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INTEGRAL LIMIT LAWS FOR ADDITIVE FUNCTIONS 

J. GALAMBOS 

1. Introduction. In the present paper a general form of integral limit laws 
for additive functions is obtained. Our limit law contains Kubilius' results [5] 
on his class H. In the proof we make use of characteristic functions (Fourier 
transforms), which reduces our problem to finding asymptotic formulas for 
sums of multiplicative functions. This requires an extension of previous 
results in order to enable us to take into consideration the parameter of the 
characteristic function in question. We call this extension a parametric mean 
value theorem for multiplicative functions and its proof is analytic on the line 
of [4]. The present investigation was induced by the work of Levin and 
Fainleib [6], who obtained integral limit laws for a class of additive functions, 
which class overlaps (but does not contain) the class H of Kubilius. Their 
investigation is more specific than ours also in the choices of the normalizing 
constants AN and BN for obtaining limit laws for (fin) — AN)/BN with f(n) 
additive. As a matter of fact, they restrict themselves to the case when both 
AN and BN

2 are constant multiples of loglog N. In our case, however, the 
constants AN and BN

2 are not restricted in magnitude. It is also to be empha­
sized that they are not the usual values ^2f(p)/p and ^f2(p)/p, respec­
tively, where the summations are over all primes p not exceeding N. 

Acknowledgement. I wish to express my thanks to Professor Walter Philipp 
for his comments on an earlier version of this paper. 

2. A parametric mean value theorem for multiplicative functions. 
Let / (# ) be a real valued strongly additive arithmetical function, i.e., for any 
coprime u and v, 

(1) f(uv) =f(u) + /(»), 

and for any integer a ^ 1 and any prime number p, 

(2) f(pa) =f(p). 

Throughout this paper, p will denote prime numbers. 
Let NvN(n : . . .) denote the number of positive integers n ^ N, for which 

the property given in the dotted place holds. Given two sequences AN and 
BN > 0 of real numbers, the arithmetical function (f(n) — AN)/BN is said 
to have a limit law if there is a distribution function F(x) such that, for all 
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continuity points of F(x), as N —> +00 , 

(3) lim vN{n :f(n) — AN < xBN) = F(x). 

Put 

(4) g(n,t) = exp(itf(n)), 

where Ms a real variable. Note that (1) and (2) imply that for any coprime 
u and v, 

(5) g(uv,t) = g(u,t)g(v,t), 

and that 

(6) g{p\t) = g(p,t), fl^l. 

In other words, (5) and (6) yield that g(n, t) is a strongly multiplicative 
function of n. The well-known continuity theorem [7, p. 191] of characteristic 
functions or Fourier transforms, stated as Lemma 1 below, thus reduces the 
validity of (3) to an asymptotic relation for the arithmetical mean of the 
strongly multiplicative function g(n, t). 

LEMMA 1. The limit relation (3) holds if, and only if, 

(7) lim e x p C - ^ , / ^ ) ^ g ( W j I/BN) = v{t) 

N=+oo i V n=l 

exists and is continuous at t = 0. In this case 

(8) <p(t) = f œeitxdF(x). 

In view of Lemma 1, our problem is reduced to giving an asymptotic 
formula expressed in (7). There are several results on the arithmetical mean 
of multiplicative functions with modulus bounded by one. All of them are, 
however, in terms of N and thus the parameter t of g(n, i) can not be taken 
into account. Since the sequences AN and BN enter our expression in (7) 
through the parameter t, we need a parametric mean value theorem for 
multiplicative functions. Such a result will be obtained by applying Satz V 
and the method of proof of Satz 2 of [4]. In spite of this close relation of our 
proof to the work [4], our conclusion is essentially new by having the para­
meter t in the final form. It is worthwhile pointing out that a step on p. 380 
of [4] (the equivalence of the last two formulas) makes Satz 2 of [4] unappli-
cable to our problem. 

