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A B S T R A C T  

ELEc~aIC~-L double layer theory is used to analyze an idealized model unit of a clay 
particle system with the purpose of describing the mechanical stability in terms of an 
equilibrium of attractive and repulsive forces. Restricting the analysis to two dimensions, 
a symmetrical parallelogram formed by four typical clay mineral particles is taken as a 
representative unit of a flocculated clay and the interactions of mineral faces and 
associat~l electrolyte is investigated. The distortion energy of the system thus found is 
then directly related to the mechanical stability of the model unit 's  structure as it 
varies from parallel to perpendicular orientation. The general pat tern of behaviour of 
the model unit will be shown to be compatible with the mechanical behavior of the clay 
iuass. 

I N T R O D U C T I O N  

TIZ_E mechanical interaction of the solid constituents of a clay mineral 
particle system obtained a theoretically justified basis through the work of 
Verwey and Overbeek (1948) on the interaction of two parallel plane double 
layers. 

Since then contributions by several investigators have substantially 
increased our understanding of the mechanical behavior of systems composed 
of clay mineral particles and an electrolyte. 

Obviously, a system composed of particles oriented in parallel, face-to-face 
positions only is rather the exception than the rule. Flocculated systems, in 
particular, have a geometrical structure of randomly oriented particles. The 
interaction of particles in these systems involves forces between the particle 
edges and the faces of their partners. 

Van Olphen (1951) showed that at normal values of pH attraction forces 
resulted from the different charges on the faces (negative) and the edges 
(positive). Measuring the yield stress of clay gels, Van Olphcn (1956) found 
the force of a single bond to be in the order of 10 -4 dyne. RauseU-Colom 
(1958), on a theoretical basis, found the magnitude of electrostatic attraction 
between the (negative) face of montmorillonite and the unit charge on a 
contact edge to be in the order of 7 • 10 -5 dyne. 
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Norrish and RauseU-Colom (1963) investigated the swelling and compres- 
sion of montmoriUonite and vermiculite particle systems. They concluded 
that  swelling of montmorillonite systems had to be limited by an opposing 
force system, which could not be explained by the Van der Waals attraction, 
as also previously stated by Rausell-Colom. The internal resistance to swelling 
of parallel, face-to-face systems was ascribed to the restraining effects of 
particles oriented in edge-to-face positions. From the results of compression 
and decompression tests of Na-montmorfllonite systems it was concluded 
that  a resistive force in the order of 6 • 104 to 6 • 105 dyne/cm ~ had to 
restrain the swelling. On this basis satisfactory agreement was found with the 
magnitude of a single edge-to-face bond as theoretically derived by Rausell- 
Colom. The same conclusion was reached by Van Olphen (1962) on the basis 
of earlier swelling experiments by Norrish (1954). 

The concept of edge-to-face interaction, as a matter  of course, is of fore- 
most importance in an analysis of the structural forces in a flocculated 
system where particles occur in random orientations. In  a general manner 
the force field can be separated into components of repulsion acting between 
opposite faces and components of attraction acting at  the edges-to-faces. 

~= Strong repulsion 

f=  Weak repulsion 

- - : E - F  Attroct ion(Fa) 

F~p F(_ 
-U "~ . . . . . . . .  ~+U 

.? 
a I I ~ I b 

Figure la and lb. 

Each "cell" is supposed to be bounded by fiat elements of mineral plate- 
lets; each corner of the cell is a meeting point of an edge and a face of a 
platelet. These cells are structural units which together form a framework of 
particles. The space occupied by  the cells is filled with an electrolyte. We will 
assume that  the faces of the platelets carry a uniform negative electric 
charge, whereas the edges carry an excess of positive electric charges. For the 
sake of simplicity the force field inside the cell and the forces acting on the 
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platelets will be limited to a two-dimensional cell of "unit" thickness. In 
order to simplify the boundary conditions the cell has been given a symmetri- 
cal diamond shape. 

THE P O T E N T I A L  D I S T R I B U T I O N  IN THE CELL 

The solution of this problem has been restricted to the application of 
double layers of the Gouy-Chapman type, i.e. assuming that Stern correc- 
tions are not required. 

