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Loops in the fundamental group of
Symp(CP2#5CP2, ω) which are not
represented by circle actions

Sílvia Anjos , Miguel Barata, Martin Pinsonnault, and
Ana Alexandra Reis

Abstract. We study generators of the fundamental group of the group of symplectomorphisms
Symp(CP2# 5CP2 , ω) for some particular symplectic forms. It was observed by Kȩdra (2009,
Archivum Mathematicum 45) that there are many symplectic 4-manifolds (M, ω), where M is
neither rational nor ruled, that admit no circle action and π1(Ham(M, ω)) is nontrivial. On
the other hand, it follows from Abreu and McDuff (2000, Journal of the American Mathematical
Society 13, 971–1009), Anjos and Eden (2019, Michigan Mathematical Journal 68, 71–126), Anjos
and Pinsonnault (2013, Mathematische Zeitschrift 275, 245–292), and Pinsonnault (2008, Compositio
Mathematica 144, 787–810) that the fundamental group of the group Symph(CP

2# kCP2 , ω), of
symplectomorphisms that act trivially on homology, with k ≤ 4, is generated by circle actions on the
manifold. We show that, for some particular symplectic forms ω, the set of all Hamiltonian circle
actions generates a proper subgroup in π1(Symph(CP

2# 5CP2 , ω)). Our work depends on Delzant
classification of toric symplectic manifolds, Karshon’s classification of Hamiltonian S1-spaces, and
the computation of Seidel elements of some circle actions.

1 Introduction

Let (M , ω) be a closed simply connected symplectic manifold. The symplectomor-
phism group Symp(M , ω), equipped with the standard C∞-topology, is an infinite-
dimensional Fréchet Lie group. In general, symplectomorphism groups are viewed as
intermediate objects between Lie groups and general groups of diffeomorphisms. Of
course, this philosophy can be understood in many different ways. One interesting
question is to compare the homotopy types of various symplectomorphism groups
with those of compact Lie groups, and see to what extend their homotopical and
algebraic properties are related. For instance, recall that if G is a compact Lie group,
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then any element of its fundamental group π1(G) is represented by a continuous
homomorphism S1 → G. Therefore, it is natural to ask whether the same holds for
symplectomorphism groups.

Question 1.1 Suppose that π1(Symp(M , ω)) is nontrivial. Is every element repre-
sented by a continuous homomorphism S1 ↦ Symp(M , ω) (i.e., a circle action on
M)? If not, can we characterize homotopy classes that are represented by circle
actions? ∎

In [13], Kȩdra showed that the answer to the first part of the question is negative in
general.

Theorem 1.2 [13] Let (M , ω) be a symplectic blowup (in a small ball) of a closed
simply connected Kähler surface, which is neither a rational nor a ruled surface up to the
blowup. Then (M , ω) admits no symplectic circle action, although π1(Symp(M , ω)) is
nontrivial.

A concrete example is obtained by taking a K3 surface with any symplectic form.
Another type of example was found by Buse in her work on symplectomorphism
groups of irrational ruled surfaces [6, Proposition 3.3]. More precisely, although
T2 × S2 admits Hamiltonian circle actions, she showed that there is an element γ ∈
π1(Ham(T2 × S2)) for which the rational Samelson product [γ, γ]Q does not vanish,
which implies that γ cannot be represented by such an action.

In the present paper, we consider the symplectic rational surfaces (CP2# nCP2 , ω).
For 1 ≤ n ≤ 5, the topological group Symph(CP2# nCP2 , ω) of symplectomorphisms
that act trivially on homology has been studied by several authors (see [1–3, 5, 9, 18,
25, 28]). In the case n = 5, Seidel [28] and Evans [9] proved that, in the monotone
case, this group is homotopy equivalent to the group of orientation-preserving dif-
feomorphisms of S2 preserving five points. Recently, Li, Li, and Wu in [18] completely
determined the group of connected components of Symph(CP2# 5CP2 , ω), called the
Torelli symplectic mapping class group, as well as the rank of its fundamental group,
for any given symplectic form ω. In order to explain their results, which are of interest
to us, we first recall the definition of reduced forms, and postpone further details to
Section 2.3.

For Xn = CP
2# nCP2, let {L, V1 , . . . , Vn} be a standard basis for H2(Xn ;Z), where

L is the class representing a line, and the Vi are the exceptional classes.

Definition 1.1 Consider Xn with the standard basis {L, V1 , . . . , Vn} of H2(Xn ;Z).
Given a symplectic form ω such that each class L, V1 , . . . , Vn has ω-area ν, δ1 , . . . , δn ,
then ω is called reduced if

ν > δ1 ≥ ⋅ ⋅ ⋅ ≥ δn > 0 and ν ≥ δ1 + δ2 + δ3 .(1.1)

We recall in Section 2.3 why any symplectic form on Xn is diffeomorphic to a
reduced one. Note that diffeomorphic symplectic forms yield homeomorphic sym-
plectomorphism groups. Therefore, it suffices to understand the symplectomorphism
group Symp(Xn , ω) for any reduced form ω. In this section, we also recall that
(Xn , ω) can be naturally identified with (n − 1)-point blowups of the manifold
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(S2 × S2 , μσ ⊕ σ), denoted by Mμ ,c1 , . . . ,cn−1 , where σ denotes the standard symplectic
form on S2 that gives area 1 to the sphere, μ ≥ 1, and c1 , . . . , cn−1 denote the capacities
of the blowups.

If n ≤ 3, it is well known that the group Symph(Mμ ,c1 , . . . ,cn) is connected (see,
for example, [17]) and it follows from [3, 5, 25] that the fundamental group of
Symph(Mμ ,c1 , . . . ,cn) is always generated by Hamiltonian circle actions. More precisely,
in these cases, the full rational homotopy type of Symph(Mμ ,c1 , . . . ,cn), with n ≤ 3,
is generated by loops in the fundamental group, represented by circle actions, via
Samelson products. On the other hand, it was shown by Li and Li in [16] that if n ≤ 3,
then π1(Symph(Mμ ,c1 , . . . ,cn)) is a free abelian group.

In [18], the authors show that, in addition to the monotone case, there is
a one-dimensional family of symplectic manifolds Mμ ,c1 ,c2 ,c3 ,c4 for which the
Torelli symplectic mapping class group π0(Symph(Mμ ,c1 ,c2 ,c3 ,c4)) is isomorphic to
π0(Diff+(S2 , 4)), where Diff+(S2 , 4) is the group of orientation-preserving diffeo-
morphisms of S2 preserving four points. This family is defined by the values μ > 1 and
c i = 1/2 for all i ∈ {1, 2, 3, 4}. From now on, we use the notation Mμ ,c i=1/2 to denote
this family of symplectic manifolds. For all the remaining symplectic forms, the group
π0(Symph(Mμ ,c1 ,c2 ,c3 ,c4)) is trivial. Moreover, in [18, Section 5.3], the authors show
that π1(Symph(Mμ ,c i=1/2)) = Z5, and hence the fundamental group is a free abelian
group.

In this note, we study generators of the fundamental group of Symph(Mμ ,c i=1/2).
Our main result is the following theorem that gives a negative answer to the first part
of Question 1.1.

Theorem 1.3 If 1 < μ ≤ 3
2 , then the set of all Hamiltonian circle actions generates a

proper subgroup of rank 4 in the fundamental group of Symph(Mμ ,c i=1/2). Moreover,
if μ > 3

2 , then π1(Symph(Mμ ,c i=1/2)) ⊗Q is generated by Hamiltonian circle actions.

To the best of our knowledge, this is the first example of symplectic rational surface
where the fundamental group of Symp(Xn , ω) is not generated by circle actions. In
Section 5, we discuss the existence of more symplectic forms ω in X5 for which a
similar phenomenon may occur.

Remark 1.4 Although there is a generator of π1(Symph(Mμ ,c i=1/2)) ⊗Q which
cannot be represented by a Hamiltonian circle action when 1 < μ ≤ 3

2 , one can find
its quantum homology representative (see Proposition 4.12).

Our techniques allows us to completely describe the elements of
π1(Symph(Mμ ,c i=1/2)) that are represented by Hamiltonian circle actions, answering
the second part of Question 1.1 as well. In particular, we obtain the following result.

Theorem 1.5 For any value of μ > 1, there exist infinitely many homotopy classes in the
fundamental group π1(Symph(Mμ ,c i=1/2)) that cannot be represented by Hamiltonian
circle actions.

As a final remark, it seems very likely that Theorem 1.3 holds not only rationally but
also in the integer case, that is, that the fundamental group π1(Symp(Mμ ,c i=1/2)) is
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generated by Hamiltonian circle actions whenever μ > 3
2 . Although we are not able to

prove this stronger claim, we note that our quantum homology calculations imply the
existence of five circle actions representing homotopy classes in π1(Symp(Mμ ,c i=1/2))
that can be shown to be not only linearly independent but also primitive.

1.1 Organization of the paper

In Section 2, we review the main tools we need to prove the theorems above, namely
Karshon’s classification of Hamiltonian circle actions, Delzant’s classification of toric
manifolds, and the definitions of the quantum homology ring of a symplectic manifold
and of the Seidel morphism. We also recall the results of [18] regarding π0 and π1 of the
symplectomorphism group Symph(Mμ ,c1 ,c2 ,c3 ,c4) relevant to our work. In Section 3,
we give a presentation of the quantum homology ring QH∗(Mμ ,c1 ,c2 ,c3 ,c4), that follows
from applying the formulas for the quantum product on a rational surface obtained by
Crauder and Miranda in [7]. We dedicate Section 4 to obtaining our main results: we
choose a tentative set of five generators of the rational fundamental group and prove,
using the Seidel morphism, that these elements are linearly independent. We conclude
this section giving a classification of all Hamiltonian circle actions on Mμ ,c i=1/2, which
allows us to determine which homotopy class of loops can be represented by such an
action.

Finally, in the last section, we propose some further questions that arose naturally
on the course of this work. Appendix A contains computations on the quantum ring,
whereas Appendix B is devoted to the proof of an auxiliary relation between elements
in π1(Symph(Mμ ,c1 ,c2 ,c3 ,c4)).

2 Background

2.1 Hamiltonian circle actions, decorated graphs, and Delzant polygons

In the forthcoming sections, we will study loops in the fundamental group of
Symph(Mμ ,c1 ,c2 ,c3 ,c4). Since these loops will appear as Hamiltonian circle actions, we
will make extensive use of Karshon’s classification of Hamiltonian circle actions and
Delzant’s classification of toric actions on symplectic manifolds. For convenience, we
give a quick overview on how these classifications work.

Karshon’s classification [10] yields a bijection between certain decorated graphs and
4-tuples (M4 , ω, ρ, Φ) consisting of a symplectic 4-manifold (M4 , ω), and an effective
Hamiltonian circle action ρ with a given moment map Φ ∶ M → R. Given such a
tuple (M4 , ω, ρ, Φ), the associated decorated graph is constructed as follows. Each
component C of the fixed point set is either a single point or a symplectic surface, and
fixed points on which the moment map is not extremal are isolated. For each such
component C, there is a vertex ⟨C⟩, labeled by the real number Φ(C). A vertex that
corresponds to a fixed symplectic surface is said to be “fat” and is given two more
labels: the area label 1

2π ∫C ω, and the genus g of the surface. A Zk-sphere is a gradient
sphere in M on which S1 acts with isotropy Zk , k ≥ 2. For each Zk-sphere containing
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Φ(S), ν, g

Φ(S) + c

Φ(S), ν − c, g

Figure 1: Blowing up at a point inside an invariant surface at the minimum value of Φ.

two fixed points p and q, the graph has an edge connecting the vertices ⟨p⟩ and ⟨q⟩
labeled by the integer k.

Labeled graphs associated with effective Hamiltonian circle actions are character-
ized by the following properties. If we order the vertices according to their moment
map labels, then:
– there are exactly two extremal vertices;
– fat vertices are extremal, and if the graph contains two fat vertices, then their genus

label must coincide;
– the area label of any fat vertex must be strictly positive;
– a vertex is connected to no more than two edges, and no edge is connected to a fat

vertex;
– the moment map labels must be strictly monotone along each chain of edges;
– if e1 , . . . , e� is a chain of edges, and if k1 , . . . , k� are the orders of their stabilizers,

then gcd(k i , k i+1) = 1 for i = 1, . . . � − 1, and (k i−1 + k i+1)/k i is an integer for i =
2, . . . , � − 1.

We call such graphs admissible.
Theorem 2.1 (Karshon [10]) Each 4-tuple (M4 , ω, ρ, Φ) corresponds to a unique
admissible labeled graph. Conversely, each admissible labeled graph corresponds to a 4-
tuple (M4 , ω, ρ, Φ) that is unique up to S1-equivariant symplectomorphisms preserving
the moment map.

