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Abstract

Sea-level projections depend sensitively on the parameterization used for basal slip in glacier flow
models. During slip over rock-beds, ice-bed separation increases with slip velocity and basal water
pressure. We present a method for using these variables and measured bed topography to esti-
mate the average bed slope in contact with ice, /. Three-dimensional numerical modeling of
slip over small areas of former beds has shown that changes in 7 with increasing slip velocity
and water pressure mimic changes in basal drag. Computed values of /1 can thus provide the
form of the slip law that relates drag to velocity and water pressure, avoiding computationally
expensive numerical modeling. The method is applied to 618 sections from four former glacier
beds. Results generally show an increase in 1, and hence inferred basal drag, with slip velocity up
to a limiting value, consistent with a regularized Coulomb slip law.

1. Introduction

Fast-moving glaciers move predominantly by slip along the glacier sole, which largely controls
the rate at which outlet glaciers discharge ice into the ocean (Rignot and others, 2011) and
contribute to sea-level rise. For accurate forecasts of glacier contributions to sea-level rise,
process-based parameterizations of glacier slip need to be implemented in large-scale ice-sheet
models (e.g. Ritz and others, 2015; Pollard and Deconto, 2016; Kopp and others, 2017).
Importantly, hard-bedded (i.e. bedrock) regions of glaciers may supply disproportionately
large basal drag compared to soft-bedded (i.e. sediment) regions (Koellner and others, 2019;
Maier and others, 2019, 2021; Muto and others, 2019) owing to the higher effective stresses
commonly sustained in hard-bedded areas (Tulaczyk and others, 2000). Incorporating
improved hard-bed slip parameterizations in large-scale ice-sheet models would help improve
estimates of glacier discharge.

Slip behavior can be generalized with a slip law that relates the magnitude of basal drag (z,)
acting on the glacier sole to a given slip velocity (u) or effective pressure (N, overburden pres-
sure minus water pressure). Attempts to estimate the form of the slip law started with the
‘tombstone’ model of Weertman (1957). This model describes glacier slip resulting from regel-
ation and viscous creep around rigid, cubic obstacles at the bed (Weertman, 1957). The result-
ing slip law, which has been widely used in modern ice-sheet models (Larour and others, 2012;
Nick and others, 2013; DeConto and others, 2021), has a power-law form with unbounded
basal drag at a given effective pressure (7,/N) as u, increases (Fig. 1). However, in addition
to its unrealistic bed geometry, this model does not describe the effects of ice-bed separation
in the lee of bed obstacles (i.e. cavities), which reduces the area of ice-bed contact, thereby
affecting 7, (Fig. 2).

More recently, laboratory experiments (Zoet and Iverson, 2015) and process-based models
(Lliboutry, 1968; Fowler, 1987; Schoof, 2005; Gagliardini and others, 2007; Helanow and
others, 2020) based on idealized, periodic morphologies yield a ‘double-valued’ slip law
(Fig. 1). That is, 7,/N increases with u, (rate-strengthening slip) up to some threshold,
above which 7,/N decreases (rate-weakening slip). The double-valued slip law results from
the change in bedrock slope in areas of ice-bed contact as cavities grow with increasing slip
rates. For a simple sinusoidal bed, rate-strengthening occurs as the leeside ice cavities grow
and ice-bed reattachment points approach the inflection points of the stoss bump surfaces
immediately downstream, thereby increasing the mean bed slope in contact with the ice
(Fig. 2). Rate-weakening slip behavior begins when the ice reattachment point extends beyond
the sinusoidal bed’s inflection point, decreasing the mean slope of the bed in contact with the
ice with further cavity growth. These more recent process-based models neglect regelation,
which is justifiable owing to the observed rarity of short bump wavelengths (<0.5 m, Hooke,
2020). Although slip models with ice-bed separation have been shown to be largely correct
for their simplified geometries (Zoet and Iverson, 2015, 2016), their viability for more realistic
irregular bed geometries was uncertain.

