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Abstract

Causal machine learning tools are beginning to see use in real-world policy evaluation tasks to flexibly estimate
treatment effects. One issue with these methods is that the machine learning models used are generally black boxes,
that is, there is no globally interpretable way to understand how a model makes estimates. This is a clear problem for
governments who want to evaluate policy as it is difficult to understand whether such models are functioning in ways
that are fair, based on the correct interpretation of evidence and transparent enough to allow for accountability if things
gowrong. However, there has been little discussion of transparency problems in the causal machine learning literature
and how these might be overcome. This article explores why transparency issues are a problem for causal machine
learning in public policy evaluation applications and considers ways these problems might be addressed through
explainable AI tools and by simplifying models in line with interpretable AI principles. It then applies these ideas to a
case study using a causal forest model to estimate conditional average treatment effects for returns on education study.
It shows that existing tools for understanding black-box predictive models are not as well suited to causal machine
learning and that simplifying the model to make it interpretable leads to an unacceptable increase in error (in this
application). It concludes that new tools are needed to properly understand causal machine learning models and the
algorithms that fit them.

Policy Significance Statement

Causal machine learning is beginning to be used in analysis that informs public policy. Particular techniques
which estimate individual or group-level effects of interventions are the focus of this article. The article identifies
two problems with applying causal machine learning to policy analysis—usability and accountability issues,
both of which require greater transparency in models. It argues that some existing tools can help to address these
challenges but that users need to be aware of transparency issues and address them to the extent they can using the
techniques in this article. To the extent they cannot address issues, users need to decide whether more powerful
estimation is really worth less transparency.
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1. Introduction

Causal machine learning is currently experiencing a surge of interest as a tool for policy evaluation
(Çağlayan Akay et al., 2022; Lechner, 2023).With this enthusiasm andmaturing of methods, we are likely
to see more research using these methods that affect policy decisions. The promise of causal machine
learning is that researchers performing causal estimationwill be able to take advantage ofmachine learning
models that have previously only been available to predictive modelers (Athey and Imbens, 2017; Daoud
and Dubhashi, 2020; Baiardi and Naghi, 2021; Imbens and Athey, 2021). Where traditional (supervised)
predictivemachine learning aims to estimate outcomes, causalmachine learning aims to estimate treatment
effects (the difference between an observed outcome for prediction and one which is fundamentally
unobservable) for causal modeling as the treatment effect will always be a function of an unobserved
potential outcome (Imbens and Rubin, 2015). This generally means either plugging standard machine
learning models into a special causal estimator or modifying machine learning methods to give causal
estimates with good statistical properties (particularly asymptotic normality and consistency). This allows
researchers to capture complex functional forms in high-dimensional data which relate cause to effect
(Chernozhukov et al., 2018; Knaus, 2022) and allows for a data-driven approach to estimate heterogeneous
treatment effects that does not require explicitly including interactions with treatment (Wager and Athey,
2018; Athey et al., 2019). A good non-technical introduction to this literature can be found in Lechner
(2023).1

There seems to be substantial benefits to using causal machine learning when the appropriate methods
are applied correctly to the right research project. However, the fact that thesemethods generally use black-
box models makes them very different from traditional causal estimation models. A model being “black-
box”means that it is not possible to get a general explanation of how amodel arrived at an estimate (Rudin,
2019). For example, in a linear regression, we can easily see how each coefficient multiplied by the data
then summed gives a prediction, but in a model like a random forest, we need to understand the average
result of potentially thousands of individual decision trees which is practically impossible. A black-box
model then is one where we lack a reasonable general explanation of the functioning of the model, instead
all that we can find are local explanations for how a particular prediction was made (later we will call this
explainable AI [XAI]; Xu et al., 2019) or abandon the method and simplify to a “white-box”model like a
single decision tree (what we will later call interpretable AI [IAI]; Rudin, 2019). This lack of a general
explanation presents challenges when using causal machine learning methods to inform decision-making.

The focus of this articlewill be on transparency in the case of heterogeneous treatment effect analysis in
policy evaluation. By transparency we mean an ability to get useful information about the workings of a
black-boxmodel. Specifically we focus on the causal forest method (Wager andAthey, 2018; Athey et al.,
2019). We identify two kinds of transparency that are important, but which need to be thought of
separately. These are termed accountability and usability. This classification of types of transparency is
orthogonal to the means we might use to achieve transparency such as through XAI and IAI methods and
in the latter half of this article we discuss both types of methods as means for achieving both goals.

Accountability is transparency for those who will be subject to policy. Their interest in understanding
the analysis used in policy-making is close to the classic case for transparency in predictive machine
learning (see Ireni Saban and Sherman, 2022 for an introduction to the literature on ethical issues around
predictive machine learning and government). A party subject to the decisions made by a model might be
owed an explanation for the decisions made and the ability to identify and criticize injustices such as the
right codified into the European Union’s GDPR (Kim and Routledge, 2022). Specifically, transparency
with an accountability goal is often concerned with addressing similar problems to machine learning
fairness, though through the means of transparency rather than the often blunter means of fairness rules
(Rai, 2020). This means that accountability concerns are often particularly focused on the use of sensitive
variables like gender or race in models. However, this analogy to the predictive case is complicated

1We include a table of definitions in the Appendix as this article uses many terms that will be unfamiliar to those without
background knowledge in causal machine learning.
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somewhat by the role of the human decision-maker who is generally interpreting the results of a causal
machine learning analysis and making decisions based on it (Rehill and Biddle, 2023). Causal machine
learning models would rarely make decisions directly as they might in predictive applications, but instead
inform a longer policy-making process. It is necessary then to understand the output of a model, but it is
also necessary to understand the human decision-making process that was informed by the output and
which led to a policy outcome.

Usability is transparency that helps the analyst and decision-maker to understand the data generating
process (DGP) and therefore obtain better insights into the causal processes at play. It can also help to
diagnose problems in modeling, for example, finding variables that are “bad controls” (Hünermund et al.,
2021) that should not be in the dataset. As with accountability, the primary difference between causal and
predictive applications from a justice perspective is not the actual differences in estimation processes, but
rather it is the way that causal models are generally there to inform human decision-makers while
predictive ones generally exercise more direct power (Rehill and Biddle, 2023). Usability is precisely the
way in whichmodels do this informing, taking amodel of hundreds of thousands of parameters in the case
of a typical causal forest and presenting the patterns in those parameters in away that can tell the user about
the underlying causal effects. Because usability is so directly tied to the human role, there is less of a
parallel here to the existing transparency literature than there is in accountability but we will explore how
existing transparency tools can still be useful for improving usability.

This article is an effort to lay out the problems posed by applying black-boxmodels to causal inference
where methods have generally been interpretable in the past. There is little existing literature in this area
(we are not familiar with any aside from Gur Ali, 2022), however the critical literature around predictive
learning provides a blueprint for understanding these concerns and trying to solve them. Section 2
provides a background on causal machine learning. Section 3 explains why thesemethodsmight be useful
for policy-making. Section 4 looks specifically at transparency in causal machine learning and the role of
accountability and usability. Section 5 introduces the case study that will motivate the rest of the article, a
study of returns on education in Australia using the Household Income and Labour Dynamics in Australia
Survey (HILDA). Section 6 then demonstrates and discusses some possible approaches including XAI,
IAI, and refutation tests which can all offer some insight into the causal effects and therefore help inform
policy decisions.

2. A brief introduction to causal machine learning

What fundamentally separates causal machine learning from the more typically discussed predictive
machine learning is that the latter is concerned with predicting outcomes while the former is concerned
with predicting treatment effects. The standard definition of a treatment effect in econometrics relies on
the Potential Outcomes (PO) Framework (Imbens and Rubin, 2015). For a vector of outcomes Y and a
vector of binary treatment assignmentsW , the treatment effect (τi) is the difference between the potential
outcomes as a function of treatment status Yi Wið Þ

τi = Yi 1ð Þ�Yi 0ð Þ:
There is an obvious problem here, that one cannot both treat and not treat a unit at a given point in time

so in effect, we have to impute counterfactual potential outcomes to do causal inference. This is called the
“Fundamental Problem of Causal Inference” (Holland, 1986). It means that unlike for predictive machine
learning, in real world data we lack ground-truth treatment effects on which to train a model. It also means
that we are relying on a series of causal assumptions the two key ones being the Stable Unit Treatment
Value Assumption (SUTVA), and the Independence Assumption (Imbens and Rubin, 2015). The
Independence Assumption is required for a causal effect to be considered identified. Essentially it means
assuming that treatment assignment is exogenous (as in an experiment), partially exogenous (as in an
instrumental variables approach) or endogenous butwewill model out the endogeneity for examplewith a
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set of control variables (as in control-on-observables) or additional assumptions (as in a difference-in-
differences design).

In parametric modeling—given identifying assumptions hold and a linear parameterisation of the
relationship is appropriate—it is easy to model causal effects by fitting outcomes. In causal machine
learning, predictivemethods need to be adapted as regularization shrinks the estimated effect of individual
variables toward zero (Chernozhukov et al., 2018). This can be achieved either through specific methods
designed to give asymptotically unbiased causal estimates, for example, the causal tree (Athey and
Imbens, 2016) or generic estimators designed to plug in estimates from arbitrary machine learning
methods, for example, meta-learners (Künzel et al., 2019; Nie andWager, 2021). In all these cases though,
the methods still do not have access to ground-truth treatment effects and still require SUTVA and
independence assumptionsmeaning that the exercise is not simply one ofmaximizing fit on held-out data.