Furthermore, it can be shown that each Hamiltonian action on a four-dimensional
manifold can be obtained from a circle action on a symplectic ruled surface by
performing a sequence of S1-equivariant symplectic blowups. At the graph level,
equivariant symplectic blowups correspond to the simple transformations pictured
in Figures 1 and 2. Together with Lalonde–McDuff–Li–Liu’s uniqueness theorem [14,
19] stating that any two cohomologous symplectic forms on blowups of ruled surfaces
are diffeomorphic, this gives an effective algorithm to enumerate all effective circle
actions on any given 4-manifold.

Since we are mainly interested in the continuous map ρ ∶ S1 → Ham(M , ω), we
do not need to keep track of the moment map associated with a Hamiltonian circle
action. As any two moment maps only differ by a constant, we can either consider
graphs only up to a uniform translation of their moment map labels, or normalize the
moment map by setting minx∈M Φ(x) = 0. Finally, note that the reparameterization
of the circle t ↦ −t corresponds to changing the signs of the moment map labels.

There is an analogous classification of Hamiltonian toric actions that we now briefly
describe in the special case of 4-manifolds. Given a 4-tuple (M4 , ω, ρ, Φ) consisting
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Φ(p)

m

n

Φ(p) +mc

Φ(p) − nc

m

m + n

n

Figure 2: Blowing up at an interior fixed point.

of a symplectic 4-manifold (M , ω), an effective Hamiltonian toric action ρ ∶ T2 →
Ham(M , ω), and a moment map Φ ∶ M → t∗ ≃ R2, the image Φ(M) is always a
Delzant polygon, that is, a polygon satisfying the following three properties:

– simplicity, i.e., there are two edges meeting each vertex;
– rationality, i.e., the edges meeting at the vertex p are rational in the sense that each

edge is of the form p + tu i , t ∈ [0, �i], where �i ∈ R and u i ∈ Z2;
– smoothness, i.e., for each vertex, the corresponding u1, u2 can be chosen to be a
Z-basis of Z2.

Moreover, the preimage in the manifold of a vertex of the polygon Φ(M) is a fixed
point for the torus action, whereas the preimage of an edge is an invariant 2-sphere.
The preimage of the interior of the polygon consists of free torus orbits. These facts
are explained in [8].

Delzant’s classification [8] states that equivalence classes of 4-tuple (M4 , ω, ρ, Φ)
up to equivariant symplectomorphisms that preserve the moment maps are classified
by Delzant polygons in R2. If we disregard the moment map and only consider an
effective toric action as an injective homomorphism ρ ∶ T2 → Ham(M , ω), it is natural
to declare two actions as equivalent if they only differ by a reparameterization of
the torus or by a conjugation by an element of Symp(M , ω). In this setting, the
classification theorem yields a bijection

{Conjugacy classes of toric actions on 4-manifolds up to reparameterizations}
↕

{Delzant polygons in R2 up to AGL(2;Z) action}.

If we restrict the action to the subcircle {e} × S1, we get a compact four-
dimensional S1-space. The moment map for the S1-action is the composition of theT2-
moment map with the projectionR2 → R to the second coordinate. The fixed surfaces
are the preimages, under the T2-moment map, of the horizontal edges of the Delzant
polygon. Such a surface has genus zero, and its normalized symplectic area is equal
to the length of the corresponding horizontal edge. The isolated fixed points are the
preimages of those vertices of the polygon that do not lie on horizontal edges. The Zk-
spheres, k ≥ 2, are the preimages of edges with slope ±k/b in a reduced form, where
b is relatively prime to k. With this information, we can construct the graph for the
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S1-space out of the Delzant polygon. This is explained by Karshon in [10, Section 2.2].
Note that, similarly, we can restrict the toric action to the subcircle S1 × {e} in order to
obtain another compact four-dimensional S1-space. In this case, the moment map for
the S1-action is the composition of the T2-moment map with the projection R2 → R

to the first coordinate. This relation between polygons and decorated graphs will be
particularly useful in the following subsections.

2.2 Quantum homology and Seidel morphism

Following [23], consider the (small) quantum homology ring QH∗(M; Π) =
H∗(M ,Q) ⊗Q Π with coefficients in the ring Π ∶= Πuniv[q, q−1] where the q is a
polynomial variable of degree 2 and Πuniv , called the universal Novikov ring, is a
generalized Laurent series ring in a variable t of degree 0:

Πuniv ∶= {∑
κ∈R

rκtκ ∣ rκ ∈ Q, #{κ > c ∣ rκ ≠ 0} < ∞,∀c ∈ R}.(2.1)

The quantum homology QH∗(M; Π) is Z-graded so that deg(a ⊗ qd tκ) = deg(a) +
2d with a ∈ H∗(M). The quantum intersection product a ∗ b ∈ QH i+ j−dim M(M; Π),
of classes a ∈ H i(M) and b ∈ H j(M), has the form

a ∗ b = ∑
B∈HS

2(M ;Z)
(a ∗ b)B ⊗ q−c1(B)t−ω(B) ,

where HS
2 (M;Z) is the image of π2(M) under the Hurewicz map. The homology class

(a ∗ b)B ∈ H i+ j−dim M+2c1(B)(M) is defined by the requirement that

(a ∗ b)B ⋅M c = GWM
B ,3(a, b, c) for all c ∈ H∗(M).

In this formula, GWM
B ,3(a, b, c) ∈ Q denotes the Gromov–Witten invariant that counts

the number of spheres in M in class B that meet cycles representing the classes a, b, c ∈
H∗(M). The product ∗ is extended to QH∗(M) by linearity over Π, and is associative
(see [23, Proposition 11.1.9] for a proof of this fact). It also respects the Z-grading and
gives QH∗(M) the structure of a graded commutative ring, with unit [M].

The Seidel morphism is a homomorphism S from π1(Ham(M , ω)) to the degree 2n
multiplicative units QH2n(M)× of the small quantum homology, first introduced by
Seidel in [27]. One way of thinking of it is to say that it “counts” pseudoholomorphic
sections of the bundle MΛ → S2 associated with the loop Λ ⊂ Ham(M , ω) via the
clutching construction (as in [24, Section 2]): let (M , ω) be a closed symplectic
manifold and let Λ = {Λθ} be a loop in Ham(M , ω) based on identity. Denote by
MΛ the total space of the fibration over S2 with fiber M which consists of two trivial
fibrations over 2-discs, glued along their boundary via Λ. Namely, we consider S2 as
the union of the two 2-discs D0 and D∞ such that D0 is the closed unit disk centered at
0 in the Riemann sphere S2 = C ∪ {∞} and D∞ is another copy of this disk, embedded
in S2 = C ∪ {∞}, via the orientation reversing map r e iθ ↦ r−1 e iθ . The total space is

MΛ = (M × D0)⊔(M × D∞)/ ∼ with (e2iπθ , Λθ(x))0 ∼ (e2iπθ , x)∞.

This construction only depends on the homotopy class of Λ. Moreover, the family
(parameterized by S2) of symplectic forms of the fibers can be extended to give a
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closed form, Ω, on MΛ (see [29]). By adding to Ω the pullback of a suitable area form
on the base, we get a nondegenerate form. More precisely, ωΛ,κ = Ω + κ ⋅ π∗(ω0) is
symplectic, where ω0 is the standard symplectic form on S2 (with area 1), π is the
projection to the base of the fibration, and κ is a big enough constant to make ωΛ,κ
nondegenerate. (Once chosen, κ will be omitted from the notation.)

So we end up with the following Hamiltonian fibration:

(M , ω) �
� �� (MΛ , ωΛ) π �� (S2 , ω0).

In [24], McDuff and Tolman observed that, when Λ is a circle action (with associated
moment map ΦΛ), the clutching construction can be simplified since, then, MΛ can
be seen as the quotient of M × S3 by the diagonal action of S1, e2πiθ ⋅ (x , (z1 , z2)) =
(Λθ(x), (e2πiθ z1 , e2πiθ z2)). The symplectic form also has an alternative description
in M ×S 1 S3. Let α ∈ Ω1(S3) be the standard contact form on S3 such that dα = χ∗(ω0)
where χ ∶ S3 → S2 is the Hopf map and ω0 is the standard area form on S2 with total
area 1. For all c ∈ R, ω + cdα − d(ΦΛα) is a closed 2-form on M × S3 which descends
through the projection, p ∶ M × S3 → M ×S 1 S3, to a closed 2-form on MΛ :

ωc = p(ω + cdα − d(ΦΛα)),(2.2)

which extends Ω. Now, if c > max ΦΛ , ωc is nondegenerate and coincides with ωΛ,κ
for some big enough κ.

A quantum class lying in the image of S is called a Seidel element. In [24], McDuff
and Tolman were able to calculate the leading term of Seidel’s elements associated
with Hamiltonian circle actions whose maximal fixed point component, Fmax, is semi-
free, that is, the action is semi-free on some neighborhood of Fmax. Recall that a circle
action is semi-free if the stabilizer of every point is trivial or the whole circle. Moreover,
when the codimension of Fmax is 2, their result immediately ensures that if there exists
an invariant almost complex structure J on M so that (M , J) is Fano, i.e., so that
there are no J-pseudoholomorphic spheres in M with nonpositive first Chern number,
all the lower-order terms vanish. In the presence of J-pseudoholomorphic spheres
with vanishing first Chern number, there is a priori no reason why arbitrarily large
multiple coverings of such objects should not contribute to the Seidel elements. In
fact, as explained in [4], when the almost complex manifold (M , J) is only numerically
effective (NEF), i.e., c1(B) ≥ 0 for every class B ∈ H2(M)with a J-holomorphic sphere
representative, and not Fano, then there are indeed infinitely many contributions
to the Seidel elements. More precisely, it is shown in [4] that if M is a 4-toric
manifold, then these quantum classes can still be expressed by explicit closed formulas.
Moreover, these formulas only depend on the relative position of representatives
of elements of π2(M) with vanishing first Chern number as edges of the moment
polygon. In particular, they are directly readable from the polygon.

We now recall the precise results from [4] that we will use in the forthcoming
sections. Consider a four-dimensional closed symplectic manifold (M , ω), endowed
with a toric structure (ρ, Φ). Suppose that the associated Delzant polygon P = Φ(M)
has m ≥ 4 edges, and consider a Hamiltonian circle action Λ on (M , ω), with moment
map ΦΛ , such that Λ is a subcircle of the toric action ρ ∶ T2 → Ham(M , ω).
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#{c1 = 0} = 0
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A2

(3b)

2

Am

A1

Am−1

(3c)

Figure 3: Cases appearing in Theorem 2.2.

We assume additionally that the fixed point component of Λ on which ΦΛ is
maximal is a 2-sphere, Fmax ⊂ M, whose momentum image is an edge D of P. We
denote by A ∈ H2(M;Z) the homology class of Fmax and by Φmax = ΦΛ(Fmax).

In this case, McDuff–Tolman’s result [24, Theorem 1.10] ensures that the Seidel
element associated with Λ is

S(Λ) = A⊗ qtΦmax + ∑
B∈HS

2(M ;Z)>0

aB ⊗ q1−c1(B)tΦmax−ω(B) ,(2.3)

where HS
2 (M;Z)>0 consists of the spherical classes of positive symplectic area, that

is, ω(B) > 0 and aB ∈ H∗(M;Z) denotes the contribution of B. As mentioned above,
when (M , J) is Fano for some S1-invariant ω-compatible almost complex structure J,
then all the lower-order terms vanish and we end up with S(Λ) = A⊗ qtΦmax .

In the non-Fano case, one has to be careful about the number and relative position
of edges, in the vicinity of D, corresponding to spheres in M with vanishing first Chern
number. We denote the number of such edges by #{c1 = 0}. We denote the edges and
the corresponding homology classes in M in a cyclic way, that is, D, which, we denote
by Dm below, has neighboring edges Dm−1 on one side and Dm+1 = D1 on the other,
and they, respectively, induce classes Am , Am−1, and Am+1 = A1 in H2(M;Z).

Figure 3 shows the relevant parts of the different polygons we need to consider.
Dotted lines represent edges with positive first Chern number, and we indicate near
each edge with nontrivial contribution the homology class of the corresponding
sphere in M. For example, in Case (3c), only three homology classes contribute: Am−1,
Am , and A1; Am−1 and A1 have vanishing first Chern number while c1(Am) ≠ 0.

Now, the following theorem gives the explicit expression of the Seidel element
associated with Λ when #{c1 = 0} ≤ 2.