Following Verwey and Overbeek's treatment of the problem of interacting 
double layers of parallel plates, we have limited ourselves to a symmetrical 
electrolyte and assumed the validity of the Boltzmann theorem, whereby the 
charge density is given by: 

p ~ ze(n+ -b n_) -~ -- 2n.z.e.sinh(ze/bT)~b (1) 

.4~ssuming further the validity of Poisson's equation: 

(2) 

and introducing the expression for p into the second equation, we obtain: 

V'~  = ( ? )  (2nze) sinh (ze/kT)~b 

which in a two-dimensional problem yields: 

~bau ~ + "a'~ ~ (4 : )  (2nze).sinh(ze/icT)~b (3) 

Putting: 
/ ,  k 

~ g  

ze/kT = c2 
Equation (3) is simplified to: 

where u and v are the Cartesian coordinates. 
The solution of equation (5) with the appropriate boundary conditions 

is discussed in the Appendix. 

THE I N T E R N A L  E Q U I L I B R I U M  OF A CELL 

Equilibrium conditions of a two-dimensional cell of unit thickness obtained 
by an E-• association of particles, such as the one shown in Fig. la, depend 
on the combination of repulsive pressures and E-F  attraction forces. We 
have adopted here the nomenclature proposed by Van Olphen (1963). 

https://doi.org/10.1346/CCMN.1966.0140110 Published online by Cambridge University Press

https://doi.org/10.1346/CCMN.1966.0140110


106 FOURTEENTH NATIONAL CONFERENCE ON CLAYS AND CLAY MINERALS 

The pressures acting on the planes of symmetry  of the cell, as defined by 
the expressions in equations (12a) and (12b) of the Appendix, strongly 
depend on the angle a. The more acute the angle the higher the concentration 
of pressures on its bisecting plane. The pressures on the sides of the acute 
angle at  A for instance, are many  times larger than those on the sides of the 
complementary angle. The same consideration applies to the pairs of angles 
a t  B, C, and D. This distribution of pressures tends to rotate the sides of the 
cell until the angles are 90 ~ , i.e. assuming tha t  no other forces are active than 
those under consideration. Hence the concept of the cubic card-house struc- 
ture as the limiting condition of internal equilibrium. To this concept should 
be added the requirement tha t  the pressure on the plates balances the strength 
of the E - F  bonds in order to represent a gel structure with a minimum of 
solid concentration. In  general the E-F associations in a flocculated structure 
are randomly distributed throughout the system. [See, for instance, the 
distribution curves obtained with the low angle X-ray diffraction method by  
Norrish and Rausell-Colom (1963, p. 137).] 

When a unit of the symmetrical diamond shape is subjected to a compres- 
sive force Pu in the u-direction and a force Pv in the v-direction the internal 
equilibrium requires tha t  the pressures on the plane v = 0 balance the force 
Pv and tha t  the pressures on the plane u ---- 0 balance the force Pu. When a 
is an acute angle Pu is considerably smaller than Pv. The ratio PulPy is 
primarily a function of the angle a. This ratio has a lower limit and an upper 
limit depending on the strength of the E - F  bonds, w h e n  the combined 
action of the pressures acting in the u-direction and the v-direction exceeds 
the attractive strength of the E-F bonds the unit loses its integrity and further 
deformations occur as a viscous flow (See Fig. lb). 

The behavior of clay systems subjected to decreasing Pulpy (pressure) ratios 
follows the analysis we presented above. In  order to show the reversibility 
of the deformations, the imposed loads were completely released after each 
stepwise decrease of the ratio Tu/Pv. The curve in Fig. 2 shows the results of  
this procedure. 

Variations of the hydrostatic pressure in the cell liquid were avoided by 
maintaining a constant value of the hydrostatic component of the imposed 
stresses. Since the clay was a cylindrical body: 

with 
P0 = constant hydrostatic component of the state of stress. 