Causal machine learning is a broad term for several different families of methods which all draw
inspiration from machine learning literature in computer science. One of the most widely-used methods
here and our focus for this article is the causal forest (Wager and Athey, 2018; Athey et al., 2019) which
uses a random forest made up of debiased decision trees to minimize the R-loss objective (Nie andWager,
2021) in order to estimate HTEs (generally after double machine learning is applied for local centering).
The causal forest (at least as implemented in the generalized random forest paper and companion R
package grf) consists of three key parts, local centering, finding kernel weights and then plug-in
estimation.

Local centering removes selection effects in the data (assuming we meet the assumptions of control-
on-observables identification) by estimating nuisance parameters using two nuisance models, an estimate
of the outcome m xð Þ=E YjX = x½ � and an estimate of the propensity score e xð Þ=ℙ W = 1jX = x½ � or in the
continuous case where we estimate an average partial effect, e xð Þ=E W jX = x½ �. (Athey et al., 2019).2

The term nuisance here means that the parameters themselves are not the target of the analysis, but are
necessary for estimation of the actual quantity of interest, a treatment effect. This local centering is similar
to the double machine learningmethod which is a popular approach to average treatment effect estimation
(Chernozhukov et al., 2018). These models can use arbitrary machine learning methods so long as
predictions are not made on data used to train the nuisance model (this is in order to meet regularity
conditions in semi-parametric estimation (Chernozhukov et al., 2018). In practice, in the causal forest,
nuisance models are generally random forests and predictions are simply made out-of-bag that is only
trees for which a data-point was not sampled into its training data are used to make predictions.

After fitting nuisance functions, we can then fit the adaptive kernel. This is uses a pre-grf style causal
forest (a random forest adapted to HTE estimation). This forest is fit by minimizing a criterion called
R-Loss (Nie and Wager, 2021) which is a loss function that constructs pseudo-outcomes from the
residuals of the nuisance models and attempts to fit them. Here τ �ð Þ are candidate heterogeneity models
that try to explain heterogeneity after local centering. Λn is a regulariser, here regularization implicit and
provided by the structure of the ensemble and trees.

~τ �ð Þ= argminτ
1
n

Xn
i = 1

Yi� bm Xið Þf g� Wi�be Xið Þf gτ Xið Þ½ �2þΛn τ �ð Þf g
 !

:

Predictions are not made directly out of this model as with a standard random forest, instead, this forest
is used to derive an adaptive kernel function to define the bandwidth used in CATE estimates. Essentially,

2Note that local centering is not always strictly necessary. Many causal forest studies use experimental data, for example,
Ajzenman et al. (2022) and Zhou et al. (2023) and so do not require local centering (Wager and Athey, 2018). However, in practice
papers written after Athey et al. (2019) which added local centering to the causal forest generally use it. This may simply be for
reasons of simplicity (nuisance models are estimated automatically anyway) or because it may improve the efficiency of the
estimator per Abadie and Imbens (2006). For this reason while papers using experimental data do not include explicit identification
through nuisance models per se, in practical terms the process of estimation is identical and so the points made in this article around
estimation of effects in observational data are entirely applicable to cases where experimental data are used as well.
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this weight is based on howmany times for a given covariate set x, each data-point in the sample falls into
the same leaf on a tree in the ensemble as a data-point with covariate values x. These weightings are then
used in a plug-in estimator (by default Augmented Inverse Propensity Weighting) to obtain a final CATE
estimate. This is essentially just a weighted average of doubly robust scores with weightings given by the
kernel distance according to the forest model. More formally for CATE estimate bτ xð Þ, kernel function
(from the final causal forest model) K �ð Þ and doubly robust scores bΓ

bτ xð Þ= 1
n

Xn
i = 1

K Xi� xð Þ �bΓi,

where doubly robust scores are estimated using the same the nuisance models used in local centering
to estimate outcome.

bΓi =
WiYibe Xið Þ�

1�Wið ÞYi

1�be Xið Þ
� �

þ bm1 Xið Þ� bm0 Xið Þð Þ� Wi�be Xið Þbe Xið Þ 1�be Xið Þð Þ
� � bm1 Xið Þ� bm0 Xið Þð Þ:

There are many other approaches to estimating treatment effect heterogeneity with machine learning
methods. For example, one can use generic methods with R-Learner (Nie and Wager, 2021; Semenova
and Chernozhukov, 2021), single causal trees (Athey and Imbens, 2016) causal Bayesian Additive
Regression Trees and Bayesian Causal Forest (Hahn et al., 2020), other meta-learners like X-Learner
(Künzel et al., 2019, DR-Learner (Kennedy, 2023), and optimal treatment rule SuperLearner (Montoya
et al., 2023).While some of this article is specific to the causal forest, most of the problems discussed here
and some of the solutions proposed should be applicable to any causal machine learning approach
estimating heterogeneous treatment effects.

The reason for considering all these approaches together is that the collective labeling of them as causal
machine learning tells us something about how they are likely to be used in practice—and the challenges
theymight present. They are cutting-edgemethods that are relatively new in policy research and so there is
not much existing expertise in their use. They present new possibilities in automating the selection of
models, removing many of the model-design decisions that a human researcher makes and the assump-
tions that come with these decisions but also rely on black-box models in a way traditional explanatory
models do not (Breiman, 2001).

An offshoot of causal learning is whatwewill term “prescriptive analysis.”This uses causal models but
treats them in a predictive way to make automated decisions. For example, learning decision rules from
causal inference (Manski, 2004) is a good example of this and approaches to fitting models from HTE
learners are already well established (e.g., Athey and Wager, 2021; Zhou et al., 2023). However, simply
using a causal forest to assign treatment based on the treatment which maximizes expected outcome
would also be an example of prescriptive analysis, even though the model itself is a causal model that
could be used for causal analysis as well. The prescriptive model is a special case as the peculiarities of it
as a model that in some way sits between a purely predictive and purely causal model merit special
attention. It is not something that is currently being used in policy-making, to ourminds it is not a desirable
aim nor is it one we treat as a serious policy-making process. However, when talking about joint decision-
making with a human being it will be useful to have this case as one extreme in the domain where all
decision-making power is given to the algorithm.

3. The rationale for heterogeneous treatment effect estimation with causal machine learning in
public policy

It is worth briefly pausing to discuss why we might want to use these novel methods for policy
evaluation at all. This is particularly important because to the best of our knowledge, causal machine
learning has not actually been used in a policy-making process yet. This section presents the current

Data & Policy e43-5

https://doi.org/10.1017/dap.2024.35 Published online by Cambridge University Press

https://doi.org/10.1017/dap.2024.35


status of heterogeneous treatment effect learning in policy analysis and argues that thesemethods can fit
nicely into an evidence-based policy framework when sufficiently transparent.

While analysis to inform policymaking has been an explicit focus in the methods literature (Lechner,
2023), most of the interest in using these methods for policy evaluation so far have come from academic
researchers. It is hard to know whether these methods have been used in government or if these academic
publications have been used to inform decision-making. As analysis for public policymaking within or
in-partnership with government is often not published it is difficult to identify cases where causal machine
learning has directly affected decision-making. We are aware of at least one case where it was used by
government—a partnership between the Australian Capital Territory Education Directorate and academic
researchers to estimate the effect of student wellbeing in ACT high schools on later academic success
(Cárdenas et al., 2022). There is however a much larger body of policy evaluation conducted by academic
researchers which could be used in policy decisions, but there is no evidence that they have been used in
this way (e.g., Tiffin, 2019; Chernozhukov et al., 2021; Kreif et al., 2021; Cockx et al., 2022; Rehill,
2024).

Is there value to be obtained from using the causal forest then? We see the use of the causal forest as
slotting nicely into an evidence-based policy framework where there is a history of porting over causal
inference tools from academic research to help improve public policy (Althaus et al., 2018). Of course,
policy is still incredibly under-evaluated (for example in the UK a National Audit Office (2021) report
found that 8% of spending was robustly evaluated with 64% of spending not evaluated at all) but some of
these tools have proved very useful at least in areas of government culturally open to such policy
approaches. Being able to identify who is best served by a program and who is not could be knowledge
that is just as important as an overall estimate of the average effect. Being able to do so in a flexible way,
with large datasets is well suited to government.

In policy evaluation problems, often theoretical frameworks, particularly around treatment effect
heterogeneity are quite poor when compared to academic research (Levin-Rozalis, 2000). The reason for
this is that evaluations are run for pragmatic reasons (because someone decided in the past that the
program should exist for some reason), not because the program sits on top of a body of theory that allows
for a very robust theoretical framework. Without a strong theoretical framework, there can be little
justification for parametric assumptions around interaction effects or pre-treatment specification of
drivers for these effects. In addition, the specifics of particular programs often defy the theoretical
expectations of their designers (Levin-Rozalis, 2000). This context makes data-driven exploration of
treatment effect heterogeneity particularly attractive because ex ante hypotheses on treatment effect
heterogeneity are not needed. In addition, evaluators in government often have access to large, admin-
istrative datasets that can be particularly useful in machine learning methods. The estimation of
heterogeneous treatment effects is useful for several reasons. It may help researchers to understand
whether a program that is beneficial on average will close or widen existing gaps in outcomes (or even
harm some subgroups) and how well findings will generalize to different populations (Cintron et al.,
2022). It can also help to understandmoderators that may be pertinent to program design decisions (Zheng
and Yin, 2023). For example, a program to encourage vaccination in Australia that involves publishing
resources in English and several other common non-English languages (e.g., Italian, Greek, Vietnamese,
Chinese) might have a positive effect for everyone except Vietnamese speakers. This might point to
quality problems in the Vietnamese language resources which the government can investigate and
remedy.

