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Accurate prediction of the global properties of wall-bounded turbulence holds significant
importance for both fundamental research and engineering applications. In atmospheric
boundary layers, the relationship between friction drag and geostrophic wind is described
by the geostrophic drag law (GDL). We use carefully designed large-eddy simulations to
study nocturnal stable atmospheric boundary layers (NSBLs), which are characterized by
a negative potential temperature flux at the surface and neutral stratification higher up.
Our simulations explore a wider range of the Kazanski—-Monin parameter, u = Ly/Ls =
[16.7,193.3], with Ly the Ekman length scale and L the surface Obukhov length. We
show collapse of the GDL coefficients onto single curves as functions of ju, thereby
validating the GDL’s applicability to NSBLs over a very wide u range. We show that
the boundary-layer height i scales with ,/L¢Lg, while both the streamwise and spanwise
wind gradients scale with ui /(h*f), where u,, represents the friction velocity and f the
Coriolis parameter. Leveraging these insights, we developed new analytical expressions for
the GDL coefficients, significantly enhancing our understanding of the GDL for turbulent
boundary layers. These formulations facilitate the analytical prediction of the geostrophic
drag coefficient and cross-isobaric angle.
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1. Introduction

A fundamental challenge in wall-bounded turbulent flow is to accurately predict global
properties such as friction drag. This insight is also crucial for practical scenarios as
friction drag can represent up to 90 % of the total drag in maritime navigation (Schultz
et al. 2011) and 50 % in aviation (Spalart & McLean 2011). Additionally, accurately

1 Email address for correspondence: luoginliu@ustc.edu.cn

© The Author(s), 2024. Published by Cambridge University Press 999 A60-1

Check for
updates


mailto:luoqinliu@ustc.edu.cn
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/jfm.2024.969&domain=pdf
https://doi.org/10.1017/jfm.2024.969

https://doi.org/10.1017/jfm.2024.969 Published online by Cambridge University Press

Z. Shen, L. Liu, X. Lu and R.J.A.M. Stevens

determining the friction velocity is required for a thorough analysis of the logarithmic law
(Smits 2022). For rough surfaces, these predictions are more challenging as the impact of
surface roughness is complicated (Chung et al. 2021). Thus, accurately characterizing the
global properties of wall-bounded turbulence is an active research area and high-fidelity
experiments and simulations are essential to advance our understanding of wall turbulence
(Marusic & Monty 2019). For fully developed channel or pipe flows the friction velocity
can be conveniently calculated using the pressure gradient. However, predicting this
parameter for atmospheric boundary layers (ABLs) is more challenging and requires
insight into the mean velocity gradient at the wall (Ricco & Skote 2022).

In contrast to canonical turbulent boundary layers, which are dominated by shear forces
(Townsend 1976), the ABL is additionally influenced by Coriolis forces and thermal
stratification (Stull 1988). Meanwhile, the Reynolds number of ABLs can be two orders
of magnitude larger than what is possible in the laboratory (Smits, McKeon & Marusic
2011). Consequently, the prediction of the ABL turbulence is very challenging. In ABLs
the geostrophic drag coefficient and the cross-isobaric angle can be estimated by the
well-known geostrophic drag law (GDL), which was first proposed for neutral ABLs
(Rossby & Montgomery 1935; Blackadar & Tennekes 1968; Tennekes & Lumley 1972;
Tennekes 1973) and later extended to include the thermal stratification (Zilitinkevich
1969, 1975; Zilitinkevich & Esau 2002), unsteadiness (Zilitinkevich & Deardorff 1974;
Arya 1975) and baroclinicity effects (Arya & Wyngaard 1975; Arya 1978; Hess 2004).
For convective ABLs, the updrafts tend to transit from open cells to longitudinal rolls
when the surface potential temperature flux decreases and the mean wind shear increases
(Salesky, Chamecki & Bou-Zeid 2017). Recently, Tong & Ding (2020) derived a novel
friction law for the convective ABLs in the roll-dominated regime, demonstrating that the
friction velocity correlates with the mean wind speed in the mixed layer rather than with
the geostrophic wind in the free atmosphere. This finding has been numerically confirmed
by Liu, Gadde & Stevens (2023). For conventionally neutral ABLs, Liu, Gadde & Stevens
(2021a) and Liu, Lu & Stevens (2024) have updated GDL parameterizations by performing
high-fidelity simulations.

When atmospheric flows are stably stratified near the surface and develop against
a neutrally stratified flow above, the ABL is considered to be nocturnally stable
(Zilitinkevich & Esau 2005). Nocturnal stable atmospheric boundary layers (NSBLs) have
negative potential temperature fluxes at the surface and neutral stratification aloft. They
prevail at nocturnal conditions but can also survive for several hours after sunrise over
continental lands and persist continuously for days in polar regions (Mahrt 2014). Their
global properties (e.g. the boundary-layer height, the geostrophic drag coefficient and the
cross-isobaric angle) are crucial for the heat, mass and momentum exchange between
the surface and the free atmosphere. Understanding these boundary layers is of great
fundamental interest and very relevant for meteorological applications (LeMone et al.
2019). However, so far, the understanding of NSBLs remains limited, and in this work, we
therefore focus on a detailed characterization of their global properties using simulations
and theoretical analysis.

In this study, we consider the NSBLs under quasi-steady, barotropic and horizontally
homogeneous conditions. For simplicity, we focus on the Northern Hemisphere with
latitude ¢ > O so that the Coriolis parameter f = 282 sin¢ > 0, where £2 = 0.729 x
10~*rad s~ is the rotation rate of the Earth. Then, it follows from dimensional analysis
that the dynamics in NSBLs is governed by only two independent dimensionless
parameters, e.g. the Rossby number Ro = u../(fzp) (Rossby & Montgomery 1935) and the
Kazanski-Monin parameter u = Ly /Ly (Kazanski & Monin 1961), where u, is the friction
velocity, zq is the roughness height, Ly = u, /f is the Ekman length scale (Ekman 1905)
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and L; = —ui /(Bgs) is the surface Obukhov length (Obukhov 1946) with B denoting the
buoyancy parameter and g, the surface potential temperature flux. The Rossby number
characterizes the relative importance of the Coriolis force and friction drag and the
Kazanski—-Monin parameter p represents the strength of thermal stratification near the
surface, which varies within the interval —10° < u < 103 in the atmosphere. For |u| <
10 the ABL is traditionally considered neutral (Zilitinkevich & Esau 2002); while for
w = 0(10%), the ABL turbulence is intermittent and may no longer fully satisfy the usual
conditions for the definition of turbulence (Mahrt 2014). Therefore, in this study we only
consider the NSBLs with u = 0(10) ~ O(10?).