Theorem 2.2 [4, Theorem 4.5] Let (M , ω) be a four-dimensional closed symplectic
manifold, endowed with a toric structure. With the notation described above, assume
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that the Delzant polygon P has m ≥ 4 edges, and that the fixed point component of the
Hamiltonian action Λ on which ΦΛ is maximal is a 2-sphere, Fmax ⊂ M. Additionally,
assume that (M , J) is NEF, for some S1-invariant ω-compatible almost complex struc-
ture J. Then, in the cases described by Figure 3, the Seidel element associated with Λ is:

(1) S(Λ) = Am ⊗ qtΦmax ;

(2a) S(Λ) = Am ⊗ q tΦmax

1 − t−ω(Am)
;

(2b) S(Λ) = (Am ⊗ q tΦmax

1 − t−ω(Am)
− A1 ⊗ q tΦmax−ω(A1)

1 − t−ω(A1)
) 1

1 − t−ω(Am)−ω(A1)
;

(3a) S(Λ) = Am ⊗ qtΦmax − A1 ⊗ q tΦmax−ω(A1)

1 − t−ω(A1)
;

(3b) S(Λ) = Am ⊗ qtΦmax − A1 ⊗ q tΦmax−ω(A1)

1 − t−ω(A1)

−(A1 ⊗ q tΦmax

1 − t−ω(A1)
− A2 ⊗ q tΦmax−ω(A2)

1 − t−ω(A2)
) t−ω(A1)−ω(A2)

1 − t−ω(A1)−ω(A2)
;

(3c) S(Λ) = Am ⊗ qtΦmax − Am−1 ⊗ q tΦmax−ω(Am−1)

1 − t−ω(Am−1)
− A1 ⊗ q tΦmax−ω(A1)

1 − t−ω(A1)
.

2.3 The fundamental group of Symp(Mμ ,c1 ,c2 ,c3 ,c4)

In this section, we recall the main results obtained by Li et al. [18] on the Torelli
symplectic mapping class group and on the rank of the fundamental group of the
group Symph(Mμ ,c1 ,c2 ,c3 ,c4) of symplectomorphisms that act trivially on homology,
for any given symplectic form.

First, note that diffeomorphic symplectic forms define symplectomorphism groups
that are homeomorphic, and that symplectomorphism groups are invariant under
rescalings of symplectic forms. Consequently, we can restrict ourselves to symplectic
forms belonging to a fundamental domain for the action of Diff ×R∗ on the space
Ω+ of orientation-compatible symplectic forms defined on the n-fold blowup Xn .
The cohomology class of a reduced class ω (see Definition 1.1 in the Introduction) is
νL − δ1V1 − ⋅ ⋅ ⋅ − δnVn . Let Jω be the space of compatible almost complex structures
on Xn . For any J ∈ Jω on Xn , the first Chern class c1 ∶= c1(TM) ∈ H2(Xn ;Z) is the
Poincaré dual to K ∶= 3L −∑i Vi . Let K be the symplectic cone of Xn , that is,

K = {A ∈ H2(Xn ;Z) ∣A = [ω] for some symplectic form ω ∈ Ω+}.

Now, if C stands for the Poincaré dual of the symplectic cone ofXn , then by uniqueness
of symplectic blowups proved by McDuff in [22], the diffeomorphism class of the
form ω only depends on its cohomology class. Therefore, it is enough to describe a
fundamental domain of the action of Diff ×R∗ on C. Moreover, the canonical class K
is unique up to orientation-preserving diffeomorphisms [20], so it suffices to describe
the action of the diffeomorphisms fixing K, Diff K , on

CK = {A ∈ H2(Xn ;R) ∶ A = PD[ω] for some ω ∈ ΩK},

where ΩK is the set of orientation-compatible symplectic forms with K as the symplec-
tic canonical class. By the results in [20], the set of reduced classes is a fundamental
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domain of CK(Xn) under the action of Diff K . A proof of this result is also given
in [11, Theorem 1.4]. We now consider the following change of basis in H2(Xn ;Z).
Consider the symplectic manifold (S2 × S2 , μσ ⊕ σ) where the homology class of
the base B ∈ H2(S2 × S2) represented by S2 × {pt} has area μ, and the homology
class of the fiber F ∈ H2(S2 × S2) represented by {pt} × S2 has area 1. Recall that
Mμ ,c1 , . . . ,cn−1 = (S2 × S2# (n − 1)CP2 , ωμ ,c1 , . . . ,cn−1) is obtained from (S2 × S2 , μσ ⊕ σ),
by performing n − 1 successive blowups of capacities c1 , . . . , cn−1. This can be naturally
identified with (Xn , ω). One easy way to understand the equivalence is as follows:
let {B, F , E1 , . . . , En−1} be the basis for H2(Mμ ,c1 , . . . ,cn−1 ;Z) where the E i represent
the exceptional spheres arising from the blowups. We identify L with B + F − E1,
V1 with B − E1, V2 with F − E1, and Vi with E i−1, with 3 ≤ i ≤ n. Then the unique-
ness of symplectic blowups due to McDuff (see [22, Corollary 1.3]) implies that the
symplectomorphism type of a symplectic blowup of a rational ruled manifold along
an embedded ball of capacity c ∈ (0, 1) depends only on the capacity c and not on
the particular embedding used in obtaining the blowup. Using this result and after
rescaling, we conclude that, for parameters satisfying the relations

μ = ν − δ2

ν − δ1
, c1 =

ν − δ1 − δ2

ν − δ1
, and c i =

δ i+1

ν − δ1
, 2 ≤ i ≤ n − 1,(2.4)

there exists a symplectomorphism between two symplectic manifolds encoded by
these parameters such that

νL − δ1V1 − ⋅ ⋅ ⋅ − δnVn = μB + F − c1E1 − ⋅ ⋅ ⋅ − cn−1En−1 .

Summarizing the above discussion, we showed that

Lemma 2.3 Every symplectic form on S2 × S2# (n − 1)CP2 is, after rescaling, diffeo-
morphic to a form Poincaré dual to μB + F − c1E1 − ⋅ ⋅ ⋅ − cn−1En−1 with

0 < cn−1 ≤ ⋅ ⋅ ⋅ ≤ c1 ≤ 1 ≤ μ and c i + c j ≤ 1.

Recall (see [16]) that the normalized reduced symplectic cone is defined as the
space of reduced symplectic classes having area 1 on L, the line class. Note that
cohomologous symplectic forms on a rational or ruled surface are diffeomorphic
(cf. [15, 20]). We represent such a class by (1∣δ1 , . . . , δn), or (δ1 , . . . , δn) ∈ Rn . For
3 ≤ n ≤ 8, such a cone is a n-simplex with one facet removed, where the monotone
class is one of the vertices, namely Mn = ( 1

3 , . . . , 1
3 ). We are interested in the case when

the manifold is X5 where the normalized reduced cone is convexly generated by five
half-closed intervals {MO , MA, MB, MC , MD}, with vertices M = ( 1

3 , 1
3 , 1

3 , 1
3 , 1

3 ),
which corresponds to the monotone case, O = (0, 0, 0, 0, 0), A = (1, 0, 0, 0, 0), B =
( 1

2 , 1
2 , 0, 0, 0), C = ( 1

3 , 1
3 , 1

3 , 0, 0), and D = ( 1
3 , 1

3 , 1
3 , 1

3 , 0) (for more details, see [16]).
Let Nω be the number of symplectic-2 spheres classes. Then Li, Li, and Wu proved

the following.

Theorem 2.4 [18, Theorem 1.2] Consider X5 with any symplectic form ω. Then the
rank of the fundamental group of Symph(X5 , ω) satisfies

rank(π1(Symph(X5 , ω))) = Nω − 5 + rank(π0(Symph(X5 , ω))),

where the rank of π0(Symph(X5 , ω)) means the rank of its abelianization.
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Moreover, along the edge MA, when ν = 1, δ1 > δ2 = δ3 = δ4 = δ5, and δ1 +
δ2 + δ3 = 1, or equivalently, when μ > 1 and c1 = c2 = c3 = c4 = 1/2, it follows
from [18, Lemma 5.10] and its proof (in particular from sequence (37)) that
π1(Symph(X5 , ω)) = Z5. This is the case we will study in detail in the forthcoming
sections. In particular, we will show that a generating set of the fundamental group of
Symph(X5 , ω) can be realized by Hamiltonian circle actions except in some particular
interval of values of μ.

3 Quantum homology of Mμ,c1 ,c2 ,c3 ,c4

In [7], Crauder and Miranda compute the quantum cohomology of a general rational
surface, which includes the case of the blown-up manifoldCP

2#5CP2. Using Poincaré
duality, this allows us to construct a presentation for the quantum homology ring
QH∗(Mμ ,c1 ,c2 ,c3 ,c4), so that we can then compare different Seidel elements. The
relations

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

L = B + F − E1 ,
V1 = B − E1 ,
V2 = F − E − 1,
Vi = E i−1 , for 2 ≤ i ≤ n,

give an explicit way of translating information in terms of the classes {L, V1 , . . . , Vn}
to one in terms of {B, F , E1 , . . . , En−1}.

An explicit formula for the quantum product in terms of the classes L, Vi is given
in Proposition 5.3 of [7]. The coefficients that appear in these can be computed with
the help of the tables in Section 4 of [7], giving us a closed formula for the products
we are interested in. As an example, the product of two classes, different from the class
of a single point p ∈ H0(X5 ,Z), in CP

2#5CP2, is given by

(dL −∑
i

m i Vi) ∗ (d′L −∑
i

m′i Vi) = (dd′ −∑
i

m i m′i) pt[p] +∑
k

mk m′k Vk t[Vk]

+ ∑
j,k
(d − m j − mk)(d′ − m′j − m′k)(L − Vj − Vk)t[L−Vj−Vk]

+ (2d −∑
i

m i)(2d′ −∑
i

m′i)(2L − V1 − V2 − V3 − V4 − V5)t[2L−V1−V2−V3−V4−V5]

+ ∑
j
(d − m j)(d′ − m′j)Xt[L−Vj]

+ ∑
j,k , l ,n

(2d − m j − mk − m l − mn)(2d′ − m′j − m′k − m′l − m′n)Xt[2L−Vj−Vk−Vl−Vn] ,

where i , j, k, l , n always represent distinct indices, X ∈ H4(X5 ,Z) is the class of the
manifold, d ∈ Z>0 , m i , m′j ∈ Z≥0, and t[A] means t to the power of the negative
symplectic area of the corresponding class A (in the symplectic viewpoint).
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The next proposition gives a description of the ring QH∗(Mμ ,c i=1/2). For the sake
of simpler notation, let

b i j = (B − E i − E j) ⊗ q t 1
2

1 − t1−μ , f i j = (F − E i − E j) ⊗ q t 1
2

1 − t1−μ , and

e i = E i ⊗ q t 1
2

1 − t1−μ ,

and, as before, let distinct letters in the indices correspond to distinct elements.
Its proof is just computing the quantum products by the formula above and then
translating them to a formula in terms of {B, F , E1 , . . . , E4}. It follows from [7,
Proposition 5.3] that we have the presentation for QH∗(Mμ ,c i=1/2) given below.

Proposition 3.1 With the notation above, when μ > 1, as a Πuniv-algebra, we have

QH∗(Mμ ,c i=1/2) ≃ Πuniv[ f i j , b i j , e i]/Iμ ,c i=1/2 ,

where Πuniv is the universal Novikov ring and Iμ ,c i=1/2 is the ideal generated by

(1) b i jbk� = 1; (7) f i j fk� = 0;

(2) b i jb ik = b i j f i j + f j� + 1; (8) f i j f ik = f i j(b i j + 1);

(3) b2
i j = 2b i j f i j + f i j + fk� + 1; (9) f 2

i j = 2 f i j(b i j + 1);

(4) f ik(b i j + 1) = 0; (10) ( f i j + fk�)(b i j + 1) = 0;

(5) b i j ( f i j + e i +
t1−μ

1 − t1−μ ) = e j +
t1−μ

1 − t1−μ ; (11) f i j (b i j + e i +
1

1 − t1−μ ) = 0;

(6) b i j (ek +
t1−μ

1 − t1−μ ) = fk� + e� +
t1−μ

1 − t1−μ ; (12) f i j (ek +
t1−μ

1 − t1−μ ) = 0;

(13) e i e j = (2b i j + 2 fk� + ek + e�)
t1−μ

1 − t1−μ + 2t1−μ + t2−2μ

(1 − t1−μ)2 ;

(14) e2
i = b i j f i j +

f i j

1 − t1−μ + (2b i j + fk� + 2e j)
t1−μ

1 − t1−μ + 2t1−μ + t2−2μ

(1 − t1−μ)2 . ∎

Remark 3.2 Of course, our description does not give a minimal set of generators nor
is that the intention of Proposition 3.1. The generators were picked with the intent of
simplifying the computations of the Seidel morphism and they also give some simple
insight into the ring structure: for instance, relation f i j fk� = 0 implies that there are
zero divisors.

4 Generators of π1(Symp(Mμ,c1 ,c2 ,c3 ,c4))

4.1 Hamiltonian circle actions in Mμ ,c1 ,c2 ,c3 ,c4

In this section, we list all equivalence classes of Hamiltonian circle actions on sym-
plectic manifolds whose symplectic cohomology class belongs to the edge MA of
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1, a

1
2

0, b

Figure 4: Graphs representing Hamiltonian circle actions on symplectic manifolds belonging
to the ray MA.

the reduced symplectic cone. Recall that, along this edge, we have μ > 1 and c1 =
c2 = c3 = c4 = 1/2. Recall also that Karshon’s classification [10, Section 6.2] implies
that every compact four-dimensional Hamiltonian S1-space can be obtained from
a minimal space, which can be CP

2, a Hirzebruch surface, or an irrational ruled
manifold (see [10, Section 6.3]), by a sequence of equivariant symplectic blowups
at fixed points. It follows that the only possible Hamiltonian circle actions on the
symplectic manifolds belonging to the edge MA are the ones corresponding to
the labeled graphs of Figure 4, where the values of a and b represent the sym-
plectic area of the invariant spheres and depend on which sphere we perform the
blowup. In our figures, we omit the genus label since, in our case, the invariant
surfaces are always embedded spheres. Moreover, since the symplectic area of the
spheres is positive, i.e., a, b > 0, and c1 = c2 = c3 = c4 = 1/2, then we can only have
a + b = 2μ − 2.