Our intention in this article is not to lay out a grand vision for a policy process policy informed by
HTE learners. We also do not mean to argue that causal forest or other HTE learners will be able to
overcome cultural barriers to adoption within government, rather we make two strictly normative
contentions: that there is value to using these methods for policy evaluation in some cases and that
addressing transparency challenges is necessary to allow thesemethods to add value in a policy process.
Doing so will improve the usefulness of these tools to policy-makers and address justice issues for those
subject to policy.
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4. Transparency and causal machine learning

4.1. Causal and predictive machine learning methods share some similar transparency problems

While there is little existing literature on transparent causal machine learning, we can borrow from the
much larger literature on transparency in predictive machine learning. We can draw from the predictive
literature in laying out a definition of transparency, why it is desirable, and use it to help find solutions to
transparency problems. For the purposes of understanding models and for the purposes of oversight, the
concerns are similar. These models are still black-boxes, they are still informing decision-making and in
the case of democratic governments making these decisions, there are still expectations around account-
ability.

4.1.1. Defining transparency
When governments employ machine learning tools, there is arguably an obligation that members of the
public have a degree of transparency that is not the case for most private sector uses. In some jurisdictions,
versions of this obligation have been passed into law (most prominently the EU’s “right to explanation”
regulations (Goodman and Flaxman, 2017)). Even where transparency is not enshrined in law, we will
make the assumption which most of the rest of the literature makes that transparency is good and to some
degree necessary when using machine learning in government (Ireni Saban and Sherman, 2022). The
nature of this need is unclear though and transparency here is not actually one concern, but a range of
different, related concerns. Importantly, this critical AI literature is largely about predictivemodels used in
policy implementation.

This article draws on theMittelstadt et al. (2016) survey of the ethical issues with algorithmic decision-
making tomap out these transparency issues. Particularly important for the public are what that paper calls
unfair outcomes, transformative effects, and traceability. The former two (the “normative concerns”) have
a direct effect on outcomes for members of the public whether through algorithms that discriminate in
ways we judge morally wrong, or by the very use of these algorithms changing how government works
(e.g., eroding the standards of transparency expected).

Transparency is not just about understanding models though, it is also about holding human beings
accountable for the consequences of these models, what Mittelstadt et al. (2016) call traceability.
Traceability is a necessary part of a process of accountability. Accountability can be seen as a multi-
stage process consisting of providing information for investigation, providing an explanation or justifi-
cation, and facing consequences if needed (Olsen, 2017). The problem with accountability for machine
learning systems is clear, they can obfuscate the exact nature of the failure, make it very difficult to obtain
an explanation or justification. It can be difficult to know who should face consequences for problems or
whether there should be consequences at all. Was anyone negligent, or was this more or less an
unforeseeable situation (e.g., the distribution of new data has shifted suddenly and unexpectedly)
(Matthias, 2004; Santoni de Sio and Mecacci, 2021)? This means that models need to be well enough
explained so that policy-makers can understand them enough to be held accountable for the decision to
use them. It also means that causal machine learning systems and the chains of responsibility for these
systems need to be clear enough that responsibility can be traced from a mistake inside the model to a
human decision-maker. Finally, it also means that in cases where traceability is not possible due to the
complexity of the analysis—a so-called “responsibility gap”—such analysis should only be used if the
benefits somehow outweigh this serious drawback (Matthias, 2004). In the worst-case scenario, this
opaqueness could not only be an unfortunate side-effect of black-box models, but an intended effect,
where complexmethods are intentionally used to avoid responsibility for unpopular decisions (Mittelstadt
et al., 2016; Zarsky, 2016).

An extreme case where a responsibility gap is possible, one that occurs commonly in the predictive
literature is what we term prescriptive analysis. Here the machine learning model is directly making
decisions without a human in-the-loop. As far as we are aware, no public policy decisions are being made
based on causal estimates in an automated way (analogous to the kinds of automated decisions firms
entrust to uplift models when for example targeting customers with discounts). However, even with a
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human in the loop, there can still be a responsibility gap where the human fails to perfectly understand the
fitting and prediction procedures for a model. We can draw on the predictive literature to help solve this
problem. When it comes to prescriptive analysis the issues are very similar to those in the predictive
literature where there is the history of direct decision-making by AI models (Ireni Saban and Sherman,
2022). On the other hand, when a human is in the loop on the decision like in explanatory causal analysis
where the model is a tool to help understand the drivers of treatment effect heterogeneity, there is less
existing theory to draw on. It can best be seen as a kind of human-in-the-loop decision where the human is
given a relatively large amount of information meaning that we need to understand where the human
decision-making responsibility and that of the algorithm exist distinctly and where we cannot disentangle
them (Busuioc, 2021). In the latter case, it will be important for practitioners to construct processes that
still allow for accountability (such as along the lines of Olsen, 2017). An important part of this will be
making sure that governments know enough about the models they are using to be held accountable for
these joint decisions. It is also important to recognize that there are likely to be responsibility gaps that
would not exist with simpler methods (Olsen, 2017; Santoni de Sio and Mecacci, 2021). This is an
unpleasant prospect and these gaps must be minimized. Ultimately, new norms may have to be built up
over time about how to use this technology responsibly and hold governments accountable for their
performance just as norms and lines of accountability are still forming for predictive machine learning
applications (Busuioc, 2021). Governments should also be aware of these downsides before putting
causal machine learning methods into practice.

4.1.2. Methods for achieving transparency
The solutions we might employ to help understand causal models are relatively similar to those in the
predictive literature. This is because the underlying models are generally identical (e.g., metalearners,
Künzel et al., 2019) or at least very close to existing supervised machine learning techniques (e.g., causal
forest). This means that many off the shelf approaches need little or no modification to work with causal
models. The two families of solutions we can use are both drawn from the predictive AI literature, they are
XAI and IAI. XAI uses a secondary model to give a local explanation of a black box algorithm, the
advantage of this is that a user gets some amount of explanation while not lessening the predictive power of
the black box. Some examples of commonXAI approaches are LIME (Local InterpretableModel-agnostic
Explanations) (Ribeiro et al., 2016) which perturbs data in small ways then fits a linear model on the
outcomes of predictions made with perturbed data to create local explanations or SHAP (SHapley Additive
exPlanation) (Lundberg and Lee, 2017) which uses game theory modeling and retraining of models with
different sets of covariates to partial out the effect that variables have on predictions. In contrast, IAI
approaches give global explanations but at the expense of limiting model selection to “white-box”models
that are usually less powerful than typical black boxes (Rudin, 2019).An example of a “white-box”model is
a decision tree; here for a given data point one can trace a path through the decision tree that explains exactly
how a decision was reached. There are approaches other than just fitting a white-box model initially, for
example, several approaches have been proposed to simplify a black-box model to a decision tree by
leveraging the black-boxmodel to improve fit over simply fitting a decision tree on the training data directly
(Domingos, 1997; Liu et al., 2014; Frosst and Hinton, 2017; Sagi and Rokach, 2020).

Causal machine learning already commonly employs some elements of both the XAI and IAI toolkits,
for example, the variable importance metrics or SHAP values presented as outcomes of causal forest
analysis could be seen as XAI efforts to explain the individual causal estimates (Athey et al., 2019; Tiffin,
2019; Kristjanpoller et al., 2023). On the other hand, single causal trees are an interpretable way of
estimating the heterogeneous treatment effects (O’Neill andWeeks, 2018) and policy allocation rules are a
goodway to extract insights from black-boxHTEmodels (Sverdrup et al., 2020). Athey andWager (2019)
graph treatment effects across variables using quantile splits. However, these limited approaches aim to
understand the models in specific ways but do not amount to an approach emphasizing model transpar-
ency, particularly not for oversight purposes. Some basic tools then are already in use and given the
structural similarity between causal and predictive models, still others can likely be adapted to improve
model transparency.
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4.2. There are some key differences between causal and predictive machine learning transparency

There are some key differences between the predictive and causal cases for model transparency. The three
main ones are the lack of ground truth in causal inference (Imbens and Rubin, 2015), the role of nuisance
model, and human understanding in applying the analysis to real-world applications. On the first point,
lacking ground-truth causal effects detaches causal machine learning from the hyper-empirical world of
predictive modeling where there is lots of data and few assumptions (Pearl, 2001). In causal inference we
need to rely on theoretical guarantees, for example, that an estimator is asymptotically unbiased,
converges on the true value at a certain speed (

ffiffiffi
n

p
consistency for models directly estimating effect

and
ffiffiffi
n4

p
consistency for nuisance functions) and that it has an error distribution we can estimate. This point

will not be a focus of this article, but it ultimately underpins the more practical differences that are.
On the second point, causal machine learning presents technical challenges because one generally

needs to understand a series of nuisance and causal estimating models and how they interact. Poor
estimation of these nuisance parameters can result in biased causal estimates (Chernozhukov et al., 2018).
As nuisance parameters, there is no need to interpret the output of this model in order to answer the
research question. However, as causal identification depends on the performance of this model, it is
important to be able to diagnose identification problems coming from poorly fit nuisance models.