We consider the coordinate system that is oriented such that the streamwise direction is
parallel to the wind direction at the surface, and the spanwise direction is orthogonal to
the streamwise and vertical directions (see figure 1). Then, the GDL for the quasi-steady,
barotropic and horizontally homogeneous NSBLs can be written as (e.g. Zilitinkevich &
Esau 2005)

kU,

A=1InRo — , B=-— , (1.1a,b)
Uy Uy

where « = 0.4 is the von Kdrmén constant, (Ug, V) are the streamwise and spanwise
components of the geostrophic wind, which are assumed to be independent of height z, and
A and B are the GDL coefficients. Blackadar & Tennekes (1968) proved using similarity
and asymptotic analysis that for neutral ABLs the A and B parameters are independent of
the Rossby number, Ro. This analysis also gives that, for NSBLs, A and B only depend
on the Kazanski—-Monin parameter u, see also Zilitinkevich (1975). The geostrophic drag
coefficient u,/ (Uéz, + V2)1/2 and the cross-isobaric angle ap = arctan(|V,/Ug|) can be
determined from (1.1a,b). Therefore, the A and B coefficients are critical in estimating
available wind resources at higher elevations by extrapolating wind profiles beyond the
surface layer (Gryning et al. 2007; Kelly & Gryning 2010). Note that similar drag relations
also exist for various wall-bounded turbulent flows, such as turbulent boundary-layer flow,
channel flow and pipe flow (Pope 2000; Marusic ef al. 2013). Due to the absence of
Coriolis forces, the corresponding friction laws relate only to (1.1a) and are traditionally
expressed through the Reynolds number.

The GDL coefficients A and B can be parameterized through two main approaches.
One is by parameterizing the eddy viscosity profile (Rossby & Montgomery 1935; Ellison
1955; Krishna 1980; Kadantsev, Mortikov & Zilitinkevich 2021), and the other is by
parameterizing the mean velocity profiles (Zilitinkevich 1989b,a; Zilitinkevich et al. 1998;
Zilitinkevich & Esau 2005; Narasimhan, Gayme & Meneveau 2024). Then, an asymptotic
matching of the inner layer velocity profile with the outer layer is used to determine the
final expressions of the GDL coefficients A and B. For example, Kadantsev et al. (2021)
derived analytical expressions for A and B by assuming that the eddy viscosity satisfies
a linear profile in the surface layer and a constant profile in the Ekman layer. However,
this eddy viscosity approximation is inconsistent with that proposed by Basu & Holtslag
(2023), who derived the eddy viscosity directly from the Ekman equations by assuming a
power law of the total turbulent shear stress.

Based on the assumed velocity and its gradient profiles, Zilitinkevich & Esau (2005)
proposed the following expressions of the GDL coefficients A and B for quasi-steady and
barotropic NSBLs:

h h
A = —amy + In(ag + ma) — In (-) . B=—(by+bm3). (1.2a,b)
Ly Ly
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Figure 1. Schematic representation of NSBLs (not to scale). It shows the velocity and potential temperature
profiles as a function of height, the definition of boundary-layer depth and the typical Ekman spiral in the
boundary layer. Here, f is the Coriolis parameter, & is the boundary-layer height, o is the angle between
the surface stress and the geostrophic wind and (U, V) are the velocity components along the (x,y) axes,
respectively. The x axis is parallel to the wind on the surface, the z axis points upwards and (x, y, z) forms a
right-handed coordinate system.

Here, (a, ao, b, bo) are empirical constants, / is the boundary-layer height and (my4, mp)
are the composite stratification parameters

) () = () ()

2 fa 2 b

md=(—) + o omh=(—) +(Z) . (13a,b)
4 (L) Ly B=\ L Ly

where (cfy, ¢pp) are empirical constants. To obtain the values of A and B analytically,
the boundary-layer height / of quasi-steady and barotropic NSBLs is parameterized as
(Zilitinkevich, Esau & Baklanov 2007)

Ly 2 1 "
(%) -2+% (14
where (c;, ¢s) are empirical constants.

Given the critical importance of GDL parameterization for both theoretical research
and practical applications, it is essential to investigate the GDL expressions of A and
B for NSBLs proposed by Zilitinkevich & Esau (2005). In their analysis of the GDL,
Zilitinkevich & Esau (2005) divided the surface layer into a logarithmic layer and a z-less
stratification layer. Subsequently, they constructed the streamwise and spanwise velocities
using the eddy viscosity approach and the assumption that the streamwise and spanwise
velocity gradients above the surface layer scale as u, /Ly and h*f /L?, respectively. The
term ‘z-less stratification’ was first used by Wyngaard & Coté (1972), which indicates that
the height z is no longer a primary scaling variable for very stable ABLs. However, the
validity of z-less stratification is still an open question that requires further clarification
(Grachev et al. 2013). For example, it is assumed to happen under very stable stratification
(Mahrt 2014), but has also been reported in weakly stable conditions (Stiperski & Calaf
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2018). Note that the existence of a z-less stratification layer is not a prerequisite for the
validity of the GDL. In other words, the division of the surface layer into a logarithmic
layer and a z-less stratification layer is not necessary for deriving the expressions of A
and B. In addition, our analysis will show that there is no z-less stratification layer in
the weakly stable conditions considered in this study. Therefore, removing the concept of
z-less stratification from the analysis of the GDL may lead to a derivation that helps reveal
the essential assumptions and underlying physics of the GDL.

Due to the significant challenges in atmospheric measurements (Fernando & Weil 2010),
high-fidelity data from field experiments are very limited. With the rapid advancement of
computational methods, obtaining simulation results for wall-bounded turbulent flows has
now become a feasible method to produce high-fidelity data for model development. As the
Reynolds number in ABLs is very high, large-eddy simulation (LES) is a widely accepted
technique to model these flows (Kim & Leonard 2024). However, extensive datasets,
covering a wide parameter range for u and Ro for NSBLs are very rare. Zilitinkevich &
Esau (2005) obtained their database using LES on a 64> mesh and used the dynamic mixed
subgrid-scale (SGS) model (Vreman, Geurts & Kuerten 1994). Despite significant scatter,
Kadantsev et al. (2021) also used this database to investigate their newly derived GDL. The
grid convergence of stable ABL simulations has been investigated and was found to depend
on various factors such as the wall modelling (Maronga, Knigge & Raasch 2020), the
roughness length (Couvreux et al. 2020), the SGS model (Dai et al. 2021) and numerical
schemes (Maronga & Li 2022). Although this issue remains partially unresolved, it is
widely accepted that the lowest grid level should exceed the lower limit of the inertial
sublayer (Basu & Lacser 2017). Furthermore, Maronga & Li (2022) demonstrated that
simulation duration is critically important to minimize the influence of inertial oscillations
on the results (Van de Wiel er al. 2010). Taking these lessons into account, we have
performed a unique set of simulations covering a wide range of Ro and u, that facilitates
a robust evaluation of GDL parameters without scatter in global flow properties.