Before turning to the mean value theorems, we need some notations. 
Let us put 

(9) ere = 1 + 1/log N, 

and 

(10) fc{n) =f(n) -clogn, 
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where c is a real number. For an arithmetical function g(n) we introduce the 
Dirichlet series 

G(s) = £ ^ , s = <r + iu. 
n=i n 

We need the following result of [4]. 

LEMMA 2. Let g{n) be multiplicative and let \g{n)\ ^ 1. Assume that for G(s) 
the asymptotic equality 

(ID G(s)= s _ { 1 + i a ) +o(—i), *-+h 

holds uniformly on\u\ ^ Kfor any finite K. Here the values C and a are constants 
with a real and the function L(y) is assumed to satisfy the following conditions. 
For any y, \L(y)\ = 1 and for y = 0(log N), as N —» +oo , 

(12) L(yi)/L(y) —» 1 uniformly for y ^ yi ^ Sy. 

We then have 

(13) tg(n)=^^1N^ + o(N). 

We are now in the position to give our parametric mean value theorem. 

LEMMA 3. Let f(n) be a strongly additive function and let g(n} t) = 
exp(itf(n)). Let further BN be a sequence of positive real numbers, tending to 
+oo with N. Let us assume that there is a real number c such that for all real 
numbers a with J(o-0 — 1) ^ o- — 1 g f (o-0 — 1), 

(14) lim £ p-a{\ - Re[exp(itfc(p)/BN)]} = «( / ,*) 

exists and is independent of a. Then 

as) hMn't)'Nt""KH^t) 

X e x p j Ç Z ^ W lexp(itkfc(p)/BN) - 1]} + o(l), 

where 

(16) H(N, t) = 

1 + ict/BN V 
exp(itfc(p)/BN)[exp(itfc(p)/BN) - 1] 

1 ,2(l+ict/BN) _ ,l+ict/BN 

Proof. Let g* (n, i) be completely multiplicative and let it coincide with 
g(n, t) when n is a prime number, i.e., g*(£fc, £) = g*(£, 0 for all primes p and 
for k = 1, 2, . . . . Let G*(s, t, N) denote the Dirichlet series of g*(n, t/BN). 
We first show that Lemma 2 is applicable to g*(n, t/BN) and then by an 
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elementary argument, well-known in analytic number theory, we shall deduce 
the conclusion of Lemma 3. In order to show that (11) holds, we specify the 
values C, a and L(y). Let a = ct/BN, occuring in the condition (14) and let 

(17) C = e x p [ - « ( / , 0] 

and 

(18) L(~l) = exP\*'C %•$* Im[g*(w' t/B»>~,t,"'Nl} • 

In order to simplify the double sum in (18) and in the statement itself we 
introduce 

ik~\ if n = pk 

(0, otherwise. 

k<r 

Let us first note that for N —» +oo 

(19) exp{ £ ^ [Re(g*(n, t/BN)n-
ict/B») - 1]} = C + o(l). 

Indeed, for any fixed m, and for a ^ 1, 

(20) E E l i i l - Re[exp(itfc(p)k/BN)]} 
Jc=2 p Kp 

s z H L ^ + E^lsg^axi/.wi + E E j 
]c=2 K L p^rn J3NP p>m P J *£>N p^m p>m. fc=2 # P 

Since BN —> +00 by assumption, letting N —> + 0 0 and then m —» +00 , 
(20) now yields (19). In order to show the validity of (11), we compare 
G*(s, t, N) with CL((a — l)""1)?($)> where f (s) is the Riemann zeta function. 
Since g* (n, i) is completely multiplicative, 

G*(s,t,N) = eJzHn)g*(n
s'

t/BN) 

and thus by the definition of the values involved and in view of (19), 

( 2 1 ) f ( . )CZ(( , - I)"1) - e x p t g ^ X » - » ) [ 1 - « » ( » ) ] ; . 

where 
w(«) = g*(n,t/BN)nict/B". 