In predictive learning, decisions are often made on the basis of predictions automatically while in
causal applications, the estimates generally need to be interpreted by a human being. Following on from
this, in general, predictive systems are used for individual-level decisions (e.g., targeting product
recommendations) while the nature of causal questions, particularly in government means that we are
interested in outcomes across an entire system (e.g., would changing the school-leaving age boost
incomes later in life). Governments generally do not have the capacity (or mandate) to apply policies
at the individual level in many policy areas even if it is in theory possible to do such a thing with
individual-level treatment effect estimates. For this reason, there is similar or somewhat less importance in
havingmodel transparency for oversight in the causal case compared to the predictive one, but there is the
same need for oversight over what we argue is a joint decision made by the human policy-maker and the
machine learning system (Citron, 2007; Busuioc, 2021). For the same reason, it is also important that there
is some transparency in themachine learning system for decision-makers and analysts who have to extract
insight from the analysis, critique the modeling, and weight how much they trust the evidence.

4.2.1. Models are structured differently
The most rudimentary difference in the structure of models is that causal machine learning methods
generally involve the fitting of several models with different purposes where predictive applications
typically involve fitting one, or several with the same purpose in an ensemble method (Chernozhukov
et al., 2018; Athey et al., 2019). For example, in the case of DML-based methods (including the casual
forest), this involves fitting two nuisance models and then employing some other estimator to generate a
treatment effect estimate from the residuals of these models.

The transparency needs for these two kinds of models varies. One can imagine research questions
where it is helpful to understand the nuisancemodels aswell as the finalmodel, but for themost part, this is
not necessary. We still need some amount of transparency over nuisance functions, mostly to diagnose
problems in model specification. The goal of nuisance modeling is not to maximize predictive power and
try and get as close to the Bayes error as possible, rather it is to model the selection effects out of treatment
and outcome (Chernozhukov et al., 2018). There is a range of non-parametric refutation tests to check how
well a given set of nuisance models (Sharma et al., 2021).

Another problem this raises is that explaining or making a model interpretable can only explain the
functioning of that one model, but sheds little light on the effect this model has on (or in conjunction with)
the other models. Some generic models could trace effect through the whole pipeline of models (e.g.,
LIME). However, in this case, it would not be possible to separate out whether the explanations pertained
to orthogonalization or effect estimation.While tools designed for predictive models can be helpful, tools
specifically made for causal modeling that account for a series of models which each have different
objectives would be even more useful.
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4.2.2. Transparency is more important to users as understanding the model can lead to causal knowledge
Unlike in predictive applications where transparency is often an orthogonal concern to the main objective
of the model (i.e., predictive accuracy), in causal applications, a model is more useful to users when they
can understand more of the model structure because the purpose of a model is to inform human beings.
Causal machine learning is generally concerned with telling the user something about the data-generating
process for a given dataset (some kind of treatment effect) so it can be useful to provide model
transparency to suggest patterns in the data even if these are not actually being hypothesis tested. For
example, O’Neill andWeeks (2018) use an interpretable causal tree to provide some clustering to roughly
explain the treatment effects in their causal forest. Tiffin (2019) uses SHAP values to lay out possible
drivers of treatment effect heterogeneity in a study of the causes of financial crises. SHAP values are
calculated by looking through all the combinations of variables seeing how predictions change with a
variable included versus when it is excluded. The averagemarginal effect of each variable is taken to be its
local effect (Lundberg and Lee, 2017).

When trying to build a theory of transparency then, the philosophical basis of the critical predictive
literature which focuses on questions of power, ethics, and information asymmetries between the user and
the subjects of algorithms misses usability—the role of transparency in explaining causal effects to help
inform decisions. This need means we need to see these tools through more of a management theory lens,
looking at how to get the best possible information to decision-makers for a givenmodel. The key problem
here is one of trust and transparency. Can we give users the tools such that they can perform analysis that
reflects real-world data-generating processes? Can we also make sure they understand the model well
enough to work well in collaboration with it, that is to weight its evidence correctly and not underweight
(mistrust) or overweight (naively trust) its findings just because it is an inscrutable black box?

There is unfortunately only a little literature in the field of decision science which asks how human
beings incorporate evidence frommachine learning sources into their decision-making (Green and Chen,
2019; Logg et al., 2019). The risk here is that humans either irrationally trust or mistrust the algorithm
because they do not understand it and this can lead to poor outcomes (Busuioc, 2021; Gur Ali, 2022). This
effect is often called automation bias. One could reasonably assume that causal machine learning
algorithms given their complexity and their novelty might cause a more potent biasing effect than
traditional regression approaches which are more familiar to those doing causal inference (Breiman,
2001; Imbens andAthey, 2021). Logg (2022) explains this effect as being a result of human beings having
a poor “Theory of Machine,” the algorithmic analog of the “Theory of Mind” by which we use our
understanding of the human mind to assess how a human source of evidence reached the conclusion they
did and whether we should trust them. When it comes to algorithms, Logg argues that decision-makers
often over-weight this advice as they do not understand what is going on inside the algorithm but instead
see it as incomprehensible advanced technology that seems powerful and objective. Green and Chen
(2019) concur as their participants showed little ability to evaluate their algorithm’s performance even
when trusting it to make decisions that were obviously racially biased.

A good decision-maker using an algorithmic source of evidence needs enough understanding to be
able to interrogate evidence from that source and the process that generated it, just as a good decision-
maker relying on human sources of evidence will knowwhat questions to ask to verify this information is
worth using (Busuioc, 2021). Having a good Theory ofMachine for a causal machine learningmodel then
means needing to understand the final model, but it also means understanding the algorithm that gave rise
to the model (Logg, 2022). An analyst needs to be able to challenge every step of the process from data to
estimate, a decision-maker needs a good enough understanding to provide an outside eye in case the
analyst has missed any flaws and to be able to decide how much weight the evidence should be given
(Busuioc, 2021). This means that we should aim for what Lipton (2018) calls algorithmic transparency
(i.e., understanding of the fitting algorithm) to the extent it is possible as well as just model transparency.

In cases where causal machine learning is being used for orthogonalization—that is, meeting the
independence assumption by controlling for variation in outcome that is not orthogonal to treatment
assignment (e.g., DML and methods derived from it)—there is an additional need not for transparency in
the traditional sense, but rather to understand a model well enough to diagnose problems with
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identification (Sharma et al., 2021). For example, it might be important that the approach to identification
used by the nuisance functions makes sense to a domain expert. Of course, it might be possible that the
model is drawing upon relationships in data that are legitimate for identification, but that the domain
expert cannot comprehend, but there are processes by which we can iterate on and test such models. For
example, Gur Ali (2022) lays out a procedure for iteratively constructing an interpretable model of HTEs
based on anXAI output from a causal machine learningmodel. The “transparency” that is useful here does
not just come from transparency tools designed for the predictive world though. Other causal inference
diagnostics can be brought in as what are effectively AI transparency tools solving problems of
identification. For example, refutation tests like Placebo Treatment or Dummy Outcome tests could be
useful in providing algorithmic transparency for ATE estimation (and therefore should also work for
CATE estimation) (Sharma et al., 2021).

4.2.3. The distance between causal models and real-world impact is greater because humans are the ultimate
decision-makers
The link between the results of causal analysis and real-world action is also generally less clear than in
predictive applications which changes the importance of transparency. Generally, causal analysis is
further distanced from making actual decisions than predictive models are. The kinds of questions causal
analysis is used to answer (particularly in government) and the complexity of causal identification means
that in practice, causal analysis is largely used to inform human decisions by providing a picture of the
underlying causal effects rather than driving automated decisions. Of course, predictive applications
sometimes involve a human in the loop as well. However in practice, this is rarer in predictive applications
(as causal applications almost never lack a human in the loop, see Rehill and Biddle, 2023) and here
decision-making is generally a matter of acting on a single prediction rather than drawing conclusions
from an approximation of thewhole set of causal relationships in the data (e.g., in approving loans, Sheikh
et al., 2020) or making sentencing decisions (Završnik, 2020).

Because there is a human in the loop (who is depending on one’s views, a more trustworthy agent
and/or a more impenetrable black box) drawing on a range of other evidence (or at least common sense), it
becomes less important for oversight purposes to have a transparent model. It is of course still useful to be
able to scrutinize the human decisionmaker and the evidence they relied on tomake their decision, but the
transparency of the model itself is a less important part of this oversight than it would be were the decision
fully automated. Instead, the challenge is in understanding a joint decision-making process, one that is not
necessarily any less daunting.

As a side note, this distance sets up the potential for accountability and usability to be adversarially
related. Assuming the effect of the causal model on the real world is always fully mediated through a
human’s understanding of the model, the usability of the model increases the need for accountability. This
is because the human policy-maker can only incorporate evidence that they understand into their decisions
so themodel needed to understand the evidence used in the decision needs to be complex enough tomodel
that understanding, not necessarily the actual causal forest. For example, if a decision-maker simplymade
a decision based on a best linear projection (BLP) for a causal forest, the underlying model is essentially
irrelevant for accountability because the whole effect is mediated through the BLP.3 One only needs to
understand the BLP to ensure accountability. On the other hand, if decisions are made based on a detailed
understanding of nonlinear relationships in the causal forest obtained through powerful usability tools,
accountability methods will need to be powerful enough to explain these effects.

There are some key differences between causal and predictive machine learning methods. The nature
ofmodels and theway they are likely to be used in practicemeans that there is still somework to be done in
developing transparency approaches specifically for these methods. The following section tries to do this

3 The BLP regresses the doubly robust scores onto a set of covariates in order to get the best linear model to explain treatment
effect heterogeneity. This provides an interpretable model with hypothesis testing that is easy for any reader with experience in linear
regression to understand. However, it will not capture non-linear relationships in the data. This method is discussed further in
Section 6.2.2.
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by working through a case study showing some of the possibilities and some of the limitations of the tools
that currently exist.