The organization of the paper is as follows. In § 2, we discuss the simulation design.
In § 3, we show that the boundary-layer height scales as ,/L¢Lg and the wind gradients
scale as u2/(h%f). With these physical insights, we derive the GDL coefficients A and B in
§ 4, which avoids the concept of the z-less stratification layer. In § 5, we show that A and
B obtained from LES collapse to a single curve as function of w, which is well captured
by the presented GDL parameterization for NSBLs given by (1.1a,b). We conclude with a
summary of the main findings in § 6.

2. Large-eddy simulation framework
2.1. Governing equations

We use LES to simulate the NSBL flow over an infinite flat surface with homogeneous
roughness. We integrate the spatially filtered continuity equation, momentum equation
and potential temperature equation (Albertson 1996; Albertson & Parlange 1999; Liu et al.
2021a; Liu, Gadde & Stevens 20215b)

V.-i=0, (2.1)
Qi+ @xa=fe,x (G—u)+pO —(@)e,—Vp—V -1, (2.2)
30 +it-Vo=-V.q, (2.3)

where the tilde denotes spatial filtering, (-) represents horizontal averaging, u is the
velocity, @ = V X u is the vorticity, p is the modified pressure departure from equilibrium,
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6 is the potential temperature, 8 is the buoyancy parameter, G = (Ug, Vg, 0) is the
geostrophic wind velocity, T denotes the deviatoric part of the SGS shear stress and g
represents the SGS potential temperature flux. Molecular viscosity is neglected as the
Reynolds number of atmospheric flows is very high.

For closure of (2.1)—-(2.3), we parameterize the SGS shear stress and potential
temperature flux as

. - 1
T=-2u5 g=-wVl S= Vit (VinT, (2.4a-c)

where v, and vg are the eddy viscosity and eddy diffusivity, respectively, and S is the
resolved strain-rate tensor with the superscript 7 denoting a matrix transpose. We use the
anisotropic minimum dissipation (AMD) model (Abkar & Moin 2017), which has been
extensively validated (Gadde, Stieren & Stevens 2021), to perform the simulations. In the
AMD model, the eddy viscosity and eddy diffusivity are determined so that the energy of
the sub-filter scales of the LES solution does not increase with time.

2.2. Numerical method

Our code is an updated version of the one used by Albertson & Parlange (1999). The grid
points are uniformly distributed, and the computational planes for horizontal and vertical
velocities are staggered in the vertical direction. The first vertical velocity grid plane
is located at the ground, and the first streamwise and spanwise velocities and potential
temperature grid planes are located at half a grid distance away from the ground (Albertson
1996). In the vertical direction, we use a second-order finite difference method, while we
use a pseudo-spectral discretization with periodic boundary conditions in the horizontal
directions. Time integration is performed using the second-order Adams—Bashforth
method. The projection method is used to ensure the divergence-free condition of the
velocity field.

At the top boundary the vertical velocity, the SGS shear stress and the SGS potential
temperature flux are enforced to zero, while the potential temperature is imposed by
a constant value. In the top 25 % of the domain a Rayleigh damping layer with the
damping frequency 0.001s~! determined by trial and error is applied every time step
to reduce the effects of gravity waves (Klemp & Lilly 1978; Liu & Stevens 2021). At
the bottom boundary, we employ a wall model based on the Monin—Obukhov similarity
theory (MOST) for both the velocity field and the potential temperature field (Monin &
Obukhov 1954; Moeng 1984; Stoll & Porté-Agel 2008; Liu & Stevens 2021)

=2 4 =2y\1/2 _4
" = k(m” + v°) g = Kux (O — 0) ’ (2.50.b)
In(z/z0) — ¥m In(z/z0) — ¥n
where the overline denotes filtering at a scale of 2A with A = (AxAyAz)'/3 the filter
scale of (2.1)—=(2.3) and Ax, Ay, Az the grid spacings in the streamwise, spanwise and
vertical directions, respectively, and where 0, is the potential temperature at the surface,
and v, and vy, are, respectively, the stability corrections for the momentum and potential

temperature fluxes, which for NSBLs can be parameterized as (Businger et al. 1971; Stull
1988; Huang & Bou-Zeid 2013; Sullivan et al. 2016; Abkar & Moin 2017)

VYm = —4.8kz/Ls, Y= —18kz/Ls, z/Ls>0. (2.6a—c)

Note that the definition of Ly in this study is the same as Zilitinkevich & Esau (2005)
but different from Liu & Stevens (2021), and thus the constant « appears in (2.6a—c).
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In addition, we note that the MOST, which is the basis of the wall model (2.5a,b), has
been confirmed by various direct numerical simulations (e.g. Shah & Bou-Zeid 2014) and
field experiments (e.g. Businger ef al. 1971). Since the MOST is generally valid in the
surface layer of the ABLs in weakly stable regime (Grachev et al. 2005; Katul, Konings
& Porporato 2011; Stoll et al. 2020), the wall model based on the MOST is used in this
study.

2.3. Computational set-up

To obtain simulation results independent of the computational domain, the domain
size in each direction has to be several times the size of the largest eddies or the
boundary-layer height (Couvreux et al. 2020). The selected computational domain size is
800 m x 800 m x 800 m in the streamwise, spanwise and vertical directions, respectively.
As shown in table 1, the deepest boundary-layer height is approximately 266 m, which is
less than one third of the computational domain size. Since the MOST-based wall model is
employed, the lowest grid level z; should be above the lower limit of the inertial sublayer z,
(Basu & Lacser 2017). The parameter z, can be related to the roughness length zp, and their
ratio depends on the atmospheric stability. In particular, for stably stratified conditions,
the ratio z,/zo for the wind profile was found to be significantly lower, approximately
in the range of 11 ~ 55 (Garratt 1983; Basu & Lacser 2017). Meanwhile, z; should be
below the upper limit of the inertial sublayer, i.e. the Ozmidov length Lo = (g¢/N°)!/2,
where ¢ is the mean viscous dissipation and N is the Brunt—Viisild frequency (Dougherty
1961; Ozmidov 1965; Huang & Bou-Zeid 2013; Sullivan et al. 2016). We select the grid
resolution as 192 x 192 x 201 such that the grid is nearly isotropic (Gadde et al. 2021),
and, more importantly, z1/z0 > 20 since zg < 0.1 m (see table 1). At the same time, this
grid also satisfies the grid resolution requirement z; /Lo < 1 (see figure 3 below).

