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Abstract. We show that the Hausdorff dimension of any slice of the graph of the Takagi
function is bounded above by the Assouad dimension of the graph minus one, and that
the bound is sharp. The result is deduced from a statement on more general self-affine
sets, which is of independent interest. We also prove that Marstrand’s slicing theorem on
the graph of the Takagi function extends to all slices if and only if the upper pointwise
dimension of every projection of the length measure on the x-axis lifted to the graph is at
least one.
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1. Introduction
The Takagi function Tλ : [0, 1]→ R for the parameter 1

2 < λ < 1 is defined by setting

Tλ(x) =
∞∑

n=0

λndist(2nx, Z) (1.1)

for all x ∈ [0, 1]. In mathematical writing it is customary to distinguish a function from
its graph. Nevertheless, we stick to the definition of a function as a total and univalent
binary relation which in our case is convenient notationwise as then Tλ denotes both the
function and its graph. The Takagi function, being continuous yet having at no point a
finite derivative, is one of the famous examples of ‘pathological functions’. For the basic
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properties of the Takagi function and a summary of recent research the reader is referred
to the surveys of Allaart and Kawamura [6] and Lagarias [27].

Level sets of the Takagi function, that is, the sets of points x ∈ R at which Tλ(x) equals
a given value, have been studied extensively; see [2–5, 14, 15, 28, 29, 31]. Such level sets
appear as horizontal slices of Tλ, meaning that they are intersections Tλ ∩ (V0 + x), where
V0 is the x-axis and x ∈ R

2. When λ = 1
2 , it has been proven that the Hausdorff dimension

of slices with integer slope is at most 1
2 , and the bound is attained by some slice; see

[16, 33]. In this paper, we obtain a sharp bound for the Hausdorff dimensions of all slices
of Tλ, when 1

2 < λ < 1, in terms of the Assouad dimension of Tλ.
The study of the dimensions of slices has a rich history. The classical Marstrand slicing

theorem [35] shows that almost every fibre of a projection does not store more dimension
than what is the surplus. We denote the Hausdorff dimension by dimH and the collection
of all lines in R

2 passing through the origin by RP
1. The slicing theorem states that, given

a Borel set X ⊂ R
2 and V ∈ RP

1, we have

dimH(X ∩ (V + x)) � max{0, dimH(X)− 1} (1.2)

for Lebesgue almost all x ∈ V ⊥. Often when the set X has some additional arithmetic or
geometric structure, stronger statements can be made about dimensions of all slices. For
example, if X = A× B, where A and B are invariant under the maps x �→ 2x mod 1 and
x �→ 3x mod 1, then the bound in (1.2) holds for all slices, except those in the directions
of the coordinate axes. This celebrated result was first conjectured by Furstenberg [21] and
recently proved independently and simultaneously by Shmerkin [39] and Wu [41].

The Takagi function is an example of a self-affine set. For many sets in this class,
the Hausdorff dimensions of slices are closely connected to the Assouad dimensions
of the sets; see §2 for the relevant definitions. This was first observed by Mackay
[32], who expressed the Assouad dimensions of a special class of self-affine sets called
Bedford–McMullen carpets in terms of the dimensions of their projections on the x-axis
and the dimensions of their slices in the direction of the y-axis. Algom [1] showed that
the Minkowski dimension of any slice, which is not in the direction of the coordinate axes,
of certain Bedford–McMullen carpets X is bounded above by max{0, dimA(X)− 1}. Here
dimA(X) denotes the Assouad dimension of X and is always bounded from below by the
Hausdorff dimension. Recently, Bárány, Käenmäki, and Yu [10, Theorem 1.3] showed that
a similar phenomenon is also present for certain totally disconnected self-affine sets. In
fact, in the class of self-affine sets they consider, the upper bound max{0, dimA(X)− 1}
is achieved and there are examples of self-affine sets in this class for which dimH(X) <

dimA(X). However, since the Takagi function is connected, the results in [10] do not apply.
Utilizing the self-affinity of the Takagi function, Bárány, Hochman, and Rapaport

[7, Corollary 7.6] proved that

dimH(Tλ) = 2− log λ

log 1/2
< 2; (1.3)

see also Ledrappier [30]. The Assouad dimension of the Takagi function was studied by
Yu [42] in some special cases. He showed that, if 2 in the definition of the Takagi function
(1.1) is replaced by an integer greater than 3, there exist parameters for which the Assouad
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dimension is strictly larger than the Hausdorff dimension. In the online version of the
paper, he also conjectured that dimA(Tλ) = 2 for all 1

2 < λ < 1. The following theorem is
the first main result of this paper.

THEOREM 1.1. If Tλ is the Takagi function, then

max
x∈Tλ

V∈RP1

dimH(Tλ ∩ (V + x)) = dimA(Tλ)− 1 < 1.

This theorem is based on a result for a more general class of self-affine sets, Theorem
4.1, which generalizes the results in [9, §5] and [10, §5].

We investigate when the bound (1.2) of Marstrand’s slicing theorem can be extended to
all slices of the Takagi function. By Theorem 1.1, this happens precisely when dimA(Tλ) =
dimH(Tλ). For a given t ∈ R, let projt : R2 → R, projt (x1, x2) = (x1, x2) · (t , 1). The
pushforward of a measure μ is denoted by f∗μ whenever f is a measurable mapping.
We let ν = (Id, Tλ)∗L1 be the Lebesgue measure L1 lifted to the Takagi function Tλ and
dimloc(μ, x) be the lower pointwise dimension of a measure μ at x. It follows from (1.2)
and (1.3) that

dimloc(projt∗ν, projt (x)) � 1

for ν-almost all x ∈ Tλ and Lebesgue almost all t ∈ R. The following theorem is the second
main result of this paper. We show that if the above lower bound holds for all x and t, then
Marstrand’s slicing theorem (1.2) is extended to all slices.

THEOREM 1.2. If Tλ is the Takagi function and ν = (Id, Tλ)∗L1 is the Lebesgue measure
L1 lifted to the Takagi function Tλ, then

max
x∈Tλ

V∈RP1

dimH(Tλ ∩ (V + x)) = 1− log λ

log 1
2

if and only if

dimloc(projt∗ν, projt (x)) � 1

for all x ∈ Tλ and t ∈ R, where dimloc denotes either the lower or the upper pointwise
dimension.

We remark that

dimloc(projt∗ν, projt (x)) � 1

holds for all x ∈ Tλ and t ∈ R if and only if the Lq -dimension of the measure projt∗ν
equals one for all t ∈ R and q > 0, that is,

inf
t∈R lim inf

r↓0
min
x∈Tλ

log(projt ∗ν(B(projt (x), r))

log r
= 1.

We refer to the definition and basic properties of the Lq -dimension for [40, §1.3], and leave
the proof of the above fact as an exercise for the interested reader.

The rest of the paper is organized as follows. In §2 we recall some basic results in
dimension theory and establish the general setting of self-affine sets we will be working
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with. The results in the general setting are presented in §§3 and 4. We will then specialize
to the Takagi function and prove Theorem 1.1 in §5 and Theorem 1.2 in §6.

2. Notation and preliminaries
2.1. Dimensions and weak tangents. Let us briefly recall definitions of some of the basic
notions of dimension used in fractal geometry. The Hausdorff dimension of a set X ⊂ R

2 is

dimH(X) = inf
{
s > 0: for every ε > 0 there is {Ui}i∈N such

that X ⊂
⋃
i∈N

Ui and
∑
i∈N

diam(Ui)
s < ε

}
.

The lower and upper pointwise dimensions of a Borel measure μ at x ∈ R
2 are

dimloc(μ, x) = lim inf
r↓0

log μ(B(x, r))

log r
,

dimloc(μ, x) = lim sup
r↓0

log μ(B(x, r))

log r
,

respectively. We assume familiarity with the basic properties of the Hausdorff dimension
and pointwise dimensions, and how they are connected; see, for example, [17, 36]. If X is
bounded, then the r-covering number of X,

Nr(X) = min
{
k ∈ N : X ⊂

k⋃
i=1

B(xi , r) for some x1, . . . , xk ∈ R
2
}

,

is the smallest number of closed balls of radius r > 0 needed to cover X. The lower and
upper Minkowski dimensions of a bounded set X ⊂ R

2 are

dimM(X) = lim inf
r↓0

log Nr(X)

− log r
,

dimM(X) = lim sup
r↓0

log Nr(X)

− log r
,

respectively. If the limit exists, it is denoted by dimM(X) and called the Minkowski
dimension of X. The Assouad dimension of X ⊂ R

2 is

dimA(X) = inf
{
s > 0: there exists C > 0 such that

for every x ∈ X and 0 < r < R,

the inequality Nr(X ∩ B(x, R)) � C

(
R

r

)s

holds
}

.

The Assouad dimension is designed to capture the extremal scaling behaviour of the set by
quantifying the size of the least doubling parts of the set in question. The basic inequality
we will use repeatedly is

dimH(X) � dimM(X) � dimM(X) � dimA(X)
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for all bounded sets X ⊂ R
2. For the proof of this and other basic properties of the Assouad

dimension, we refer to [18].
The concept of weak tangents has proven to be very useful in the study of the Assouad

dimension. Let X be a compact subset of R
2. For x ∈ X and r > 0 we denote by

Mx,r : R2 → R
2 the linear map

Mx,r (y) = y − x

r
.

Note that Mx,r (B(x, r)) = B(0, 1). A set T which intersects the interior of B(0, 1) is called
a weak tangent of X if there are a sequence (xn)n∈N of points in X and a sequence (rn)n∈N
of positive real numbers converging to 0 such that

Mxn,rn(X) ∩ B(0, 1)→ T

in Hausdorff distance. The collection of all weak tangents of X is denoted by Tan(X).
It is easy to see that a dimension of a weak tangent is a lower bound for the Assouad
dimension of X ⊂ R

2, that is, dimA(X) � dimA(T ) for all T ∈ Tan(X); see, for example,
[19, Theorem 5.1.2]. Käenmäki, Ojala, and Rossi [26, Proposition 5.7] proved the following
stronger result, which shows that the Assouad dimension of a compact set is realized by
the maximal Hausdorff dimension of its weak tangents.

LEMMA 2.1. If X ⊂ R
2 is compact, then dimA(X) = max{dimH(T ) : T ∈ Tan(X)}.

The result introduces a way to obtain an upper bound for the Assouad dimension by
bounding the Hausdorff dimension of every weak tangent.

2.2. Real projective line and matrices. Define an equivalence relation ∼ on R
2 \ {0}

by setting v ∼ w if and only if v = cw for some c ∈ R. Denote the equivalence class
of v ∈ R

2 \ {0} under this relation by 〈v〉. An elementary observation is that for any
0 �= c ∈ R and v ∈ R

2 \ {0} we have 〈cv〉 = 〈v〉. Geometrically, 〈v〉 = {w ∈ R
2 : w = cv

and c ∈ R} ⊂ R
2 is a line in R

2 in the direction of v passing through the origin. The real
projective line is RP

1 = {〈v〉 : v ∈ R
2 \ {0}}. An element of RP1 is called a line. If the

representative of an element of RP1 is left implicit, we use capital letters such as V or W
to refer to the element. We let � : RP1 → R denote the metric on RP

1 given by

�(〈v〉, 〈w〉) = arccos
( |v · w|
‖v‖‖w‖

)
= arcsin

(‖v ∧ w‖
‖v‖‖w‖

)
,

where v · w and v ∧ w denote the inner product and exterior product of the vectors v and
w, respectively. In other words, the distance between two lines is given by the smaller of
the angles between them. A ball in this metric is called a projective interval. With the
topology induced by the metric, the map v �→ 〈v〉 from R

2 \ {0} to RP
1 is continuous.

The group of invertible 2× 2 matrices is denoted by GL2(R). A matrix A ∈ GL2(R)

induces an action on RP
1 by

A〈v〉 = 〈Av〉.
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For any V ∈ RP
1, we denote by projV : R2 → V the orthogonal projection onto the

subspace V, that is, projV is the unique linear map satisfying projV |V = Id|V and
ker(projV ) = V ⊥. It is easy to see (consult, for example, [25, Lemma 2.1]) that a rank-one
2× 2 matrix A is bi-Lipschitz equivalent to projker(A)⊥ .