5. Introducing the returns on education case study

The case study in this section and the next will attempt to estimate the causal effect of a bachelors degree in
Australia with a control-on-observables design. We will do this by analyzing data from the Household
Income and Labour Dynamics in Australia (HILDA) survey from 2021 to 2022 (Wave 21) with incomes
averaged across the three prior yearly waves per Leigh and Ryan (2008). We take the subset of the sample
with only a high school completion and compare them to the subset with a bachelor’s degree.

We take a fully observational approach to this research controlling for a matrix of pre-treatment
variables. This is not the ideal approach for unbiased estimation (per Leigh and Ryan, 2008) but control-
on-observables studies with the causal forest are far more common than quasi-experimental designs
(or even fully experimental designs) (Rehill, 2024). This also allows for a better discussion of transpar-
ency with regards to nuisance models.

We fit all models with an ensemble of 50,000 trees on 7874 cases. We identified 33 valid pre-treatment
variables (listed in Table 1) for fitting nuisance functions and the main causal forest. Some of these
variables are strictly speaking nominal, but have some kind of ordering in their coding so have been
included as quasi-ordinal variables (country coding which roughly speaking measures cultural and
linguistic diversity, occupational coding which roughly speaking goes from managerial to low-skilled).
As the causal forest can non-linearly fit this data, it can find useful cut points in this data or simply ignore
the variable if it is not useful.

These variables were chosen out of almost 6993 possible controls in the dataset because when trying to
orthogonalize we can only use pre-treatment variables (Chernozhukov et al., 2018; Hünermund et al.,
2021) and most of the variables could be considered post-treatment because present income is being
measured in most cases years after the respondent was last in education.4

Finally, it may be useful to include certain post-treatment variables in the heterogeneity model but
not in the nuisance models (e.g., the number of children someone has had). These cannot be controls
because they are post-treatment but could be important moderators (Pearl, 2009). For example,
women who have children after their education tend to have lower incomes than similar women who
did not have children and therefore lower returns on education (Cukrowska-Torzewska andMatysiak,
2020). These would be bad controls in the nuisance models (Hünermund et al., 2021), but improve fit
and help us to uncover the presence of an important motherhood effect in the heterogeneity model
(Celli, 2022; Watson et al., 2023). However, while grf can handle different sets of variables for
different models, this is not the case for the EconML package in Python which we use to generate
SHAP value plots. For this reason, we choose a more limited model (and suggest EconML change its
approach to be more like that of grf ).

The causal forest produces an ATE estimate of $20,455 for a bachelors degree with a standard error of
$2001. The real value of the method though is of course in analyzing CATEs which we will do through
XAI and IAI lenses. While neither of these groups of tools actually amount to showing a causal
relationship that variables might in driving treatment effect variation, these results are still useful in
seeking to understand causal effects.

4While there is somemissing data, for the purposes of a case study rather than an actual study into the effect wewill assume this is
missing completely at random (MCAR) (Rubin, 1976). While it is unwise to assume this data is MCAR, median imputation is
suitable for an application where we are mostly interested in demonstrating the method. To the best of our knowledge, there is no
work on the effect that median imputationmight have on causal forest estimates. There is the potential for themodels to react to these
imputed values in way that classical methods would not, for example, essentially learning the missingness of data with by the
imputed value, but ultimately accurate inference is not the priority in this study and data is relatively complete so simple imputation
methods are suitable.
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6. Transparency in the Queensland case study

6.1. Using XAI tools

This section considers how the transparency problems might be addressed and what issues may be
insurmountable. For the most part, the issues of understanding and oversight will be combined as they

Table 1. Variable importance for the causal forest

Rank Label Importance
Cumulative
importance

1 HF6 Date of Birth 0.234 0.234
2 History: AUSEI06 occupational status scale, Father’s occupation 0.131 0.364
3 History: Mother’s occupation—4 digit ANZSCO 2006 0.080 0.444
4 History: ISCO–88 from ANZSCO 2006, Mother’s occupation 0.076 0.520
5 History: AUSEI06 occupational status scale, Mother’s occupation 0.049 0.569
6 History: How many siblings 0.045 0.614
7 History: Country of birth 0.042 0.656
8 History: Country of last school year 0.039 0.695
9 History: Father’s occupation—4 digit ANZSCO 2006 0.030 0.725
10 History: Mother’s occupation 2–digit ANZSCO 2006 0.029 0.755
11 History: Mother’s Country of Birth 0.029 0.784
12 History: ISCO–88 from ANZSCO 2006, Father’s occupation 0.027 0.811
13 History: Father’s Country of Birth 0.025 0.836
14 History: How much schooling mother completed 0.023 0.859
15 History: Mother completed an educational qualification after

leaving school
0.023 0.882

16 History: How old were you when you first moved out of home as a
young person

0.021 0.903

17 History: ISCO–88 from ANZSCO 2006 2–digit, Mother’s
occupation

0.020 0.923

18 History: How much schooling father completed 0.018 0.941
19 HF5 Sex 0.015 0.956
20 History: Father’s occupation 2–digit ANZSCO 2006 0.007 0.963
21 History: ISCO–88 from ANZSCO 2006 2–digit, Father’s

occupation
0.005 0.968

22 History: Mother’s occupation 1–digit ANZSCO 2006 0.005 0.973
23 History: Country of birth—brief 0.005 0.978
24 History: Did your mother and father ever get divorced or separate 0.004 0.982
25 History: Were you the oldest child 0.004 0.986
26 History: Were you living with both your own mother and father

around the time you were 14 years old
0.004 0.991

27 History: Father completed an educational qualification after leaving
school

0.003 0.993

28 History: Was mother in paid employment when you were 14 0.003 0.996
29 History: Ever had any siblings 0.001 0.998
30 History: Was father unemployed for 6 months or more while you

were growing up
0.001 0.999

31 History: Father’s occupation 1–digit ANZSCO 2006 0.001 1.000
32 History: Was father in paid employment when you were 14 0.000 1.000
33 History: Aboriginal or Torres Strait Islander origin 0.000 1.000
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both encounter similar technical barriers. There are twomainXAI approaches that have been proposed for
the causal forest, the first is a more classic predictive machine learning approach in SHAP values
(Lundberg and Lee, 2017). The second is a variable importance measure which has somewhat more
humble ambitions—it does not seek to quantify the impact of each variable in each case but instead tries to
show which variables are most important in fitting the forest.

6.1.1. SHAP
We start by using an XAI approach, in particular the SHAP method which has previously been applied to
causal forest analysis (Tiffin, 2019). SHAP values decompose predictions into an additive combination of
effects from each variable for a local explanation (i.e., the contribution of each variable is only locally to
that part of the covariate space) (Lundberg and Lee, 2017). SHAP values are based on Shapley values
which provide a fair way to portion out a pay-off amongst a number of cooperating players in game theory.
It does this by considering how the prediction changes when different sets of features are removed (set to a
baseline value) versus when they are included (Lundberg and Lee, 2017). More details on the calculation
of SHAP values can be found in Lundberg and Lee (2017). In this case, the pay-off is the difference
between the causal forest prediction and the average treatment effect and the players are the different
covariates. It uses the predictions of a causal forest in much the same way it would use the predictions of a
predictive random forest to generate SHAP explanations.

Unfortunately, good methods to calculate SHAP values exist only for forests implemented in the
Python EconML package, not the R grf package. Conversely, the EconML package lacks some of the
features of grf and is implemented slightly differently. This accounts for differences in results between
these outputs and the grf outputs in other sections. In addition, due to the long time to compute SHAP for a
large ensemble, we use an ensemble of just 1000 trees here.

It is worth stating that it is not clear that SHAP values are suitable for this application. There is some
question among themaintainers of grf as to whether SHAP values are appropriate for a causal forest given
the way the forest is used to construct kernel weights rather than directly estimating based on aggregated
predictions (grf-labs, 2021). This argument would apply in theory to any predictive XAI tool which does
not account for the specific estimation strategy of the generalized random forest estimators (Athey et al.,
2019).

There are two different ways to visualize SHAP, as an aggregate model showing all the SHAP effects
for the sample as in Figure 1 or in a waterfall plot which breaks down the specific local effects for a single
observation as in Figure 2. The aggregate plot graphs effect as x coordinate and variable value as color. It
ranks the variables in terms of themagnitude of SHAP effects. In awaterfall plot, feature names and values

Figure 1. Aggregated SHAP plot explaining the HTE estimate across the distribution.
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Figure 2. Individual-level waterfall plots.
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for a specific case are shown on the right and the effect that feature has on the CATE is shown as a red
(positive) or blue (negative) bar. This deviation is from the average treatment effect. On the aggregate
summary plot, the value on CATE estimate is shown on the x-axis and the feature value leading to that
estimate is shown on the color scale (per the bar on the right of the plot).

Interpreting the aggregate plot, we can see that age is the most important predictor. Generally, younger
people (those with a higher date of birth value) benefit less from a degree than older people. Having a
father with higher occupational status seems to also decrease the benefits, perhaps due to higher social
mobility benefits for having a degree amongst people from lower class backgrounds. Men (1 on sex)
benefit more than women (2 on sex) from a degree.

While there are other patterns here, the plot is somewhat overwhelming, it can be hard to unpick
patterns here outside of very high-level ones. Looking at waterfall plots can help offer a more nuanced
picture. Here we present three waterfall plots, though the precise variable values have been blurred to
avoid reporting raw values for HILDAparticipants (HILDAdata access is subject to an approval process).
However, even without this values, this should give a sense of the utility of these plots.

While SHAP values might be useful they are by their nature local explanations and so it can be hard to
extract insight from them for either usability or accountability.