The simulations are initialized with a constant potential temperature 6 = 265K and a
constant geostrophic wind speed G = 8 ~ 12ms~'. Turbulence is triggered by adding
random perturbations. A random noise term with a magnitude of 3 % of the geostrophic
wind speed is added to velocities below 50 m, and for the potential temperature a noise
term with an amplitude of 0.1 K is added. The reference temperature is set to 6p = 263.5 K.
The latitude ¢ varies between 30° and 73°, and the surface cooling rate is set to C, =

0.05 ~ 0.35 Kh™!. The roughness length is zg = 0.001 ~ 0.1 m. To remove the effects of
slowly decaying inertial oscillations on the top of the domain (Van de Wiel et al. 2010;
Maronga & Li 2022), the initial transient period lasts for 1.5 inertial time periods and
the statistics are collected over the following one inertial period, i.e. ft € [3m, 5S7t] (see
figure 2). This ensures the flow has reached its quasi-stationary state and the changes of u,
and «g are less than 5 % of their mean values (see figure 2). We note that many time steps
(~ 0(107)) are required to resolve the large range of relevant time scales in the problem,
spanning from small-scale turbulence to large-scale inertial oscillations. A summary of
these simulations is given in table 1, where the cases are arranged such that the value of ¢
increases monotonically from upper to lower rows.

We remark that the simulation input parameters of case 20 are the same as the
standard Global Energy and Water Cycle Experiment Atmospheric Boundary Layer Study
case (Beare et al. 2006; Liu & Stevens 2021), with the only exception being that the
free-atmosphere lapse rate has been set as zero to ensure the flow belongs to the NSBL
regime (Maronga et al. 2020). Besides, we remark that the simulations of Zilitinkevich
& Esau (2005) that will be used for comparison were performed for ft = 2.17, with time
averaging over the period ft € [1.3m, 2.17t]. As shown in figure 2, a time averaging should
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Figure 2. The time history of the domain-averaged (a) friction velocity u, and (b) cross-isobaric angle «g. The
solid lines are the simulation cases of table 1, and the dashed line denotes the beginning of the time-averaging
window.

0.5
o ¢=130°
=400
04f ° 9
é=50°
o =60
o 03F e ¢>70°
S|
T2t o*
0.1 e® *
o °°
O i i
10 30 100 300

n

Figure 3. The ratio z;/Lo vs the Kazanski-Monin parameter 1. The simulation data are from table 1 and the
Ozmidov length L is calculated at z = z; (the lowest grid level).

start around ft ~ 37 to ensure reliable determination of the friction velocity u, and the
cross-isobaric angle «p. This is the main reason for the large scatter of the simulation data
of Zilitinkevich & Esau (2005). In contrast, the simulation data obtained from our LES
with much longer simulation time show very limited scatter (see below).

It is well known that sufficient grid resolution is important in simulating stable ABLs
with low turbulence levels (Huang & Bou-Zeid 2013; Maronga & Li 2022). Therefore,
a quantitative investigation into the appropriateness of the chosen grid resolution is
performed. Figure 3 shows that for all simulated cases the ratio z; /Lo < 1, which justifies
the use of the MOST-based wall model. Similar to Sullivan et al. (2016), figure 3 shows that
the Ozmidov length Lo decreases as the cooling rate C, increases. Thus, if a much larger
cooling rate, e.g. C, = 2.5Kh~! (Huang & Bou-Zeid 2013), is considered, a higher grid
resolution may be needed. However, for the cooling rate range C, = 0.05 ~ 0.35Kh~!
considered here, the chosen grid resolution meets the required standards.

To further illustrate the effect of grid resolution on simulation results, figure 4 shows
the mean vertical profiles of the wind speed, potential temperature, total shear stress
and potential temperature flux for case 2 in table 1, which has the largest value of
© = 193.3 and hence may have the strongest dependence on the grid resolution. The figure
indicates that the magnitudes of the total shear stress and potential temperature flux in
the boundary layer, as well as the boundary-layer height, decrease slightly as the grid
resolution increases. This lack of strictly grid convergence in LES of the stable boundary
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Figure 4. The grid dependence of the mean vertical profiles of the (a) wind speed +/U? + V2, (b) potential
temperature ®, (c¢) total shear stress t and (d) potential temperature flux ¢g. The simulated case is case 2 with
= 1933 in table 1.

layer is well known and remains partially unresolved (Maronga & Li 2022). Nevertheless,
figure 4 shows that the mean vertical profiles with medium and dense grid resolutions
do not change significantly. This finding confirms the appropriateness of the adopted grid
resolution of 192 x 192 x 201 in this study.

3. Boundary-layer height and wind gradient profiles
3.1. Boundary-layer height

In stable ABL flows the profile of the magnitude of total turbulent shear stress t is often
expressed as follows (Nieuwstadt 1984; Sorbjan 1986; Basu & Holtslag 2023):

r (1 - E)a. 3.1

We remark that (3.1) was proposed under quasi-steady, barotropic and horizontally
homogeneous conditions (Nieuwstadt 1984). Thus, it might not be valid for unsteady
(Mahrt 2014; Momen & Bou-Zeid 2017), baroclinic (Arya & Wyngaard 1975; Floors,
Pefia & Gryning 2015; Momen et al. 2018) or surface heterogeneous (Schmid ef al.
2019; Cooke, Jerolmack & Park 2024) flows. In addition, we remark that many different
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Figure 5. The profile of normalized total turbulent shear stress. Open circles: simulation data from table 1;
open triangles: field data of Nieuwstadt (1984); open inverted triangles: field data of Wittich (1991); solid line:
prediction of (3.1) with o = 3/2.

definitions of the stable ABL height & are available in literature, such as (a) the layer
through which surface-based turbulence extends, (b) the top of the layer with downward
potential temperature flux, (c) the height of the low-level jet and (d) the top of the potential
temperature inversion layer (Vickers & Mahrt 2004).

In this study, we adopt definition (a). Specifically, the boundary-layer height % is defined
as the height at which the total shear stress first vanishes. In particular, /4 is proportional to
the height hg o5, where the total shear stress reduces to 5 % of its surface value (van Dop
& Axelsen 2007; Liu et al. 2021b)

}% =1-0.05", (3.2)

By utilizing his local scaling hypothesis and the constant assumption of the flux
Richardson number, Nieuwstadt (1984) determined analytically that the exponent o =
3/2. Note that the value of & may not be a universal constant and other values of « have
also been reported in the literature (Caughey, Wyngaard & Kaimal 1979; Yokoyama, Gamo
& Yamamoto 1979; Lacser & Arya 1986; Sorbjan 1986; Lenschow et al. 1988; Byun 1991;
Delage 1997).

Figure 5 shows the profile of normalized total turbulent shear stress in NSBLs. The open
circles are the simulation data from table 1, the open triangles are the field data taken from
Nieuwstadt (1984), the open inverted triangles are the field data of Wittich (1991) and the
solid line is the prediction of (3.1) with & = 3/2. The good agreement of simulation data
with field measurements validates our simulation results. Furthermore, our simulations
indicate that the 3/2-law of total turbulent shear stress proposed by Nieuwstadt (1984)
describes the data across the entire parameter range considered here.