The singular values α1(A) and α2(A) of a matrix A ∈ GL2(R) are the square roots of
the non-negative eigenvalues of the positive definite matrix A�A, ordered so that α1(A) �
α2(A). Note that α1(A) and α2(A) are the lengths of the semiaxes of the ellipse A(B(0, 1)).
If A ∈ GL2(R) is such that α1(A) > α2(A), then we let η1(A) be one of the two unit
eigenvectors of A�A corresponding to the eigenvalue α1(A)2. If α1(A) = α2(A), then
we write η1(A) = S1 = {x ∈ R

2 : |x| = 1}. Observe that α1(A) = ‖A‖ = ‖A|〈η1(A)〉‖,
α2(A) = ‖A−1‖−1 = ‖A−1|〈η1(A

−1)〉‖−1, and α1(A)α2(A) = |det(A)|.

2.3. Self-affine set and shift space. An iterated function system (IFS) is a finite tuple
of contractive maps � = (ϕ1, . . . , ϕN) acting on R

2. By a classical result of Hutchinson
[22], � admits a unique non-empty compact set, denoted by X, satisfying

X =
N⋃

i=1

ϕi(X).

We call X the limit set of �. We say that � is an affine IFS if the maps ϕi are affine, that
is, ϕi(x) = Aix + bi , where Ai ∈ GL2(R) and bi ∈ R

2. In this case, the corresponding
limit set is called a self-affine set. We use the convention that whenever we speak about a
self-affine set X, it is automatically accompanied by a tuple of affine maps which defines
it. A self-affine set is said to satisfy the strong separation condition (SSC) if ϕi(X) ∩
ϕj (X) = ∅ for all i �= j , and the strong open set condition (SOSC) if there exists an open
set U such that X ∩ U �= ∅, ϕi(U) ⊂ U for all i ∈ {1, . . . , N}, and ϕi(U) ∩ ϕj (U) = ∅
whenever i �= j .

Given an IFS, we consider the symbolic representation of the limit set X as follows. Let
	 = {1, . . . , N}N denote the collection of all infinite words obtained by concatenating
digits in {1, . . . , N}. Similarly, 	n = {1, . . . , N}n is the set of finite words of length
n ∈ N, and 	∗ =⋃n∈N 	n is the set of finite words of any length. Given i = i1i2 · · · ∈
	, we define i|n = i1 · · · in to be the restriction of i to its first n indices, and given
i = i1 · · · in ∈ 	n, let i− = i|n−1 = i1 · · · in−1 ∈ 	n−1 and

←−
i = in · · · i1 be the word

obtained from i by reversing the order of its digits. The concatenation of two words
i ∈ 	∗ and j ∈ 	∗ ∪	 is denoted by ij. Given i ∈ 	∗, the infinite word obtained by
concatenating i with itself infinitely many times is denoted by i, that is, i = ii · · · .
For two finite or infinite words i and j, their longest common prefix is denoted by
i ∧ j, and the length of a word i is denoted by |i|. We define σ : 	→ 	 by setting
σi = σ(i) = i2i3 · · · for all i = i1i2 · · · ∈ 	, and call it the left shift. Given n ∈ N and
i ∈ 	n, we define the cylinder set by [i] = {j ∈ 	 : j|n = i}. The shift space 	 is a
compact topological space in the topology whose base is the collection of all cylinder sets.
Alternatively, a metric � on 	 defined by

�(i, j) = 2−|i∧j|,
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with the interpretation that 2−∞ = 0, induces the same topology as the open balls in this
metric are precisely the cylinder sets. It is also worth pointing out that the cylinder sets are
open and closed in this topology and generate the Borel σ -algebra. A map f : 	→ M ,
where (M , d) is a metric space, is Hölder continuous if there are constants C, α > 0
such that

d(f (i), f (j)) � Cα|i∧j|,

for all i, j ∈ 	. Finally, for a given IFS (ϕ1, . . . , ϕN) and its limit set X, we define the
canonical projection π : 	→ X by setting

πi = π(i) = lim
n→∞ ϕi1 ◦ · · · ◦ ϕin(0̄)

for all i = i1i2 · · · ∈ 	, where 0̄ = (0, 0). It is evident that π is Hölder continuous.

2.4. Semigroup and domination. Understanding the semigroup generated by A =
(A1, . . . , AN) ∈ GL2(R)N is crucial in the study of self-affine sets. In this context, it
is rather standard practise to use 	∗ to index the elements in the semigroup. Indeed, we
write

Ai = Ai1 · · · Ain

for all i = i1 · · · in ∈ 	n and n ∈ N. Our standing assumption is that A is dominated, that
is, there exist constants C > 0 and 0 < τ < 1 such that

α2(Ai) � Cτ |i|α1(Ai) (2.1)

for all i ∈ 	∗. Domination ensures that when iteratively applying the matrices in A to the
unit ball, the resulting ellipses get thinner and thinner at an exponential rate. We say that
a self-affine set X is dominated if the tuple consisting of the linear parts of the maps in
the associated affine IFS is. A proper subset C ⊂ RP

1 is called a multicone if it is a finite
union of closed projective intervals. A multicone C ⊂ RP

1 is strongly invariant for A if
AiC ⊂ C◦ for all i ∈ {1, . . . , N}, where C◦ denotes the interior of C. By [12, Theorem B],
A admits a strongly invariant multicone if and only if A is dominated. It is a simple fact that
if C is a strongly invariant multicone for A, then RP

1 \ C is a strongly invariant multicone
for A−1 = (A−1

1 , . . . , A−1
N ). Write

A�←−
i
= (A←−

i
)� = A�i1 · · · A�in ,

A−1←−
i
= (A←−

i
)−1 = A−1

i1
· · · A−1

in
,

and let

ϑ1(i) = 〈Aiη1(Ai)〉,
ϑ2(i) = 〈A−1←−

i
η1(A

−1←−
i

)〉,
for all i ∈ 	n and n ∈ N. The geometric interpretation is that ϑ1(i) and ϑ2(i) correspond
to the orientation of the principal semiaxis of the ellipses Ai(B(0, 1)) and A−1←−

i
(B(0, 1)),
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respectively. We also define

ϑk(i) = lim
n→∞ ϑk(i|n)

for all i ∈ 	 and k ∈ {1, 2} whenever the limit exists. The following lemma guarantees
that under domination, the limit exists at every point, and therefore we have defined a map
ϑk : 	→ RP

1.

LEMMA 2.2. If A = (A1, . . . , AN) ∈ GL2(R)N is dominated and C ⊂ RP
1 is a strongly

invariant multicone for A, then, for k ∈ {1, 2}:
(1) the limit ϑk(i) = limn→∞ ϑk(i|n) exists for all i ∈ 	 and the convergence is

uniform;
(2) the map ϑk : 	→ RP

1 is Hölder continuous;
(3) the set ϑk(	) is compact and contains the accumulation points of {ϑk(i) : i ∈ 	∗};
(4) Aiϑ1(j) = ϑ1(ij) and A−1←−

i
ϑ2(j) = ϑ2(ij) for all i ∈ 	∗ and j ∈ 	;

(5) ϑ1(	) ⊂ C◦ and ϑ2(	) ⊂ RP
1 \ C.

Proof. For k = 1, claims (1), (3), and (4) are proved in [38, Lemma 2.1] and (5) follows
from the definition of the strongly invariant multicone. One can repeat the proofs for
the dominated tuple A−1 = (A−1

1 , . . . , A−1
2 ) to obtain the claims for k = 2. Similarly,

it suffices to prove (2) for k = 1.
To that end, let i ∈ 	, m ∈ N, and

θm = �(ϑ1(i|m), ϑ1(i|m+1)).

In the proof of [24, Lemma 2.1], it was shown that there is c > 1 not depending on m
such that

sin(θm) � c
α2(Ai|m)

α1(Ai|m)
.

Since ϑ1(i|m)→ ϑ1(i) as m→∞ there exists n0 ∈ N such that for every m � n0 we
have θm � 2 sin(θm) and, by recalling the definition of domination from (2.1),

�(ϑ1(i|n), ϑ1(i)) �
∞∑

m=n

θm � 2c

∞∑
m=n

α2(Ai|m)

α1(Ai|m)
� 2cC

∞∑
m=n

τm = 2cC

1− τ
τn

for all n � n0. For every i, j ∈ 	 with n = |i ∧ j| � n0, we thus have

�(ϑ1(i), ϑ1(j)) � �(ϑ1(i), ϑ1(i|n))+ �(ϑ1(i|n), ϑ1(j)) � 4cC

1− τ
τ |i∧j|

and the map ϑ1 : 	→ RP
1 is Hölder continuous.

For a dominated matrix tuple A = (A1, . . . , AN) ∈ GL2(R)N , the sets

YF = {im(A) ∈ RP
1 : A ∈ {cAi : c ∈ R and i ∈ 	∗} has rank one},

XF = {im(A) ∈ RP
1 : A ∈ {cA−1←−

i
: c ∈ R and i ∈ 	∗} has rank one}

are the collections of forward and backward Furstenberg directions, respectively. The
following lemma gives useful characterizations for the sets XF and YF .
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LEMMA 2.3. If A = (A1, . . . , AN) ∈ GL2(R)N is dominated and C ⊂ RP
1 is a strongly

invariant multicone for A, then

YF = ϑ1(	) =
∞⋂

n=1

⋃
i∈	n

AiC and XF = ϑ2(	) =
∞⋂

n=1

⋃
i∈	n

A−1←−
i
RP

1 \ C.

Proof. We prove the claims for YF and note that the claims for XF follow similarly by
considering the dominated tuple A−1 = (A−1

1 , . . . , A−1
N ). Let us first show that YF ⊂

ϑ1(	). To that end, let V ∈ YF and choose a sequence (in)n∈N of finite words and a
sequence (cn)n∈N of real numbers such that cnAin → A and im(A) = V . By passing to a
subsequence if necessary, we may assume that

η1(Ain)→ η

for some η ∈ S1. Since the maps Ain are linear and supn∈N ‖cnAin‖ <∞, it follows from
the Banach–Steinhaus theorem that cnAinη1(Ain)→ Aη, and therefore

‖Aη‖ = lim
n→∞ cn‖Ainη1(Ain)‖ = lim

n→∞ cn‖Ain‖ = ‖A‖.

In particular, ‖Aη‖ > 0, so Aη is a non-zero vector in im(A). Thus, by the continuity of
the map v �→ 〈v〉,

V = im(A) = 〈Aη〉 = lim
n→∞〈cnAinη(Ain)〉 = lim

n→∞ ϑ1(in),

and V ∈ ϑ1(	) by Lemma 2.2(3).
Let us then show that ϑ1(	) ⊂⋂∞n=1

⋃
i∈	n

AiC. Fix V ∈ ϑ1(	) and let i ∈ 	 be
such that ϑ1(i) = V . Observe that, by Lemma 2.2(4),

ϑ1(i) = Ai|nϑ1(σ
ni)

for all n ∈ N. Since, by Lemma 2.2(5), ϑ1(σ
ni) ∈ C for all n ∈ N, we have

V ∈
∞⋂

n=1

⋃
i∈	n

AiC

as required.
Finally, let us show that

⋂∞
n=1

⋃
i∈	n

AiC ⊂ YF . To that end, suppose that V ∈⋂∞
n=1

⋃
i∈	n

AiC. Then for any n ∈ N, we may choose in ∈ 	n and Vn ∈ C, such that
V = AinVn. Let vn be a unit vector such that Vn = 〈vn〉. Note that the set

S = {A ∈ GL2(R) : ‖A‖ = 1}
is a compact subset of GL2(R). By passing to a subsequence if necessary, we may assume
that vn→ v for some v ∈ S1 and

Ain

‖Ain‖
→ A
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for some A ∈ S. Now, by recalling the definition of domination from (2.1), there exist
C > 0 and 0 < τ < 1 such that

|det(‖Ain‖−1Ain)| =
α1(Ain)α2(Ain)

‖Ain‖
= α2(Ain)

α1(Ain)
� Cτn.