4.2 Circle actions and homotopy classes of loops

A labeled graph only determines a circle action up to symplectomorphisms. Equiv-
alently, a labeled graph defines a conjugacy class of circles in Symp(M , ω). Conse-
quently, any such graph defines an element of

π1 (Symp(M , ω)) / Symp(M , ω) ≃ π1 (Symp(M , ω)) /π0(Symp(M , ω)),

where the action is by conjugation. The analysis of this action is done in two
stages.

For any symplectic manifold (M , ω) belonging to the ray MA, the action of
Symp(M , ω) on homology induces a short exact sequence

1 → Symph(M , ω) → Symp(M , ω) f-→ Autc1 ,[ω] (H2(M ,Z)) → 1,

where Autc1 ,[ω] (H2(M ,Z)) is the group of automorphisms of the lattice H2(M ,Z)
preserving the intersection form and the classes dual to c1(M , ω) and [ω]. The fact
that the map f is onto follows from three results in [21] that we briefly recall. First,
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by [21, Proposition 4.14], the group Autc1 ,[ω] (H2(M ,Z)) is generated by reflections
about spherical homology classes A satisfying three conditions: A ⋅ A = −2, c1(A) = 0,
and ω(A) = 0. Such a class is called a (K , [ω])-null spherical class, where K denotes
the symplectic canonical class. Second, a symplectic Dehn twist along a Lagrangian
sphere L induces the reflection R([L]) in homology. Finally, the result follows from
Proposition 5.6 in [21] which proves existence of Lagrangian spheres representing
(K , [ω])-null spherical classes.

In our case, along MA, the automorphism group is isomorphic to the Weyl group
D4 given by the trivalent Dynkin diagram (see [18]). It is easy to see that it fixes the
classes 2B + 2F − E1 − E2 − E3 − E4 and F, whereas it acts transitively on the eight
exceptional classes E1 , . . . , E4 , F − E1 , . . . , F − E4. In particular, the only element of
Autc1 ,[ω] that fixes the four exceptional classes E i is the identity.

In order to keep track of the action of Autc1 ,[ω] ≃ Symp(M , ω)/ Symph(M , ω) on
Hamiltonian circle actions, we consider extended graphs as defined in [10, Section 5,
p. 33] decorated with homology labels. Starting with the standard labelled graph of
Figure 4, we add extra (dotted) edges that represent free invariant spheres connecting
each interior fixed point to extrema of the moment map. Each such sphere is the
closure of a free C∗-orbit, where the C∗ action is defined from the choice of a generic
S1-invariant almost-complex structure. Since the action of Symp(M , ω) preserves the
genericity of almost-complex structures, an extended graph defines a configuration
of invariant spheres that is well defined up to conjugation. We then label the edges
of the extended graph with homology classes according to the sequence of blowups
that is used to construct the Hamiltonian S1-manifold. Geometrically, this amounts
to labeling invariant spheres with their homology class following a specific sequence
of equivariant blowups performed on (S2 × S2 , μσ ⊗ σ), starting with the two fixed
surfaces labeled B = [S2 × pt] and F = [pt×S2]. The possible extended labeled graphs
are shown in Figures 5–7. By construction, the group Symp(M , ω) acts on its cor-
responding extended labeled graph with kernel Symph(M , ω). In our case, these
extended labeled graphs classify Symph-equivalence classes of S1-manifolds on the
edge MA endowed with a given framing ϕ ∶ H2(M ,Z) → Z⟨B, F , E1 , E2 , E3 , E4⟩ ≃
Z1,5.

Recall from [18] that, for (M , ω) belonging to the edge MA, the symplec-
tomorphism group Symph(M , ω) is not connected. Indeed, π0(Symph(M , ω)) =
π0(Diff+(S2 , 4)) ≃ P4(S2)/Z2, where P4(S2) is the pure braid group of four
strings in S2 . Since an extended labeled graph only determines an element in
π1(Symp(M , ω))/π0(Symph(M , ω)), we have to understand how π0(Symph(M , ω))
acts on π1(Symp(M , ω)). We postpone this analysis to Section 4.4.

4.3 Extended labeled graphs along the edge MA

We now describe a finite set of one-parameter families of extended labeled graphs,
parameterized by μ, that correspond to symplectic manifolds belonging to the edge
MA of the reduced symplectic cone. The number of elements in these families
depends on the range of μ. As explained above, each such graph corresponds to a
Symph(M , ω)-conjugacy class of Hamiltonian circle actions.
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B − E l − Em

1, μ − 1

E�

F − E�

Em

F − Em

1
2

F − Ei

Ei

F − E j

E j

0, μ − 1

B − Ei − E j

Circle action z0, i j

B + F − E1 − E2 − E3 − E4

1, μ − 1

E1

F − E1

E2

F − E2

1
2

E3

F − E3

E4

F − E4

0, μ − 1

B − F

Circle action z1

Figure 5: Family of graphs in the case μ > 1.

Notice that these actions only exist as long as the symplectic area of the classes
corresponding to the fixed spheres is positive. Assuming 1 < μ ≤ 3

2 , we have four
circle actions represented by the graphs in Figure 5. We can consider for example:
z0,12 , z0,13 , z0,14 and z1. We do not consider flips of these graphs as they represent
actions which are inverse to these ones.

Remark 4.1 Note that removing the homology labels and the dotted edges from the
graphs representing the four actions z0,12 , z0,13 , z0,14, and z1, we get exactly the same
underlying labeled graph. It follows that these four Hamiltonian circle actions are
conjugated by symplectomorphisms that act nontrivially on homology.

Moreover, as we increase the value of μ, there are more classes that can be
represented by the fixed spheres, as we see next. If we consider μ > 3

2 , then we can
add the graphs in Figure 6 to the previous family. It should be clear that there are
eight such graphs, because i , j, �, m = 1, 2, 3, 4 are all distinct. More precisely, we have
the graphs representing the following actions: z0,123 , z0,124 , z0,134 , z0,234 and z1,1 , z1,2 ,
z1,3 , z1,4.

Then there are no more possible classes for the fixed symplectic spheres unless we
consider μ > 2. In this case, eight new circle actions appear, where the following pairs
of classes are represented by the fixed spheres: B and B − E1 − E2 − E3 − E4; B − 2F and
B + 2F − E1 − E2 − E3 − E4; and B − F − E i − E j and B + F − E� − Em with i , j, �, m =
1, 2, 3, 4 all distinct. If we restrict the range of values of μ further, it is easy to see that
the number of circle actions keeps increasing. More precisely, when μ passes k + 1

2 or
k + 1, for k ∈ Z≥1, the number of actions always increases by 8. Therefore, we obtain
the following proposition.

Proposition 4.2 The Hamiltonian circle actions on the symplectic manifolds belong-
ing to the edge MA of the reduced symplectic cone are the ones represented by the
labeled graphs in Figure 7. In particular, these actions satisfy the following existence

https://doi.org/10.4153/S0008414X22000323 Published online by Cambridge University Press

https://doi.org/10.4153/S0008414X22000323


1242 S. Anjos, M. Barata, M. Pinsonnault, and A. A. Reis

B − Em

1, μ −
1
2

Em

F − Em
Ei

F − Ei 1
2

E j

F − E j

E�

F − E�

0, μ −
3
2

B − Ei − E j − E�

Circle action z0, i j�

B + F − E j − E l − Em

1, μ −
1
2

E j

F − E j

E�

F − E�

1
2

Em

F − Em

Ei

F − Ei

0, μ −
3
2

B − F − Ei

Circle action z1, i

Figure 6: New family of graphs if μ > 3
2 .

conditions:

● zk exists iff μ > k and μ > 2 − k,

● zk , i exists iff μ > k + 1
2

and μ > 3
2
− k,

● zk , i j exists iff μ > k + 1,

● zk , i j l exists iff μ > k + 3
2

,

● zk ,1234 exists iff μ > k + 2,

where k ∈ Z≥0 and i , j, �, m = 1, 2, 3, 4 are all distinct.

Remark 4.3 As we saw above, when 1 < μ ≤ 3
2 , there exist only four Hamiltonian

circle actions: z0,12 , z0,13 , z0,14, and z1, so there are not enough circle actions to
generate the fundamental group. Then, when μ passes k + 1

2 , where k ≥ 1, there
exist eight more circle actions, namely zk−1,123 , zk−1,124 , zk−1,134 , zk−1,234 , and zk , i with
i = 1, 2, 3, 4, and when μ passes k + 1, eight more circle actions appear: zk−1,1234 ,
zk ,12 , zk ,13 , zk ,14 , zk ,23 , zk ,24 , zk ,34, and zk+1.

Remark 4.4 Although the number of Hamiltonian circle actions keeps increasing as
the values of μ increase, we know by the work of Li et al. in [18] that the rank of π1
remains constant as μ increases so there can only be at most five independent circle
actions as elements of the fundamental group.

Remark 4.5 In the forthcoming sections, we prove that, for μ > 3
2 , the fundamental

group π1(Symp(Mμ ,c i=1/2)) ⊗Q is indeed generated by circle actions. We choose as a
tentative set of generators the set consisting of the four circle actions z0,12 , z0,13 , z0,14,
and z1, which are the only ones that exist for all values of μ plus the action z1,4, which
exists as soon as μ passes 3

2 . The reason why we choose this action, among the new
eight actions which appear when μ passes 3

2 , is geometric and relates with the work of
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B + kF − E1 − E2 − E3 − E4

1, μ + k − 2

E1

F − E1

E2

F − E2

1
2

E3

F − E3

E4

F − E4

0, μ − k

B − kF

Circle action zk

B + kF − E j − E l − Em

1, μ + k −
3
2

E j

F − E j

E�

F − E�

1
2

Em

F − Em

Ei

F − Ei

0, μ − k −
1
2

B − kF − Ei

Circle action zk , i

B + kF − E l − Em

1, μ + k − 1

E�

F − E�

Em

F − Em

1
2

F − Ei

Ei

F − E j

E j

0, μ − k − 1

B − kF − Ei − E j

Circle action zk , i j

B + kF − Em

1, μ + k −
1
2

Em

F − Em
Ei

F − Ei 1
2

E j

F − E j

E�

F − E�

0, μ − k − 3
2

B − kF − Ei − E j − E�

Circle action zk , i j�

B + kF

1, μ + k

F − E1

E1 E2

F − E2 1
2

E3

F − E3

E4

F − E4

0, μ − k − 2

B − kF − E1 − E2 − E3 − E4

Circle action zk ,1234

Figure 7: Families of graphs of Hamiltonian S1-spaces encoded by the edge MA.

[18]. This action corresponds to a simultaneous rotation of all the spheres except the
base in the configuration of seven exceptional spheres used in the proof of [18, Lemma
5.10], where the authors show that the rank of π1(Symph(Mμ ,c i=1/2)) is 5. While the
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first four actions fix spheres with self-intersection −2, the action z1,4 fixes a −3 self-
intersection sphere in class B − F − E4.

4.4 The Seidel morphism along the edge MA

In this subsection, we prove our first main theorem, namely Theorem 1.3. The proof
relies on the computation of the Seidel elements associated with the circle actions
z0,1i , i = 2, 3, 4, z1, and z1,4, and on the fact that they are linearly independent in
the subgroup of invertible elements of the quantum homology of the manifold
Mμ ,c i=1/2.

4.4.1 Seidel elements and deformations

In order to describe the Seidel morphism

S ∶ π1(Symp(Mμ ,c i=1/2)) → QH2n(Mμ ,c i=1/2)×,

our strategy is to combine the invariance property of S under the natural
Symph(M , ω) action, the invariance of Gromov–Witten invariants with respect to
symplectic deformations, and Theorem 2.2, which describes certain Seidel elements
associated with subcircles of toric actions on NEF symplectic manifolds.

More precisely, we first observe that the Seidel morphism

S ∶ π1(Symp0(M , ω)) → QH2n(M , ω)×

defined in Section 2.2 is invariant under the action of π0(Symph(M , ω)) on
π1(Symp0(M , ω). This follows from the definition of S and, in the case of Hamiltonian
circle actions, can be seen directly from the formula (2.3) given by McDuff and
Tolman. In particular, given a Hamiltonian circle action γ ∶ S1 → Ham(M , ω), its
image S(γ) is determined by the labeled extended graph associated with γ.