For NSBLs with large values of u, the parameterization of the boundary-layer height &
given by (1.4) can be approximated as

; (3.3)
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Figure 6. The dimensionless boundary-layer height /1/Ls vs the Kazanski-Monin parameter . Filled circles:
simulation data of table 1; open circles: simulation data of Zilitinkevich et al. (2007); solid line: prediction of
(3.3) with ¢y = 0.62 obtained by a least-squares fit.

where c; is the Zilitinkevich constant (Derbyshire 1990), which depends on the definition
of the boundary-layer height 4. Equation (3.3) was originally proposed by Zilitinkevich
(1972) based on boundary-layer scaling arguments and implies that the boundary-layer
height h scales as \/LsL,. Based on this definition, Zilitinkevich (1989b) summarized c;
from several studies and found it to vary between 0.55 and 1.58. This large variation affects
the values of other empirical constants in the GDL formulation of Zilitinkevich & Esau
(2005). As shown below, this is not the case for our formulation, where only the scaling of
(3.3) matters while the value of c; is irrelevant. This is also the case for the value of « since
it can be absorbed into ¢y, see (3.2) and (3.3). Recently, Basu & Holtslag (2023) derived
two different eddy viscosity profile formulations, both leading to the boundary-layer height
parameterization of Zilitinkevich (1972). The two derivations give ¢y = 0.922 and ¢; =
0.658, respectively, and they argued that the Zilitinkevich constant ¢y = 0.658 seems to be
a better option. More recently, Narasimhan et al. (2024) also reported ¢; = 0.78 based on
their LES data.

Figure 6 compares the dimensionless boundary-layer height 4/L; obtained from the
present simulations of table 1 (filled circles), the simulation data of Zilitinkevich et al.
(2007) (open circles) and the prediction of (3.3) with ¢y = 0.62, which is determined
using a least-squares fitting procedure based on the present LES database. All symbols
collapse to a single curve, indicating that the dimensionless boundary-layer height 2/Ls
indeed only depends on the Kazanski—-Monin parameter p. The good agreement between
the simulation data and theoretical prediction confirms the validity of the boundary-layer
height parameterization of (3.3) over a much wider range of p than Zilitinkevich et al.
(2007) considered. Note that the simulation data of Zilitinkevich et al. (2007), which have
a smaller range of w than the present study, are very close to our theoretical model and
simulation results.

3.2. Wind gradient profiles

Recall that we focus on the quasi-steady and barotropic NSBLs in weakly stable regime,
whose dynamics is governed by the Ekman equations

W _rvovy, o rw-uy (3.4a,b)
_ = = — o) _— = — o), Aad,
dz 8 dz 8
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Figure 7. The vertical profiles of the normalized (a) streamwise and (b) spanwise velocity gradients. The
solid line is the corresponding sample mean profile.

where 7, and 7y are the horizontally averaged streamwise and spanwise turbulent shear
stresses. The vertical derivative of (3.4a,b) is

2 2 2 2
O (m)- e () 5505
dg? \u? uZ dz’  dg% \u2 uZ dz
where & = z/h is the normalized coordinate. Since the total turbulent shear stresses nearly
collapse onto a single curve as a function of z/h, see (3.1) and figure 5, it is intuitive
to conjecture that the wind gradients dU/dz and dV /dz normalized with ui /(h*f) should
also approximately collapse. To confirm this conjecture, figure 7 shows the streamwise and
spanwise velocity gradients normalized by ui /(h*f). Both tend to collapse to a single curve
and are O(1) above the surface layer. This indicates that ui /(h*f) is indeed the appropriate
scaling for the wind gradients above the surface layer (Lin & Segel 1988). Additionally,
neither dU/dz nor dV/dz shows a uniform region, i.e. a region independent of z. This
indicates that a z-less stratification layer is absent in NSBLs in the studied parameter range
of u and Ro.

To quantify the effectiveness of the scaling uZ2/(h°f), figure 8 shows the mean absolute
error (MAE) of the wind gradient profiles in figure 7. Here, the MAE is calculated as

1 .
MAE(X) = — Z 1X; — X|, (3.6)
n
i=1

where X = (hzf / ui)(dU /dz) and (hzf / ui)(dV/ dz), X is the sample mean (i.e. the average
of all cases) profile of X (see figure 7), i is the case number and n = 20 is the total number
of all simulated cases (see table 1). Figure 8 shows clearly that the MAEs of wind gradients
normalized by the scaling ui /(h*f) are O(0.1) above the surface layer. This quantitatively
confirms the effective collapse of the wind gradients by the scaling ui /(h*f) in the studied
parameter range.

We remark that Zilitinkevich & Esau (2005) assumed that the wind gradients dU/dz
and dV/dz above the surface layer scale as u,/Ls and h*f /Lf, respectively. For NSBLs

with large values of 1, we have shown that the boundary-layer height £ scales as /L¢Ls,
see (3.3) and figure 6. Under this condition, the scalings us/Lg, h’f /Lf and uZ/(h*f) are
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Figure 8. The MAE of (3.6) of the normalized wind gradients. The dashed line denotes the mean location of
the surface-layer top.

equivalent since

Uy /Ls _ h? _ 2 hzf/L? _ K 4

= =c3, = =cq.
/02 LLs W) G

(3.7a,b)

However, choosing the scaling ui /(h*f) may still be more convenient in practice, as
it is directly derived from the vertical derivatives of the Ekman equations (3.5a,b)
and hence ensures the normalized wind gradients above the surface layer are O(1). In
addition, for smaller values of u, the difference between these scalings may exist since the
boundary-layer height / ceases to scale as ,/LyL; but scales as Ly.

4. Theoretical model

In this section, we will derive the analytical expressions of the GDL coefficients A and B
for NSBLs under quasi-steady, barotropic and horizontally homogeneous conditions.

4.1. Analytical expression of A

We first determine the analytical expression of the GDL coefficient A. In the surface layer,
of which the height is typically approximately 10 % of the boundary-layer height 4 (Basu
& Lacser 2017), the mean streamwise velocity U is assumed to be described by the MOST
(Monin & Obukhov 1954; Businger et al. 1971)

kU Z z
— =In{— )4+ cy—, 4.1
Us (Zo) l//LS )

where ¢y is an empirical constant and, according to (2.6a—c), ¢y, = 4.8« in this study.
Note that (4.1) is also the basis of the wall model employed in the current LES.
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Above the surface layer or in the Ekman layer, figure 7(a) shows that the streamwise
velocity gradient dU/dz scales as u2/(h*f). Thus, we can assume

dUu u2 z
= = , =2, 4.2
g = h®. E= 4.2)
where f,, is independent of Ro and w. Integrating (4.2) from below to the top of the
boundary layer and noting that Ly = u, /f, we find