Consequently, det(A) = 0, which together with ‖A‖ = 1, implies that rank(A) = 1. Recall
that, by [13, Lemma 2.3], there is a positive constant κ such that

‖Ainvn‖ � κ‖Ain‖‖vn‖ = κ‖Ain‖
for all n ∈ N. Since the maps Ain are linear, it follows from the Banach–Steinhaus theorem
that ‖Ain‖−1Ainvn→ Av, and therefore

‖Av‖ = lim
n→∞

‖Ainvn‖
‖Ain‖

� κ

and Av is a non-zero vector in im(A). Thus, by the continuity of the map v �→ 〈v〉,
V = lim

n→∞ AinVn = lim
n→∞〈Ainvn〉 = 〈Av〉 = im(A) ∈ YF .

Therefore, V ∈ YF and the proof is finished.

2.5. Bounded neighbourhood condition. To finish this section, we introduce a geometric
separation condition for self-affine sets, which we call the bounded neighbourhood
condition. We remark that a similar condition has already been introduced in [23]. We
also define a weaker variant which allows exact overlaps in the construction. Let X be a
self-affine set and

�(x, r) = {ϕi : α2(Ai) � r < α2(Ai−) and ϕi(X) ∩ B(x, r) �= ∅}
for all x ∈ X and r > 0. We say that X satisfies the weak bounded neighbourhood condition
(WBNC) if

sup
x∈X
r>0

#�(x, r) <∞.

Furthermore, X satisfies the bounded neighbourhood condition (BNC) if it satisfies the
WBNC and ϕi �= ϕj whenever i, j ∈ 	∗ such that i �= j. It turns out that if the SSC
is not satisfied, then the WBNC is the right separation condition for studying the tangent
structure of X. Let us comment on how the BNC and the WBNC are related to other
separation conditions. It is not difficult to see that the SSC implies the BNC, but we will
give an example of a self-affine set satisfying the SOSC but not the BNC later in Example
3.3. This also shows that it is not possible to replace the WBNC with the SOSC in the
assumptions of the main result of §3.

3. Tangent decompositions and slices
We begin to study the structure of weak tangent sets of dominated self-affine sets satisfying
the bounded neighbourhood condition. In the presence of the WBNC, we show the
existence of tangent decompositions and demonstrate how they can be used to study
slices of the set. Our main observation in this section is the following proposition which
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generalizes Bárány, Käenmäki, and Rossi [9, Theorem 5.2]. By A+ x we mean the set
{a + x : a ∈ A} for all A ⊂ R

2 and x ∈ R
2.

PROPOSITION 3.1. If X is a self-affine set satisfying the WBNC, then for every T ∈ Tan(X)

there exist x ∈ X and V ∈ XF such that

dimH(T ) � max{dimH(X), 1+ dimH(X ∩ (V + x))}.
In particular,

dimA(X) � max
{

dimH(X), 1+ sup
x∈X

V∈XF

dimH(X ∩ (V + x))
}

.

If X is dominated, then dimH(X) can be removed from both maxima above.

In Example 3.3 we show that the proposition can fail if the WBNC is not satisfied, and
in fact this is even possible under the SOSC. In particular, the previous proposition is not
true if one replaces the WBNC by the SOSC.

The proof of Proposition 3.1 relies on finding suitable decompositions of the tangents
of self-affine sets into finitely many components, where each component can be affinely
mapped to a slice of the original set. This is made formal by the following lemma.

LEMMA 3.2. If X is a self-affine set satisfying the WBNC and T ∈ Tan(X), then there
exists a finite index set I such that for every i ∈ I there are a set Ti ⊂ T , a point yi ∈ X,
and a linear map Gi for which:
(1) T =⋃i∈I Ti;
(2) rank(Gi) � 1;
(3) Gi(Ti)+ yi ⊂ X.
Furthermore, if X is dominated, then rank(Gi) = 1 and im(Gi) ∈ XF for all i ∈ I .

Proof. Let T ∈ Tan(X). By definition, we may choose a sequence (in)n∈N of infinite
words and a sequence (rn)n∈N of positive real numbers converging to 0 such that

Mπin,rn(X) ∩ B(0, 1)→ T

in Hausdorff distance. Since X satisfies the WBNC, there exists M > 0 such that

#�(πin, rn) � M ,

for all n ∈ N. Hence, there is K ∈ {1, . . . , M} such that #�(πin, rn) = K for infinitely
many n. In other words, there exists a sequence (nk)k∈N of natural numbers such that
#�(πink

, rnk
) = K for all k ∈ N. Write

�(πink
, rnk

) = {ϕji
nk
}Ki=1

for all k ∈ N. By passing to a subsequence if necessary, we see that for every i ∈
{1, . . . , K}, there exists a set Ti such that

(Mπink
,rnk
◦ ϕj1

nk
, . . . , Mπink

,rnk
◦ ϕjK

nk
)(XK) ∩ B(0, 1)K → T1 × · · · × TK
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in Hausdorff distance. Noting that

Mπink
,rnk

(X) ∩ B(0, 1) =
K⋃

i=1

Mπink
,rnk
◦ ϕji

nk
(X) ∩ B(0, 1)

for all k ∈ N, we see that (1) holds.
Since XK is compact, we may assume that

(ϕ−1
j1

nk

(πink
), . . . , ϕ−1

jK
nk

(πink
))→ (y1, . . . , yK) ∈ XK ,

and therefore for each i ∈ {1, . . . , K} there exists a linear map Gi such that

(ϕ−1
j1

nk

◦M−1
πink

,rnk
, . . . , ϕ−1

jK
nk

◦M−1
πink

,rnk
)→ (G1 + y1, . . . , GK + yK)

in the uniform convergence in XK . Clearly,

ϕ−1
ji

nk

◦M−1
πink

,rnk
(Mπink

,rnk
◦ ϕji

nk
(X) ∩ B(0, 1)) ⊂ X,

so by taking the limit, we see that Gi(Ti)+ yi ⊂ X which proves (2).
Finally, to prove (3), denote by Aji

nk
the linear part of ϕji

nk
. Then, by the definition of

�(πink
, rnk

), we have that

‖rnk
A−1
ji

nk

‖ = rnk
α2(Aji

nk
)−1 � 1.

Since A �→ ‖A‖ is continuous, we have ‖Gi‖ = limk→∞ ‖rnk
A−1
ji

nk

‖ � 1 > 0 and, in

particular, rank(Gi) � 1 for all i ∈ {1, . . . , K}.
Let us next assume that X is dominated. Fix i ∈ I and, for simplicity, denote ji

nk
by jk .

First observe that the sequence (|jk|)k∈N is unbounded, since if it were bounded by some
number L ∈ N, we would have

rnk
� α2(Ajk

) �
(

min
j∈{1,...,N} α2(Aj )

)L

> 0

for all k ∈ N, contradicting the fact that limk→∞ rnk
= 0. By domination, there exist

C > 0 and 0 < τ < 1 such that

|det(rnk
A−1
jk

)| = r2
nk

det(Ajk
)
= r2

nk

α1(Ajk
)α2(Ajk

)

� α2(Ajk
)

α1(Ajk
) minj∈{1,...,N} α2(Aj )

� C

minj∈{1,...,N} α2(Aj )
τ |jk |.

Since |jk| is unbounded, we see that rank(Gi) = 1. Finally, since rnk
A−1
ji

nk

converges to the

linear map Gi , which is a rank-one map, im(Gi) ∈ XF .

We are now ready to prove Proposition 3.1.

Proof of Proposition 3.1. Let T ∈ Tan(X) and {Ti}i∈I be a tangent decomposition
of T given by Lemma 3.2. Notice that, since T =⋃i∈I Ti , we have dimH(T ) =
maxi∈I dimH(Ti). Let i ∈ I be the index which achieves this maximum. By Lemma 3.2,
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we have Gi(Ti)+ yi ⊂ X ∩ (im(Gi)+ yi), and hence

dimH(Gi(Ti)+ yi) � dimH(X ∩ (im(Gi)+ yi)).

If rank(Gi) = 2 then dimH(Gi(Ti)+ yi) � dimH(X). On the other hand, if rank(Gi) = 1
then x �→ Gix + yi is bi-Lipschitz equivalent to projker(Gi)

⊥ , thus we have

dimH(Ti) � dimH(R× projker(Gi)
⊥(Ti))

= 1+ dimH(projker(Gi)
⊥(Ti)) = 1+ dimH(Gi(Ti)+ x).

Therefore,

dimH(T ) = dimH(Ti) � 1+ dimH(X ∩ (im(Gi)+ yi))

and we have shown the first claim. By Lemma 2.1, the second claim follows immediately
from the first claim.

If X is dominated, then rank(Gi) = 1 above by the last assertion of Lemma 3.2 and the
last claim follows.

Example 3.3. In this example, we exhibit an affine IFS (ϕ1, ϕ2, ϕ3), where ϕi(x) = Aix +
bi for all x ∈ R

2, with self-affine set X satisfying the SOSC but not the WBNC such that
(A1, A2, A3) is dominated and

1+ sup
x∈X

V∈XF

dimH(X ∩ (V + x)) < dimA(X) = 2. (3.1)

In particular, this shows that the upper bound of Proposition 3.1 can fail if the WBNC is
replaced by the SOSC. Let

A1 =
(

1
3

1
4

0 1
4

)
, A2 =

(
1
4 0
1
4

1
3

)
, A3 =

(
1
3

1
12

1
4

1
2

)

and

b1 = (0, 0), b2 = (0, 0), b3 =
(

7
12

,
1
4

)
.

For an illustration of the associated self-affine set X, see Figure 1. Since 0̄ = (0, 0) is a
fixed point for both ϕ1 and ϕ2, we have 0̄ ∈ ϕ1(X) ∩ ϕ2(X) and X does not satisfy the
SSC. However, X clearly satisfies the SOSC with the open set U = (0, 1)2. Furthermore,
it is not difficult to see that for any M ∈ N there exists r > 0 such that

#�(0̄, r) � M ,

so X does not satisfy the WBNC.
For each ε � 0 let Cε ⊂ RP

1 be the cone having the lines 〈(1, −ε)〉 and 〈(−ε, 1)〉 as
boundaries, and containing the line 〈(1, 1)〉. It is easy to see that Cε is strongly invariant
with respect to (A1, A2, A3) for every sufficiently small ε > 0, and hence (A1, A2, A3)

is dominated. We also have AiC0 ⊂ C0 for all i ∈ {1, 2, 3}. Let D0 ⊂ RP
1 be the cone

having the lines 〈(3, −1)〉 and 〈(1, −3)〉 as boundaries, and containing the line 〈(1, −1)〉.
It is easy to see that A−1

i D0 ⊂ D0 and that (3, −1) and (1, −3) are eigenvectors of A1
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FIGURE 1. The self-affine set of Example 3.3. The first-level cylinders are illustrated by dashed lines.

and A2, respectively. Therefore, XF is not a singleton, and furthermore, by Lemma 2.3,
XF ⊂ D0. Simple algebraic manipulations show that

‖Ai‖ < 0.62, min
V∈C0
‖Ai |V ‖ � 1

3
, max

V∈D0
‖A−1

i |V ‖−1 � 7
12

√
5
17

< 0.32 (3.2)

for all i ∈ {1, 2, 3}.
Let us now show that dimA(X) = 2. As X ⊂ R

2, it is enough to prove dimA(X) � 2,
and for this, by recalling Lemma 2.1, we construct a suitable weak tangent. Let us define
Tn : R2 → R

2 by setting

Tn(x) = M0̄,3−n(x) = 3nx

for all x ∈ R
2 and n ∈ N, and let T be the Hausdorff limit of the sequence Tn(X) ∩ B(0, 1).