Next, consider a Hamiltonian circle action ρ on Mμ ,c i=1/2 and the corresponding
loop [ρ] in Symp(Mμ ,c i=1/2). Let Ω(ρ) be the space of all symplectic forms that
are invariant under this action and write Ω0(ρ) for the connected component of
ωμ ,c i=1/2. A Q-generic symplectic form is a symplectic form whose cohomology class
[μ; c1 , . . . , c4] is given by coefficients that are linearly independent over Q. One can
show that invariant Q-generic symplectic forms are dense in Ω0(ρ): let ω be any
invariant symplectic form and δ i be invariant closed two forms whose cohomology
classes are a basis for H2(M ,R). Then, for sufficiently small c i , the two forms ω +
∑i c i δ i are invariant and symplectic. The result follows readily.

The same argument shows that extended graphs whose moment map labels are
small continuous perturbations of the labels associated with ρ correspond to deforma-
tion equivalent symplectic forms invariant under the same circle action. Consequently,
for any S1-manifold (M , ω′) associated with such an extended graph, there is no
ambiguity as to what the Seidel element S([ρ]) ∈ QH2n(M , ω′)× is.1

1In order to compare the Seidel homomorphisms associated with deformation-equivalent symplectic
forms, a more general approach would be to use an enlarged Novikov ring as in [30].
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We now observe that, due to deformation invariance of Gromov–Witten invariants,
given any symplectic form ω′ in Ω0(ρ), the quantum homology ring QH(M , ω′) is
obtained from the quantum ring of a Q-generic class ωμ ,c1 ,c2 ,c3 ,c4 by setting the values
of the coefficients μ, c1 , c2 , c3 , c4 equal to those of ω′. We thus have a natural special-
ization map QH(M , ωμ ,c1 ,c2 ,c3 ,c4) → QH(M , ω′), which sends the Seidel element of
[ρ] computed relatively to the generic form ωμ ,c1 ,c2 ,c3 ,c4 to the one computed relatively
to the form ω′.

Finally, we can apply the previous discussion starting with a Hamiltonian circle
actions ρ on Mμ ,c i=1/2. From the above remarks, we can find a deformation equivalent
Q-generic form ωμ;c1 ,c2 ,c3 ,c4 such that the sizes of the blowups satisfy the inequalities
0 < c4 < c3 < c2 < c1 < c i + c j < 1 < μ, with i , j ∈ {1, 2, 3, 4} distinct. Symplectic coho-
mology classes satisfying this condition are said to be reduced generic or, more simply,
generic. By choosing the sizes carefully, we can embed the circle action ρ into a toric
action of a toric manifold that is NEF, and for which Theorem 2.2 applies. This allows
us to compute the Seidel element of ρ.

In what follows, we consider Hamiltonian actions fixing spheres in the same
homology classes as the ones in Proposition 4.2 and we list in Figure 8 their graphs.
Note that we use the same notation for the circle actions in the generic case as, for the
circle actions along the edge MA, we do not distinguish one case from the other with
regard to notation.

4.4.2 Computing Seidel elements from toric actions

First, consider the actions z0,12 , z0,13 , z0,14 and the polygon of Figure 9. The action
z0,12 corresponds to the circle action whose moment map is the first component of
the moment map associated with the toric action T0,12, represented in this figure.
Moreover, it is clear that the homology classes of the fixed spheres are B − E1 − E2
and B − E3 − E4. Then Theorem 2.2(2a) yields

S(z0,12) = [B − E3 − E4] ⊗ q tε

1 − tc3+c4−μ ,

where ε is the maximum of the momentum map of the action z0,12, ϕmax(Fmax), where
Fmax is the maximal 2-sphere whose momentum image is the edge in class B − E3 − E4,
in the normalized polygon. In general, we obtain

S(z0,1i) = [B − E j − E�] ⊗ q tε

1 − tc j+c�−μ , where j ≠ � ≠ i .

One can check that the normalized polygon yields

ε =
c3

j + 3c2
1 − c3

1 + c3
� + 3c2

i − c3
i − 3μ

3(c2
1 + c2

2 + c2
3 + c2

4 − 2μ) .

Hence, if c i = 1/2 for all i, we obtain ε = 1/2 and

S(z0,1i) = [B − E j − E�] ⊗ q t 1
2

1 − t1−μ , where j ≠ � ≠ i .(4.1)

Note that the expression is well defined because μ > 1.
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B + kF − E1 − E2 − E3 − E4

1, μ + k − c1 − c2 − c3 − c4

E4

F − E4

E3

F − E3

1 − c4

1 − c3

1 − c2

1 − c1

E2

F − E2 E1

F − E1
0, μ − k

B − kF

Circle action zk

B + kF − E j − E l − Em

1, μ + k − c j − c� − cm

Em

F − Em

E�

F − E�

E j

F − E j

F − Ei

Ei

1 − cm

1 − c�
1 − c j

ci

0, μ − k − c i

B − kF − Ei

Circle action zk , i

B + kF − E l − Em

1, μ + k − c� − cm

Em

F − Em

E�

F − E�

Ei

F − Ei

E j

F − E j

1 − cm

1 − c�
ci

c j

0, μ − k − c i − c j

B − kF − Ei − E j

Circle action zk , i j

B + kF − Em

1, μ + k − cm

Em

F − Em

Ei

F − Ei

E j

F − E j

E�

F − E�

1 − cm

ci

c j

c�

0, μ − k − c i − c j − c�

B − kF − Ei − E j − E l

Circle action zk , i j l

B + kF

1, μ + k

E1

F − E1F − E2

E2

E3

F − E3

E4

F − E4

c1

c2

c3

c4

0, μ − k − c1 − c2 − c3 − c4

B − kF − E1 − E2 − E3 − E4

Circle action zk ,1234

Figure 8: Graphs of the circle actions zk , zk , i , zk , i j , zk , i j l , and zk ,1234 in the generic case.
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Figure 9: Toric action T0,12 .

Figure 10: Toric action T1 and its projection to the x-axis.

Consider now the polygon of Figure 10, which represents a toric action
on Mμ ,c1 ,c2 ,c3 ,c4 , and for which the homology classes of the edges are
represented in the figure. The graph of the circle action obtained by the
projection of the polygon onto the x-axis is also represented in Figure 10.
Note that it becomes the action z1 defined in Figure 5 if c i = 1/2 for
all i.

Now, Theorem 2.2(2a) gives

S(z1) = [B + F − E1 − E2 − E3 − E4] ⊗ q t1−ε

1 − tc1+c2+c3+c4−μ−1 ,
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Figure 11: Toric action (z1,4 , s1,4).

where in this case the maximum of the momentum map on the invariant sphere is
given by

ε = −1 − c3
1 + 3c2

1 + 3c2
2 − c3

2 + 3c2
3 − c3

3 + 3c2
4 − c3

4 + 3c1c2
4 − 3c3c2

4 − 3μ
3(c2

1 + c2
2 + c2

3 + c2
4 − 2μ) ,

which is simply equal to 1/2 if c i = 1/2 for all i. Therefore, we obtain

S(z1) = [B + F − E1 − E2 − E3 − E4] ⊗ q t 1
2

1 − t1−μ .(4.2)

Finally, we compute the Seidel element of the circle action z1,4, seen as an element
of the fundamental group of Symph(Mμ ,c1 ,c2 ,c3 ,c4). In order to do that, first consider
the Delzant polygon of Figure 11. It represents a toric action on Mμ ,c1 ,c2 ,c3 ,c4 and its
projections onto the x-axis and the y-axis are represented in Figure 12. Note that
the projection onto the x-axis corresponds to the graph of the action z1,4 given in
Figure 6. Let us denote the action whose graph is obtained by projection onto the y-axis
by s1,4.

Since c1(B − F − E4) = −1 < 0, the complex manifold corresponding to Figure 11 is
not NEF and we cannot apply immediately Theorem 2.2 to compute the Seidel element
of z1,4. Instead, we need to consider some auxiliary polygons for which the underlying
complex manifolds are NEF and relate the circle actions represented on those polygons
with the actions z1,4 and s1,4. More precisely, consider the Delzant polygon, on the left
in Figure 13 and apply the GL(2,Z) transformation represented by the matrix

( 1 0
1 1 )(4.3)
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B + F − E1 − E2 − E3

1, μ + 1 − c1 − c2 − c3

E3

F − E3

E2

F − E2

E1

F − E1

F − E4

E4

1 − c3

1 − c2

1 − c1

c4

0, μ − 1 − c4

B − F − E4

Circle action z1,4

E1 − E2

μ − c1 , c1 − c2

F − E1

E2E2
μ − c1 − c2

μ − 1

c4

−c4

−1 + c3 , c3

E3

B − F − E4

E4 B + F − E1 − E2 − E32

F − E3 − E4

Circle action s1,4

Figure 12: Graphs of circle actions z1,4 and s1,4 , respectively.

Figure 13: Polygon representing an NEF complex manifold and its transformation by the
GL(2,Z)matrix (4.3).

to this polygon as well as to the polygon of Figure 11. Then consider the projection
onto the y-axis of the two transformed polygons and denote the action obtained this
way from the polygon of Figure 13 by t1,4. It is easy to check that the two graphs
coincide, which implies that as elements of π1(Symph(Mμ ,c1 ,c2 ,c3 ,c4)) the following
identification holds

z1,4 + s1,4 = t1,4 .(4.4)

On the other hand, consider the polygon on the left in Figure 14, which represents
a toric action, denoted by (x1 , y1), on Mμ ,c1 ,c2 ,c3 ,c4 and its transformation by the same
GL(2,Z) matrix (4.3). The projection of the transformed polygon onto the y-axis
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Figure 14: Toric action (x1 , y1) and its transformation by the GL(2,Z)matrix (4.3).

yields a graph that, up to translation, coincides with the graph of the action s1,4, which
implies that s1,4 = x1 + y1 .

Note that, in Figure 14, we have c1(A) ≥ 0 for all homology classes A of the fixed
spheres corresponding to edges of the polygon, so we can apply Theorem 2.2 to
compute the Seidel element of s1,4 = x1 + y1. Moreover, it follows from equation (4.4)
that the Seidel element of z1,4 is given by

S(z1,4) = S(t1,4)S(s1,4)−1 .(4.5)

More precisely, Theorem 2.2(3a) yields the Seidel elements of t1,4 and −s1,4, which are
readable directly from the polygons on the right in Figures 13 and 14.

S(t1,4) = E2 ⊗ qtμ+1−c1−c2−γ − (E1 − E2) ⊗ q tμ+1−2c1−γ

1 − tc2−c1
,

S(s1,4)−1 = E3 ⊗ qtβ−c3 − (F − E3 − E4) ⊗ q tβ+c4−1

1 − tc3+c4−1 ,

where the exponents of the higher degree terms, namely of E2 and E3, are the maximal
values of the momentum map for the normalized polygons. Therefore, one can check
that

γ = −1 + 3c2
1 − 3c3

1 + 3c2
2 − 3c1c2

2 − 2c3
2 + c3

3 + c3
4 + 3c2

1 μ + 3c2
2 μ − 3μ2

3(c2
1 + c2

2 + c2
3 + c2

4 − 2μ)

and

β = 3c2
1 − 2c3

1 + 3c2
2 − 3c1c2

2 − c3
2 + 2c3

3 + 3c2
4 − 3μ + 3c2

1 μ + 3c2
2 μ − 3μ2

3(c2
1 + c2

2 + c2
3 + c2

4 − 2μ) .

Using [7, Proposition 5.3], we can now compute the quantum product (4.5) (we leave
the details to the interested reader since it is a long and boring computation) and finally
obtain

S(z1,4) = ((B + F − E1 − E2 − E3) ⊗ q +�⊗ tc4−μ)tβ−γ ,
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where the identity � is the homology class of the manifold, [CP2# 5CP2] ∈
H4(CP2# 5CP2 ,Z). In what follows, we will suppress the identity from the expres-
sions in order to simplify the notation.

If c i = 1/2 for all i, then

S(z1,4) = ((B + F − E1 − E2 − E3) ⊗ q + t
1
2−μ)t

2−3μ
3(1−2μ) .(4.6)

Note that this result agrees with McDuff–Tolman’s result as the leading term is given
by the homology class of the edge where the action is maximal.

Remark 4.6 In a similar way, we can compute the Seidel element of the inverse of
z1,4:

S(z1,4)−1 = [(B − F − E4) ⊗ q + [pt] ⊗ q2 t
3
2−μ + (3F − E1 − E2 − E3 + E4) ⊗ q t1−μ

+ (B − E4) ⊗ q t2−2μ + t
1
2−μ(1 + t2−2μ)] t

1−3μ
3(1−2μ)

(1 − t1−μ)4 .

(4.7)

Since all the possible Hamiltonian circle actions on Mμ ,c i=1/2 have semi-free maximal
sets, the McDuff–Tolman result always applies. Observe that, when μ > 3

2 , the leading
term is the homology class B + F − E4, corresponding to the homology class of the
edge where the moment map is maximal, in accordance with the McDuff–Tolman
formula. Otherwise, if 1 < μ ≤ 3

2 , the leading term is given by the class of a point,
showing that the quantum homology class (4.7) is not the image of an effective
Hamiltonian action under the Seidel homomorphism.