K L ('
—(Ug—U) = —/ Ju(§) d§". 4.3)
Uy h £

We further assume the mean streamwise velocity U given by (4.1) and (4.3) matches
at the interface & = L;/(c1h) or z = Lg/c1, where c; is an empirical constant. Thus, by
substituting (4.1) into (4.3), we find

kU L c L 1
g ln< s ) + ¥ —f/ fu(&) dE'. (4.4)
Uy €120 ct b Jigen
Finally, substituting (1.1a) and (3.3) into (4.4) and noting that 4 = Ly/L,, we obtain
A=Inp—ar i+ a, (4.5)
where
1! c
ay = —/ fu€)dE', ay=Inc — L. (4.6)
Cs J1/cics /1t C1

Without knowing the form of f,,, the analytical expression of a; and thus of A cannot be
obtained. However, figures 6, 7(a) and 9 indicate that ¢, = O(1), c; = O(1) and f;, = O(1)
above the surface layer. Thus, da;/du :fu/(2c1c%u3/2) = 0(n=3/?) = 0(1073) when
w = 0(10%), indicating that a; depends only very weakly on . and hence can be assumed
as a constant for simplicity. In this sense, the analytical expression of A is given by (4.5),
which involves only two empirical constants (aj, c1) or equivalently (ap, a2). Note that
(4.5) has the same structure as equation (24) of Zilitinkevich & Esau (2005). However,
in our derivation we divide the boundary layer only into the surface layer and the Ekman
layer, and requiring a z-less stratification layer is unnecessary. This makes the physics
underlying the GDL more clear: it is a direct result of the asymptotic matching of the
velocity profile between the surface layer and the Ekman layer. In addition, by making
a comparison between (1.2a) and (4.5), we see the term In(ag + m4) in (1.2a) should be
ao + Inmy. In this way, (1.2a) in the limit ;« >> 10 approaches A = In u — ac,,/u + ao,
which is the same as (4.5) if acy, = a1 and ag = aj.

4.2. Analytical expression of B
To determine the analytical expression of B, we recall that

%— (U -U,) “4.7)
dz =/ 87 ’

where 7y is the spanwise component of the total shear stress tensor. We focus on the surface
layer. Then, by substituting (1.1a) and (4.1) into (4.7) we obtain

k drty

Z Z
— =A+In{— ) +cy—. 4.8
fur (w> ', @9
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The bottom boundary condition of (4.8) is 7,(0) = 0. Integrating (4.8) from O to z, one
obtains

KTy

Sty

In the surface layer the eddy viscosity approach is assumed to be valid, such that
(Zilitinkevich & Esau 2005)

2
—A-Dz+zhn (L%) +C¢2ZT. (4.9)
S

dv 1 |
—, K, = L, -=-+4-—=, 4.10
dz m = [l Iz * Ly (4.10)

Ty = Ky,
where V is the mean spanwise velocity. We remark that there is an extensive discussion in
the literature about the eddy viscosity approach used here (see, e.g. Constantin & Johnson
2019), where the eddy viscosity K, can be a function of height (Grisogono 1995), stability
(Nieuwstadt 1983) and baroclinicity (Berger & Grisogono 1998). In these studies, the
velocity profiles were derived based on assumed K, profiles. However, correct K, profiles
in the whole boundary layer are very difficult to obtain and sometimes the eddy viscosity
approach itself might become invalid in some regions of the boundary layer (Liu & Stevens
2022; Liu et al. 2023). Because the eddy viscosity approach is generally valid in the surface
layer, it is adopted here. In particular, in the surface layer K, in (4.10) is determined from
(4.1) and the approximation K,,,dU/dz ~ ui.

By combining (4.9) and (4.10), we find

k2dV z z 1 z cy Z
Td—z—[A—l-i-ln(le)}-i—Cwl:[( —§>+IH<L—f)+7L—Sj|. 4.11)

The bottom boundary condition of (4.11) is V(0) = 0. By integrating (4.11) from O to z
one can determine the mean spanwise velocity V in the surface layer as

K2V z cy z 4 cy 2
el sl 5

Above the surface layer, figure 7(b) shows that the spanwise velocity gradient dV/dz
scales as u2/(h*f) for NSBLs in the studied parameter range of Ro and . Thus, similar to
the derivation of A, we can assume

dv u?
Kd—Z = _hT (&), (4.13)

where f, is independent of Ro and w. Integrating (4.13) from below to the top of the
boundary layer and noting that Ly = u, /f, we obtain

K Ly ('
—(V,=V)= ——/ So(§7) d§". (4.14)

We further assume the mean spanwise velocity V given by (4.12) and (4.14) matches
at the interface & = L;/(coh) or z = Lg/cp, where ¢, is an empirical constant. Thus, by
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substituting (4.12) into (4.14) and noting that u = Ly /Ly, we obtain

. 1
"—ng—L—ff fod + A~ 2~ In (o))
L

Use h Jisjean KCo
1
Y S R R S (4.15)
Kcol 2¢p RIe))
Substituting (1.15), (3.3) and (4.5) into (4.15), we find

by b3
B=bJ/n+—+—, (4.16)

i N/

where
aj

1 1 c
by :_/ fuEhdg’, bzz—(1+—w),
s J1jeres i ke 2¢2

1 c o
b3=—|:(1+1nc2—a2)<1+—w)+ ——I/Ii|-

KCo 2¢o 603

4.17)

Finally, since the final term on the right-hand side of (4.16) is much smaller than the other
two terms for 1 >> 10, (4.16) can be written as

by
B=1b —_—. 4.18
/T NG (4.18)

Similar to @; we can assume b to be constant. Therefore, the analytical expression of B
is given by (4.16), which also involves two empirical constants (b1, ¢3) since (aj, ¢1) are
already given by (4.5). Note that (4.18) is different from equation (37) of Zilitinkevich &
Esau (2005). The reason is as follows: in their derivation Zilitinkevich & Esau (2005)
divided the surface layer into a logarithmic layer and a z-less stratification layer, and
determined the spanwise velocity in the z-less stratification layer by only keeping the
term proportional to z2. This leads to a discontinuity of the spanwise velocity across
the interface of the logarithmic layer and the z-less stratification layer. As a result, their
obtained equation (37) only included a single term similar to by ,//t, which underestimates
the values of B for small and moderate & and thus a correction constant b is introduced to
their general expression of B in (1.2b). Actually, (1.2b) reduces to B = bcgﬂ + bocs/ 1k
in the limit w >> 10, which is the same as (4.18) when bcf = by and bgcy = by. Because
we treat the surface layer as a whole, the continuity of the spanwise velocity is satisfied
automatically. As a result, our derivation gives a higher-order term, and hence, there is
no need to introduce an additional correction constant. The effectiveness of this treatment
also reveals the essential physics of the GDL more clearly.