SHAP values—assuming their validity with the causal forest—can be an excellent aid for usability.
SHAP values give arguably a more “causal” insight than simply graphing distributions across variables,5

as it aims to take account of the additional effect of a given variable where our plots of effect distributions
simply give a visual sense of correlation. This can help to understand patterns in causal effects that may
have been missed otherwise. SHAP plots can even give a sense of interactions between features when
viewing a number of different waterfall plots. For example, if having children hurts women’s incomes,
particularly the decade after the birth of a child, we might see age have a different treatment effect for
women than men. While there might be good information here, this is also a drawback. There is also a lot
of information that needs to be processed to help a human decision-maker understand causal effects and
make a decision and as all these explanations are local. The user may be simply missing the important
patterns and not know it because they are awash in useless data. This is not to mention the information
from the nuisance models that could be gained through SHAP analysis as well.

SHAP is intuitively useful for accountability because it lays out variable effects in an easy-to-
understand way and can be used to break down effects at the individual level. However, this convenience
is somewhat misleading. The problem is that SHAP is a relatively poor approach to accountability
because it cannot explain the human element in a joint decision-making process. The amount of data it
provides on the underlying models can be simply overwhelming, but it also obscures the core question,
how did a human make a decision that had real-world consequences based on this model? What local
effects were generalized into evidence?What evidence was interpreted as showing underlying causation?
What local effects were ignored?

One benefit of SHAP for both usability and transparency though is that it is well-suited to the diagnosis
of problems in the model, for example, biasing “bad controls”would show up among the most impactful
variables. Equally, variables that should have a large effect but which are not present among the top
variables may suggest errors in data. Finally, the local level explanations which we have previously
suggested is a limitation could be useful to individuals trying to find modeling errors for accountability as
for example, it could allow an individual to examine SHAP scores in their own case and see if the results

5We use the word “causal” here with hesitation given that these effects are not formal causal estimates. We mean instead that
using SHAP is meant to give a sense of how treatment effects might vary with a given covariate ceteris parabus. Importantly any
discussion of drivers of heterogeneity is not strictly causal as these effects do not remove what we might call higher-order selection
effects, that is, the effect of selection into drivers of heterogeneity that comes from other variables. For example, we might
exogenously vary school-leaving age to experimentally estimate returns on education, but estimates of heterogeneity across
occupation, gender, and parents’ occupation would be correlational as neither the experimental assignment nor the causal forest’s
local centering step is removing the effect of gender and parents’ occupation in selection into one’s own occupation. A best linear
prediction (see Section 6.2.2) could be interpreted as doing this under strong assumptions (ignorability of endogeneity for all
predictors acting as linear controls for each other and the parametric assumption of linearity).
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match their priors about causal effects in their own case. Exactly how to go about updating modeling
approach versus ones priors is a tricky question that is beyond the scope of this article but would be an
interesting avenue for future research. It is worth noting as a final point that SHAP values may be
infeasible for larger models and larger datasets. SHAP is relatively time-complex and so trying to explain
results may prove computationally infeasible for large models (Bénard and Josse, 2023).

6.1.2. Variable importance in heterogeneous treatment effect estimation
Variable importance seeks to quantify how impactful each variable is in a given model. In predictive
modeling where the techniques were invented, there are several methods for doing this aided by access to
ground-truth outcomes. For example, we can sum the decrease in impurity across all splits for a given
variable or see how performance suffers by randomly permuting a given feature (Saarela and Jauhiainen,
2021). In the causal forest context (at least in the grf package), we lack ground truth and so have to use
more heuristic or computationally complex approaches.

There are two main approaches to variable importance. The first—which is the simpler of the two—is
about counting uses of the variable in a causal forest. It was developed for the grf package. In this
approach, variable importance is measured with a heuristic where the value is a normalized sum of the
number of times a variable was split on weighted by the depth at which is appeared (by default,
exponential halving by layer) and stopping after a certain number (by default four) to improve perform-
ance (Athey et al., 2019). This is a relatively naive measure (something the package documentation itself
admits), the naivete ismade necessary by a lack of ground truthwhich prevents the package fromusing the
more sophisticated approaches that predictive forests tend to rely on (Louppe et al., 2013). This means a
whole rethink of the approach to generating variable importance measures is needed, but finding a more
sophisticated approach was outside the scope of the grf package which was focused on just laying the
groundwork for the generalized random forest approach (Athey et al., 2019).

Taking this depth-weighted split count approach, the variable importance for the forest is shown in
Table 1. We see interestingly that the top 10 variables cumulatively making up 76% of depth-weighted
splits. Variable importance clearly gives less information about predictions than the SHAP plots
(assuming the validity of applying SHAP to the causal forest), however, it does tell us some similar
things about the factors that seem to drive heterogeneity in causal effects. It is also an approach that is less
controversial than the use of SHAP.

A more sophisticated version of variable importance is implemented in the mcf package (Lechner,
2019) which uses permutation variable importance to estimate variable importancemetrics. It does this by
randomly shuffling values for each variable in turn and then predicting out new estimates. The change in
the error for those predictions gives a sense of how important a given variable is in the model structure.
Another approach is taken in recent work byHines et al. (2022) andBénard and Josse (2023)which tries to
estimate the proportion of total treatment effect variance explained by each variable used to fit the causal
forest. These two recent approaches both work by retraining many versions of a causal forest with and
without variables and findingwhat percentage of treatment effect variation is explained when a variable is
added in. This can be very computationally complex in ensembles of the size being used in this article and
so we do not estimate these variable importances.

Variable importance has humbler ambitions than SHAP and arguably benefits from this when it comes
to being of use for transparency. Variable importance providesmuch less data which in turnmeans it is less
likely to be misinterpreted and less likely to be relied on to actually understand the model rather than be a
jumping-off point for exploratory analysis. It also provides an arguably more global explanation by
simply summarizing the structure of the causal forest rather than trying to explain individual estimates.

The question is though, does this more limited ambition help in achieving usability or accountability?
On usability, variable importance can be a good tool for exploratory analysis for example in identifying
possible drivers of heterogeneity for which heterogeneity can be explored further (e.g., by graphing the
effect or by modeling doubly robust scores with a parametric model). In addition, it can be useful for
sense-checking that all variables involved are “good controls.” Any variable that is going to have a
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substantial biasing effect ala collider bias will have to be split on in order to have a biasing effect. It should
therefore show up in the variable importance calculation. There is obviouslymore that needs to be done to
explain heterogeneity than just counting splits. Variable importance is—at its best—the starting point for
further analysis of usability.

On accountability, variable importance is not particularly useful because it is such a high-level
summary of the model being used. If there are for example unjust outcomes occurring because of the
model, it is hard to tell this simply from variable importance. By an unjust outcome we mean that
somewhere in the complexity of estimating effects, poor local centering, poor estimation of CATEs, poor
communication of CATEs, the model has given decision-makers a false impression about the underlying
causal relationships this leads them to make an “unjust” decisions. While we are happy to defer to the role
of decision-makers to decide their own definition of justice, modeling which does not allow the decision-
maker to make decisions to better their own definition of this is unjust. This is admittedly a convoluted
definition but one which is necessary given the indirect relationship between model predictions and
decisions compared to the more direct relationship in predictive modeling (Rehill and Biddle, 2023). For
example, in predictive contexts, it can be useful to see if a sensitive variable (or its correlates) has any
effect on predicted outcomes with a model being fair if outcomes are in some way orthogonal to these
sensitive variables (Mehrabi et al., 2019). In the causal context on the other hand it can be important to
know that marginalized groups have lower predicted treatment effects for example because a linguistic
minority cannot access a service in their own language. In fact, it would be unjust if modeling failed to
reveal this and so a decision-maker not understanding this treatment effect heterogeneity could not act to
improve access to the program. Just seeing splitting on certain variables then is not indicative of a
particularly unjust model—yet this is the only level of insight we get from variable importance.

6.2. Using IAI tools

We can see that when using XAI tools there is a large amount of information to process, and we cannot get
a global understanding of how themodelworks.Wemight thenwant to turn to interpretablemodels. There
are two main ways of doing this. The classic approach to IAI for a random forest is to simplify the
ensemble down to a single tree as this does not involve additional assumptions (Sagi and Rokach, 2020).
In the case of the causal forest, another approach that is often taken is to simplify the forest down to a best
linear projection of heterogeneity (Athey and Wager, 2019). This imposes additional assumptions but
provides a model that is interpretable to quantitative researchers and in particular, allows for hypothesis
testing.6

6.2.1. Extracting a single tree
While there are lots of individual trees in the causal forest and one could pick one (or several) at random to
get a sense of how the forest is operating, there are alsomore sophisticated approaches that provide ideally
a tree that is better than one just chosen at random. Wager (2018) suggests a good way to find a
representative tree would be to see which individual tree minimizes the R-Loss function of the causal
forest. This is not a peer-reviewed approach, nor one which has even been written up as a full paper but it
represents the best proposal specific to the causal forest that we have. Other approaches attempt to distill
the knowledge of the black box forest into a single tree that performs better than any individual member of
the ensemble (e.g., in Domingos, 1997; Liu et al., 2014; Sagi and Rokach, 2020). However, the problem
here is that even the smartest methods for extracting a tree of sufficient simplicity to be interpretable
require problems where there is enough redundancy in rules—the underlying structure can be captured
almost as well by a few splits in a single tree as by many splits in a large ensemble—that the problem can

6 It is worth noting that the mcf Python package which implements a modified causal forest had some interesting approaches to
generating interpretable models. For example, it fits interpretable but non-linear models on estimates from a causal forest and uses k-
means clustering ala (Cockx et al., 2023) to find clusters. These could be useful methods that could be written on at length, however,
the mcf works differently from a standard causal forest and so will not be explored in-depth in this article.
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be simplified to the few best rules with relatively little loss in performance. Rather than focusing on
methods for extracting the best tree then, we instead look at whether enough redundancy exists in this
problem to make simplification to a reasonably good tree feasible, analysis that to the best of our
knowledge has not been done for an application of the causal forest.