4.4.3 Injectivity of the Seidel morphism for μ > 3/2

Proposition 4.7 Consider the circle actions z0,1i , i = 2, 3, 4, z1 , and z1,4, defined in
Figure 7. If μ > 3

2 and c1 = c2 = c3 = c4 = 1/2, then the Seidel elements of these five circle
actions generate a free subgroup of rank 5 in the group of invertible elements of the
quantum homology. ∎

Proof Using the notation of Section 3 for the quantum homology ring, the Seidel
elements of these five circle actions are given by the following expressions:

S(z0,12) = b34 , S(z0,13) = b24 , S(z0,14) = b23 ,(4.8)

S(z1) = b12 + f34 , S(z1,4) = (b12 + f34 + e4 +
t1−μ

1 − t1−μ )(1 − t1−μ)t
1

6(1−2μ) .(4.9)

In order to show they are linearly independent, we first consider a simplification of
the quantum algebra, namely, we set the b i j , for all i , j, equal to an element b, the
f i j to f, and e j to e. Then the quantum homology algebra becomes isomorphic to the
Πuniv-algebra

Πuniv[ f , b, e]/I′ ,(4.10)
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where I′ is the ideal generated by

(1) f 2 = 0, (2) b2 = 1, (3) f (b + 1) = 0,

(4) f (e + t1−μ

1 − t1−μ ) = 0, (5) b (e + t1−μ

1 − t1−μ ) = f + e + t1−μ

1 − t1−μ ,

(6) e2 = 2(b + f + e) t1−μ

1 − t1−μ + 2 t1−μ

(1 − t1−μ)2 +
t2−2μ

(1 − t1−μ)2 .

Moreover, it is clear that the Seidel elements simplify to

S(z0,12) = S(z0,13) = S(z0,14) = b, S(z1) = b + f ,

and S(z1,4) = (b + f + e + t1−μ

1 − t1−μ )(1 − t1−μ) t
1

6(1−2μ) .

We postpone the proof of the next two lemmas to Appendix A.

Lemma 4.8 Consider the elements b, b + f , and (b + f + e + t1−μ

1−t1−μ ) (1 − t1−μ) t
1

6(1−2μ)

contained in the subgroup of invertible elements of the algebra Πuniv[ f , b, e]/I′. They are
linearly independent, that is, if

bα (b + f )β (b + f + e + t1−μ

1 − t1−μ )
γ

(1 − t1−μ)γ t
γ

6(1−2μ) = 1, where α, β, γ ∈ Z,

then α = β = γ = 0. ∎

Lemma 4.9 The Seidel elements b34, b24, and b23 are linearly independent in the
subgroup of invertible elements of the quantum homology QH×4 (Mμ ,c i=1/2).

Now, putting together the two lemmas, it is easy to conclude that the five Seidel
elements S(z0,12), S(z0,13), S(z0,14), S(z1), and S(z1,4) are linearly independent. If

S(z0,12)α1 S(z0,13)α2 S(z0,14)α3 S(z1)β S(z1,4)γ = 1,

then

bα1
34 bα2

24 bα3
23 (b12 + f34)β (b12 + f34 + e4 +

t1−μ

1 − t1−μ )
γ

(1 − t1−μ)γ t
γ

6(1−2μ) = 1.

Using the simplification above of the quantum homology algebra, one obtains

bα1+α2+α3 (b + f )β (b + f + e + t1−μ

1 − t1−μ )
γ

(1 − t1−μ)γ t
γ

6(1−2μ) = 1.

From Lemma 4.8, we conclude that α1 + α2 + α3 = β = γ = 0. Therefore,

bα1
34 bα2

24 bα3
23 = 1,

and Lemma 4.9 implies that α1 = α2 = α3 = 0, so the five Seidel elements are linearly
independent.

Next, we study the action of π0(Symph(M , ω)) on π1(Symp0(M , ω)).
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Proposition 4.10 If (M , ω) belongs to the edge MA of the reduced symplectic
cone, and if μ > 3/2, then the Seidel homomorphism is injective and the action of
π0(Symph(M , ω)) on π1(Symp0(M , ω)) is trivial. ∎

Proof The Seidel homomorphism factors through

π1(Symp0(M , ω)) QH2n(M , ω)×

π1(Symp0(M , ω))/π0(Symph(M , ω)).

S

π

Consider arbitrary lifts in π1(Symp0(M , ω)) ≃ Z5 of the five actions. By Proposition
4.7, these lifts generate a free subgroup of rank 5 in π1(Symp0(M , ω)) ≃ Z5 on which
the Seidel homomorphism S is injective. Consequently, S is injective on the whole
group π1(Symp0(M , ω)). Since π1(Symp0(M , ω))/π0(Symph(M , ω)) is also of rank
5, the triviality of the action follows readily. ∎

Corollary 4.11 Each labeled extended graph in Figures 5–7 corresponds to a well-
defined homotopy class in π1(Symp0(M , ω)).

We now prove Theorem 1.3.

Proof Consider the extended labeled graph z0,1i , i = 2, 3, 4, z1, and z1,4 of
Figure 7. It follows from Corollary 4.11 that these graphs define five elements of
π1(Symph(Mμ ,c i=1/2)). By Proposition 4.7, these five elements are linearly indepen-
dent. This proves the second statement of the theorem. The first statement follows
immediately from Remark 4.3. ∎

Note that the proof of Proposition 4.7 does not depend on the value of μ, in addition
to the condition μ > 1. It follows that the five quantum homology classes b34, b24, b23,
b12 + f34, and

(b12 + f34 + e4 +
t1−μ

1 − t1−μ )(1 − t1−μ) t
1

6(1−2μ)(4.11)

generate a free subgroup of rank 5 in the group of invertible elements of the quantum
homology, for every μ > 1. This observation proves the following result.

Proposition 4.12 When 1 < μ ≤ 3
2 , the quantum class (4.11) is not contained in the

Q-subspace spanned by circle actions inside the Q-vector space formed by Seidel
elements. ∎

4.5 Relations between Hamiltonian circle actions on Mμ ,c1 ,c2 ,c3 ,c4

In this section, we prove our second main result. The main step is to obtain a
classification of all circle actions in Symph(Mμ ,c i=1/2), which also shows that although
we have more and more circle actions on Mμ ,c i=1/2 as we increase the value of μ,
they do not give new generators in the fundamental group of the symplectomorphism
group Symph(Mμ ,c i=1/2). We show this by describing relations between the loops zk ,
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Figure 15: Toric action Tk .

zk , i , zk , i j , zk , i j l , and zk ,1234, described in Section 4.3, that come from embedding
pairs of loops inside torus actions. The tools we use are Delzant’s classification of toric
actions and Karshon’s classification of Hamiltonian circle actions. We always consider
the actions in the generic case, that is, when 0 < c4 < c3 < c2 < c1 < c i + c j < 1 < μ, with
i , j ∈ {1, 2, 3, 4}, in order to obtain the relations between the loops. As explained in
Section 4.4.1, these relations between actions induce relations between Seidel elements
in the quantum ring associated with the generic symplectic form. These relations
map to similar relations in the quantum homology ring of Mμ ,c i=1/2. By injectivity
of the Seidel homomorphism when μ > 3/2, we deduce that these relations hold in
π1(Symp(Mμ ,c i=1/2)) as well.

Consider the manifold Mμ ,c1 ,c2 ,c3 ,c4 endowed with a toric action, which we denote
by Tk , such that the momentum polygon is given in Figure 15. In addition to the
homology classes indicated in the figure, it should be clear that the classes E3 − E4
and E4 are also represented in the bottom edges. Projecting onto the x-axis and the
y-axis, we obtain the graphs in Figure 16 of the actions zk and wk , respectively, whose
momentum maps are the first and second coordinates of the momentum map of the
action Tk .
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B + kF − E1 − E2 − E3 − E4

1, μ + k − c1 − c2 − c3 − c4

E4

F − E4

E3

F − E3

1 − c4

1 − c3

1 − c2

1 − c1

E2

F − E2 E1

F − E1
0, μ − k

B − kF

Circle action zk

k

−k

−k + 1

−k + 2
−k + 3
−k + 4

μ

μ − k

0

−k(1 − c1)

−k(1 − c2) + c1 − c2

−k(1 − c3) + c1 + c2 − 2c3

−k(1 − c4) + c1 + c2 + c3 − 3c4
−k + c1 + c2 + c3 + c4

Circle action wk

Figure 16: Graphs of the circle actions zk and wk , respectively.

Performing the GL(2,Z) transformation represented by the matrix

( 1 0
j −1 )

to the polygon of Figure 15 yields a new polygon representing the same toric manifold.
This new polygon has vertices

(1, j − μ), (0, k − μ), (0, 0), (1 − c1 , ( j + k)(1 − c1)), (1 − c2 , ( j + k)(1 − c2) − c1 + c2),
(1 − c3 , ( j + k)(1 − c3) − c1 − c2 + 2c3), (1 − c4 , ( j + k)(1 − c4) − c1 − c2 − c3 + 3c4), and
(1, j + k − c1 − c2 − c3 − c4).

Then perform the GL(2,Z) transformation represented by the matrix

( 1 0
k −1 )

to the polygon of the toric action Tj . It should be clear, looking at the coordinates
of the two transformed polygons, that projecting both polygons onto the y-axis, we
obtain the same graph, which implies that

jzk −wk = kz j −w j , j, k ≥ 1.(4.12)

Now, consider the toric action T0 on Mμ ,c1 ,c2 ,c3 ,c4 represented in the Delzant
polygon of Figure 17. Consider also its projections, in Figure 18, to the x-axis and the
y-axis representing circle actions that we denote by (z0 , y0).

Again, performing the GL(2,Z) transformation represented by the matrix

( 1 0
−k 1 )
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Figure 17: Toric action T0 .

B − E1 − E2 − E3 − E4

1, μ − c1 − c2 − c3 − c4

E4

F − E4

E3

F − E3

1 − c4

1 − c3

1 − c2

1 − c1

E2

F − E2 E1

F − E1
0, μ

B

Circle action z0

F

1, μ

B

B − E1 − E2 − E3 − E4

c1 + c2 + c3 + c4

c1 + c2 + c3 − 3c4

c1 + c2 − 2c3

c1 − c2
E1 − E2

E2 − E3

E3 − E4

E4

0, 1 − c1

F − E1

4

3

2

Circle action y0

Figure 18: Graphs of circle actions z0 and y0 , respectively.

to the polygon of Figure 17 yields a new polygon representing the same toric manifold.
This new polygon has vertices

(0, μ), (1, μ − k), (0, 0), (1 − c1 ,−k(1 − c1)), (1 − c2 ,−k(1 − c2) + c1 − c2),
(1 − c3 ,−k(1 − c3) + c1 + c2 − 2c3), (1 − c4 ,−k(1 − c4) + c1 + c2 + c3 − 3c4), and
(1,−k + c1 + c2 + c3 + c4).

Therefore, projecting this new polygon onto the y-axis, it is easy to check that we obtain
the graph of the circle action wk , which means we have the following identification:

wk = −kz0 + y0 , k ≥ 1.(4.13)

Combining equations (4.12) and (4.13) yields

jzk + kz0 = kz j + jz0 .
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Figure 19: Toric action Tk ,4 .

Finally, setting j = 1 implies that

zk = kz1 + (1 − k)z0 , k ≥ 0.(4.14)

Next, we use a similar argument in order to obtain more relations between other circle
actions listed in Proposition 4.2. For that, we need to consider the toric action Tk ,4 on
Mμ ,c1 ,c2 ,c3 ,c4 , represented in the momentum polytope in Figure 19. Note that the two
edges without homology labels represent the classes, E2 − E3 and E3.

Projecting onto the x- and y-axes, we obtain the graphs in Figure 20 of the actions
(zk ,4 , wk ,4), respectively, whose momentum maps are the first and second coordinates
of the momentum map of the action Tk ,4.

Using the same argument as before, that is, performing the GL(2,Z) transforma-
tion represented by the following matrix

( 1 0
j −1 )
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B + kF − E1 − E1 − E3

1, μ + k − c1 − c2 − c3

E3

F − E3

E2

F − E2

E1

F − E1

F − E4

E4

1 − c3

1 − c2

1 − c1

c4

0, μ − k − c4

B − kF − E4

Circle action zk ,4

k

−k − 1

−k

−k + 1
−k + 2
−k + 3

μ

μ − k

c4

−kc4

−k(1 − c1)

−k(1 − c2) + c1 − c2

−k(1 − c3) + c1 + c2 − 2c3
−k + c1 + c2 + c3

Circle action wk ,4

Figure 20: Graphs of the circle actions zk ,4 and wk ,4 .

Figure 21: Toric action T0,4 .

on the polygon of Figure 19 yields a new polygon with vertices
(1, j + k − c1 − c2 − c3), (1, j − μ), (0, k − μ), (0,−c4), (c4 , ( j + k)c4), (1 − c1 , ( j + k)(1 − c1)),
(1 − c2 , ( j + k)(1 − c2) − c1 + c2), and (1 − c3 , ( j + k)(1 − c3) − c1 − c2 + 2c3).