4.3. Further remarks

We remark that when deriving the analytical expressions of A and B, i.e. (4.5) and (4.16) we
have made two ansatzes: first, the streamwise and spanwise velocity profile between the
inner and outer layers matches at a dimensionless height 1/(cics,/i) and 1/(cz2c54/1),
respectively; and second, a1 and b can be approximated as constants that are independent
of . These ansatzes enable us to predict well (A, B) without knowing the forms of (f,, f,)
and with reasonable values of (c1, ¢2), see §5 below. This fact also verifies the ansatzes
themselves. However, if one assumes that the streamwise and spanwise velocity profiles
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Figure 9. The GDL coefficient A vs the Kazanski-Monin parameter . Filled circles: simulation data of
table 1; open circles: simulation data of Zilitinkevich & Esau (2005); dashed line: prediction of (1.2a) proposed
by Zilitinkevich & Esau (2005); solid line: prediction of (4.5) with a; = 0.72, ¢; = 2.25 obtained by a
least-squares fitting procedure.

between the inner and outer layers match at dimensionless heights independent of w, then
one would find these heights are too close to the top of boundary layer, and therefore, this
assumption should be abandoned. On the other hand, if one assumes that a; and b; can
be expanded in power series of 1/,/u, then the values of (cy, c2) cannot be determined
without knowing the forms of (f;, f,) and thus this assumption should also be discarded.
We further remark that the two velocities U, and V, can be obtained by substituting (4.5)
and (4.16) into (1.1a,b). At first sight, these two velocities seem to be expressed to different
orders of 1. However, we emphasize that the high-order term in B or Vy is obtained directly
by ensuring the continuity of the spanwise velocity at the matching height, which differs
from the formal asymptotic expansion. We also emphasize that, since (4.5) and (4.16)
predict (A, B) accurately, they also predict well (Ug, V) and hence the geostrophic drag
coefficient and the cross-isobaric angle.

5. Results and discussion
5.1. The performance of the analytical expressions of A and B

Figure 9 compares the GDL coefficient A as obtained from the theoretical predictions and
simulation results of the present study with those of Zilitinkevich & Esau (2005). The
results indicate that A decreases monotonically with increasing p. The present simulation
data (filled circles) collapse well onto a single curve and have much less scatter than the
Zilitinkevich & Esau (2005) data. We remark that the simulation data of Zilitinkevich
& Esau (2005) were averaged over the period ft € [1.37, 2.11t]. Because the flow above
the boundary layer is neutrally stratified, the boundary layer is still developing during
this period (figure 2). Thus, the simulation duration and time-averaging period should be
the main reasons for their large scatter, although various other aspects such as the grid
resolution, SGS model and numerical scheme may also have made some contributions.
Even though their simulation data (open circles) display significant scatter, the overall
trend agrees with ours (filled circles). These observations confirm the validity of the GDL
for NSBLs described by (1.1a) within LES, extending its applicability across a wider range
of w.

In figure 9, the theoretical predictions are obtained by (1.2a) with the empirical
constants (a, ao, cfa, ¢y, ¢5) = (1.4, 1.65, 1, 0.6, 0.51) proposed by Zilitinkevich & Esau
(2005) (dashed line), and (4.5) with (ay, c1) = (0.72, 2.25) determined from the present

999 A60-18


https://doi.org/10.1017/jfm.2024.969

https://doi.org/10.1017/jfm.2024.969 Published online by Cambridge University Press

The global properties of nocturnal stable ABLs

o ¢p=30°
¢ =40°
¢ =50°
o ¢=60°
e ¢>70°
o 722005
- -Eq. (1.2b)
— Eq. (4.18)
—-B=bV
B=by/Vu

10 30 100 300
nw

Figure 10. The GDL coefficient B vs the Kazanski-Monin parameter w. Filled circles: simulation data of
table 1; open circles: simulation data of Zilitinkevich & Esau (2005); dashed line: prediction of (1.2b) proposed
by Zilitinkevich & Esau (2005); solid line: prediction of (4.18) with b = 1.02, ¢; = 0.86 obtained by a
least-squares fitting procedure; dashed-dotted lines: prediction of each term in (4.18).

LES database using a least-squares fitting procedure (solid line). The theoretical prediction
of Zilitinkevich & Esau (2005) somewhat overestimates A, especially for small u, and
approaches asymptotically to the theoretical prediction of the present study for very large
. The latter fact is consistent with our analysis given at the end of § 4.1, where we
conclude that these two parameterizations are equivalent in the limit ¢ > 10 if acy = ay.
Here, a = 1.4 and ¢; = 0.51, and thus ac; = 0.71 &~ a; = 0.72. The prediction of (4.5)
agrees well with both the simulation data of the present study and those of Zilitinkevich
& Esau (2005). This validates the present parameterization of A given by (4.5) with
only two empirical constants (ap, c1) in the studied parameter range of w and Ro. We
remark that the surface-layer height normalized by the boundary-layer height can be
approximated as Ly/(c1h) = 1/(c1cg,/t), which decreases as u increases. In particular, it
varies within the range of 5 %—17 % in the present simulations since ¢; = 2.25 (figure 9),
cs = 0.62 (figure 6) and p € [17, 193] (table 1). In addition, we remark that the empirical
constants (a, ap, ¢fz, ¢y, ¢5) = (1.4,1.65, 1, 0.6, 0.51) proposed by Zilitinkevich & Esau
(2005) were optimized using their LES data. If optimized using our LES data, the
prediction of (1.2a) matches well with our LES results (data not shown). This agreement is
expected, as (1.2a) has five adjustable constants. In contrast, (4.5) has only two adjustable
parameters and the main physics is clearer. The comparison of these two expressions thus
indicates that high-fidelity data are necessary to obtain accurate parameterization of GDL
coefficients.

Figure 10 compares the GDL coefficient B obtained from theoretical predictions and
simulation results of the present study and of Zilitinkevich & Esau (2005). The simulation
results indicate that B increases monotonically as u increases. The present simulation data
collapse well to a single curve, and hence validate the GDL for NSBLs over a wider range
of . For small p < 40, the simulation data of Zilitinkevich & Esau (2005) agree well
with our simulation results. For p 2 40 there is relatively large scatter in their data and
B is significantly larger than in the present study (figure 10). As mentioned in § 2.3, the
simulations conducted by Zilitinkevich & Esau (2005) were limited to ft = 2.1, which
does not allow for reliable determination of the friction velocity u, and the cross-isobaric
angle og. Given that B = (kG/u,) sin o is sensitive to changes in u, and o, this limitation
likely contributed to their overestimation of B.

In figure 10, the theoretical predictions are obtained by (1.20) with the empirical
constants (b, bo, ¢, ¢, c5) = (10, —2,1,0.6,0.51) proposed by Zilitinkevich & Esau
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Figure 11. The comparison of (a) the geostrophic drag coefficient u, /G and (b) the cross-isobaric angle ag =
arctan |V, /U,| obtained from the simulation data of table 1 and the GDL of (1.1a,b), where the coefficients A
and B are parameterized by (4.5) and (4.18).