The clay cylinder was therefore subjected to a stress deviator: 

Pl~Pv- - l~o;  P ~ P u - - P o ;  Ta~-Pu--Po 
with a maximum shear stress: 

--- � 8 9  - -  p ~ )  

Each step-wise increase of the deviator involved an increase of Pv of twice 
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the value of the decrease of pu. Hence: 

where: 

and hence: 

A p v  = - -  2 h p ~  

~o = constant 

Each step increase of the shear stress was about 1.1 • 10 4 dyne/cmL The 
first five stress steps showed instantaneous, finite deformations with a small 
irreversible portion after unloading. It was known, however, that the material 
contained about 1�89 volume per cent of air. At the sixth step the transition 
from the stable structure to the flowing structure occurred. The next step 
and those following after that clearly showed the structural viscosity, which 
Could be expressed in a rate of flow. The material behaved as a Bingham 
fluid: 

0 !  = ~- O- - fo)  (6) 

where: 
y = shear or rotational strain 

T = shear stress 

fo = yield stress 

= coefficient of structural viscosity 

The results of the test are given in Fig. 3. 
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In  consideration of the significance of the behavior of the material below 
the yield limit, two tests were performed on the same material. These results 
are shown in Fig. 4. 
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In the first test the yield point showed clearly as a breaking point in the 
curv5 of the total strains and the irreversible strains at  a stress of about 
7 • 104 dyne/cm ~. This quantity compares rather well with the order of 
magnitude of the lower limit found by Norrish and Rausell-Colom in com- 
pression and decompression of Na-montmorillonite systems. In  the second 
test the break is less pronounced and it occurs at a somewhat lower stress. 
The deformations also were slightly larger so that  the structure probably 
lost part  of its strength through the first run. The stress-strain relationships 
are clearly nonlinear and confirm as such the rotational character of the 
deformations. 

L I Q U I D  P R E S S U R E S  I N D U C E D  B Y  S T R U C T U R A L  
D E F O R M A T I O N S  

The E - F  associated structures are thus capable of withstanding deforma- 
tion to a certain degree before the attractive bonds break. This fact has been 
demonstrated by investigators using different mechanisms, as has been 
mentioned in the introduction of this paper. I t  has, however, not been 
recognized that  failure of attractive bonds may result from liquid pressures 
induced by structural deformations when the rate of strains imposed by the 
testing conditions does not permit the timely removal of the excess of inter- 
stitial liquid (Geuze, 1964). 

Assuming a model cell as previously used, compression in the v-direction 
will be accompanied by an extension in the u-direction. The volume of the 
unit cell: 

g ~ 2"L2sin2a (7) 

and the change of its volume with respect to the angle a is: 

dle 
- -  4"L2cos2a (8) da 

Since in vertical compression da is negative the change of volume is negative 
when 2a < 90 ~ whereas it is positive when 2a > 90 ~ In the first mentioned 
case the cell contracts; in the second case it  dilates. The contraction of the 
cell cannot occur without stretching the bonds, ff the liquid can be considered 
to be incompressible. Since both the electrostatic and the Van der Waals 
attraction forces are inversely proportional to a high power of the distance 
between the edges and the faces, a comparatively small compressive strain 
will cause breaking of the bonds. 

In  the test discussed in the previous chapter drainage of the liquid from 
the system was prevented at the boundaries. Hence the change of volume 
was a negligible quantity. The rotation at  the yield point was about 2 • 10 -a 
radians, but  since the average angle 2a was unknown we have no means of 
checking this result. 

When drainage of the system is permitted, the attractive bonds will n o t  

only develop to their fullest extent, but  the edges may even approach the 
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faces at closer distances because the particles are pressed together. The 
removal of part  of the electrolyte affects the charge distribution inside the 
cell. The establishment of a new electrical equilibrium takes a certain time, 
depending on the mobility of the ions. In  the new equilibrium the contact 
forces depend on the repulsive forces, which will then be increased. Obviously, 
the approach to a new equilibrium requires very low rates of deformation in 
order to keep in step with the movements of the ions. 

When, on the other hand, drainage is allowed for but the rate of deforma- 
tion is high, the bonds in a contracting system will be stretched by the 
increase of the liquid pressure. The yield strength will then depend on the 
hydrostatic pressure in the cells. Because the latter is an all-sided equal 
internal pressure it is to be superimposed on the repulsive pressure system. 
As a result the clay system will show a lower yield strength. This conclusion 
seems to contradict the general experience of increasing strength of clays at  
high rates of loading. I t  should be emphasized in this context that  "strength" 
is then referred to as failure of the system. As shown in Fig. 3 failure is 
preceded by a wide range of flow. This range is defined by equation (6) from 
which it follows that  the difference between the shear stress and the yield 
stress is proportional to the rate of flow. In other words, the resistance of the 
material increases at  the expense of a high rate of flow. Equation (6), however, 
does not account for the fact that  the strength depends on the magnitude of 
the strain preceding failure. I t  seems that  the smaller the strain that  can be 
obtained by a quick succession of load increases, the higher the failure 
strength. In  a sense the material is forced to behave as brittle materials, 
which show small strains at  the point of failure. 