Process-based numerical models of slip with ice-bed separation provide slip laws for mea-
sured three-dimensional (3-D) bed geometries (Helanow and others, 2021) and demonstrate
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Fig. 1. Illustration of different slip-law forms that show the change in normalized
drag (zp/N) with slip velocity (us).

that the rate-weakening slip associated with idealized, periodic
beds is unrealistic. In contrast to slip laws for sinusoidal beds,
numerical results for 3-D bedrock topographies from four
recently exposed proglacial areas demonstrate that their associated
slip laws are best described by a regularized Coulomb relation
(Joughin and others, 2019), where 7,/N increases toward a limit-
ing value (Helanow and others, 2021) (Fig. 1). This slip behavior
arises from the irregular along-flow bed morphologies of actual
beds, which prevent widespread reduction of bed slopes in contact
with the ice with increasing cavity size. Importantly for this study,
these modeling results demonstrate that variations in computed
basal drag closely correlate with variations in the mean along-flow
slope of the bed in areas of ice-bed contact, /. Thus, by determin-
ing the mean bed slope in areas of ice-bed contact, 7, at variable
us or N, the form of the slip law can be inferred.

Here we present a method for estimating the extent of cavities
on an irregular 3-D bedrock surface, so the mean along-flow slope
of the bed in contact with ice can be estimated. The method
avoids computationally expensive numerical simulations
(Helanow and others, 2021), so it can be readily applied
to large areas. We apply the method to 618 high-resolution
(10 cm), 20 x 20 m, digital elevation models (DEMs) of bedrock
topography from four proglacial areas. We first describe the
field sites and measurements of bed topography and then discuss
the method for estimating the mean slope of the bed in contact
with the ice. We compare the results to those indicated by 3-D
modeling of cavity geometry during glacier slip (Helanow and
others, 2021). This comparison allows us to infer the slip-law
forms for all bedrock subsections spanning the proglacial areas.

2. Methods
2.1. Digital elevation models

Proglacial bedrock areas in the Swiss Alps and Canadian Rockies,
exposed by glacier recession, are surveyed using photogrammetry
techniques and a terrestrial laser scanner to create 0.1 m reso-
lution DEMs (Fig. 3). Tsanfleuron, Schwarzburg and Rhone gla-
ciers are located in Valais Canton, Switzerland, and consist of
limestone, granitic gneiss and granite bedrock, respectively
(Fig. 4a). Castleguard is a limestone-bedded glacier in Alberta,
Canada (Fig. 4b). The survey designs, methods for DEM creation
and determination of ice flow vector fields are detailed in
Helanow and others (2021). To examine the full range of slip-law
forms expected over a variety of bed topographies available in the
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Fig. 2. Treatment of subglacial cavities. (a) An idealized representation of the bed
geometry (blue line), cavity geometry (green line) and the areas of ice bed contact
(red line). Variables used to calculate the shadow function are also illustrated (see
methods). (b) Example of an along-flow bed profile from Schwarzburg illustrating
the estimated cavity geometries (green lines), cavity detachment points (red stars),
reattachment points (blue circles) and periodic wrapper (black squares). Ice flow dir-
ection is from left to right along the horizontal axes.

proglacial areas, the DEMs are divided into 20 x 20 m adjacent
grid sections oriented so that the mean ice flow direction of the
section, as determined from striation orientations, is from left
to right along the x-axis. Sensitivity analyses show that adjust-
ments in the ice flow direction by up to 30° have little effect on
the inferred slip-law forms (Fig. S1). The DEM subsection dimen-
sions were chosen to include expected cavity lengths based on slip
rates and effective pressures of mountain glaciers (Cuffey and
Paterson, 2010). The subsections are detrended and tapered on
both their upstream and downstream margins to assure period-
icity in the along-flow direction while leaving most of the subsec-
tion unmodified. We adopt a different tapering method than
Helanow and others (2021) for computational efficiency and
because our new method of estimating i considers only the
along-flow shape of the bed. A Tukey (tapered cosine) window
is applied by subtracting the mean elevation from the along-flow
profile, applying the Tukey taper (0.4 cosine fraction), then
adding back the previously subtracted mean elevation to the
profile. Comparing the estimates of m between the Tukey taper
and the taper used by Helanow and others (2021) indicates that
the Tukey taper results in comparable slip-law forms (Figs S2
and S3). Detrending the subsections may change the magnitudes
of the bed slopes but will not affect the form of the estimated slip
laws. The tapering is required to permit cavity growth beyond the
boundaries of the subsection and to simulate cavity formation
over an infinitely long, repeating subsection morphology (see
Fig. 2).