We therefore have to show that the exponent on the right hand side of (21) 
tends to zero, uniformly on any finite interval of Im s, as a- —» 1. As a matter 
of fact, when showing this limit relation, the well-known property of the 
zeta function, 
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yields 

^'•« = 7^feS^»(^). 
as a —» 1, the asymptotic equality being uniform on any finite interval of 
Im s. We then have to show that the conditions on L(y) are satisfied. Since 
this latter calculation will be of the same kind as estimating the exponent in 
(21), let us first turn to L(y). The condition |L(y)| = 1 is evident from the 
definition (18). Also from (18), 

L ( ( r _ i n = e x p ^ g X M ( * n r) Im[w(?z)] 

Hence all conditions of Lemma 2 will be satisfied if we show that for 
H° - 1) ^ Re s - 1 ^ f (a - 1) and for |Im s\ ^ KQ(a - 1), with 
a - 1 = O(a0 - 1), 

Exw n — n |1 — w(w)| —» 0, uniformly in J. 

This requires only a slight modification of the argument on p. 382 of [4]. We 
first note that 

\nra - n~s\ ^ 3(1 + K0) (a - l)nr* log n. 

Since |1 — w(n)\2 = 2(1 — Re w(n)), in view of (19), 

+oo 

y~] \{n)n~<T\l — w(n)\2 

n=l 

uniformly converges (uniform in N). We can therefore choose a value T, 
independently of N, such that 

2^ \(n)n ff\l — w(n)\2 < e. 
n=T+l 

We thus have 

+O0 

z 
7 1 = 1 

Exw |1 - w ( w ) | S 3 ( ^ o + l ) ( c 7 - 1 ) X 
w = l 

T 

\(n) log /z 
1 — w(n)\ 

^ 3(K0 + l)(«r - 1) £ ^ ^ |l - «,<„) 

+ 3 ( K 0 + 1 ) ( * - 1 ) g ^ - ^ | l - W ( W ) | . 
n=7M-l W 

The first term tends to 0 as a —» 1 (T is fixed). By an appeal to the Cauchy 
inequality in the second sum, we get 

g \{n)\ogn ^ 
n=T+l % 

w{n)\ ^ g x w j ^ g *M |i-W(,)|\ 
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The second factor is smaller than e by the choice of T. On the other hand, the 
first one, as it is well-known, is 0((<r — l ) - 2 ) , which remains bounded when 
multiplied by a — 1 (note that we estimated the square of the sum in 
question). (11) is thus established. We can now apply Lemma 2 to g*(w, t/BN) 
and then the argument on p. 370 of [4]. This completes the proof of Lemma 3. 

The following elementary lemma will simplify some of our expressions. 

LEMMA 4. Let an and bN be two sequences of real numbers and let bN —» 0 as 
N —» +co . Assume that 

(22) £ an < +oo, an > 0. 

Then, for any sequence cn of real numbers, 

+oo 

lim X) an\exp(icnbN) — 1| = 0. 
JV=+oo 71=1 

Proof. Let e > 0 be any prescribed real value. In view of (22), there is an 
integer M such that 

+oo 

n=M+l 

Thus 
+oo M 

X an\exp(icnbN) — 1| ^ bN^2 an\cn\ + 2e. 
7 1 = 1 7? = 1 

Since M does not depend on N, letting N —> +oo and then e —» 0 establishes 
the lemma. 

3. The l imit laws for additive functions. The main result of the present 
paper is given in the following 

THEOREM. Let f(n) be a real valued strongly additive arithmetical function. 
Let BN be a sequence of positive real numbers, tending to +oo. Assume that the 
condition, concerning (14), in Lemma 3 is satisfied. We further assume that 
there is a function fi ( / , t), not depending on N, such that 

(23) AN* = (BN/t)(Z p-°° lm[exp(itfc(p)/BN)] - 0 ( / , 0} + o(BN) 

is independent of t, the summation being over primes p. Then, if both a(f, t) and 
jS(/, t) are continuous at t = 0, 

( /(») -clogN-AN*)/BN 

has a limit law, the characteristic function <p(t) of which is given by 

(24) log <p(t) = -a(f,t) +ip(f,t). 