Summarizing the major part  of the above statements, we arrive at the 
conclusion that  the yield strength of a clay system decreases when the rate 
of deformation is increased, but  that  the failure strength increases as a 
result of the participation of the structural viscosity. In any type of measure- 
ment of the yield strength these complications should be avoided. I t  seems 
that  the solution of the problem lies in the application of loading programs 
involving small increments of stress followed by a complete release of stress 
in order to study the reversibility of the strains. The loading and unloading 
sequences should be carried out at a slow rate to enable the strains to reach 
their final, at  rest values. 

D I S C U S S I O N  

The use of a symmetrical unit of particles in E - F  association has obvious 
advantages in studying the internal equilibrium of the cell. External com- 
pressive forces are balanced with the repulsive forces and through this balance 
it is possible to evaluate the deformation of a symmetrical unit. 

The assumption of rigid platelets, however, is a severe limitation of the 
analysis, which is approximately correct when the platelets are stretched by 
an internal hydrostatic pressure. Compressive forces may cause bending, 
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buckling and folding of the platelets. These deformations introduce a force 
system which cannot be readily accounted for. In a flocculated system cells 
of various sizes and shapes constitute a continuous network. Each of these 
cells occurs in a state of internal equilibrium. When the entire system is 
subjected to an external force, the internal mechanical forces acting at  the 
particle contacts depend on the relative rigidity" of the units as a whole and 
not on the internal repulsive pressures only. The contact forces, furthermore, 
participate in the distribution of the force system in an unknown manner. 

I t  is therefore a remarkable fact that  the model cell shows a mechanical 
behavior which is identical with that  of most clay systems. 

The combination of the repulsive forces, based upon the interaction of 
diffuse double layers, and the edge-to-face attraction forces proved to be 
essential in explaining the elastic, nonlinear behavior of the flocculated 
system within the yield range. This behavior is in many ways identical with 
that of a model of parallel plates with cross-links, as proposed by other 
investigators. 

The measurement of the attraction bonds is not a simple procedure. Yet, 
lacking sufficiently accurate methods for the evaluation of the electric charge 
on the particle edges, the direct experimental method is a necessity. 

C O N C L U S I O N S  

The solution of the two-dimensional problem of the potential distribution 
in a Poisson-Boltzmann electrical field is possible when using a numerical 
difference approximation method. The boundaries of the field are assumed to 
be platelets carrying a uniform negative charge. The liquid pressure distribu- 
tion on the platelets is obtained from the potential distribution along the 
planes of symmetry. The internal equilibrium of forces inside a "cell" 
surrounded by platelets depends on the balance between the liquid pressures 
induced by the interaction of the diffuse double layers and the attraction 
forces between the edges and the faces of the platelets. When the cell is 
subjected to compressive forces acting in the direction of the planes of 
symmetry the deformation of the cell increases the repulsive forces in the 
direction of the compression and decreases the repulsive forces in the direc- 
tion of the extension. In this manner the cell is capable of withstanding 
external forces at  the expense of deformation (rotations). At the same time 
the edges of the plates approach their opposite faces. Deformations performed 
at a high rate (as, for instance, in rotation viscometers) cause liquid pressures 
in the system, when the cells tend to contract by the deformation. These 
pressures have to be superimposed on the liquid pressures induced by the 
electrical forces and may cause rupture of bonds. As a result high rate 
deformation tests tend to lower the strength of the bonds and to increase the 
resistance by structural viscosity. The best approximation of the yield strength 
is by the application of small stress increments, each one followed by a 
complete release of stress in order to show the integrity of the particle 
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structure by  the reversibility of the strains. The rate of application o f  the 
subsequent stress steps and releases should be slow enough to enable the 
strains to reach their final, at  rest values. 
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A P P E N D I X  

T H E  P O T E N T I A L  F I E L D  

The potential distribution satisfies: 

a~ _~a~ au~ -- av~ ---- ci sinh(c~@) (I) 

The region is defined as the quarter space of the diamond. 
The length L of the hypotenuse and the angle a are the geometrical 

parameters of the rectangular triangle OAB. The coordinate planes v ~-- 0 
and u = 0 are the rectangular sides OB and CA respectively (Fig. 5). 