If we can show that T = Q1, where Q1 = B(0, 1) ∩ [0, 1]2 is the closed first quadrant
of the unit ball, then dimA(X) � dimH(T ) � 2 as required. To that end, consider the
set 	

1,2
n = {i1 · · · in ∈ 	n : ik ∈ {1, 2} for all k ∈ {1, . . . , n}}. Let e1 = (1, 0) and e2 =

(0, 1). Note that, since ‖Aiek‖ � 3−n for both k ∈ {1, 2} and i ∈ 	
1,2
n by (3.2), we have

Tn(ϕi(U)) ∩ Tn(ϕj(U)) = ∅ and
⋃

i∈	1,2
n

Tn(ϕi(U)) ∩ B(0, 1) = Q1,

for all i, j ∈ 	
1,2
n with i �= j. Then for any i ∈ 	

1,2
n , the central angle αi of the sector

Tn(ϕi(U)) ∩ B(0, 1) is

αi = �(〈Aie1〉, 〈Aie2〉) = arcsin
( |det(Ai)|
‖Aie1‖‖Aie2‖

)
� arcsin

((
3
4

)n)
, (3.3)
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where in the last inequality we used (3.2). Let y ∈ Q1 and notice that for every n ∈ N there
exists i ∈ 	

1,2
n such that y ∈ Tn(ϕi(U)). Since X contains a continuous path between the

points (0, 0) and (1, 1), there is a point x ∈ ∂B(0, 1) ∩ Tn(ϕi(U)) such that Tn(ϕi(X)) ∩
B(0, 1) contains a continuous path between the points (0, 0) and x. In particular, together
with (3.3), this implies that there exists a point zn ∈ Tn(ϕi(X)) ∩ B(0, 1) such that

|y − zn| � arcsin
(( 3

4

)n).
Therefore, Tn(X) ∩ B(0, 1)→ Q1, finishing the proof of dimA(X) � 2.

It suffices to show that there exists c < 1 such that dimH(X ∩ (V + x)) � c for all
x ∈ X and V ∈ XF . Fix x ∈ X and V ∈ XF , and notice that, by (3.2), we have

diam(ϕi(U) ∩ (V + x)) = ‖Ai|A−1
i V
‖diam(U ∩ (A−1

i V + ϕ−1
i (x)))

� ‖Ai|A−1
i V
‖√2 = ‖A−1

i |V ‖−1
√

2 � (0.32)n
√

2

for all n ∈ N and i ∈ 	
1,2
n . Hence, for each s > −(log 3/log 0.32), we see that

Hs(X ∩ (V + x)) � lim
n→∞ 2s/2

∑
i∈	n

‖A−1
i |V ‖−s � lim

n→∞ 2s/23n(0.32)sn = 0,

and so dimH(X ∩ (V + x)) � −(log 3/log 0.32) < 1.

Remark 3.4. For the purpose of this remark, let us briefly recall some definitions. For each
A ∈ GL2(R) and s � 0, the singular value function is

ϕs(A) =

⎧⎪⎪⎨
⎪⎪⎩

α1(A)s if 0 � s � 1,

α1(A)α2(A)s−1 if 1 < s � 2,

(α1(A)α2(A))s/2 if s > 2.

The value ϕs(A) represents a measurement of the s-dimensional volume of the ellipse
A(B(0, 1)). For each A ∈ GL2(R)N and s � 0, the pressure is

P(A, s) = lim
n→∞

1
n

log
∑
i∈	n

ϕs(Ai).

As the singular value function is submultiplicative, the limit above exists by Fekete’s
lemma. It is also easy to see that the pressure P(A, s) is continuous and strictly decreasing
as a function of s with P(A, 0) � 0 and lims→∞ P(A, s) = −∞. We may thus define the
affinity dimension by setting dimaff(A) to be the minimum of 2 and the unique s � 0 for
which P(A, s) = 0. If X is a self-affine set, then dimaff(X) denotes the affinity dimension
of the associated tuple of matrices. Also recall that a self-affine set is strongly irreducible
if no finite collection of lines in RP

1 is preserved by all of the matrices in the tuple.
In [10, Example 3.3], the authors answer a question posed by Fraser in [19], by con-

structing an example of a self-affine set X satisfying dimL(X) < dimH(X) = dimaff(X) <

dimA(X), where dimL denotes the lower dimension; see [19, §3.1] for the definition. The
construction is strongly based on the properties of an underlying self-affine carpet, so
it is an interesting question whether this behaviour is possible when X has no reducible
subsystems. Let X be the self-affine set defined in Example 3.3. By an argument similar to
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the calculation of the Assouad dimension in Example 3.3, it is easy to see that X has a line
segment as a weak tangent at the point (1, 1), and therefore dimL(X) � 1 by [20, Theorem
1.1]. Moreover, since the matrices (A1, A2, A3) have pairwise distinct eigenvectors, the
strong irreducibility follows and by [7, Theorem 1.1] and a simple calculation using (3.2),
we have 1 < dimH(X) = dimaff(X) < 2. Thus, Example 3.3 shows that, in the absence
of strong separation, the strict inequalities dimL(X) < dimH(X) = dimaff(X) < dimA(X)

are possible for self-affine systems with no reducible subsystems.

4. Self-affine sets with large projections
In this section we show that if all the projections of the self-affine set have maximal
dimension, then we have equality in Proposition 3.1. We also show that the supremum
in the statement can be replaced by a maximum. The following theorem is the main result
of this section, and Proposition 4.5 below ensures that it generalizes Bárány, Käenmäki,
and Yu [10, Theorem 3.2] by relaxing the SSC to a separation condition which allows
slight overlapping.

THEOREM 4.1. Let X be a dominated self-affine set satisfying the WBNC such that
dimH(projV⊥(X)) = 1 for all V ∈ XF . Then

dimA(X) = 1+ max
x∈X

V∈XF

dimH(X ∩ (V + x))

= 1+ max
x∈X

V∈RP1\YF

dimA(X ∩ (V + x)).

The proof of the theorem uses ideas introduced in [10, §5], but the absence of strong
separation induces some complications. We essentially split [10, Lemma 5.2], which
assumes the SSC, into Lemmas 4.3 and 4.4 and make two key observations to work around
the lack of SSC. First of all, the intuition behind [10, Lemma 5.2] is that the weak tangent
sets of the self-affine set X have a comb-like structure, where the slices of the tangent
set along the direction of the teeth of the comb have full dimension, and the dimensions
of the slices in directions perpendicular to the teeth have dimension comparable to some
slice of the self-affine set in a Furstenberg direction. By Lemma 3.2, we know that under
the bounded neighbourhood condition, the situation is similar in the sense that the weak
tangents are finite unions of these comb-like sets. Secondly, in [10, §5], to show that the
teeth of the combs point in the same direction, the authors use the fact that any slice of the
self-affine set has dimension strictly smaller than one, which does not have to be true in
our setting. We work around this using domination in the following lemma.

LEMMA 4.2. Let X be a dominated self-affine set and (ik)k∈N be a sequence of
infinite words in 	. If (nk)n∈N is an increasing sequence of integers such that the limit
limk→∞ ϑ1(ik|nk

) exists, then limk→∞ ϑ1(ik) exists and

lim
k→∞ ϑ1(ik) = lim

k→∞ ϑ1(ik|nk
).

Proof. Let (nk)k∈N be a strictly increasing sequence of integers such that the limit
W := limk→∞ ϑ1(ik|nk

) ∈ RP
1 exists and let ε > 0. By Lemma 2.2(1), ϑ1(ik) is well
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defined for every k ∈ N and, by the uniform convergence, we may choose k0 ∈ N large
enough such that

�(ϑ1(ik|nk
), ϑ1(ik)) <

ε

2
for all k � k0. By the assumption, by making k0 larger if needed, we also have

�(ϑ1(ik|nk
), W) <

ε

2
,

for all k � k0. Thus, by the triangle inequality, we have

�(ϑ1(ik), W) � �(ϑ1(ik), ϑ1(ik|nk
))+ �(ϑ1(ik|nk

), W) < ε

and therefore, limk→∞ ϑ1(ik) = W .

We abuse notation by denoting the intersection of T ∈ Tan(X) with the open unit ball by
T ◦. Similarly, if {Ti}i∈I is a tangent decomposition of T, then we let T ◦i = Ti \ ∂B(0, 1).
This should not cause any confusion, since we will not be referring to the actual interior of
T at any point. Furthermore, by the rank, image, and kernel of an affine map, we mean the
rank, image, and kernel of its linear part.

LEMMA 4.3. Let X be a dominated self-affine set satisfying the WBNC such that
dimH(X) � 1, and dimH(projV⊥(X)) = 1 for all V ∈ XF . Let T ∈ Tan(X) and {Ti}i∈I
be a tangent decomposition of T given by Lemma 3.2. Then for every i ∈ I there exists
Wi ∈ YF such that

dimH(T ∩ (Wi + y)) = 1

for all y ∈ T ◦i .

Proof. Let (ik)k∈N be a sequence of infinite words in 	 and (rk)k∈N be a sequence of
positive real numbers converging to zero such that

Mπik ,rk (X) ∩ B(0, 1)→ T .

Recall from the proof of Lemma 3.2 that there exist a sequence (nk)k∈N of integers and,
for each i ∈ I , finite words ji

nk
∈ 	∗ and sets Ti such that

Mπink
,rnk
◦ ϕji

nk
(X) ∩ B(0, 1)→ Ti

for all i ∈ I in Hausdorff distance. Fix y ∈ T ◦ and choose i ∈ I such that y ∈ T ◦i . Since
y �∈ ∂B(0, 1), there is δ > 0 depending only on y such that B(y, 2δ) ⊂ B(0, 1). Therefore,
there are infinite words jk ∈ [ji

nk
] such that Mπink

,rnk
(π(jk))→ y and

Mπink
,rnk

(X ∩ B(πjk , δrnk
)) ⊂ Mπink

,rnk
◦ ϕji

nk
(X) ∩ B(0, 1) (4.1)

for all large enough k ∈ N. Let mk � nk be the unique integer which satisfies

α1(Ajk |mk
) � δrnk

< α1(Ajk |mk−1). (4.2)

By again passing to a subsequence if necessary, there exists an affine map Py such that

Mπink
,rnk
◦ ϕjk |mk

→ Py
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in the uniform convergence in X. By compactness and (4.1), we have y ∈ Py(X) ⊂ Ti and,
by domination, we have

α2(Ajk |mk
)

α1(Ajk |mk
)
� Cτmk ,

so in particular det(r−1
nk

Ajk |mk
)→ 0 as k→∞. Also, by (4.2) and [8, Corollary 2.4],

there exists a constant C > 0 such that ‖r−1
nk

Ajk |mk
‖ � Cδ for all k ∈ N. Therefore, we see

that rank(Py) = 1. Let Wy = im(Py) and note that by Lemma 2.3, Wy ∈ YF . Recall that
Py(X) and projker(Py)⊥(X) are bi-Lipschitz equivalent, so by the assumption,

dimH(T ∩ (Wy + y)) � dimH(Py(X) ∩ (Wy + y))

� dimH(projker(Py)⊥(X)). (4.3)

Let us show that ker(Py) ∈ XF . Observe that the linear part of the map Mπink
,rnk
◦ ϕjk |mk

is r−1
nk

Ajk |mk
and notice that this sequence converges to the linear part of Py in the uniform

convergence in X. Denote by Ay the linear part of Py and let v be a unit vector in the kernel
of Ay . Since the eigenspaces of (r−1

nk
Ajk |mk

)T (r−1
nk

Ajk |mk
) converge to the eigenspaces of

AT
y Ay and since ker(Ay) = ker(AT

y Ay) is the eigenspace corresponding to the singular
value 0, we see that there is a sequence of unit vectors vk → v, such that

AT
jk |mk

Ajk |mk
vk = α2(Ajk |mk

)2vk

for all k ∈ N. Let us define wk = α2(Ajk |mk
)−1Ajk |mk

vk . By the foregoing, we have

‖wk‖ = α2(Ajk |mk
)−1‖Ajk |mk

vk‖ = α2(Ajk |mk
)−1(Ajk |mk

vk · Ajk |mk
vk)

1/2

= α2(Ajk |mk
)−1〈AT

jk |mk
Ajk |mk

vk | vk〉1/2 = α2(Ajk |mk
)−1(α2(Ajk |mk

)−1vk · vk)
1/2

= (vk · vk)
1/2 = ‖vk‖ = 1,

where · is the standard inner product on R
2. Therefore, by possibly passing to a

subsequence, we may assume that wk converges to some unit vector w and that

(Ajk |mk
)−1

‖(Ajk |mk
)−1‖ → By ,

for some 2× 2 matrix By . Since A−1 = (A−1
1 , . . . , A−1

N ) is dominated, we see as before
that det(‖(Ajk |mk

)−1‖−1(Ajk |mk
)−1)→ 0, so By has rank at most one. Since

(Ajk |mk
)−1

‖(Ajk |mk
)−1‖ ·

Ajk |mk
vk

α2(Ajk |mk
)
= vk ,

by taking limits, we have that By(w) = v, so v is a unit vector in the image of By .
Therefore, By is a rank-one matrix and ker(Ay) = 〈v〉 = im(By) ∈ XF . By the assumption
and (4.3), we have that dimH(T ∩ (Wy + y)) � 1. The upper bound is trivial, since
T ∩ (Wy + y) is contained in a line.