2.2. Estimation of average bed slope in contact with ice

To estimate the average slope in contact with the ice, 1, we apply
a cavity roof trajectory to each row (i.e. along-flow profile) of a
proglacial DEM subsection, z(x, y). The slope of the cavity roof
trajectory is dictated by the prescribed slip velocity, us, effective
pressure, N, and bed topography. From these roof trajectories
we find the segments of each along-flow profile in contact with
the ice (Fig. 2). The ice-roof trajectories can be thought of as
oblique rays that ‘illuminate’ the bed profile where the ice and
bed are in contact — similar to the ‘shadow’ function proposed
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Fig. 3. Shaded relief map of the four proglacial areas: (a) Tsanfleuron, (b) Schwarzburg, (c) Rhéne and (d) Castleguard. The mean ice flow direction for each pro-

glacial area is from left to right.

by Lliboutry (1968, 1979). Compiling the results from each profile
of the DEM subsection, we determine the areas of the bed in con-
tact with the ice and their average along-flow slope, m. This
method of determining 7/ neglects transverse strain rates and var-
iations in mean slope of the cavity roof expected with different
bump sizes along the profiles (Lliboutry, 1968). We do not use
the model in Lliboutry (1979) for determining the ice roof trajec-
tories because the results vary significantly from the numerical
solutions in Helanow and others (2021) (Fig. S4).

We determine the average slope of each profile’s cavity roof by
adapting the cavity geometry derived by Kamb (1987) for 1-D
sinusoidal profiles. Kamb’s analytical model incorporates the non-
linear rheology of ice but neglects the effects of basal melting and
regelation. However, his solution for cavity geometry closely
matches observations from lab experiments (Zoet and Iverson,
2015). Although our profiles are not perfectly sinusoidal, approxi-
mating them as such to derive the slope of the cavity roof pro-
vided reasonable results. Following Kamb (1987) the cavity
length, [, of a sinusoid of wavelength A and amplitude a is given by

4N /2\ V2 N\ /2
l=—(§> <I_E> , N<E M
T
where E is the wave cavitation parameter:
4m2etau) "

The parameter n is the stress exponent of the ice flow law
(Glen, 1952), taken to be 3.0, e is Euler’s number and B is the vis-
cosity parameter (Hooke, 2020). The value of A is considered to
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be the profile wavelength with the highest spectral power
(i.e. most variance) and is determined using the power spectral
density of the bed profile. In the majority of the profiles (91%),
A was approximately equal to the largest wavelength (20 m).
The dependence of A on the dimensions of the subsection,
among other simplifications, restricts the comparison to only
the form of the slip law and not the magnitude of basal drag.
Since 4 is near the largest wavelength for most profiles, a is set
to be half the profile relief range (half because of the sinusoid
amplitude). The methods for choosing a and A are heuristic,
but by using the highest relief amplitude and the wavelength
with the highest spectral power, we approximate the geometries
of cavities with the greatest potential for shadowing the bed and
thereby influencing m. Variation in these parameters would
change the magnitude of m with slip velocity but not the overall
slip law form. Power spectral density, P(k), of the profile is esti-
mated with the discrete Fourier transform periodogram (Press
and others, 1986; Perron and others, 2008):

M—1 -1
P(k) = (M2 > wz) 1Z(K)|%, (3a)
j=0
M—-1
Z(k) =) z(jAx)e> ™M, (3b)
j=0

Here k is the wavenumber, k = (27/4), j is the index of the profile,
M is the number indices within the profile, W is the Hann taper-
ing window and Z(k) is the discrete 1-D fast Fourier transform of
the profile. The detachment point of the cavity roof, x,, is located
a distance (3/8)] upstream from the sinusoid’s inflection point
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Fig. 4. Locations of the four proglacial areas studied.