Interchanging the role of k and j and then projecting onto the y-axis, it follows that

jzk ,4 −wk ,4 = kz j,4 −w j,4 , j, k ≥ 1.(4.15)

Now, consider the toric action on Mμ ,c1 ,c2 ,c3 ,c4 represented in the polygon of
Figure 21. Consider also its projections, in Figure 22, to the x- and y-axes representing
circle actions that we denote by (z0,4 , y0,4).

In this case, performing the GL(2,Z) transformation represented by the matrix

( 1 0
−k 1 )
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B − E1 − E2 − E3

1, μ − c1 − c2 − c3

E3

F − E3

E2

F − E2

E1

F − E1

F − E4

E4

1 − c3

1 − c2

1 − c1

c4

0, μ − c4

B − E4

Circle action z0,4

F

1, μ
B − E1 − E2 − E3

E2 − E3

c1 + c2 + c3
E3

c1 + c2 − 2c3

E1 − E2

E4

F − E4

c1 − c2

c4

0, 1 − c1 − c4

F − E1

3

2

Circle action y0,4

Figure 22: Graphs of the circle actions z0,4 and y0,4 , respectively.

to the polygon of Figure 21 yields a new polygon whose vertices are
(0, μ), (1, μ − k), (0, c4), (c4 ,−kc4), (1 − c1 ,−k(1 − c1)), (1 − c2 ,−k(1 − c2) + c1 − c2),
(1 − c3 ,−k(1 − c3) + c1 + c2 − 2c3), and (1,−k + c1 + c2 + c3).

Therefore, projecting this new polygon onto the y-axis, it is clear that one obtains the
graph of the circle action wk ,4, which means we have the following relation:

wk = −kz0,4 + y0,4 , k ≥ 1.(4.16)

Combining equations (4.15) and (4.16) yields

jzk ,4 + kz0,4 = kz j,4 + jz0,4 ,

and setting j = 1 implies that

zk ,4 = kz1,4 + (1 − k)z0,4 , k ≥ 0.

Therefore, it is clear that, in fact, we have the following identifications:

zk , i = kz1, i + (1 − k)z0, i , k ≥ 0, i = 1, 2, 3, 4.(4.17)

Using a similar argument three more times applied to the appropriate toric actions
on the manifold Mμ ,c1 ,c2 ,c3 ,c4 , it follows that the following identifications hold:

zk , i j = kz1, i j + (1 − k)z0, i j , k ≥ 0, i , j = 1, 2, 3, 4,(4.18)

zk , i j� = kz1, i j� + (k − 1)z0,m , k ≥ 0, i , j, �, m = 1, 2, 3, 4, and all indices are distinct;
(4.19)

and

zk ,1234 = kz1,1234 + (k − 1)z0 , k ≥ 0.(4.20)
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In what follows, we will often use the next proposition. The proof follows from
techniques similar to the ones used to obtain the previous relations, so we postpone it
to Appendix B.

Proposition 4.13 Consider the circle actions z0, z0, i , i = 1, 2, 3, 4, z0,1i , i = 2, 3, 4,
z1, and z1,4, defined in Figure 7 or 8 through their graphs, as elements of
π1(Symph(Mμ ,c1 ,c2 ,c3 ,c4)). Then the following identifications hold:

z0,1 = z1 − z1,4 + z0,14 , z0,2 = z1 − z1,4 − z0,13 ,
z0,3 = z1 − z1,4 − z0,12 , z0,4 = z1 − z1,4 − z0,12 − z0,13 + z0,14 ,

and z0 = 2z1 − 2z1,4 − z0,12 − z0,13 + z0,14. ∎

Putting together Proposition 4.13 with equations (4.14) and (4.17)–(4.20), we then
obtain the following result.
Proposition 4.14 Consider the circle actions z0,1i , i = 2, 3, 4, z1, and z1,4, defined in
Figure 7 or 8 through their graphs, as elements of π1(Symph(Mμ ,c1 ,c2 ,c3 ,c4)). Let t =
z0,12 + z0,13 − z0,14. Then, for k ∈ Z≥0 and i , j = 1, 2, 3, 4 with i ≠ j, we have the following
identifications:
zk = (2 − k)z1 + (k − 1)(2z1,4 + t), zk , i j = 2kz1,4 − kz1 + kt + z0, i j ,
zk ,1 = (2k − 1)z1,4 + (1 − k)z1 + kt + z0,14 , zk ,124 = (2k + 1)z1,4 − (k + 1)z1 + kt + z0,12 ,
zk ,2 = (2k − 1)z1,4 + (1 − k)z1 + kt − z0,13 , zk ,134 = (2k + 1)z1,4 − (k + 1)z1 + kt + z0,13 ,
zk ,3 = (2k − 1)z1,4 + (1 − k)z1 + kt − z0,12 , zk ,234 = (2k + 1)z1,4 − (k + 1)z1 + kt − z0,14 ,
zk ,4 = (2k − 1)z1,4 + (1 − k)z1 + (k − 1)t, zk ,123 = (2k + 1)z1,4 − (k + 1)z1 + (k + 1)t,

and zk ,1234 = (2k + 2)z1,4 − (k + 2)z1 + (k + 1)t. ∎

Remark 4.15 It is clear from the definition of the circle actions z0, i j that

z0, i j = −z0,kl .

Thus, we get

z23 = −z0,14 , z24 = −z0,13 , z34 = −z0,12 ,

which allows us to write zk , i j completely in terms of the chosen generators.

Corollary 4.16 If μ > 3
2 , then there are loops in π1(Symp(Mμ ,c i=1/2)) which are not

represented by circle actions, although the fundamental group, rationally, is generated by
circle actions.

Proof We use the classification of all circle actions on Symp(Mμ ,c i=1/2) obtained in
Proposition 4.14 to show that those actions do not fill in the lattice Z5. In fact, it is
sufficient to look at the plane of the actions z1,4 and z1. There we have five families of
points defined by the pairs (2k − 2, 2 − k), (2k − 1, 1 − k), (2k,−k), (2k + 1,−(k + 1)),
and (2k + 2,−(k + 2)). Each family is contained in one line with slope − 1

2 , whereas
the y-intercepts are given by 1, 1

2 , 0,− 1
2 , and −1, respectively. We should also consider

the integer multiples of these actions as they represent circle actions although they are
not effective. The corresponding points lie in lines connecting the origin to the points
representing the effective actions. The set of all these points clearly do not fill in the
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full lattice Z2 in this plane. For example, the primitive point (2, 3) is not contained
in this set. Therefore, there are elements in π1 which cannot be represented by circle
actions. ∎

We now prove Theorem 1.5.

Proof In the case 1 < μ ≤ 3
2 , it follows from Theorem 1.3, and in the case μ > 3

2 , it
follows from Corollary 4.16. ∎

5 Further questions

In this paper, we deal with a particular case in the symplectic cone of Mμ ,c1 ,c2 ,c3 ,c4 ,
namely the edge MA, when μ > 1 and c i = 1/2 for all i ∈ {1, 2, 3, 4}. A very natural
question is whether there are other points in the symplectic cone where the funda-
mental group of Symph(Mμ ,c1 ,c2 ,c3 ,c4) is not generated Hamiltonian circle actions,
similarly to what happens along some points of the edge MA. For example, it is
possible to check that, along the edge MD, where μ = 1, c1 = c2 = c3 = 1/2 > c4, there
are no circle actions. On the one hand, there are no graphs representing Hamiltonian
S1-spaces along this edge. However, the graph only encodes equivariant blowups. Not
having such graphs does not a priori rule out the possibility of exotic circle actions,
obtained by equivariant blowups corresponding to parameters μ′ , c′1 , c′2 , c′3 , c′4 such
that the symplectic manifold corresponding to these parameters is symplectomorphic
to the symplectic manifold corresponding to the parameters μ, c1 , c2 , c3 , c4. On the
other hand, exotic circle actions were ruled out, first, by Pinsonnault in [26] and
later by Karshon, Kessler, and Pinsonnault in [12]. Note that if we forget the fourth
blowup, this case corresponds to the monotone case in Symph(S2 × S2# 3CP2) and it
is well known that there are no Hamiltonian circle actions in this case. In fact, this
symplectomorphism group is contractible (see [9]). However, by the work of [18],
we know that the rank of the fundamental group of Symp(Mμ ,c1 ,c2 ,c3 ,c4) along the
edge MD is 5, so none of these five generators can be represented by circle actions.
Moreover, we believe that there is a neighborhood of the monotone point M, including
points in the generic case, such that the generators of the fundamental group of
Symp(Mμ ,c1 ,c2 ,c3 ,c4) cannot all be realized by circle actions. The main reason appears
to be that one circle action of the type z0, i or z1, i for some i ∈ {1, 2, 3, 4} always
have to be included in the set of generators, in order to have the required number
of generators, but this implies that there must exist a fixed sphere with positive area
in class B − E j − Ek − E� or B − F − E i , that is, μ − c j − ck − c� > 0 or μ − 1 − c i > 0,
respectively. However, this condition does not necessarily hold for all points in the
symplectic cone, in particular, for points close to the monotone point M.

An alternative way of proving that there is an element of π1(Symph(Mμ ,c1 ,c2 ,c3 ,c4))
which cannot be represented by a circle action would be to compute the Samelson
product of this loop with itself and check if it is nonzero, as done by Buse in [6,
Proposition 3.3] (if it was generated by a circle action, this Samelson product would be
trivially 0). Moreover, it would be interesting to know if this loop in π1 gives rise to new
elements in higher homotopy groups, via iterated Samelson products. The problem
with this approach is that it is not clear yet how to obtain the necessary information
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about the higher homotopy groups of Symph(Mμ ,c1 ,c2 ,c3 ,c4), which is fundamental
to work on these ideas. The answer to these questions will be pursued in a different
paper.

In another direction, it seems very likely that Theorem 1.4 holds not only rationally
but also in the integer case, that is,

Conjecture 5.1 If μ > 3
2 , then the fundamental group π1(Symp(Mμ ,c i=1/2)) is gener-

ated by Hamiltonian circle actions. ∎

In fact, it is possible to show that the Seidel elements of the classes of the
actions z0,12, z0,13, z0,14, z1, and z1,4, seen as elements of π1(Symp(Mμ ,c i=1/2)),
are primitive in the subgroup of invertible elements of the quantum homology of
Symp(Mμ ,c i=1/2). This result together with a geometric interpretation of the gener-
ators of π1(Symp(Mμ ,c i=1/2)) given in [18, Lemma 5.10] might lead to a proof of this
conjecture. We believe that this should involve a detailed analysis of the strata of the
space of almost complex structures and the generators of their homology groups.

A Computations on the quantum ring

In this section, we prove Lemmas 4.8 and 4.9.

Proof (of Lemma 4.8) Recall that we wish to prove that the invertible elements b, b +
f , and (b + f + e + t1−μ

1−t1−μ ) (1 − t1−μ) t
1

6(1−2μ) are linearly independent in the subgroup
of invertible elements of the ring (4.10). Suppose that

bα (b + f )β (b + f + e + t1−μ

1 − t1−μ )
γ

(1 − t1−μ)γ t
γ

6(1−2μ) = 1, where α, β, γ ∈ Z.

Using the relations in the ideal I′ in (4.10), in particular relations (3) and (5), it follows
that this is equivalent to

bα bβ(1 − f )β bγ (e + 1
1 − t1−μ )

γ
(1 − t1−μ)γ t

γ
6(1−2μ) = 1 ⇐⇒

bα+β+γ (1 − f )β (e(1 − t1−μ) + 1)γ = t
−γ

6(1−2μ) ⇐⇒

bα+β+γ (1 − β f ) (e(1 − t1−μ) + 1)γ = t
−γ

6(1−2μ) ,

because f 2 = 0. Moreover, since (1 − β f )(1 + β f ) = 1, if α + β + γ is even, then we
obtain

(e(1 − t1−μ) + 1)γ = (1 + β f ) t
−γ

6(1−2μ) .(A.1)

If γ ≥ 0, then it should be clear from relations in I′, in particular, from relation (6),
that we cannot never obtain the right-hand side of the last expression, since it is not
possible to obtain such power on t, unless γ = 0, which implies that β = 0 and then
α = 0. If γ ≤ 0, then equation (A.1) is equivalent to

(e(1 − t1−μ) + 1)−γ = (1 − β f ) t
γ

6(1−2μ) ,
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and again we can conclude that γ = 0. Similarly, if α + β + γ is odd, we obtain

(e(1 − t1−μ) + 1)γ = (b − β f ) t
−γ

6(1−2μ) ,

and again we can conclude that γ = β = 0 and α + β + γ cannot be odd. This concludes
the proof of the lemma. ∎
Proof (of Lemma 4.9) We first prove by induction on n ∈ N that

b2n
i j = n(2n b i j f i j + (2n − 1) f i j + fk�) + 1,(A.2)

b2n+1
i j = −n(2(n + 1)b i j f i j + (2n + 1) f i j + fk�) + b i j ,(A.3)

where i , j, k, � ∈ {1, 2, 3, 4} are all distinct.
Note that if n = 1, then (A.2) gives b2

i j = 2b i j f i j + 1 f i j + fk�, which agrees with
relation (3) in Proposition 3.1. Moreover, it follows from relation (3) together with
relations (8) and (11) that

b2
i j f i j = 2b i j f 2

i j + f 2
i j + f i j fk� + f i j

= − f 2
i j + f i j

= −2b i j f i j − f i j .