Finally, let us show that Wy is constant in T ◦i . By passing to a subsequence if necessary,
we may assume that limk→∞ ϑ1(ji

nk
) = Wi for some Wi ∈ YF . Notice that Wi does not
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depend on the choice of y ∈ T ◦i . By Lemma 2.3 (or rather its proof), it is easy to see that

Wy = im(Py) = lim
k→∞ ϑ1(jk|mk

).

Therefore, by Lemma 4.2, we have im(Py) = limk→∞ ϑ1(jk). Noting that ji
nk
= jk||ji

nk
|

and, applying Lemma 4.2 again, we see that

Wy = lim
k→∞ ϑ1(jk) = lim

k→∞ ϑ1(j
i
nk

) = Wi

finishing the proof.

LEMMA 4.4. Let X ⊂ R
2 be compact. Then for every x ∈ X and V ∈ RP

1 there exist
T ∈ Tan(X) such that

dimH(T ∩ V ) � dimA(X ∩ (V + x)) � dimH(X ∩ (V + x)).

Proof. Let V ∈ RP
1 and x ∈ X and, by recalling Lemma 2.1, let Tmax ∈ Tan(X ∩ (V +

x)) be a weak tangent, which satisfies dimH(Tmax) = dimA(X ∩ (V + x)). Let (xk)k∈N be
a sequence of points in X ∩ (V + x) and (rk)k∈N be a sequence of positive real numbers
converging to zero such that

Mxk ,rk (X ∩ (V + x)) ∩ B(0, 1)→ Tmax

in Hausdorff distance. Since xk ∈ V + x for all k ∈ N, and each Mxk ,rk is a similarity, we
have Mxk ,rk (V + x)→ V . Let T be an accumulation point of the sequence Mxk ,rk (X) ∩
B(0, 1). Then T ∈ Tan(X) and, by compactness, Tmax ⊂ T ∩ V . Therefore, we have

dimH(X ∩ (V + x)) � dimA(X ∩ (V + x)) = dimH(Tmax) � dimH(T ∩ V )

as required.

We are now ready to prove the main theorem of this section.

Proof of Theorem 4.1. By Lemma 2.1, we have

dimA(X) = max
T ∈Tan(X)

dimH(T ), (4.4)

so we may choose Tmax ∈ Tan(X) such that dimA(X) = dimH(Tmax). Recalling
Proposition 3.1, there are x ∈ X and V ∈ XF ⊂ RP

1 \ YF such that

dimA(X) = dimH(Tmax) � 1+ dimH(X ∩ (V + x)). (4.5)

By Lemma 4.4, there exists a tangent set T such that

dimH(T ∩ V ) � dimA(X ∩ (V + x)) � dimH(X ∩ (V + x)).

If dimH(T ∩ V ) = 0, then trivially dimH(T ) � 1+ dimH(X ∩ (V + x)) = 1, by Lemma
4.3. Therefore, we may assume that dimH(T ∩ V ) > 0. Notice that T ∩ V ∩ ∂B(0, 1)

consists of at most two points, so dimH(T ◦ ∩ V ) = dimH(T ∩ V ). Let 0 < s < dimH(T ∩
V ) and let μ be a Frostman measure on T ◦ ∩ V ; see [36, Theorem 8.8]. Let {Ti}i∈I be a
tangent decomposition of T given by Lemma 3.2. Since T =⋃i∈I Ti , at least one of the
sets T ◦i ∩ V has positive μ-measure. Let T ◦i be such a set and let Wi ∈ YF be the line given
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by Lemma 4.3. Since V �∈ YF , we have V �= Wi and so, by Marstrand’s slicing theorem
[11, Theorem 3.3.1],

1 = dimH(T ∩ (Wi + y)) � dimH(T )− s

for μ-almost every y ∈ T ◦i ∩ V . In particular, since μ(T ◦i ∩ V ) > 0, such a point y exists.
By letting s ↑ dimH(T ∩ V ), we get

dimA(X) � dimH(T ) � 1+ dimH(T ∩ V )

� 1+ dimA(X ∩ (V + x)) � 1+ dimH(X ∩ (V + x)).

Combining this with (4.5), we get

dimA(X) = 1+ dimA(X ∩ (V + x)) = 1+ dimH(X ∩ (V + x))

as claimed.
It remains to show that dimA(X ∩ (W + y)) � dimH(X ∩ (V + x)) for all y ∈ X and

W ∈ RP
1 \ YF . By repeating the above proof for such y and W, we find a tangent set T

such that

1+ dimA(X ∩ (W + y)) � dimH(T ) � dimH(Tmax) � 1+ dimH(X ∩ (V + x)),

where we used (4.4) in the middle inequality. This finishes the proof.

To finish this section, let us verify that Theorem 4.1 generalizes Bárány, Käenmäki,
and Yu [10, Theorem 3.2]. The proof is based on Bárány, Hochman, and Rapaport [7,
Proposition 6.6].

PROPOSITION 4.5. If X is a dominated self-affine set satisfying the WBNC and the SOSC
such that dimH(X) � 1 and XF is not a singleton, then

dimA(X) = 1+ max
x∈X

V∈RP1\YF

dimH(X ∩ (V + x)).

Proof. Since X satisfies the SOSC, [10, Theorem 2.18] shows that

dimH(projV⊥(X)) = 1

for all V ∈ RP
1 \ I, where I = {W ∈ RP

1 : W = AiW for all i ∈ {1, . . . , N}} contains
at most one element. If I = ∅, then the claim follows from Theorem 4.1. Bárány, Käenmäki
and Yu [10, Lemma 2.11] show that if XF is not a singleton, then I is non-empty if and
only if the matrices Ai are of the form

Ai =
(

ai bi

0 di

)
,

possibly after a change of basis, where 0 < |di | < |ai | < 1, and the matrices are not
simultaneously diagonalizable, and clearly in this case, I = YF . Since XF ⊂ RP

1 \ YF ,
Theorem 4.1 gives the claim.
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5. Assouad dimension of the Takagi function
As an application of Theorem 4.1, which connects the Hausdorff dimension of the slices to
the Assouad dimension of the set, we are now able to study slices of the Takagi function.
The following result, which is the first part of Theorem 1.1, follows immediately from
Theorem 4.1 after verifying the assumptions of the theorem.

THEOREM 5.1. If Tλ is the Takagi function, then

dimA(Tλ) = 1+ max
x∈Tλ

V∈XF

dimH(Tλ ∩ (V + x))

= 1+ max
x∈Tλ

V∈RP1

dimA(Tλ ∩ (V + x)).

The second result of this section, which implies the second part of Theorem 1.1, gives
an explicit upper bound for the Assouad dimension of the Takagi function. In particular, it
follows that the Assouad dimension is always strictly smaller than 2.

THEOREM 5.2. If Tλ is the Takagi function, then

max
x∈Tλ

V∈RP1

dimH(Tλ ∩ (V + x)) � log(2nλ − 1)

log 2nλ
< 1,

where

nλ =
⌈

log 2(Kλ +Mλ)

− log λ

⌉
� 2,

Kλ =∑k∈N 2−kλ−k = (2λ− 1)−1, and Mλ = maxx∈[0,1] Tλ(x) = (3(1− λ))−1.

The prerequisite in the proof of the above theorems is to express the Takagi function as
a self-affine set. Let Tλ : [0, 1]→ R be the Takagi function for the parameter 1

2 < λ < 1
as defined in (1.1). Let A = (A1, A2) ∈ GL2(R)2, where

A1 =
(

1
2 0
1
2 λ

)
and A2 =

(
1
2 0

− 1
2 λ

)
,

and observe that, as 1
2 < λ, both matrices have two real eigenvalues with different absolute

values. Furthermore, the contraction by λ is realized precisely on the y-axis which is
invariant under both matrices. We define affine maps ϕ1, ϕ2 : R2 → R

2 by setting

ϕ1(x) = A1(x) and ϕ2(x) = A2(x)+ ( 1
2 , 1

2

)
,

for all x ∈ R
2. A straightforward calculation shows that

Tλ

(
x

2

)
= x

2
+ λTλ(x) and Tλ

(
x

2
+ 1

2

)
= 1

2
− x

2
+ λTλ(x).

It follows that ϕ1(x, Tλ(x)) = (x/2, Tλ(x/2)) and ϕ2(x, Tλ(x)) = (x/2 + 1
2 ,

Tλ(x/2+ 1
2 )), so Tλ ⊂ R

2 is the self-affine set associated to the affine IFS (ϕ1, ϕ2);
see Figure 2. Observe that, by induction, we have
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FIGURE 2. The graph of the Takagi function for λ = 2
3 .

Ai =
(

2−|i| 0∑|i|
k=1(−1)i|i|−k+1+12−kλ|i|−k λ|i|

)
,

A−1←−
i
=
(

2|i| 0∑|i|
k=1(−1)ik 2|i|−kλ−k λ−|i|

)
(5.1)

for all i ∈ 	∗. We begin verifying the assumptions of Theorem 4.1 by showing that Tλ is
dominated.

LEMMA 5.3. There exists C > 1 such that

λ|i| � α1(Ai) � Cλ|i| and C−12−|i| � α2(Ai) � 2−|i|

for all i ∈ 	∗. In particular, Tλ is dominated.

Proof. Let i ∈ 	∗ and recall that α1(Ai) = ‖Ai‖. The lower bound for α1(Ai) follows
from the fact that λ|i| is an eigenvalue of Ai. Similarly, since α2(Ai) = ‖A−1

i ‖−1, the
upper bound for α2(Ai) is trivial as 2|i| is an eigenvalue of A−1

i . We prove the upper
bound for α1(Ai) and only remark that the proof of the lower bound for α2(Ai) follows
similarly. Let s(i) =∑|i|k=1(−1)i|i|−k+12−kλ|i|−k and notice that

|s(i)| �
|i|∑
k=1

2−kλ|i|−k � λ|i|
∞∑

k=1

2−kλ−k = Kλλ
|i|

for all i = i1 · · · i|i| ∈ 	∗. Writing y = (y1, y2) ∈ S1, we see that

‖Aiy‖2 = |(2−|i|y1)
2 + (s(i)y1 + λ|i|y2)

2|
= |2−2|i|y2

1 + s(i)2y2
1 + 2s(i)λ|i|y1y2 + λ2|i|y2

2 |
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� (2−2|i| + |s(i)|2)y2
1 + 2|s(i)|λ|i||y1y2| + λ2|i|y2

2

� λ2|i| +K2
λλ2|i| + 2Kλλ

2|i| + λ2|i|

= (K2
λ + 2Kλ + 2)λ2|i|,

so the claim holds with C = √(Kλ + 1)2 + 1 > 1. Finally, since

α2(Ai) �
( 1

2λ

)|i|
α1(Ai),

we see that Tλ is dominated.

Let us next determine the Furstenberg directions of the Takagi function. For a given
t ∈ R, let Vt = 〈(1, t)〉 ∈ RP

1 be the line with slope t passing through the origin, and let
V∞ = 〈(0, 1)〉 ∈ RP

1 be the y-axis. Recall also the definition of Kλ from the formulation
of Theorem 5.2.

LEMMA 5.4. If Tλ is the Takagi function, then

XF = {Vt ∈ RP
1 : t ∈ [−Kλ, Kλ]}

is a closed projective interval and YF = {V∞} is a singleton.

Proof. Let i ∈ 	 and observe that, by (5.1), we may define

Bi = lim
n→∞ 2−nA−1←−

i|n
=
(

1 0∑∞
k=1(−1)ik 2−kλ−k 0

)
.

Since Tλ is dominated by Lemma 5.3 and limn→∞ η1(A
−1←−
i|n

) = (1, 0), it follows from

Lemma 2.3 that the word i determines an element Vi = im(Bi) of the set XF by

Vi = 〈Bi(1, 0)〉 =
〈
1,
∞∑

k=1

(−1)ik 2−kλ−k

〉
.