(Kamb, 1987) and the reattachment point, x, is located a distance
I downstream from x, (see Fig. 2). The profile height at points x,
and x. of a pure sinusoidal function of the form z,(x) = acos (kx)
is used to calculate s of the cavity roof:

Zo(-xo) - zo(xc)
Xo — Xc

. C))

To determine 7, we estimate the geometry of the cavity roofs
by applying a ray tracing technique with the rays projecting with a
slope 5 and the areas illuminated by the rays representing areas of
ice-bed contact. This procedure is carried out for each profile of a
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DEM subsection over a range of u; at a specific N. Computing the
average slope of segments of ice-bed contact for z(x, y) must take
into account the length of the contact areas for each profile. As
such, we estimate the total length of the ice-bed contact segments
of a profile within a DEM subsection, S, to determine 7:

i=1 i=1

where i is the profile index, m is the mean slope of the profile’s
ice-bed contact segments and i, is the total number of along-flow
profiles (i.e. rows) in the DEM subsection.
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Fig. 5. Average bed slope, m, in contact with ice, as a function of scaled slip velocity, computed from full-Stokes modeling of basal cavities (Helanow and others,
2021) and estimated with the new method. Also shown are values of 7,/N calculated by Helanow and others (2021). Results are for morphologically representative
subsections of the (a) Tsanfleuron, (b) Schwarzburg, (c) Rhone and (d) Castleguard proglacial areas with the 3-D taper described in Helanow and others (2021).

Our first objective is to test this method for estimating /m by
applying it to the same representative subsections of proglacial
topography where basal drag and m were calculated using a 3-D
full-Stokes simulation of cavity geometry during glacier slip in
Helanow and others (2021). Assumptions made in this modeling
were a free-slip boundary at the ice sole, uniform water pressure in
the cavities, temperate ice and negligible effects of basal melting
and regelation (see Helanow and others (2021) for more
details). To compare values of /n with those calculated numeric-
ally by Helanow and others (2021), we use the normalized slip vel-
ocity, ug/N". Values of N and B considered are 0.4 MPa and 73.3
MPas'”? (Cuffey and Paterson, 2010), respectively. Although the
values of B at each site could vary (Chandler and others, 2008),
these differences would not affect the slip-law form estimated
with the new method or the numerical model. As in Helanow
and others (2021), we consider velocities of 0-100 ma™" and
use the same 3-D edge tapering, detrending and topographic
filtering of representative subsections as in that study, to allow a
valid comparison of the two approaches for estimating m
(Fig. 5). All other subsections were adjusted as described in sec-
tion 2.1 for computational efficiency while maintaining good
agreement with the numerical results (Fig. S2 and Fig. 6).

3. Results

Our method for estimating mean bed slopes in contact with the
ice successfully approximates m computed from the 3-D numer-
ical slip modeling of Helanow and others (2021). Figure 5 shows
the estimates of m from our method (red line) and the numerical
model (black solid dots) using the 3-D taper described in
Helanow and others (2021). Also shown in Figure 5 are the 7,/
N values computed in Helanow and others (2021) (black open cir-
cles) to illustrate the strong correlation between m and 7,/N.
However, there is not a one-to-one correspondence between
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these values, indicating that 71 cannot be used to directly estimate
the magnitude of 7,/N. The magnitude of /m and its dependence
on the scaled slip velocity are very similar for the two methods,
indicating that the new method is an effective alternative for esti-
mating the form of the slip-law. The greatest discrepancy is for the
Tsanfleuron subsection, where the numerical solutions show
slight rate weakening, but the new method indicates a regularized
Coulomb form (Fig. 5).

The overall success of this relatively simple method for esti-
mating m and the correlation between m and 7,/N determined
by Helanow and others (2021) (Fig. 5) makes it possible to
infer the slip-law forms in more areas, so we now consider the
results of applying the new method to 618 unique DEM subsec-
tions. The majority of them exhibit /. values that increase toward
a limiting value (Fig. 6). The range of /n values for each proglacial
subsection varies among the proglacial areas, with Tsanfleuron
presenting the lowest median values (black line), and Rhéne dis-
playing the highest median values. Additionally, within a given
proglacial area, i values of subsections are variable, as shown
by the 25th and 75th percentile bounds (dashed lines).
Castleguard displays the narrowest /n bounds. The other DEMs
have a few subsections with notably high m values, but most sub-
sections fall within a limited range (Fig. 6). Additionally, some of
the proglacial areas contain a few subsections (~2% of all the sub-
sections) that display a non-Coulomb slip relation (ie. rate-
weakening or rate-strengthening) at high velocities (bold colored
lines), but otherwise proglacial subsections exhibit regularized
Coulomb slip (Fig. 6).