The boundary conditions are for reasons of symmetry: 

ar on the plane u = 0: au ~ o (2a) 

a~b o = 0 (2b) on the plane v = 0: av 

where ~u0 and ~v0 are the potentials on the coordinate planes u = 0 and 
v = 0 respectively. 

The boundary condition along the hypotenuse is defined by the postulate 
of a uniform (negative) charge on the plate. The charge on the plate is pro- 
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portional to the negative value of the potential gradient at  points on the 
boundary in the direction of the positive normal to the hypotenuse : 

~n = -- 4--~" a~ (3) 

where ~bL is the potential at  points along the boundary and a 0 is the (nega- 
tive) charge on the plate. 

The potential gradient is related to its components in the u-direction and 
the v-direction by: 

0~L 0~L O~bL (4a) an -- sina. ~ ~- cosa- a -v  

The solution of the partial differential equation (1) with the boundary 
conditions (2a), (2b) and (3) required the us9 of a numerical integration 
method. A modification of the Newton-Raphson method, as proposed by 
the junior author, yielded results of sufficient accuracy. 

T H E  P R E S S U R E  ON T H E  P L A T E  

The objective of computing the potentials was to provide the quantities 
required for obtaining the liquid pressure distribution on the boundary plate. 

The liquid pressure gradient balances the electrical force on the space 
charge at  every point in the region under equilibrium conditions: 

grad p = -- p. grad ~b (5) 

In a two-dimensional space we have two gradient component~ at every 
point: 

ap= ~r 
0u = -- P " a-u (6a) 
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and 3pv 3~b 
Ov = -- p " Ov (6b) 

where pu and pv are the liquid pressures acting in the u-direction and in the 
v-direction respectively. The pressure increments over elementary distances 
du and (Iv are: 

dpu = -- p" da~ (7a) 
and 

= - -  p .  d d ,  (Tb) 
Introducing the expression for p from equation (1) using the coefficients 

from equations (4), yields: 

p =  -- (4~%sinh(c2~b) 

Hence: 
G 1 

Integration of these expressions between the limits indicated in Fig. 6 : 

and 

yields: 

and 

u = O ;  Pu=Puo;  ~ u = r  

v = O ;  P ~ = P v o ;  r 1 6 2  
V=VL;  p v = p v L ;  C v = r  

PuL ~~ 

f d,. = \47r]c2( er f ducosh(c2r 
Puo ~uo 

PvL Y~L 

Pro ~vo 

The pressure differences are: 

=_[E~cl  

/ ~ \ c  x PvL -- Pro = ~ ) ~  [cosh(%r -- cosh(%~bvo)] 

(9a) 

(9b) 
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V 

o S Iov~ 
Figure 6. 

These differences are balanced by the electrical forces acting on the space 
charges between the respective boundaries in the u-direction and in the 
v-direction. They do not contribute to the pressures acting on the plate. 
From the equilibrium conditions of the triangular space O AB it follows, 
however, that  the pressures Pu0 and Puv are transmitted by the liquid to the 
plate. The equilibrium conditions of an elementary triangle of the liquid 

PvL 

Figure 7. 

with sides du, dv, and dL are schematically represented in Fig. 7. These can 
be expressed as follows: 

PnL = PuL" shl~a + PvL" eos~a (10) 

Since puL ---- Puo and PvL = Pro, equation (10) can be written: 

P~L = Puo" sin2a -5 Pro" cos 2a (11) 
where: 

Puo = ~ cosh(c~%6uo) (12a) 
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Hence: 

Pro : ~ eosh(cs~bvo) (12b) 

--~E | ~ /  [sinSa.oosh(c~bu0) + cos2a.cosh(c2~bvo)] (13) 

The liquid pressures from equations (12a) and (12b) should not be confused 
with the osmotic pressures, which are required to maintain the balance 
between the potentials in the planes of symmetry  of the diamond, i.e. the 
planes u ~-- 0 and v : 0, and the zero potential of an electrolyte reservoir. 

Because the diamond is a self-contained unit in electrical and mechanical 
equilibrium, such a reservoir is not required to maintain the internal balance 
of forces. 
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