Hence, it is clear that for any V ∈ {Vt ∈ RP
1 : t ∈ [−Kλ, Kλ]}, there exists i ∈ 	 such

that V = Vi ∈ XF .
For the other inclusion, let V ∈ XF . By the definition of XF , we find a sequence (cn)n∈N

of positive real numbers, a sequence (in)n∈N of finite words in = in1 · · · in|in| ∈ 	∗, and a

linear map A of rank one such that A = limn→∞ cnA
−1←−
in

and V = im(A). Passing through

a subsequence if necessary, we see that

lim
n→∞ 2−|in|A−1←−

in

=
(

1 0
limn→∞

∑n
k=1(−1)i

n
k 2−kλ−k 0

)
,

where the limit limn→∞
∑n

k=1(−1)i
n
k+12−kλ−k exists. In particular, cn2−|in|→c∈R\ {0}

and A is a constant multiple of the above matrix, which finishes the proof.
For YF , let i ∈ 	 and, using (5.1), define

Bi = lim
n→∞ λ−nAi|n =

(
0 0∑n

k=1(−1)in−k+1+12−kλ−k 1

)
.
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Since im(Bi) = V∞, we have {V∞} ⊂ YF . For the other inclusion, as before, if V ∈ YF ,
we find a sequence (cn)n∈N of positive real numbers, a sequence (in)n∈N of finite words
in = in1 · · · in|in| ∈ 	∗, and a linear map A of rank one such that A = limn→∞ cnAin and
V = im(A). Passing through a subsequence if necessary, we see that

lim
n→∞ λ−|in|Ain =

(
0 0∑n

k=1(−1)i
n
n−k+1+12−kλ−k 1

)
,

and since im(A) = V∞, the proof is finished.

To finish verifying the assumptions of Theorem 4.1 for the Takagi function, it suffices to
show that the Takagi function satisfies the weak bounded neighbourhood condition. This
is the purpose of the following lemma.

LEMMA 5.5. The Takagi function Tλ satisfies the BNC.

Proof. Let C > 1 be the constant of Lemma 5.3. Fix x ∈ Tλ and 0 < r < C−1, and let
k ∈ N be the smallest natural number satisfying

2kC−1 � 1.

Define
�n(x, r) = {ϕi : 2nC−12−|i| � r < 2nC−12−|i|+1 and ϕi(X) ∩ B(x, r) �= ∅}

for all n ∈ N. It follows from Lemma 5.3 that �(x, r) ⊂⋃k
n=0 �n(x, r), so it suffices to

show that the cardinality of �n(x, r) is uniformly bounded for all n ∈ {0, . . . , k}. For each
n ∈ {0, . . . , k}, let mn be the unique integer satisfying

2nC−12−mn � r < 2nC−12−mn+1. (5.2)

Then clearly �n(x, r) = {ϕi : i ∈ 	mn and ϕi(X) ∩ B(x, r) �= ∅}. We observe from
the construction that each ϕi with i ∈ 	mn maps Tλ inside a unique set of the form
[k/2mn , (k + 1)/2mn]× R, where k is an integer satisfying 0 � k < 2mn . Therefore, (5.2)
implies that B(x, r) can intersect at most

2mnr � 2mn2nC−12−mn+1 � C−12k+1,

of the sets ϕi(X) with i ∈ 	mn . Since the upper bound is independent of x and r, the set
Tλ satisfies the BNC.

We are now ready to prove Theorem 5.1.

Proof of Theorem 5.1. It follows from Lemmas 5.3, 5.4, and 5.5 that the Takagi function Tλ

is a dominated self-affine set satisfying the BNC such that XF is a non-trivial projective
interval. Furthermore, since the Takagi function is continuous, Tλ(0) = 0 = Tλ(1) and,
by [37] (see also Lemma 6.7), Mλ = maxx∈[0,1] Tλ(X) = 1/3(1− λ) > 0, we see that
dimH(projV⊥(Tλ)) = 1 for all V ∈ RP

1. Therefore, by Theorem 4.1, we have

dimA(Tλ) = 1+ max
x∈Tλ

V∈XF

dimH(Tλ ∩ (V + x))

= 1+ max
x∈Tλ

V∈RP1\YF

dimA(Tλ ∩ (V + x)).
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Furthermore, by Lemma 5.4, YF is a singleton containing only the y-axis V∞. Since Tλ

is a graph of a function, we have dimA(Tλ ∩ (V∞ + x)) = dimA({x}) = 0 for all x ∈ Tλ,
which concludes the proof.

To finish this section, we prove Theorem 5.2.

Proof of Theorem 5.2. Since Tλ is a graph of a function, it suffices to show that

dimH(Tλ ∩ (V + x)) � log(2nλ − 1)

log 2nλ
(5.3)

for all x ∈ Tλ and V ∈ RP
1 \ {V∞}. We write

	n(A) = {i ∈ 	n : ϕi(Tλ) ∩ A �= ∅}
for all A ⊂ R

2 and n ∈ N. Let us first show by induction that

#	knλ(V + x) � (2nλ − 1)k , (5.4)

for all k ∈ N, x ∈ Tλ and V ∈ RP
1 \ {V∞}.

First let k = 1, x ∈ Tλ, and V ∈ RP
1 \ {0}. By symmetry, we may assume that V = Vt ,

with t � 0, and without loss of generality we may also assume that x = (0, y) for some
y ∈ R so that

Vt + x = {(s, ts + y) : s ∈ R}.
Since #	nλ = 2nλ , it suffices to show that there exists at least one i ∈ 	nλ such that
ϕi(Tλ) ∩ (Vt + x) = ∅. Assume without loss of generality that ϕi1(Tλ) ∩ (Vt + x) �= ∅,
where i1 = 1|nλ . From (5.1), we may deduce that ϕi1(Tλ) is contained in the rectangle
[0, 2−nλ]× [0, (Kλ +Mλ)λ

nλ ], and since ϕi1(Tλ) ∩ (Vt + x) �= ∅, we have y � (Kλ +
Mλ)λ

nλ . Write x1/2 = ( 1
2 , 1

2 ) and let i = 12. Since Tλ(
1
2 ) = 1

2 , we have x1/2 ∈ Tλ. In fact,

ϕi|nλ
(1) = ( 1

2 , 1
2

)
.

It is also a simple exercise to show that ϕi|nλ
(0) � 1

2 . Therefore, if 1
2 t + y < 1

2 , then
ϕi|nλ

(X) ∩ (Vt + x) = ∅. On the other hand, if t 1
2 + y � 1

2 , then

t � 1− 2y � 1− 2(Kλ +Mλ)λ
nλ > 0

by the choice of nλ. This means that the line Vt + x has a positive slope. Since
ϕi2(Tλ) ⊂ [1− 2−nλ , 1]× [0, (Kλ +Mλ)λ

nλ ] by symmetry, where i2 = 2|nλ , and since
t (1− 2nλ)+ y > 1

2 � (Kλ +Mλ)λ
nλ , we have ϕi2(Tλ) ∩ (Vt + x) = ∅, which finishes

the proof for k = 1.
Let us then assume that (5.4) holds for k ∈ N. Let x ∈ Tλ and V ∈ RP

1 \ {0}. To finish
the proof of (5.4), we have to show that #	(k+1)nλ

(V + x) � (2nλ − 1)k+1. Notice that
trivially

	(k+1)nλ
= {ij ∈ 	(k+1)nλ

: i ∈ 	knλ and j ∈ 	nλ}. (5.5)

Let i ∈ 	knλ . If i �∈ 	knλ(V + x), then ij �∈ 	(k+1)nλ
(V + x) for all j ∈ 	nλ , so we

may assume that i ∈ 	knλ(V + x). Since ϕi is a bijection, we have for any j ∈ 	nλ ,
that ϕij(Tλ) ∩ (V + x) �= ∅ if and only if ϕj(Tλ ∩ ϕ−1

i (V + x)) �= ∅. Since ϕ−1
i is
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affine, there exist xi ∈ Tλ and Vi ∈ RP
1 \ {V∞} such that ϕ−1

i (V + x) = Vi + xi, and
thus ϕij(Tλ) ∩ (V + x) �= ∅ if and only if j ∈ 	nλ(Vi + xi). Since this is true for all
i ∈ 	knλ , we have, by (5.5) and the fact that the claim holds for 	nλ(Vi + xi) and
	knλ(V + x), that

#	(k+1)nλ
(V + x) =

∑
i∈	knλ

(V+x)

#	nλ(Vi + xi)

� #	knλ(V + x) · (2nλ − 1) � (2nλ − 1)k+1.

This concludes the proof of (5.4).
Let us then show (5.3) by relying on (5.4). It follows from the construction that for any

k ∈ N and i ∈ 	knλ , the image ϕi(Tλ) is contained in a vertical strip of width 2−knλ . For
any V = Vt ∈ RP

1 \ {V∞}, we therefore have

diam(ϕi(Tλ) ∩ (Vt + x)) � 2−knλ

√
t2 + 1. (5.6)

Thus {ϕi(Tλ) ∩ (Vt + x)}i∈	knλ
(Vt+x) is a 2−knλ

√
t2 + 1-cover of Tλ ∩ (Vt + x) which

together with (5.4) shows that

N
2−knλ

√
t2+1

(Tλ ∩ (Vt + x)) � #	knλ(Vt + x) � (2nλ − 1)k .

Taking logarithms, dividing by − log(2−knλ
√

t2 + 1), and letting k→∞ yields

dimH(Tλ ∩ (Vt + x)) � dimM(Tλ ∩ (Vt + x)) � log(2nλ − 1)

log 2nλ

as claimed.

6. Dimension conservation
Let μ be the uniform Bernoulli measure on 	 = {1, 2}N, that is, μ is the unique Borel
probability measure with the property that μ([i]) = 2−|i| for all i ∈ 	∗. Let π : 	→ Tλ

be the canonical projection onto the Takagi function. It is evident that ν = π∗μ is the
length measure on the x-axis lifted to the Takagi function. The following result, which by
(1.3) and Lemma 5.4 is a restatement of Theorem 1.2, is the main result of this section.

THEOREM 6.1. Suppose that Tλ is the Takagi function and ν = π∗μ is the canonical
projection of the uniform Bernoulli measure. If

dimloc((projV⊥)∗ν, projV⊥(x)) � 1

for all x ∈ Tλ and V ∈ XF , then

max
x∈Tλ

V∈RP1

dimH(Tλ ∩ (V + x)) = dimH(Tλ)− 1. (6.1)

Conversely, if (6.1) holds, then

dimloc((projV⊥)∗ν, projV⊥(x)) � 1

for all x ∈ Tλ and V ∈ RP
1 \ {V∞}.
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This section is devoted to the proof of this theorem. We start with an auxiliary lemma
whose proof is standard. Recall that

	n(A) = {i ∈ 	n : ϕi(Tλ) ∩ A �= ∅}
for all A ⊂ R

2 and n ∈ N.

LEMMA 6.2. For every x ∈ Tλ and V ∈ XF , we have

dimM(Tλ ∩ (V + x)) = lim inf
n→∞

log #	n(V + x)

n log 2

and

dimM(Tλ ∩ (V + x)) = lim sup
n→∞

log #	n(V + x)

n log 2
.

Proof. Let x ∈ Tλ and V ∈ XF . By Lemma 5.4, there is t ∈ [−Kλ, Kλ] such that V =
Vt = 〈(1, t)〉. Similarly as in (5.6), we have

diam(ϕi(Tλ) ∩ (V + x)) � 2−n
√

t2 + 1

for all i ∈ 	n(V + x). Therefore, the collection {ϕi(Tλ) ∩ (V + x)}i∈	n(V+x) is a
2−n
√

t2 + 1-cover of Tλ ∩ (V + x), which proves the upper bounds. The lower bounds
follow by observing that if {Ui} is any 2−n-cover of Tλ ∩ (V + x), then every Ui intersects
at most two of the sets in {ϕi(Tλ) ∩ (V + x)}i∈	n(V+x).

The above lemma connects 	n(V + x) to the Minkowski dimensions of the slices. As
we further wish to connect the pointwise dimensions on Tλ to the slices, we are interested
in estimating the number of words i not in 	n(V + x) for which ϕi(Tλ) is still relatively
close to V + x. The r-neighbourhood of a set A ⊂ R

2 is denoted by [A]r = {x ∈ R
2 :

|x − y| � r for some y ∈ A}. For n ∈ N and c > 0, we define the set of bad words at level
n by

Badn,c = 	n([V + x]cλn) \	n(V + x).