4, Discussion

The general agreement between the estimates of 7 from the
numerical model of Helanow and others (2021) and our new
method indicates that our simpler method can approximate the
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Fig. 6. Average bed slope, m, as a function of scaled slip velocity for all surveyed subsections of the (a) Tsanfleuron, (b) Schwarzburg, (c) Rhéne and (d) Castleguard
proglacial areas, estimated using the new method. Solid black lines show the median m values and the dashed black lines show the interquartile range. Bold lines
highlight the individual DEM subsections that deviate from a regularized Coulomb slip law.

more complete physics of the numerical slip model for estimating
cavity geometry and the form of the slip law. However, the new
method does not include the transverse component of ice flow,
local variations in glacier slip velocity and variations in cavity
closure rates on bumps of different sizes and shapes. The success
of the method, despite these simplifications, implies that trans-
verse strain rates and local variations in slip velocity tend to
have a small effect on cavity geometries and associated spatial dis-
tributions of ice-bed contact. The success of the method may also
reflect, in part, the extensive shadowing effects of larger bumps,
which result in large cavities with roof slopes that are well
approximated by the new method. Smaller bumps with
cavity-roof slopes that are less accurately modeled with the new
method tend to be drowned in larger cavities or, if not drowned,
create cavities that affect only small areas of the bed. The least
agreement between the numerical results and those of the new
method is from Tsanfleuron, where the numerical model indi-
cates slight rate-weakening slip. However, Helanow and others
(2021, their Fig. S7) showed that for this domain the sensitivity
of the model results to the details of the domain-tapering algo-
rithm was too high to distinguish the computed slight rate-
weakening from a regularized Coulomb slip relation. Thus, the
results obtained with our method fall within the uncertainty of
the results of the numerical modeling. Additionally, both the
numerical model and the new method omit the effects of debris
in the basal ice being in frictional contact with the rock-bed.
However, the effects of this omission are likely minimal (see
Iverson and others, 2019).

The consistent regularized Coulomb form of the slip laws
across the proglacial areas is due to the similarity of the proglacial
bed topographies (Woodard and others, 2021). For instance, the
narrow range of the magnitude of m at Castleguard (Fig. 6)
reflects the uniformity of the stepped topography within that
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proglacial area (Fig. S5) (Hallet and Anderson, 1980). There are
some subsections of proglacial areas with bed topographies that
result in non-Coulomb behavior at high velocities. Examples of
topographies that produce the different slip-law forms are
shown in Figure 7. The large, isolated bump in Figure 7a likely
causes the rate-weakening behavior because it has the same con-
vex shape as the sinusoidal bed that produced the double-valued
slip law in experiments (Zoet and Iverson, 2015, 2016). As cavity
size increases, the contact area is confined to areas near the
bump’s convex crest, causing the reduction in 7. The subsection
(Fig. 7b) that displays rate strengthening, even at high velocities,
also includes a prominent bump, but the bump’s stoss side is con-
cave. As the cavity grows and the reattachment point migrates up
the concave surface, m will increase. However, most subsections
are not dominated by these morphologies that result in
non-Coulomb slip (e.g. Fig. 7c). The small variations in topog-
raphy that result in different slip-law forms illustrate the need
for high-resolution elevation data to estimate 71, as coarser data
would conceal the small topographic variations superimposed
on larger bumps that lead to different slip-law forms (Fig. 7).
Such fine resolution beneath most ice sheets and glaciers is
unachievable with modern geophysical tools (Holschuh and
others, 2020). Until geophysical datasets combined with geostatis-
tical methods (e.g. MacKie and others, 2020) can provide better
constraints on small-scale topography, field measurements from
deglaciated terrains (Woodard and others, 2021) provide the
only means to capture the morphological information on the rele-
vant spatial scales.