The exact marginal trade-off of adopting a more interpretable model depends on what Semenova et al.
(2022) call its Rashomon Curve. The Rashomon Curve graphs the change in performance as a model is
simplified in some way, for example by a reduction in the number of trees in a random forest until it
becomes a single tree. In Figure 3, we show a Rashomon curve comparing the performance of a causal
forest (i.e., the final heterogeneity model) of 50,000 trees against one of 1, 10, 100, 1000, and 10,000 trees
and a tree distilled from the 50,000 tree forest.

In these figures, error between the large model (bτL) and the smaller models (bτS) is bτL�bτSbτL��� ���. Because we
lack ground truth and know that accuracy should increase as number of trees increases, performance
relative to a large forest should give a good indication of performance relative to ground truth. In all cases,
these used identical nuisance functions each fit on 10,000 trees. This reveals substantial loss in accuracy as
the size of the forest shrinks, this accuracy is due to an increase inwhat the grf package calls excess error—
error that would shrink toward zero as ensemble size approaches infinity (as opposed to debiased error
which is not a function of forest size). The Rashomon curve here may be flatter for problems with lower
excess error, however, in this case, the trade-off formoving to a single tree seems to be a poor one. To put it
in concrete terms, the mean absolute loss for moving from 50,000 trees to a single tree was 107% of the
comparison value on average.

An alternative approach is to use distillation to improve performance. Distillation of black-boxmodels
to a single tree can improve the performance of a tree over simply fitting that tree on the same data the
black-box learner or “teacher” was fit on. Exactly why this is the case is not yet entirely clear but it is a
useful empirical technique (Hinton and Frosst, 2017; Dao et al., 2021). Importantly, many of the
characteristics useful for causal inference, also make the forest a good candidate for being a distillation
teacher as Dao et al. (2021) argue distillation is a semiparametric inference problem much like machine
learning of causal quantities. They adjust the teacher using cross-fitting and loss correction inspired by

Figure 3.Rashomon curve for the effect of heterogeneity estimating model size showing absolute loss as a
proportion of the original estimates for a variety of model sizes. Note: The y-axis is cut off at 5 for clarity. A

small portion of points are above this line though these are still incorporated into the mean.
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double machine learning. The use of distillation with causal forests has recently been proposed by Rehill
and Biddle (2024). Here we compare the performance of the basic single tree model against a distilled
model. We show that the performance of the distilled model is much better than the single tree trained on
the raw data and is somewhere between the 100 and 1000 tree ensembles trained on raw data in its
performance predicting the 50,000 tree ensemble predictions.

Reducing a model to a single tree would be very useful for both usability and accountability. In both
cases, the entirety of the model can be comprehended by people using that model to make decisions and
people critiquing the model. The problem is that the trade-off may simply not be worth it. There are
already very interpretable methods for quantitative research that are well understood. This is not to
mention that there is a much larger suite of methods drawing on the latter approach for removing selection
bias that does not involve trying to model out confounding with a relatively simple model (like a linear
model or decision tree). For example, a practitioner could use instrumental variable regression, difference-
in-differences etcetera. So even though it may be possible to fit an interpretable model to proxy the causal
forest, there will likely be a performance cost to the simplicity (Rudin, 2019). At least in the case of this
application, there is a stark trade-off between interpretability and performance for simply reducing the
number of trees. However, distillation allows for a single, interpretable tree with the performance of a
moderately sized ensemble in this case.

6.2.2. Using a best linear projection
One approach to fitting an interpretable model that draws on the power of the causal forest is to fit a best
linear predictor (BLP). The BLP is a relatively well discussed approach compared to others discussed in
this article. It was an approach proposed by Semenova and Chernozhukov (2021), incorporated into the
grf package and applied by Athey and Wager (2019) in the most widely cited application of the causal
forest. Undoubtedly the BLP adds value, particularly for hypothesis testing of results. However, its utility
is situational. It assumes that a linear projection of the CATE onto a set of covariates (which may or may
not be the predictors used in the causal forest) is useful in some way. This may mean that it meets the
assumptions necessary for linear regression with valid standard errors, however, it may be useful in a less
formal way, for example in indicating potential drivers of heterogeneity which can then be explored in
other ways. It also has the potential however to bemisleading if used as the only way to try and understand
treatment effect variation (it is easy to imagine for example very heterogeneous nonlinear distributions of
CATEs that might produce a linear model with slope coefficients close to zero). It goeswithout saying that
projecting effects with high-dimensional interactions between variables onto a combination of these
variables will miss these important interaction effects.

Because its utility depends on the situation, BLP should work well as a tool for usability of the causal
forest when used responsibly (i.e., when assumptions hold). The BLP was invented for this kind of
application and allows researchers (or policy analysts) more familiar with linear models to make sense of
the complex causal forest. However, they offer less value as accountability tools. The reason for this is that
taken alone they provide little insight into the workings of a model that may lead to unjust outcomes
(unless policy was made solely on the basis of the BLP).

Table 2 shows the regression output for the BLP of returns on education in Australia. In this case, it
projects doubly robust scores onto some of the most important variables in the causal forest. The BLP
needs to be considered with more care than the causal forest as we are now actually hypothesis-testing
results and making a functional form assumption. This means it makes sense to exercise some judgment
about variable choice. For example, variables with very similar underlying constructs do not all belong
here unless there is a good reason to control for or separately estimate their effects. In this analysis we pick
variables measuring the construct of age (date of birth in UNIX time that is where 0 is the first of January
1970), parents’ occupations (occupational status measured on the AUSEI06 scale for both mother and
father which measures status on a 0–100 scale), number of siblings and country of birth encoded as a
dummy (with Australia as the base case and countries with fewer than 100 respondents excluded to keep
the table brief).
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In this analysis, only one variable shows a statistically significant effect on treatment effect hetero-
geneity, that is date of birth with younger people (people with higher date values) having lower earnings
effects from education. There are many possible reasons for this. This may be because older people may
have had more time to recognize the benefits of education or because education levels as a whole have
gone upmeaning younger people going into a given profession have a higher level of education than older
people who are already established there.

It is also worth noting a BLP can be fit directly on doubly robust scores without a causal forest involved
(although fitting a BLP through the grf package is helpful as jackknifing errors with the structure of the
ensemble is a computationally cheap way to estimate standard errors where otherwise nuisance models
would need bootstrapping).

6.3. Identifying problems in nuisance models

While this section has for the most part focused on transparency in the heterogeneity model, it is worth
discussing briefly transparency in the nuisance models. The transparency needs in nuisance models are
different from those in heterogeneity models. There is no need to understand the nuisance models from a
usability point of view. We just need to be able to diagnose problems in identification that might come
from poor-performing nuisance models, it does not actually matter how these models work. In account-
ability concerns, the important thing is that we correctly identify effects, there is no equity concern outside
of models performing identification poorly in ways that might harm people for whom identification is
poor (Rehill and Biddle, 2023). However, this is not a case of fair outcomes being counter to the goal of
modelers, rather good identification is something that all parties want and which can be achieved through

Table 2. Best linear projection of doubly robust scores onto selected covariates

Linear projection

Date of birth �0.558**
(0.251)

Father’s occupation status 12.161
(104.744)

Mother’s occupation status �29.269
(109.588)

Country of birth—New Zealand �2174.626
(11,635.850)

Country of birth—United Kingdom 4770.015
(7844.066)

Country of birth—Philippines 12,290.070
(9867.423)

Country of birth—China �16,885.700
(18,372.550)

Country of birth—India 436.728
(10,920.270)

Country of birth—South Africa �18,487.050
(12,443.520)

Constant 23,198.220***
(5938.668)

Note. Base case for country of birth is Australia.
**p < 0.05;
***p < 0.01.
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a simpler set of tools. Here we look at refutation tests and checking propensity score balance as two
possible diagnostics.

6.3.1. Refutation tests
Refutation tests could be considered a kind of narrow causal AI algorithmic transparency tool. These are
diagnostic tools developed for generic causal modeling approaches (Sharma et al., 2021). While they do
not give much insight into the underlying causal effects, they are very useful to diagnosing problems in
modeling either for users who want to make sure their models meet their assumptions or for those who
wish to critiquemodels. They are tests of the underlying causal assumptions of amodel, however, they can
also diagnose problemswith the nuisancemodeling approaches insofar as nuisancemodels may be failing
to properly model out confounding effects. In this way, they refute analysis but do not necessarily provide
a good idea of how one might fix the problem of confounding.

We test two particular refutation approaches by randomly shuffling treatment and then outcomes. This
functions as a version of the placebo treatment and dummy outcome test that preserves the underlying
univariate distribution while rendering it independent from other variables (Sharma et al., 2021). These
estimates are made with 10,000 tree causal forests and are plotted against the real treatment or outcome
models to check if poor nuisance model fit is affecting treatment effect estimates.We then look at whether
treatment effect estimates move to zero. Random treatment should in a correctly specified model drive the
ATE and CATE estimates to zero (Sharma et al., 2021). Table 3 records the average treatment effect
models for these tests. In neither case is there a statistically significant average treatment effect after
randomization.