We say that a bad word i at level n is generated at level k if k ∈ {1, . . . , n} is the smallest
number such that i|k �∈ 	k(V + x), and we denote the set of these length n words by
Badk

n,c. Since every bad word at level n is generated at exactly one level k � n, we have

#Badn,c =
n∑

k=1

#Badk
n,c.

The following lemma is the key observation in our analysis.

LEMMA 6.3. For every x ∈ Tλ and V ∈ RP
1 \ {V∞} there are constants c, K > 0 such

that

#Badk
n,c � K · #	k(V + x)

for all n, k ∈ N with k � n.
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The proof of the lemma is technical and takes several pages. So as not to disrupt the
flow of the presentation, we postponed it to §6.1. Lemma 6.3 allows us to connect the
pointwise dimensions of the length measure on the x-axis lifted to the Takagi function with
the Minkowski dimensions of the slices. This is the content of the following proposition.
It generalizes a similar result of Manning and Simon [34, Proposition 4] for the Sierpiński
carpet to the self-affine regime.

PROPOSITION 6.4. If Tλ is the Takagi function and ν = π∗μ is the canonical projection
of the uniform Bernoulli measure, then

dimloc((projV⊥)∗ν, projV⊥(x))+ log 1/2
log λ

dimM(Tλ ∩ (V + x)) = log 1/2
log λ

and

dimloc((projV⊥)∗ν, projV⊥(x))+ log 1/2
log λ

dimM(Tλ ∩ (V + x)) = log 1/2
log λ

for all x ∈ Tλ and V ∈ RP
1 \ {V∞}.

Proof. Let x ∈ Tλ and V ∈ RP
1 \ {V∞}, and note that

(projV⊥)∗ν(B(projV⊥(x), r)) = ν([V + x]r )

for all r > 0. Write c = √2(Kλ +Mλ). It is easy to see that for every i ∈ 	n we have

diam(ϕi(Tλ)) � cλn,

so for any i ∈ 	n(V + x), the cylinder ϕi(Tλ) is contained in [V + x]cλn . Since the
ν-measure of ϕi(Tλ) is 2−n, we have

ν([V + x]cλn) �
∑

i∈	n(V+x)

ν(ϕi(Tλ)) � 2−n · #	n(V + x).

Therefore,

log ν([V + x]cλn)

log cλn
� −n log 2

log cλn
+ log #	n(V + x)

log cλn

= n log 1/2
log cλn

− n log 1/2
log cλn

log #	n(V + x)

n log 2
,

and taking the limit superior or the limit inferior, Lemma 6.2 yields the respective upper
bounds.

The lower bound is more subtle and for that we apply Lemma 6.3. Let c, K > 0 be as
in Lemma 6.3. Since the collection {ϕi(X) : i ∈ 	n(V + x) ∪ Badn,c} covers Tλ ∩ [V +
x]cλn , Lemma 6.3 shows that

ν([V + x]cλn) �
∑

i∈	n(V+x)

ν(ϕi(Tλ))+
∑

i∈Badn,c

ν(ϕi(Tλ))

= 2−n · #	n(V + x)+ 2−n · #Badn,c

= 2−n · #	n(V + x)+ 2−n

n∑
k=1

#Badk
n,c
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� 2−n · #	n(V + x)+ 2−nK

n∑
k=1

#	k(V + x)

� 2−n(Kn+ 1) · #	n(V + x).

Taking logarithms, dividing by cλn, and taking the limits then gives the desired lower
bounds.

We are now ready to prove Theorem 6.1.

Proof of Theorem 6.1. Let us first assume that

dimloc((projV⊥)∗ν, projV⊥(x)) � 1

for all x ∈ Tλ and V ∈ XF . Then Proposition 6.4 and (1.3) give us

dimH(Tλ ∩ (V + x)) � dimM(Tλ ∩ (V + x))

= 1− log λ

log 1/2
dimloc((projV⊥)∗ν, projV⊥(x))

� 1+ log λ

log 2
= dimH(Tλ)− 1,

for all x ∈ Tλ and V ∈ XF . Since Tλ is a graph of a function and recalling the proof of
Theorem 4.1, this estimate extends to all V ∈ RP

1. Therefore, by Theorem 5.1,

dimH(Tλ)− 1 � dimA(Tλ)− 1 = max
x∈Tλ

V∈RP1

dimH(Tλ ∩ (V + x)) � dimH(Tλ)− 1

and the claim follows.
Let us then assume that

max
x∈Tλ

V∈RP1

dimH(Tλ ∩ (V + x)) = dimH(Tλ)− 1. (6.2)

If x ∈ Tλ and V ∈ RP
1 \ {V∞} are such that

dimloc((projV⊥)∗ν, projV⊥(x)) < 1,

then, by Proposition 6.4, (1.3), (6.2), and Theorem 5.1, we have

dimM(Tλ ∩ (V + x)) > 1− log λ

log 1/2
= 1+ log λ

log 2
= dimH(Tλ)− 1

= max
x∈Tλ

V∈RP1

dimH(Tλ ∩ (V + x)) = max
x∈Tλ

V∈RP1

dimA(Tλ ∩ (V + x))

which is a contradiction.

6.1. Proof of Lemma 6.3. It remains to prove Lemma 6.3. The proof we give is quite
technical, but the tools are elementary. The following geometric lemma allows us to
simplify the problem. Write RP

1
� = {〈(1, t)〉 ∈ RP

1 : |t | � �} for all � > 0 and let
Kλ > 0 be as in Theorem 5.2.
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LEMMA 6.5. For any � � Kλ there is a constant C = C(�) > 0 such that for every
n ∈ N, i = i1 · · · in ∈ 	n, r > 0, x ∈ R

2, and Vt ∈ RP
1
� there exists y ∈ R

2 such that

ϕ−1
i ([Vt + x]r ) ⊂ [Vti + y]Cλ−nr ,

where ti =∑n
k=1(−1)ik 2−kλ−k + (2λ)−nt . Furthermore, we have Vti ∈ RP

1
�.

Proof. It follows from (5.1) that ϕ−1
i maps Vt + x to a line Vti + y with slope ti =∑n

k=1(−1)ik 2−kλ−k + (2λ)−nt , and since ϕ−1
i expands vertical distances by λ−n, a simple

geometric argument shows that by taking C = √�2 + 1, we have

ϕ−1
i ([Vt + x]r ) = [Vti + y]

(
√

t2+1/

√
t2
i+1)λ−nr

⊂ [Vti + y]Cλ−nr .

If |t | � Kλ, then Vti ∈ XF by Lemma 2.2 and therefore, |ti| � Kλ � � by Lemma 5.4.
Furthermore, if 1/2λ− 1 = Kλ < |t | � �, then

|ti| �
n∑

k=1

(2λ)−k + (2λ)−n|t | = 1− (2λ)−n

2λ− 1
+ (2λ)−n|t |

= (1− (2λ)−n)Kλ + (2λ)−n|t | � |t | � �.

Therefore, Vti ∈ RP
1
�.

Fix x ∈ Tλ and V ∈ RP
1 \ {V∞}. Note that V ∈ RP

1
� for some � � Kλ. Define

Badk
n,c(i) = {ij ∈ 	n : j ∈ 	n−k and ϕij(Tλ) ∩ [V + x]cλn �= ∅} (6.3)

for all i ∈ 	k and k � n. To prove Lemma 6.3 it suffices to show that there are constants
c, K > 0 such that #Badk

n,c(i) � K for all k � n, since in this case we have

#Badk
n,c =

∑
i∈Badk

k,c

#Badk
n,c(i) � K#Badk

k,c � K · #	k−1(V + x).

Moreover, by (6.3) and Lemma 6.5, we have

Badk
n,c(i) ⊂ {ij ∈ 	n : j ∈ 	n−k([Vti + y]Ccλn−k )},

so in particular, #Badk
n,c(i) � #	n−k([Vti + y]Ccλn−k ), where Vti ∈ RP

1
�. Note also that

if i ∈ Badk
k,c, then we have Tλ ∩ (Vti + y) = ∅. Therefore, the following lemma implies

Lemma 6.3.

LEMMA 6.6. For any � � Kλ there are constants C = C(�) > 0 and K = K(�) ∈ N

such that for every V ∈ RP
1
� and x ∈ R

2 satisfying Tλ ∩ (V + x) = ∅, we have

#	n([V + x]Cλn) � K

for all n ∈ N.

The remainder of the paper is dedicated to the proof of Lemma 6.6. We first present six
geometric lemmas which further clarify the situation and then conclude the proof at the
end of the section. Let us recall the following result of Mishura and Schied [37].
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LEMMA 6.7. For 1
2 < λ < 1, the Takagi function Tλ has exactly two maximizers, xmax =

1
3 and ymax = 2

3 , and its maximum value is Mλ = 1/3(1− λ). Furthermore, imax = 12
and jmax = 21 are the only infinite words with π(imax) = (xmax, Mλ) and π(jmax) =
(ymax, Mλ).

Proof. The first part of the claim is proved in [37]. The fact that each maximum in Tλ has
a unique coding follows from the fact that the projection of the IFS {ϕ1, ϕ2} onto the x-axis
is the IFS which generates the dyadic intervals, and 1

3 and 2
3 have unique dyadic codings

imax = 12 and jmax = 21, respectively.

In the following, we rely heavily on the mirror symmetry of Tλ. By Lemma 6.7,
the Takagi function restricted to [0, 1

2 ], ϕ1(Tλ), has a unique maximum at xmax. We
denote the point on the graph of Tλ corresponding to this maximum by xmax, that is,
xmax = π(imax) = (xmax, Mλ). We write i1 = 1 and i2 = 2. Let 	1

n = {i = i1 · · · in ∈
	n : i1 = 1} and

	1
n(A) = {i ∈ 	1

n : ϕi(Tλ) ∩ A �= ∅}
for all A ⊂ R

2 and n ∈ N. For each x ∈ R
2, V ∈ RP

1 \ {V∞}, v ∈ V with |v| = 1, and
δ > 0 we define

C(x, v, δ) = {y ∈ R
2 : (y − x) · v < (1+ δ2)−1/2|y − x|},

H+(x, V ) = {y ∈ R
2 : v⊥ · (y − x) > 0},

H−(x, V ) = {y ∈ R
2 : v⊥ · (y − x) < 0},

where v⊥ is the unique vector with positive second coordinate orthogonal to v. Fur-
ther, we let H−(x, V∞) and H+(x, V∞) denote the left open half-plane and the right
open half-plane centred at x, respectively. Finally, let C−(x, δ) = C(x, (−1, 0), δ) and
C+(x, δ) = C(x, (1, 0), δ).

LEMMA 6.8. If x = (xmax, y), where y > Mλ, then Tλ ∩ C−(x, 1) = ∅.

Proof. Let A = R× (−∞, Mλ] and note that

Tλ ⊂ ϕ1(A) = {(x, y) ∈ R
2 : x ∈ R and y � x + λMλ}.

In particular, the graph of the Takagi function lies below the line satisfying the equation
y = x + λMλ. Note that the point xmax is on this line, so ϕ1(Tλ) lies below the line V1 +
xmax, and the claim follows.

LEMMA 6.9. Let � > 0, x ∈ R
2, Vt ∈ RP

1
� with t > 0, and A ⊂ H+(x, V0) ∩

H−(x, V∞). There exists a constant C = C(�) > 0 such that for any r > 0 satisfying
A ∩ [V0 + x]r = ∅ we have A ∩ [Vt + x]Cr = ∅.

Proof. Let C = (
√

�2 + 1)−1. Since A is contained in the shaded area in Figure 3, it
suffices to show that h � r . Since the triangles are similar, we have h = √t2 + 1Cr �√

�2 + 1Cr � r .
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FIGURE 3. The geometric observation of Lemma 6.9.

FIGURE 4. The geometric observation of Lemma 6.10.

LEMMA 6.10. Let x ∈ R
2, δ > 0, and A ⊂ H−(x, V0) be such that A ∩ C−(x, δ) = ∅ and

A ∩ [V0 + x]r = ∅. Then for any 0 < ε < δ there exists a constant C = C(ε, δ) > 0 such
that for each 0 < t � δ − ε we have A ∩ [Vt + x]Cr = ∅.