Proof. Because of the preparation on the preceding pages, there remain 
only a few steps to establish our theorem. In view of Lemma 1, we have to 
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show that the assumptions of our Theorem imply (7) with A^- — c log N -f- ^4.̂ * 
and with cp(t) determined in (24). By an appeal to Lemma 3, this goal is 
accomplished if we show that under our conditions the limit relations 

(25) lim H(N, 0 = 1 (N -> +oo ) 

and 

lim E i l i [exp(itkfc(p)/BN) - 1] = 0 
kpKff° 

(26) 
N=+œ V &=2 

hold. Applying the inequality 

|log(l + x)\ = 2\x\, for |*| ^ £ 

in the definition (16) of if (TV, t), we get the estimate 

\\ogH(N, t)\ â 2|e| | / | /B* + 2 ^ [*>(£ ~ l ^ - ' l e x p O ' ^ ) / ^ ) - 1|, 

the summation being over all primes p. By Lemma 4 we therefore have (25). 
A direct application of Lemma 4 gives (26) as well and the proof of the theorem 
is thus complete. 

As a corollary, we shall show that the sufficiency part of the integral limit 
law of Kubilius [5] for his class H is contained in our Theorem. For this we 
first need a definition. 

Definition. A strongly additive function f(n) is said to belong to the class H 
of Kubilius if 

(27) Z V ( / ) = 2 V = E ^ - + « > 

and if there is an integer valued function r(N) —» +oo with N and such that 
log r (TV)/log N -> 0 and Dr{N)/DN -> 1 as N -> +oo . 

Let us put 

(28) EN(f) = £ * = Z A 

(29) 2^(w) =DN~2Zf2(P)/P 

where the summation is over all primes p ^ N for which f(p) < wZ} -̂ We now 
deduce from our Theorem the following result of Kubilius [5, p. 58]. 

COROLLARY. Let f(n) € H and assume that there is a distribution function 
K(u) such that 

(30) KN(u) -> K{u) (N -> +oo ) 

for all continuity points of K{u). Then (f(n) — EN)/DN has a limit law of which 
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the characteristic function <p(t) is determined by the Kolmogorov formula 

(31) log*>(/) = f °° (eitu - 1 - itu)u-2dK(u). 

Proof. We have to verify that the conditions of our Theorem are satisfied 
for f(n) £ H whenever (30) holds and when c = 0, BN = DN and AN = EN. 
To accomplish this goal, let the summations X) with respect to all prime 
numbers p in (14) and (23) be split into four sums 

E = E l + E 2 + Z^3 + Z^4, 

where 

(32) 
i n E i ' P ^ r(N); i n ^ : r(N) < p S N; 

in^:N<p £ NM; i n E ^ P > NM, 

with the function r (N) specified in the definition of the class H and where M 
is a sufficiently large real number, not depending on N. We first show that 
5^4 is smaller than any prescribed value e > 0 in both sums in question. 
Namely, for any real a ^ è(°"o + 1), in both sums, ^ 4 is majorized by (we 
putiV, = N'M,j = 1,2, . . .) 

