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BOUNDS FOR CHARACTERISTIC VALUES OF POSITIVE 
DEFINITE MATRICES 

BY 

P. A. BINDING, W. D. HOSKINS AND P. J. PONZO 

Introduction. We consider the problem of determining the best possible bounds 
on the eigenvalues of an nth order positive definite matrix B, when the determinant 
(D) and trace (T) are given. A large variety of bounds on the eigenvalues are known 
when different information concerning B is available (see, for example, [1], [2]). 
Since D and T simply provide the geometric mean and arithmetic mean of the 
positive, real eigenvalues of B, the solution to the problem involves certain in­
equalities satisfied by these means (see [3] for such inequalities in a more general 
setting). A related problem in which the largest and smallest eigenvalue are known, 
and inequalities involving D and T are obtained, is described in [4]. 

Eigenvalue Bounds, We suppose that B is a positive definite matrix whose order 
(«), determinant (D) and trace (T) are known. We propose finding the least upper 
bound and greatest lower bound on the eigenvalues of B, in terms of n, Z), T 
assuming Dlln^T/n (for otherwise all these eigenvalues are equal to Dltn~T/n). 

Let 0<x<X1<X2< • • • < An_2<j be the eigenvalues of B. Then 

(1) x+n2 K+y = T 
i 

and 

(2) xÇn\)y=D. 
Substituting the extreme values of the Af into (1) and (2) yields 

(3) (n-l)x+y <T< x+(n-l)y. 

(4) xn-xy < D < xyn~\ 

Shading in Fig. 1 illustrates the region in the x, y plane defined by (3) and (4). 
Some points within the shaded region are not admissible. For example, the point 

S corresponds to 2ï~2 \ = in-2)y (since S lies on x+(n-l)y=T) and, simul­
taneously, 111"2 \ = xn~2 (since S lies on xn~1y=D). This requires all \t to equal 
x and y, simultaneously, which is impossible (except for the trivial case when 
jC=A1 = A2=- • • =An_2=j, which can be easily recognized by the fact that 
Dlln = T/ri). Hence S is not an admissible point in the x, y space of minimum and 
maximum eigenvalues. 

We proceed to obtain the admissible set (x, y). 
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F=0:xy(T-x-y)n-2 = (n-2)n-2D 

A, 

FIGURE 1. 

Note that 
(T— x—y)l(n — 2) = arithmetic mean of the At 

(D/xy)lln~2 = geometric mean of the At = G, 

and since A>G for positive Ai5 then (T— x—y)/(n — 2)>(D/xy)lln~2 provides an 
additional restriction on (x, y). The contour 

F(x, y) = xy(T-x-y)n-2-D(n-2)n~2 = 0 

is easily shown to pass through P and Q, the points of intersection of the bounding 
contours described by (3) and (4). Further 

(5) 
dy 
dx 

dF/dx __ (y\ T-[(n-l)x+y] = Too at 
\x) T-[(x + (n-l)y] \ 0 at \ 

P 

Q 8F/dy 

The curve F=0 is shown dashed in Fig. 1. 
Note that xp, the abscissa at P, and yQ, the ordinate at g , are respectively the 

smaller and larger of the two positive real roots of 

(6) A = r - fo- lXD/A) 1 '*»-" 

which may also be written 

(7) X = D[(n-l)/(T-X)f-\ 

We summarize the above. 

THEOREM 1. The smaller and larger of the two positive real roots of eq. (6) (or 
eq. (7)) provide, respectively, the greatest lower bound and least upper bound of the 
eigenvalues of the positive definite nxn matrix B, where D = det (B) and T= trace (B). 
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Proof. Since xP and yQ are respectively lower and upper bounds on the eigen­
values of B we need only show that each is attained for certain positive definite 
matrices. It is easy to see that, for any positive definite matrix with only two eigen­
values x and y, the smaller having multiplicity {n—l), then {n — l)x+y=T and 
xn~1y=D. The solution {x,y) gives the coordinates of Q. Similarly, P is attained 
by any positive definite matrix with only two eigenvalues whose larger eigenvalue 
has multiplicity («—1). 

The following lemmata are easily established. 

LEMMA 1. Each member of the sequence {xm}£, where xQ=0 and xm+1 = D[{n — 1)/ 
(T— xm)]n_:L

5 provides a lower bound on the eigenvalues of B, and lim xm = xp. 

Proof. The sequence is monotone increasing and has xp, the smaller root of 
eq. (7), as a limiting value. Since xp is the greatest lower bound then each member 
of the sequence is a lower bound. 

LEMMA 2. Each member of the sequence {ym}£, where y0 = T and ym+1 

— T— {n — l)(D/ym)1Kn"1)
9 provides an upper bound on the eigenvalues of B, and 

lim ym=yQ. 

Proof. The sequence decreases monotonically to yQ, the larger root of eq. (6), 
and yQ is the least upper bound. 

LEMMA 3. The maximum separation of eigenvalues of B {i.e. max (y—x)) is 
attained for that point on the contour F = 0 where dyjdx— 1 {from eq. (5)). 

LEMMA 4. The maximum ratio of eigenvalues of B {i.e. max {y/x)) is attained 
on F=0 at the point where dy/dx=y/x {obtainedfrom eq. (5)). 

LEMMA 5. If D and T are the determinant and trace of B2, and B is an nxn 

Hermitian matrix, not necessarily positive definite, but with nonvanishing determinant, 
then Theorem 1 provides "best" bounds on the squares of the eigenvalues of B. 

THEOREM 2. In the case when B is just an arbitrary matrix, but still has a given 
nonvanishing determinant, then if instead of the trace of B, the trace of B*B is 
available, then x, y provide, respectively, least upper bounds and greatest lower 
bounds for the squares of the moduli of the eigenvalues of B. 