(2005) (dashed line), and (4.18) with (b1, ¢2) = (1.02, 0.86) determined from the present
LES database using a least-squares fitting procedure (solid line). The theoretical prediction
of Zilitinkevich & Esau (2005) underestimates B for small 4 and overestimates B for
large . The latter fact is consistent with our analysis given at the end of §4.2, where
we conclude that these two parameterizations are equivalent in the limit p > 10 if
bc} = by. Here, b = 10 and ¢; = 0.51, and thus bc? = 1.33 > by = 1.02, indicating that
the prediction of (1.2b) becomes larger than that of (4.18) at large u. The present prediction
of (4.18) agrees well with all the simulation data of the present study. This validates the
present parameterization of B given by (4.18) with only two empirical constants (b1, ¢2)
in the studied parameter ranges of © and Ro. In addition, figure 10 shows that the term
b1/ approximates B well for large values of u (blue dashed-dotted line). However,
there are deviations between by ,/it (blue dashed-dotted line) and B (solid line) for lower
values of u. The purpose of the term by /. /i (yellow dashed-dotted line) is to model these
differences for lower (.

5.2. The geostrophic drag coefficient and cross-isobaric angle

Figure 11 compares the geostrophic drag coefficient u,/G and the cross-isobaric angle
ap = arctan(|V,/Ug|) obtained from the present simulations with the GDL given by
(1.1a,b), where the GDL coefficients A and B are parameterized by (4.5) and (4.18)
using the empirical constants (ap, b1, c1, c2) = (0.72,1.02, 2.25,0.86) determined in
§5.1. The figure shows that the agreement between the new parametrizations and all the
numerical data is good. Figure 11(a) shows that our simulations cover the range 0.0195 <
u,/G < 0.0304, which covers the typical range observed in atmospheric measurements.
Figure 11(b) shows that the cross-isobaric angle varies between 23° and 44° and that
all LES data collapse to the theoretical curve. This good agreement is expected as
oo = arcsin[(Buy)/(kG)] and B (figure 9b) and u,/G (figure 11a) have already been
predicted accurately. Note that the cross-isobaric angle «p in NSBLs (see table 1 and
figure 11b) is usually larger than that in conventionally neutral (Liu et al. 2021a) and
convective ABLs (Liu et al. 2023). This is a typical phenomenon in ABLs: the wind veer
is stronger in stable conditions than in neutral and convective conditions.

The geostrophic drag coefficient u, /G and the cross-isobaric angle ¢ are two key global
properties of ABLs, which are fundamental for constructing wind profiles throughout the
entire turbulent boundary layer. Therefore, we present the geostrophic drag coefficient
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Figure 12. The (a) geostrophic drag coefficient u,/G and (b) cross-isobaric angle « obtained from the
simulation data of table 1 (filled circles) and the GDL of (1.1a,b) (solid lines), where the coefficients A and B
are parameterized by (4.5) and (4.18).

u,/G and the cross-isobaric angle ap = arctan(|V,/Ugl|) in figure 12. The simulation
results (filled circles) are in good agreement with the GDL results (solid lines), see also
figure 11. The figure demonstrates that u. /G decreases with increasing Ro or p. Notably,
u, /G exhibits a strong dependence on Ro for low p (e.g. u = 15) and becomes nearly
independent of Ro for high u (e.g. u = 200). Furthermore, figure 12(b) illustrates that o
decreases with increasing Ro, and increases with increasing w. The dependence of og on
Ro is more pronounced for lower .

6. Conclusions

We investigate numerically and theoretically the global properties of NSBLs under
quasi-steady, barotropic and horizontally homogeneous conditions. In particular, we
focus on NSBLs with the Kazanski—-Monin parameter . = O(10) ~ 0(10%) since they
are considered neutral when || < 10 and may be intermittent when u > 10%. To get
high-fidelity data for NSBLs, we perform a series of carefully designed LESs with
sufficiently high grid resolutions and for long time durations. These simulations cover
a wider range of the Kazanski—-Monin parameter p € [16.7,193.3] and the Rossby
number Ro € [1.68 x 10*,2.42 x 10°] than previously considered. We find that the
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boundary-layer height & scales as \/LsLs, and both the streamwise and spanwise wind

gradients scale as u2/(hf), where Ly is the Ekman length scale, Ly is the surface Obukhov
length, u, is the friction velocity and f is the Coriolis parameter.

We study the GDL for NSBLs to obtain an analytical prediction for the global properties
like the geostrophic drag coefficient u, /G and the cross-isobaric angle «g as a function of
the Kazanski—-Monin parameter  and the Rossby number Ro. We first show that the GDL
coefficients A and B obtained from carefully performed LES collapse to single curves as
functions of w. This verifies the GDL for NSBLs over an extended range of x within LES.
We emphasize that the present LES employs the wall model based on the MOST (Monin &
Obukhov 1954). Thus, the concept of ‘grid convergence’ does not strictly apply here. For
example, the magnitude of total shear stress and potential temperature flux at the surface
decrease as the grid resolution increases. This grid-sensitivity issue should be kept in mind
when one compares the LES results with direct numerical simulations and experimental
measurements. In addition, because the MOST is not valid for very stable boundary layers
with i > 0(102), the current LES is unable to simulate these cases. Therefore, to verify
the GDL for NSBLs over the whole range of u using high-fidelity LES data, one may need
to utilize a partially wall-resolved LES (Chinita, Matheou & Miranda 2022).

We derived new analytical expressions of A and B by using three crucial insights:
(i) the boundary-layer height can be parameterized by the approach of Zilitinkevich (1972),
(i1) the wind gradients can be scaled by ui / (hzf) and (iii) the streamwise and spanwise
velocities are continuous in the boundary layer. In addition, we assume that the eddy
viscosity approach is valid in the surface layer and the mean streamwise velocity therein
can be predicted by the MOST (Monin & Obukhov 1954). This allows a direct derivation,
without the need to assume z-less stratification, of analytical expressions for A (4.5) and
B (4.18) with just four empirical constants. These constants can be determined from
measurements or simulations, and here we use the latter. The good agreement between
the theoretical predictions and the simulation results confirms the validity of the new
analytical expressions of A and B for the studied range of © and Ro.

The drag law exists in various wall-bounded turbulent flows, which may have different
formulations in different flows. For example, it manifests as the friction law in channel and
pipe flows (Pope 2000), the convective logarithmic friction law in convective boundary
layers (Tong & Ding 2020; Liu et al. 2023) and the GDL in neutral and stable boundary
layers (Zilitinkevich & Esau 2005; Liu ef al. 2021a). Physically, the existence of drag law
is a direct result of the asymptotic matching of the velocity profiles between the inner and
outer layers (Zilitinkevich 1975). From this perspective, our results not only advance our
physical understanding of the GDL for NSBLs, but also can be very helpful for deepening
our understanding of wall turbulence in general (Smits et al. 2011; Chung et al. 2021).
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