Now, if we assume (A.2), then the previous equation together with relation (11)
yields

b2(n+1)
i j = b2n

i j b i j

= n(2n b2
i j f i j + (2n − 1) f i jb i j + fk�b i j) + b i j =

= n(2n(−2b i j f i j − f i j) + (2n − 1) f i jb i j − f i jb i j − f i j − fk�) + b i j

= −n(2(n + 1)b i j f i j + (2n + 1) f i j + fk�) + b i j .

Similarly, it is easy to check that

b2n+1
i j b i j = (n + 1)(2(n + 1) b i j f i j + (2n + 1) f i j + fk�) + 1.

Next, using (A.2) and (A.3), we compute bα1
i j bα2

ik bα3
jk , where α1 , α2 , α3 ∈ Z, to conclude

that indeed b i j , b ik , b jk are linearly independent. Assume first that α1 , α2 , α3 ≥ 0 and,
in particular, α i = 2n i , with n i ∈ N0. Then

bα1
i j bα2

ik = [n1(2n1 b i j f i j + (2n − 1) f i j + fk�) + 1] [n2(2n2 b ik f ik + (2n − 1) f ik + f j�) + 1].

Recall relation (4) in Proposition 3.1: b i j f ik = − f ik . This yields

bα1
i j bα2

i k = 4n2
1 n2

2 f i j f i k − n2(2n2 − 1)2n2
1 f i j f i k − n1(2n1 − 1)2n2

2 f i j f i k − 2n2
1 n2 f i j f j�

+ 2n2
1 b i j f i j + n1(2n1 − 1) n2(2n2 − 1) f i j f i k + n1(2n1 − 1) n2 f i j f j� + n1(2n1 − 1) f i j

− 2n1 n2
2 f i k fk� + n1 n2(2n2 − 1) f i k fk� + n1 n2 fk� f j� + n1 fk� + 2n2

2 b i k f i k

+ n2(2n2 − 1) f i k + n2 f j� + 1

= n1 n2( f i j f i k − f i j f j� − f i k fk� + fk� f j�) + 2 n2
1 b i j f i j + 2 n2

2b i k f i k + n1(2n1 − 1) f i j

+ n2(2n2 − 1) f i k + n1 fk� + n2 f j� + 1

= 2 n2
1 b i j f i j + 2 n2

2(b i j f i j + ek − e j) + n1(2n1 − 1) f i j + n2(2n2 − 1) ( f i j + e j − ek)
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+ n1( f i j + e i + e j − ek − e l) + n2( f i j + e i − e l) + 1

= 2(n2
1 + n2

2) f i j(b i j + 1) + e i(n1 + n2) + e j(n1 − n2) − ek(n2 − n1) − e�(n1 + n2) + 1,

where the step before the last follows from relations (2) and (9) in Proposition 3.1 and
the definition of f i j and e i . Similar computations then give

bα1
i j bα2

ik bα3
jk = 2 (n2

1 + n2
2 + n2

3) f i j(b i j + 1) + e i(n1 + n2 − n3) + e j(n1 − n2 + n3)
+ ek(n3 + n2 − n1) − e�(n1 + n2 + n3) + 1.

Now, it is clear that bα1
i j bα2

ik bα3
jk = 1 iff n1 = n2 = n3 = 0. In the case α1 = 2n1 + 1, α2 =

2n2, and α3 = 2n3, analog computations yield

bα1
i j bα2

ik bα3
jk = − 2 (n2

1 + n2
2 + n2

3 + n1) f i j(b i j + 1) − e i(n1 + n2 − n3) − e j(n1 − n2 + n3)

− ek(n3 + n2 − n1) + e�(n1 + n2 + n3) + b i j .

If α1 = 2n1 + 1, α2 = 2n2 + 1, and α3 = 2n3, then

bα1
i j bα2

ik bα3
jk = [2 (n2

1 + n2
2 + n2

3 + n1 + n2) + 1] f i j(b i j + 1) + e i(n1 + n2 − n3 + 1)
+ e j(n1 − n2 + n3) + ek(n3 + n2 − n1) − e�(n1 + n2 + n3 + 1) + 1.

Finally, if α i = 2n i + 1, one obtains

bα1
i j bα2

ik bα3
jk = − [2 (n2

1 + n2
2 + n2

3 + n1 + n2 + n3) + 1] f i j(b i j + 1) − e i(n1 + n2 − n3)
− e j(n1 − n2 + n3) − ek(n3 + n2 − n1 + 1) − e�(n1 + n2 + n3 + 1) + b i j .

So it follows that bα1
i j bα2

ik bα3
jk = 1 iff α i = 0 for all i.

If αm < 0, then we obtain similar expressions because bαm
i j = b−αm

k� . More precisely,
in the case αm > 0, the products above contain the term nm(e i + e j − ek − e�), but
if αm < 0, it is not hard to check that then the term is replaced by its symmetric
nm(−e i − e j + ek + e�). Therefore, we prove that the elements b i j , b ik , b jk are linearly
independent, and, in particular, we finish the proof of Lemma 4.9. ∎

B Proof of Proposition 4.13

This section is devoted to a proof of Proposition 4.13. First, we need to prove that the
following identifications hold.

Lemma B.1 Consider the Hamiltonian circle actions z0 , z0,1i , z0, j , z1, and z1,4, where
i ∈ {2, 3, 4} and j ∈ {1, 2, 3, 4}, whose graphs are represented in Figure 8, as elements of
the fundamental group of Symph(Mμ ,c1 ,c2 ,c3 ,c4). Then we have the following relations:

z1 + z0,4 = z1,4 + z0 ,(B.1)

z0 = z0,3 + z0,4 + z0,12 ,(B.2)

z0,1 = z0,14 + z0,12 + z0,3 ,(B.3)

z0,2 = z0,12 − z0,13 + z0,3 ,(B.4)

z0,4 = z0,14 − z0,13 + z0,3 .(B.5)
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Figure 23: Auxiliary toric actions.

μ − c1 , c1 − c2

E2 − E3

2 E3

B + F − E1 − E2 − E3 − E4

μ − c1 − c2 + c3

μ − c1 − c2 − c3

F − E1

B − F

F − E4

μ − 1

0

−1 + c4 , c4

Circle action c1

μ − c1 , c1 − c2

E2 − E3

2 E3

F − E1 μ − c1 − c2 + c3

μ − c1 − c2 − c3

μ − 1

c4

B − F − E4

E42

F − E4

B + F − E1 − E2 − E3

−c4

−1

Circle action c1,4

Figure 24: Graphs of the actions c1 and c1,4 .

Proof In order to prove relation (B.1), we need to consider the two toric actions on
Mμ ,c1 ,c2 ,c3 ,c4 represented in the polygons of Figure 23.

Note that, projecting onto the x-axis, we obtain the graphs of the circle actions z1
on the left and z1,4 on the right. On the other hand, projecting onto the y-axis yields
the graphs of two circle actions (see Figure 24) that we will denote by c1 and c1,4.

It is easy to check that performing first a GL(2,Z) transformation represented by
the matrix

( 1 0
1 1 )

to both polygons of Figure 23 and then a projection onto the y-axis, we obtain the
same graph, which implies that the following identification holds:

z1 + c1 = z1,4 + c1,4 .(B.6)
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Figure 25: Toric actions (a1 , b1) and (a1,4 , b1,4).

Next, consider the polygons of Figure 25. Again, they represent particular toric
actions on Mμ ,c1 ,c2 ,c3 ,c4 . We denote the circle actions whose graphs are obtained by
projecting to the x- and y-axes by (a1 , b1) and (a1,4 , b1,4). Since, clearly, the actions b1
and b1,4 are represented by the same graph, it follows that b1 = b1,4. Next, performing
a GL(2,Z) transformation represented by the matrix

( 1 0
−1 1 )

to both polygons and then projecting to the y-axis, we obtain the graphs of c1 and
c1,4. Therefore, as elements of π1(Symph(Mμ ,c1 ,c2 ,c3 ,c4)), the following identifications
hold:

b1 − a1 = c1 and b1,4 − a1,4 = c1,4 .

On the other hand, note that a1 is the generator −z0,4, whereas a1,4 is −z0. Therefore,
we have

b1 + z0,4 = c1 and b1,4 + z0 = c1,4 .

Finally, substituting c1 and c1,4 in relation (B.6) and using b1 = b1,4, we obtain the
desired relation (B.1).

In order to prove the remaining relations in this lemma, we use an argument involv-
ing several auxiliary polygons representing different toric actions on Mμ ,c1 ,c2 ,c3 ,c4 that
can be related between each other using Karshon’s and Delzant’s classifications. Since
the argument is similar for all relations, we give the proof for relation (B.2) and leave
the other proofs for the interested reader.

First, consider the toric actions on Mμ ,c1 ,c2 ,c3 ,c4 represented in the polygons of
Figure 26. Denote the toric action in polygon n ∈ {1, 2, 3, 4, 5, 6} in Figure 26 by
(xn , yn). Projecting onto the x-axis to obtain the graph of xn , using Karshon’s
classification of Hamiltonian circle actions, it is clear that

x1 = x2 = x3 and x4 = x5 .(B.7)
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Figure 26: Auxiliary Delzant polygons.
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Moreover, applying the GL(2,Z) transformation represented by the matrix

( 1 0
1 1 )

to the polygons 3, 4, 5, and 6 and then projecting onto the y-axis, it is easy to check
that, as elements of the fundamental group, the following identifications hold:

x3 + y3 = x4 + y4 ,(B.8)

x5 + y5 = x6 + y6 .(B.9)

Furthermore, the GL(2,Z) transformation represented by the matrix

( 1 0
2 1 )

applied to the polygons 1 and 6 yields, after a projection onto the y-axis and a
comparison of the graphs obtained, the following relation:

2x1 + y1 = 2x6 + y6 .(B.10)

Next, consider the toric actions on Mμ ,c1 ,c2 ,c3 ,c4 represented in the polygons of
Figure 27 and denote the toric action of polygon n ∈ {1, 2, 3, 4, 5, 6} by (sn , tn).
Applying to all these polygons, the GL(2,Z) transformation represented by the
matrix

( 1 0
−1 1 )

and then projecting onto the y-axis, it is easy to see that we obtain, as elements of the
fundamental group of Symp(Mμ ,c1 ,c2 ,c3 ,c4), the following identification:

y i = t i − s i , i ∈ {1, 2, 3, 4, 5, 6},(B.11)

because the graphs obtained after the projection clearly coincide with the graphs of
the actions y i . It is also clear that

t3 = t4 and t5 = t6 ,(B.12)

since the graphs of these actions coincide in pairs. Finally, using the GL(2,Z)
transformation represented by the matrix

( 1 0
1 1 )

applied to polygons 1 and 6 in Figure 27, we obtain the following identification:

s1 + t1 = s6 + t6 .(B.13)

In order to finish the proof of relation (B.2), we just need to combine all the relations
obtained above. More precisely, consider relation (B.10) and using first (B.11) and then
(B.13), we get

x1 − s1 = x6 − s6 .
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Figure 27: Auxiliary Delzant polygons.

From (B.7) and (B.9), it follows that x3 − s1 = x5 + y5 − y6 − s6 . Then, using (B.11) to
substitute y5 and y6 in the previous equation yields x3 − s1 = x5 + t5 − s5 − t6 . Hence,
relations (B.7) and (B.12) imply that x3 − s1 = x4 − s5 . Finally, use first relation (B.8) to
obtain y4 − y3 = s1 − s5 and then (B.11) one more time to get

s3 − s4 = s1 − s5 .

Now, notice that, using the notation for the circle actions defined in Figure 8, we
have

s3 = −z0,3 , s4 = z0,12 , s1 = −z0 , and s5 = −z0,4 ,

so we proved the desired relation (B.2). This concludes the proof of the lemma. ∎
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Combining relations (B.1) and (B.2), we obtain one of the identifications in Propo-
sition 4.13, namely

z0,3 = z1 − z1,4 − z0,12 .(B.14)

The remaining identifications in Proposition 4.13 follow from the previous relation
together with relations (B.3)–(B.5). Therefore, we obtain

z0,1 = z1 − z1,4 + z0,14 ,
z0,2 = z1 − z1,4 − z0,13 ,
z0,4 = z1 − z1,4 − z0,12 − z0,13 + z0,14 .

Finally, using the last equation and relation (B.14) in relation (B.2), it follows that

z0 = 2z1 − 2z1,4 − z0,12 − z0,13 + z0,14 .

This concludes the proof of Proposition 4.13.
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