The small portions of the bed that exhibit rate strengthening
slip across the full velocity range have the potential to act as ‘sticky
spots’ that apply increasing resisting stress with increasing velocity
compared to the surrounding bedrock (Anandakrishnan and
Alley, 1994; Zoet and others, 2013). This supports the hypothesis
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Fig. 7. Shaded relief maps of bed subsections from Rhdne that exhibit (a) rate weakening at high velocities, (b) rate strengthening across the full range of velocity
and (c) regularized Coulomb slip behavior as inferred from our estimates of m. The black line shows the location of the topographic profile plotted below each DEM.
The DEMs are detrended and tapered as described in the methods. The mean ice flow direction for each DEM is from the left to the right.

proposed by Maier and others (2019), whose models indicated
that the most likely basal setting to produce borehole tilting pat-
terns measured on the Greenland ice sheet is one with isolated
bedrock areas that account for a disproportionately large slip
resistance. Tsanfleuron, for example, has a few subsections that
indicate rate strengthening slip across the full range of velocity
(Fig. 6a). In contrast, Castleguard has only one subsection with
rate strengthening at elevated velocities, and the range of /n values
is relatively small (Fig. 6d), causing drag to remain fairly constant
across the bed with increased velocity.

The processes examined in this study occur within a basal
‘boundary layer’ that scales in thickness with the sizes of bumps
on the bed (Fowler, 1981; Schoof, 2005). To operate under the
assumptions of this boundary layer we do not apply our method
to an entire proglacial DEM at once. Our consideration of bed
subsections of 20m leaves out larger bump wavelengths that
will contribute to the magnitude of 7,/N. Examination of the
effects of larger and smaller DEM subsections show that domain
size, and so maximum wavelength, does not significantly affect
the inferred forms of slip laws (Fig. S6). We attribute this relative
insensitivity to the finite length of along-flow cavities beneath
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glaciers (<20 m), which help control the slip-law form. Except
very near glacier margins, steady, larger cavities are unlikely to
be sustained with available subglacial water discharges
(Helanow and others, 2021). The finite scale of subglacial cavities
suggests larger bumps beneath ice sheets should manifest the
same regularized-Coulomb slip-law form shown by our results:
it is the smaller bumps, similar to the scales modeled here, super-
imposed on the larger bumps that control the changes in i that
result from fluctuations in cavity size.

The regularized Coulomb relation suggested by most of the
bedrock regions studied adds support to the suggestion from pre-
vious studies (Minchew and Joughin, 2020; Zoet and Iverson,
2020) that it applies generally to beds consisting of either rough
rock or deformable sediment. The 618 different bedrock subsec-
tions display diverse morphologies but overwhelmingly (98%)
exhibit regularized Coulomb slip behavior. Additionally, experi-
ments in which temperate ice was dragged over a soft bed (Zoet
and Iverson, 2020) and some remote-sensing observations of wet-
based glaciers (Gillet-Chaulet and others, 2016; Minchew and
others, 2016; Joughin and others, 2019) also indicate a regularized
Coulomb slip relation. Although more work is needed to verify
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the applicability of this slip law to soft beds, our results indicate
that a generalized Coulomb slip relation is generally appropriate
for parts of glaciers resting on hard beds and should be incorpo-
rated in ice-sheet models.

5. Conclusions

A simple method for estimating the extents of water-filled cavities
between sliding ice and a hard bed and associated values of 7 rea-
sonably approximates values determined by full-Stokes modeling
of cavity geometry. Values of 7 vary similarly with slip velocity
scaled to effective pressure among four proglacial areas with
diverse bedrock morphology and indicate that a regularized
Coulomb slip law is generally appropriate for hard beds. A minor-
ity of bedrock subsections (~2%) exhibit either rate-strengthening
or rate-weakening slip, even at high velocities. Rate-strengthening
sections of glacier beds help inhibit unbounded glacier acceler-
ation. Future work could explore the effectiveness of our new
method for estimating cavity volumes and ice-bed contact areas
for applications to subglacial hydrology and erosion.

Supplementary material. The supplementary material for this article can
be found at https:/doi.org/10.1017/j0g.2022.63.
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