To examine these results in more detail, Figure 4 shows results across the treatment and outcome
distributions. The refutation tests seem toworkwell for placebo treatment, but when randomizing income,
predicted treatment effect is not orthogonal to actual treatment. This may suggest a problem with
identification that should be investigated further, for example by considering finding more data for use
in the nuisance models or by investigating other identification approaches. Importantly though, as the
actual causal estimates are doubly robust and the placebomodel is working well, problems in the outcome
nuisance model may not be biasing the treatment effect estimates.

This kind of analysis is mostly useful for usability. The reason for this is that running placebo tests
would ideally be part of diagnosing a model’s problems before it is used (Sharma et al., 2021). While
identification problems could pose justice issues that might be of interest for accountability, the problem is
that confounding is not really a problem of the individual or small-group kind of accountability involves.
To the extent there are confounding issues not identified by analysts at the time themodel is fit, it is hard to
understand whether the causal effect is estimated better or worse for certain individuals across all the
possible covariates. It is equally hard to comment on the extent to which such confounding effected an
unjust outcome.

6.3.2. Propensity score balance
As with any design relying on propensity scores, it can be useful to check for problems in identifying
assumptions by graphing the overlap in propensity scores. These checks have been published in a
minority of papers using the causal forest but running (or at least publishing) the results of these tests
is not yet established best practice (Rehill, 2024).

Table 3. Average-level results of refutation tests

ATE estimate

Randomize w $2971 ($2185)
Randomize y $413 ($1792)

e43-22 Patrick Rehill and Nicholas Biddle

https://doi.org/10.1017/dap.2024.35 Published online by Cambridge University Press

https://doi.org/10.1017/dap.2024.35


Figure 4. Effect of refutation tests on estimated treatment effects (treatment effects should be near zero,
conditional averages are averages of doubly robust scores, not the individual estimates shown as points).

Figure 5. Propensity score densities.
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The implications of this test for bias in estimates are less clear than in a pure inverse probability
weighting design as there is also the effect of the outcome nuisance model to consider. However, poor
overlap is certainly not a good sign and may affect the credibility of the design. Figure 5 shows the
propensity score densities in the returns on education study. There is reasonable overlap between the
distributions but there is also a large portion of scores at the low end of the range where there is no overlap.
This is a problem and it may be worth using propensity score trimming—at least as a robustness check.

7. Conclusion

Causal machine learning offers tremendous promise to researchers tackling specific kinds of research
questions, but transparency poses a real problem both to users of themodel and those whomight want to
hold these users accountable. This article has laid out some issues around the use of causal machine
learning in policy research around government decisions, but it is far from a full survey of all the
possible issues that might arise. A much larger body of knowledge is needed to properly establish best
practice for the use of these methods. In particular studies on the use of causal machine learning
methods applied to real-world policy problems as these case studies become available would be useful,
as would experiments on how causal machine learning analysis affects decision-making when com-
pared to traditional quantitative methods along the lines of Green and Chen (2019) or Logg et al. (2019)
on predictive systems.

In the absence of a significant existing critical literature, we offer the following two guidelines for
using causal machine learning. Firstly, causal machine learning should only be used where it is additive to
the evaluation. By that we mean there is a reason to use a powerful but black-box method over a less
powerful but interpretable method (i.e., standard policy evaluation methods). The obvious reason to do
this in the case of the causal forest is when it will be valuable to understand heterogeneous effects at the
individual level or where we have little theoretical knowledge about the drivers of heterogeneity and so
have to undertake a data-driven exploration of these effects instead (Athey and Imbens, 2018). Causal
machine learning methods should not be used for high-stakes policy evaluation simply because they are
novel or because it is inconvenient to find quasi-experimental/experimental data. The decision to use them
should be made understanding that there will likely be responsibility gaps in the use of such novel
methods in policy-making (Matthias, 2004; Olsen, 2017). Secondly, causal machine learning shouldmeet
the standards of transparency expected from predictive machine learning or traditional causal modeling in
government. Just because the nature of the analysis is different does not mean the same issues that
currently plague machine learning models used in government are not a concern for causal models.

Within this article, we have tried to establish why transparency is important in causal modeling,
analogizing this to predictive applications. However, we have also laid out how predictive and causal
analysis bring with them different transparency needs. Causal machine learning lays out the data-
generating process of the underlying data and the fits into a process of human decision-making with
well-established transparency requirements. On the other hand, these machine learning models usually
involve fitting several black-box models where even XAI and IAI approaches fail to explain much about
how all these models relate to each other (there are not even good procedures for estimating error through
the process). While this article has provided some examples of approaches that can help make causal
machine learningmore usable and accountable, there are still many questions from the theoretical (how do
we weigh possible accountability gaps against more powerful modeling?) to the very practical (is it valid
to apply SHAP to causal forest predictions?) that remain open. As these methods begin to be used more
and more, it is important that a critical literature which can highlight and solve transparency problems
grows alongside them.
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A. Appendix: Table of definitions

Term Explanation Further reading

Best linear
projection
(BLP)

A best linear projection projects doubly robust scores onto a
linear model. This is helpful because of treatment effect
heterogeneity is linear this can allow one to identify
important predictors and also to hypothesis test linear
relationships

Semenova and
Chernozhukov
(2021)

Black–box models Models where the internal logic or decision–making process
is not easily understandable

Lipton (2018)

Causal forest A popular method for estimating heterogeneous treatment
effects in causal machine learning. To simplify how the
forest works, it takes removes selection effects by trying to
predict treatment and outcome using nuisance models (like
Double Machine Learning). It then takes the residuals of
these models (which removes selection effects) and plugs
them into a random forest model made up of causal trees.
These trees are designed to split to maximize within–node
treatment effect heterogeneity and they use “honest
splitting” to prevent over–fitting and give asymptotically
normal predictions. This means half the data is used to split
the tree and the other half is used to estimate effects in leaf
nodes. This ensemble is then used not to directly predict
but, to create an “adaptive kernel”which is then usedwith a
doubly robust estimator (augmented inverse probability
weighting by default) to get an estimate. The doubly robust
estimator uses doubly robust scores estimated from the
nuisance model and takes an average of these weighted by
kernel distance from each training example. This means
that for a new datapoint with X = x, we weight based on the
fraction of the time that each training example would end
up in the same leaf as the new datapoint

Wager and Athey
(2018); Athey et
al. (2019); Athey
and Wager (2019)
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Term Explanation Further reading

Causal machine
learning

Machine learning methods are designed to estimate causal
effects rather than simply predict outcomes. Unlike
predictive models, they are fitting a fundamentally
unknowable quantity (because the treatment effect is the
difference between two potential outcomes that cannot
both be observed)

Lechner (2023)

Double machine
learning

A method for removing selection effects from data in causal
inference using predictive machine learning models as
nuisance models. Essentially it involves using these two
nuisance models, one to predict treatment, one to predict
outcome then taking the residuals from these models and
feeding them into an estimator of some sort. So long as
models are cross–fit (or more simply, predictions are made
out–of–sample) using machine learning models will not
have a biasing effect. Theoretically, this process of taking
residuals removes selection effects from the data (if there
are no unobserved confounders)

Chernozhukov et al.
(2018)

Explainable AI
(XAI)

Techniques to make machine learning models understandable
to humans that involve explaining predictions made by a
black box. This often means fitting a secondary model on
the predictions of the black box. These explanations are
often “local” in the sense that we cannot understand how
the model would make predictions for any data point from
an explanation

Lipton (2018)

Heterogeneous
treatment effect
estimation

Estimating how a treatment affects different units differently.
In practice we are generally estimating a conditional
average treatment effect (CATE) that is an estimate of
treatment effect given certain characteristics X but other
terms like group average treatment effect (GATE) or
individual treatment effect (ITE) are sometimes used as
well

Athey and Wager
(2019); Künzel et
al. (2019); Nie and
Wager (2021)

Interpretable AI
(IAI)

Techniques involving fitting “white–box”models which may
be simpler than “black–box”models, but allow a human to
get a global understanding of the model. This means a
human can often perform inference themselves seeing an
interpretable model (e.g., tracing a path from root to node
on a decision tree). Some interpretable AI approaches
simply fit an interpretable model first while others “distill”
interpretable models from more complex black–box
models in some way

Rudin (2019)

Nuisance models Models that do not predict the quantity that is of interest in a
study but rather are a necessary intermediate step in getting
to modeling that final quantity. Here we have nuisance
models for the purposes of identifying a causal effect (see
Double Machine Learning)

Chernozhukov et al.
(2018)
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Term Explanation Further reading

Predictive
machine
learning

Machine learningmethods are designed to predict an outcome
from data

Athey and Imbens
(2017)

R–loss function A loss function for heterogeneous treatment effect estimation
(through the R–Loss meta–learner). This is most
commonly used as the objective function in the
heterogeneity model of the causal forest

Nie and Wager
(2021)

SHAP (SHapley
Additive
exPlanations)

An XAI method based on game theory for explaining a
prediction by showing the impact that the values of some
explanatory X variables had on the prediction

Lundberg and Lee
(2017)

Variable
importance

Ametric that shows how important different variables are in a
model. In predictive modeling, it is common to express this
in terms of the amount each variable helps to minimize the
loss function. In the causal forest, without a clear loss
function (R–Loss is too noisy for a predictive–style
approach to be practical) it is common to simply count the
number of times the forest split on each variable. More
advanced approaches have recently been proposed for the
causal forest

Athey and Wager
(2019); Bénard
and Josse (2023)
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