensitivity
is quite obvious. For frequencies especially near the resonance peaks, the patterns
observed in the experiment appear at somewhat lower frequencies than in the numerical
simulations.

4. Conclusion

In a circular channel, surface waves have been excited by means of a submerged hill
that, together with the tank, performs a harmonic oscillation. The study is in the realm
between channel sloshing, wave generation by stationary flows over mountains and wave
scattering from submerged obstacles. A key point of the study was to experimentally
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Figure 10. Space–time plot comparison for similar patterns in experimental and numerical results. Two
frequencies are chosen near the first and second eigenfrequency. The patterns appear in the experiment (a,c) at
lower frequencies than in the numerical simulations (b,d).

derive the resonance spectrum for a sloshing experiment allowing for wave transmission.
Froude numbers have been considered in a range from stationary subcritical to transient
subcritical. To the best of the authors’ knowledge, this has not yet been investigated
experimentally in such detail for a sloshing experiment with periodic boundaries.

It has been shown that the resonant frequencies of waves excited at the oscillating
submerged hill depend on the aspect ratio δhill. For δhill ≈ O(1) we recovered a resonance
spectrum that resembles strongly that of the fully blocked sloshing case 0, for which just
odd normalised frequencies occur since only modes corresponding to such frequencies
resonate constructively. We called this resonance due to reflective amplification. For
smaller δhill waves that pass the topography can also become resonant. Through a step-wise
reduction of δhill we approached a resonance spectrum where the even frequencies
dominate since now we find resonance due to transmissive amplification, i.e. here the
modes passing the hill resonate constructively. In other words, we find even and odd
multiples of the channel eigenfrequency depending on the direction of the hill’s motion
when an incoming wave encounters the hill: for reflection, the incoming wave and
the hill’s motion have opposite directions (odd frequency peaks); for transmission, the
incoming wave and the hill’s motion have the same direction (even frequency peaks).
Obviously, transmissive resonance becomes more prominent for lower δhill. Cases that
are located in the critical stationary regime (see figure 5) show less-sharp peaks, but
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flatter amplitude spectra. It is remarkable that frequencies prohibited from the spectrum
of the closed channel (destructive resonance for even frequencies) give rise to the largest
amplification in the periodic case due to topographic fluid–structure interaction. Note that
the oscillating flow over a submerged hill produces wave structures at Froude numbers
where only subcritical waves are expected from the stationary flow problem.

In the second part of the study, we focused on the nonlinear wave structures excited
by the oscillating topography in a periodic channel. We have found that the wave patterns
depend strongly on the excitation frequency. Approaching the first resonance peak from the
low-frequency side we observed antisolitons. With an increase of the excitation frequency,
we found a wide frequency band in which undular bores are the most common structures.
Hereby, their number of undulations can be reduced by increasing the frequency. By
reaching the eigenfrequency deduced from linear theory, the train of waves collapsed
into a single soliton. A further increase led to an abrupt reduction of wave amplitude and
cnoidal waves were showing up. Note that at a multiple of an eigenfrequency, we observed
a multiple of the wave structures described for the first peak.

Finally, we tested whether the resonances as well as the dominant wave structures can
be reproduced by a highly simplified nonlinear 2-D long-wave shallow-water model. Very
satisfactorily the model was able to qualitatively replicate the course structures of the
wave patterns, their amplitudes and the amplitude spectrum. This opens the possibility for
a subsequent more-theoretical study on wave resonance in a periodic channel by relying
more on the fast numerical model.

Future research will address symmetry breaking due to asymmetric topography with
symmetric forcing but also the reverse case, symmetric topography with asymmetric
oscillatory excitation. For cases with symmetry breaking, we expect the development of a
mean flow. Another focus will be on oscillating stratified flows over submerged hills that
apply more to tidally forced oceanic flows.
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Appendix A. Integrals

First, we reformulate

(u∂x + w∂z) u = ∂xu2 + ∂z(uw). (A1)

This is possible because of incompressibility (1.7) through which we can replace

∂xu = −∂zw. (A2)
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Thus, the following has to be solved:∫ h

f
dz ∂tu +

∫ h

f
dz ∂xu2 +

∫ h

f
dz ∂z(wu)

=
∫ h

f
dz
(

ν

c0h0δ
∂zzu − ∂xh + b(t)

)
. (A3)

With the Leibniz integration rule and all boundary conditions we obtain∫ h

f
dz ∂tu = ∂t

∫ h

f
dz u − u|h ∂th, (A4)

∫ h

f
dz ∂xu2 = ∂x

∫ h

f
dz u2 − u|2h ∂xh + u|2f ∂x f , (A5)

∫ h

f
dz ∂z(wu) = [wu]h

f = u|h ∂th + u|2h ∂xh − u|2f ∂x f . (A6)

Adding (A4), (A5) and (A6), only the first term on the right-hand side of (A4) and the first
term on the right-hand side of (A5) remain. Further,∫ h

f
dz
(

ν

c0h0δ
∂zzu + ∂xh + b

)
= − ν

c0h0δ
∂zu|z=f + H [−∂xh + b] . (A7)

Using the g(z) we introduced in the main text, it shows that ∂zu|z=f = Kβ̃ tanh (β̃H)(q/H).
The term ∂x

∫ h
f dz u2 = ∂x(K(q2/H)). This gives the last two terms in (2.10).
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