Proof. Let C = ε/(δ
√

δ2 + 1). The claim follows from the following geometric observa-
tion. Notice from Figure 4 that, since A is contained in the shaded area, it suffices to show
d � (r/δ). Since the right-angled triangles with side lengths r and r/t , and � and Cr are
similar, we have � = C

√
1+ t−2r , and therefore

d = r

t
− C

√
1+ t−2r =

(
1
t
− ε
√

t2 + 1

tδ
√

δ2 + 1

)
r �

(
δ − ε

tδ

)
r � r

δ

as claimed.

In the remaining lemmas we use the following notation. For n ∈ N we let iL
n =

imax|2n−211, iR
n = imax|2n−221, and iRR

n = imax|2n−222. The geometric interpretation
of this is that ϕiL

n
(Tλ) corresponds to the cylinder adjacent to ϕimax|2n

(Tλ) on the left-hand
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side, ϕiR
n
(Tλ) to the cylinder on the right-hand side, and ϕiRR

n
(Tλ) to the cylinder adjacent

to ϕiR
n
(Tλ) on the right-hand side. In the following, for any x ∈ R

2, we write

|x|y = |projV∞(x)|.
This is a seminorm on R

2 and it becomes a norm if we identify points with equal
y-coordinates. The seminorm | · |y induces a translation-invariant pseudometric in the
usual way. For x ∈ R

2 and E ⊂ R
2 we let disty(x, E) = infz∈E |x − z|y . For every x ∈ R

2

and r > 0, we have

By(x, r) = [V0 + x]r ,

where By(x, r) denotes the open ball with center x and radius r in the pseudometric
induced by | · |y . In the sequel, we will repeatedly use the following simple fact: if
ϕ : R2 → R

2, ϕ(x) = Ax + t , is an affine map, then

|ϕ(x1)− ϕ(x2)|y = |A(x1 − x2)|y . (6.4)

for all x1, x2 ∈ R
2.

LEMMA 6.11. There exists a constant C = C(λ) > 0 such that for any integer n > 1 and
i ∈ {iL

n , iR
n , iRR

n } we have

disty(xmax, ϕi(Tλ)) � Cλ2n.

Moreover, if i = iL
n , then the claim holds also with n = 1.

Proof. Let us denote pn = ϕimax|2n
(0, Mλ) = ϕiL

n
(1, Mλ), let A = [0, 1]× [0, Mλ], and

let T be the open triangle determined by the points (1, Mλ), ( 2
3 , Mλ), and (1, Mλ − 1

3 ).
Note that the affine map ϕiL

n
maps T to a triangle determined by the points ϕiL

n
(1, Mλ) =

pn, ϕiL
n
( 2

3 , Mλ), and ϕiL
n
(1, Mλ − 1

3 ). By Lemma 6.8, we have Tλ ⊂ A \ T , which
gives ϕiL

n
(Tλ) ⊂ ϕiL

n
(A \ T ); see Figure 5 for illustration. Using (5.1), the non-zero,

non-diagonal element of the matrix AiL
n

is

(
(2λ)−1 + (2λ)−2 +

2n∑
k=3

(−1)k(2λ)−k

)
λ2n = (2λ)−2n + λ+ 1

2λ2 + λ
λ2n � λ+ 1

2λ2 + λ
λ2n > 0,

and therefore

disty(pn, ϕiL
n
(Tλ)) � min{|pn − ϕiL

n
( 2

3 , Mλ)|y , |pn − ϕiL
n
(1, Mλ − 1

3 )|y}.
Using equations (6.4) and (5.1), we have

|pn − ϕiL
n

(
1, Mλ − 1

3

)|y = |ϕiL
n
(1, Mλ)− ϕiL

n

(
1, Mλ − 1

3

)|y
= |AiL

n

(
0, 1

3

)|y = λ2n

3
and, similarly,

|pn − ϕiL
n
( 2

3 , Mλ)|y = |ϕiL
n
(1, Mλ)− ϕiL

n

( 2
3 , Mλ

)|y = |AiL
n

( 1
3 , 0

)|y � λ+ 1
6λ2 + 3λ

λ2n.
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FIGURE 5. Illustration of the proof of Lemma 6.11.

Therefore, we have

disty(pn, ϕiL
n
(Tλ)) � min

{
1
3

,
λ+ 1

6λ2 + 3λ

}
λ2n. (6.5)

On the other hand, it follows by a simple calculation that ϕ12(xmax) = xmax, and therefore,
by induction, we have ϕimax|2n

(xmax) = xmax for all n ∈ N. By (6.4) and (5.1), we have

|pn − xmax|y = |ϕimax|2n
(0, Mλ)− ϕimax|2n

( 1
3 , Mλ

)|y = |Aimax

( 1
3 , 0

)|y
=
∣∣∣∣

2n∑
k=1

(−1)k(2λ)−k

∣∣∣∣λ2n

3
= 1− (2λ)−2n

3(2λ+ 1)
λ2n � λ2n

3(2λ+ 1)
.

By combining this with (6.5) and applying the reverse triangle inequality, we get

disty(xmax, ϕiL
n
(Tλ)) � disty(pn, ϕiL

n
(Tλ))− |pn − xmax|y

�
(

min
{

1
3

,
λ+ 1

6λ2 + 3λ

}
− 1

3(2λ+ 1)

)
λ2n

= min
{

2λ

6λ+ 3
,

1
6λ2 + 3λ

}
λ2n,

for any n ∈ N, where min{2λ/(6λ+ 3), 1/(6λ2 + 3λ)} > 0 for all 1
2 < λ < 1.

It follows from the construction, that disty(xmax, ϕiR
n
(Tλ)) � disty(xmax, ϕiRR

n
(Tλ))

(see Figure 5), so to finish the proof, it is enough to prove the claim for iR
n . Observe

that

disty(xmax, ϕiR
n
(Tλ)) = min{|xmax − ϕiR

n
(xmax)|y , |xmax, ϕiR

n
(ymax)|y},

where

|xmax − ϕiR
n
(xmax)|y = |ϕimax|2n−2(xmax)− ϕiR

n
(xmax)|y

= |Aimax|2n−2(xmax − ϕ21(xmax))|y
=
∣∣∣∣Aimax|2n−2

(
1
4

, (1− λ2)Mλ + 1
12
− λ

6

)∣∣∣∣
y
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=
∣∣∣∣14

2n−2∑
k=1

(−1)k(2λ)−k + (1− λ2)Mλ + 1
12
− λ

6

∣∣∣∣λ2n−2

�
(
− 1

8λ
+ 1+ λ

3
+ 1

12
− λ

6

)
λ2n−2

and, similarly,

|xmax − ϕiR
n
(ymax)|y =

∣∣∣∣Aimax|2n−2

(
1
6

, (1− λ2)Mλ + 1
6
− λ

3

)∣∣∣∣
y

=
∣∣∣∣16

2n−2∑
k=1

(−1)k(2λ)−k + (1− λ2)Mλ + 1
6
− λ

3

∣∣∣∣λ2n−2

�
(
− 1

12λ
+ 1+ λ

3
+ 1

6
− λ

3

)
λ2n−2.

Simple calculations show that in both of the above inequalities, the right-hand sides for
n = 1 are uniformly positive for 1

2 < λ < 1. Hence, the claim follows.

LEMMA 6.12. Let x ∈ R
2 be such that Tλ ∩ (V0 + x) = ∅. Then there are constants

C, K > 0 depending only on λ such that

#	n([V0 + x]Cλn) � K ,

for all n ∈ N.

Proof. It suffices to find a constant C > 0 such that

#	1
2n([V0 + x]Cλ2n) � K , (6.6)

for all n ∈ N, since then, by symmetry, for any n ∈ N we have #	n([V0 + x]Cλn) � 4K .
Let us first assume that Tλ ⊂ H+(x, V0), that is, the line V0 + x lies below Tλ. By
induction, it is easy to see that for any C � 1/2λ the set 	1

2n([V0 + x]Cλ2n) contains at
most the word i1.

For the other case Tλ ⊂ H−(x, V0) we show by induction that for every n ∈ N there
is a constant C > 0 such that the set 	1

2n([V0 + x]Cλ2n) contains at most the word
imax|2n. By Lemma 6.11, we may choose a constant C > 0 such that for any n > 1 and
i ∈ {iL

n , iR
n , iRR

n }, we have disty(xmax, ϕi(Tλ)) � Cλ2n. Moreover, if n = 1, then we
have disty(xmax, ϕiL

1
(Tλ)) � Cλ2, and therefore [V0 + xmax]Cλ2 = By(xmax, Cλ2) does

not intersect the set ϕiL
1
(Tλ). Since the only words in 	1

2 are iL
1 and imax|2, we see that

	1
2([V0 + xmax]Cλ2) contains at most the word imax|2. Since Tλ lies below V0 + xmax, this

is also true for any x ∈ R
2 satisfying projV∞(x) > projV∞(xmax).

Now assume that the set 	1
2(n−1)([V0 + x]Cλ2(n−1) ) contains at most the word

imax|2(n−1). Since Cλ2n < Cλ2(n−1), the only cylinders that could intersect [V0 + x]Cλ2n

are the ones corresponding to the children of imax|2(n−1), which are precisely the cylinders
determined by imax|2n, iL

n , iR
n , and iRR

n . By relying on Lemma 6.11, we see that
[V0 + x]Cλ2n = By(x, Cλ2n) does not intersect ϕiL

n
(Tλ), ϕiR

n
(Tλ), or ϕiRR

n
(Tλ), which

finishes the proof.
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Proof of Lemma 6.6. Let � � Kλ, Vt ∈ RP
1
�, and x ∈ R

2 be such that Tλ ∩ (V + x) = ∅.
The case t = 0 follows from Lemma 6.12, so by symmetry we may assume that t > 0. We
first consider the case Tλ ⊂ H+(x, V0). Without loss of generality, we may assume that
the first coordinate of x is 1 and note that then Tλ ⊂ H+(x, V0) ∩H−(x, V∞). By Lemma
6.12, there are constants c1, K > 0 such that #	n([V0 + x]c1λn) � K for all n ∈ N and
therefore, by Lemma 6.9, there is a constant c2 > 0 such that #	n([Vt + x]c1c2λn) � K

for all n ∈ N.
For the case Tλ ⊂ H−(x, V0), we let t0 = 0 and for any n ∈ N we define tn =

(2λ)n
∑n

k=1(2λ)−k . Further, let δ0 = 0 and

δn = tn−1 + tn

2
.

Clearly δn is strictly increasing with n. Let k � 1 be the unique integer satisfying δk−1 �
t < δk . Since t � �, there is a natural number N = N(�, λ) such that k � N . By a
geometric argument similar to the proof of Lemma 6.12, it is possible to show that there is
a constant C = C(�) > 0 such that Tλ ∩ [Vt + x]C = ϕi1|k (Tλ) ∩ [Vt + x]C . Therefore,
by Lemma 6.5, for any n > k and r < C we have

	n([V + x]r ) = {i1|kj ∈ 	n : ϕj(Tλ) ∩ (ϕ−1
i1|k ([Vt + x]r )) �= ∅}

⊂ {i1|kj ∈ 	n : j ∈ 	n−k([Vti1|k + y]cλ−kr )}. (6.7)

By Lemma 6.5 and the choice of k, we have

ti1|k = −
k∑

n=1

(2λ)−n + (2λ)−kt ,

and since δk−1 � t < δk we get

− 1
2 (2λ)−k � ti1|k < 1

2 (2λ)−(k+1),

and so we see that |ti1|k | � 1− ε, where ε = (1− 1/4λ). By symmetry, we may assume
without loss of generality that 0 < ti1|k � 1− ε and that projV0

(y) = 1
3 . Let c, K > 0

be as in Lemma 6.12. Then for any n � N , we have #	n−k([V0 + y]cλn−k ) � K and, by
applying Lemmas 6.8 and 6.10, we see that there exists a constant c > 0 such that

#	n−k([Vti1|k + y]cλn−k ) � K .

In particular, using (6.7), we have

#	n([V + x]cλn) � #	n−k([Vti1|k + y]cλn−k ) � K ,

for all n large enough such that cλn−N < C, and the claim follows.
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