The proof follows by considering the inequalities, 

spectral radius {B) < Vspectral radius {B*B) 
and 

spectral radius {B'1) < Vspectral radius {B'^B'1) 

in conjunction with the bounds for x, y previously established. 
To determine the minimum values of {y — x), or of {y/x), requires establishing 

the complete set of admissible points {x, y). It was noted above that the point S, 
for example, is not admissible. 
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It is shown in the appendix that if (as above) A and G refer to the means of the 
Ai5 then the problem of minimizing G (given A) results in n-2 configurations, 
depending upon the value of A, 

Since 
mx+(n-2-m)y < (n-2)A < (m-l )x-H«-l -m)j; 

for some m= 1 ,2 , . . . , n — 2, then 

Gn- 2 > xm-iyn-2-m^n„2)A-(m-l)x--(n--2-rn)y]. 

Putting (n-2)A = T-x-y and Gn~2 = D/xy yields n-2 constraints on (x, y): 

Fm(x,y) = xmyn-1-m[T-mx-(n-l-m)y] < D 

when 

(m+l)x+(w~ 1— m)y < T < rnx+(n~m)y (m = 1, 2 , . . . , « — 2). 

The bounding contours Fm=Z> satisfy 

dyjdx = - / # * - 1 -w) (j>/;c)[T-(m + \)x-(n-\-m)y]/[T-mx-(n-m)y] 

= oo on T = mx-f (n-m)j; 

= OonT = (m + l);c+(«--l--m)}>. 

These contours are shown in Fig. 2. 

>' = x 

FIGURE 2. 

The boundary of the shaded region in Fig. 2 may be described as follows: 
If we set AX = A2= • • • = An_2 = A and let A vary from x to y9 then eqs. (1) and (2) 

provide a parametric description of a point (JC, y) which moves from Q to P, 
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along F= 0. At P, all (/i.—2) "middle " eigenvalues are equal to y. If Xx is now moved 
from y to x, eqs. (1) and (2) yield a point (x, .y) which moves along the lowest 
contour FX = D in Fig. 2. If, successively, A2, A3,..., An_2 are moved from y to x, 
the solution (x, y) of eqs. (1) and (2) moves, in turn, along each of F2~D> F3 

= Z>,..., ir
n_2=Z) until, with all middle eigenvalues returned to the value x9 Q 

is again reached. Clearly every point on the boundary of the admissible region is 
attained for positive definite matrices whose smallest and largest eigenvalues have 
the multiplicities associated with the corresponding branch of the boundary. 

EXAMPLE. B={bif} and is of order n x n9 with 

hi = 4, i = j , 

= 1, I W l - l . 
= 0, \t-j\*l9i*j. 

Thus2<Afc<6, 

and 

D = - i = {(2+V3) n + 1 - (2-V3) n + 1 }. 

Particular values for D and Tare: 

n 

2 
3 
4 
5 
6 

D 

15 
56 
209 
780 
2911 

T 

8 
12 
16 
20 
24 

Theorem 1 gives the following bounds, 

Order n max4 \ Upper bound mint At Lower bound 

2 5 5 3 3 
3 5.4142 5.7685 2.5886 2.4625 
4 5.6180 6.4218 2.3820 2.1022 
5 5.7321 7.0075 2.2680 1.8333 
6 5.8019 7.5485 2.1981 1.6205 

Note that if the diagonal elements of B are known (as well as D and T) then the 
minimum and maximum eigenvalues satisfy 

xp < x < min bit and max bH < y < yQ, 
i i 

so that one has an indication of how good the bounds are, as given by Theorem 1. 
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APPENDIX. In what follows we deal with the product and sum of the middle 
eigenvalues, rather than the geometric and arithmetic means. Also, for con­
venience, we let N=n — 2. 

We wish to minimize A ^ . . ,XN=P, where the A4 are numbers lying in 0<x 
<\<y, under the condition that Ai + A2H h Â  = *S is fixed. We associate with 
each A{ a unit mass located on the real line at the place Xt. The prescribed sum S 
fixes the centre of mass of the N point masses, hence the position of a fulcrum which 
"balances" the mass distribution. 

For any initial distribution, lying between x and y, the balance will be maintained 
if any two masses are moved apart by an equal amount. However, the product 
of the Aj will be reduced (since (X± — d)(X2 + d)< XXX2 for A2 < X± and d> 0). We then 
proceed to separate pairs of mass points, continuing the separation of each until 
one of the pair reaches either x or y. This set of operations maintains the balance 
(hence the sum S), but reduces continuously the product P, and terminates when 
all point masses (with perhaps the exception of one mass point) are located at either 
x or y. The final sum is given by S=rnx+(N— 1 — m)y + X where m mass points 
are eventually located at x9 N—l—rn at y and a single mass point at A where 
x<X<y. Thus, of for some ra = 0, 1, 2 , . . . , N— 1, the prescribed sum S satisfies 
(m+l)x + (N— 1— m)y<S<mx + (N—m)y, the product P is minimized when m 
of the Xt are at x, N— 1 — m are at y and one is at S—mx — (N— \—m)y. This gives 
P>xmyN-1-m[S-rnx-(N-l-m)y]. 

If G! = (A1A2- • -XN)1IN is the geometric mean, and A = (\1 + \2+ — - +XN)/N the 
arithmetic mean of the Ai5 with 0 < x < At < y, then the above result may be reworded 
as follows : 

If, for some m = 0, 1, 2 , . . . , N— 1 we have [(tn + l)x + (N— l-m)y]/N<A 
< [mx + (N- m)y]/N then 

QN > xmyN-l-m[NA_mx_(N_.1_m)y] 
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