Z4P" = E E P~a < c E ^ M < e 

for M" sufficiently large. Indeed, from the elementary relation [8, p. 58] 

(33) E ~ = log log* + o(l) 

and by the choice of o-, we get 

V i>~a < ^ ^-d+i/aogjv) < jy-jM/2iogN y> 2 
Nj<p^Nj+i ~ Nj<pûNj+i Nj<v^Nj+\P 

= ^ ( l o g l o g T V ^ x - log log tf, + 0(1)) < Ce*iM 

with a suitable constant C. Turning to ^ 3 we first note that for any real 
number z, |Imexp(ôs)| ^ |z| and |1 — Reexp(is) | ^ \z\. Thus, for any real 
number a ^ 1, both in (14) and in (23), 

where in the last step we made use of the Cauchy inequality. (33) yields that 
the last factor is bounded as N —> +oo. The estimate above therefore gives 
that XI3 is also smaller than any real e > 0 for any/(w) £ H. As a matter of 
fact, since log r(iVM)/log NM <; M~l for N sufficiently large, therefore 
r(NM) ^ N and thus DNx ~ DNl where, as before, iVi = NM. For evaluating 

https://doi.org/10.4153/CJM-1973-017-3 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1973-017-3


202 J. GALAMBOS 

the limits for ]T]i and ^ 2 we need the condition in (30). By the definition 
of KN(u), 

(34) Z \ lexp(itf(P)/DN) - 1 - itf{p)/DN] 
P^N P 

/*+oo 

(eUu - 1 - itu)ir2dKN(u). 

Since the integrand on the right hand side is continuous and bounded in u, 
by the Helly-Bray theorem [7, p. 182] and by (30) we have that the limit as 
N —> +co exists in (34). Putting 

and 

-a(fJ)= Km £ p-1{Re[exp(itf(p)/DN) - 1]} 
iV=+oo p^N 

p(f,t) = lim Z P~1{lm[exp(itf(p)/DN)] - tf{p)/DN], 
N=+oo p^N 

another appeal to the Helly-Bray theorem gives 

/»+oo 

(35) -a(f, t) + ip(f, t) = (eitu - 1 - itu)iT2dK(u). 

It is evident from (35) that both a(f, t) and (3(f, t) are continuous in t. The 
proof of the corollary is thus completed if we show that for all a occuring 
in (14) 

(36) lim £ (~ - -~) {1 - Re[exp(itf(p)/DN)]} = 0 

and that, as N —» +co , 

(37) (DN/t) £ -~ lm[exp(itf(p)/DN)] = Z ~~ + o(DN). 
P^N P p^N P 

Both (36) and (37) easily follow from the fact that f(n) £ H and from the 
elementary relations [8, p. 56] 

(38) Z ^ ~ l o g x 

and 

(39) \-T'^ \ (1 - exp[-(<r " 1} log p]) * ̂ P^-1 ^ ~% • 
P P P p p log N 

being valid for all a with 1 < a ^ 1 + 2/log N. As a matter of fact, by 
(38) and (39) 
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for N large. Also by (38) and (39) and by the Cauchy inequality 

as iV —> +oo. Finally, by making use of the inequality 1 — cos x g x2, we 
have 

£ 2 ( i - i ) {1 - RelexpGTO/Z^)]} g | £ ^ ^ < * 

for TV sufficiently large, and the proof is thus complete. 

We conclude the paper with a few remarks. First of all, we wish to re-
emphasize the fact that in our Theorem we made no assumption on the relation 
of DN(f ) to BN and neither were EN(f ) and AN related. A deep analysis of the 
present work seems to justify to conjecture that the assumptions of the 
Theorem are not only sufficient but also necessary for (f(n) — AN)/BN to 
have a limit law. In this regard, see the comment on p. 137 of [3]. We point 
out that a thorough theory of additive functions exists only for the class H 
(for recent results see [2]). In the past decade, much attention was paid to 
the behaviour of arithmetical functions f(n) when the argument n goes 
through a given sequence of positive integers (not necessarily the successive 
ones). In this direction, no results are known for functions not belonging to 
class H. The method of the present paper could lead to new results in this 
regard if Lemma 3 were extended in such a way that the argument were not 
restricted to run through the consecutive integers. For such an extension, 
a probabilistic argument similar to the one applied in [1], may lead to the 
most general result. 
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