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GORENSTEIN WITT RINGS II

ROBERT W. FITZGERALD

ABSTRACT. The abstract Witt rings which are Gorenstein have been classified when
the dimension is one and the classification problem for those of dimension zero has been
reduced to the case of socle degree three. Here we classify the Gorenstein Witt rings of
fields with dimension zero and socle degree three. They are of elementary type.

The elementary type conjecture, stated by Marshall [11] in 1980, is a proposed classi-
fication of noetherian Witt rings R. There is still little evidence for its validity; the basic
known cases are when R is reduced or has at most 32 generators. The case of Gorenstein
Witt rings was first studied in [5], primarily because it seemed tractable. They also have
particularly simple Ext-algebras and often arise in that context (cf. [6], [7]).

Let R denote a noetherian, abstract (in the sense of Marshall [11]) Witt ring. The only
important examples are Witt rings of fields F with FžÛFž2 finite. The elementary type
conjecture for the Gorenstein case is:
(C)

If R is a Gorenstein Witt ring then R is a group ring extension of a Witt ring of local
type (i.e. a Witt ring of a local field).

(C) was shown in [5] to hold in the following cases:
(1) dim R Â≥ 0.
(2) dim R ≥ 0 and the socle degree, õ(R), is at most two.
(3) If (C) holds for all R with dim R ≥ 0 and õ(R) ≥ 3, then (C) holds for all R.

In this paper we show that (C) holds when dim R ≥ 0, õ(R) ≥ 3 and R is the Witt ring
of a field.

The proof of our result uses quadratic field extensions, a technique not available in the
abstract setting. More importantly, the reduction step (3) used Pfister quotients which are
not known to exist in the category of Witt rings of fields. Thus our result does not imply
the classification of all Gorenstein Witt rings of fields. Still it gives the most important
example of the only open case. Further, we are able to classify certain 2-Hilbert fields,
introduced by Szymiczek [13].

From now on R is a Gorenstein Witt ring with dim R ≥ 0 and õ(R) ≥ 3. Let G be the
associated group of one dimensional forms and q the associated quaternionic mapping.
R Gorenstein and zero-dimensional means, by Bass’ criterion, that dim(ann IR) ≥ 1. R
having socle degree three means that ann IR ≥ f0,õg, for some anisotropic 3-fold Pfister
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500 ROBERT W. FITZGERALD

form õ. Some simple consequences are that I4
R ≥ 0, I3

R ≥ f0,õg and every anisotropic
2-fold Pfister form represents half of G. Two less obvious consequences are:

(0.0.1) ann(ann I) ≥ I, for any ideal I ² R.

(0.0.2) jDh1,�xij jDh1,�yij jDh1,�xyij ≥ gjDh1,�xi\Dh1,�yij2, for any x, y 2 G.

(0.0.1) is [5, 2.8] and (0.0.2) is [5, 2.17]. We will also often use the Block Design Count-
ing formula:

(0.0.3) X
x2A

jDh1,�xi \ Bj ≥ X
y2B

jDh1,�yi \ Aj,

for sets A, B ² G. Both sides of (0.0.3) count the number of pairs (x, y) with x 2 A,
y 2 B and x 2 Dh1,�yi. A different version of this first appeared in [8] while the above
version is from [10].

F will denote a field of characteristic not two. We are only concerned with the case
that char WF Â≥ 0 so we always assume that F is non-formally real. Let g denote jGj. En

denotes the elementary abelian group of exponent 2 and order 2n. For a multiplicative
group H we use Hž to denote H n f1g. The index of an element x 2 G, i(x), is the index
of Dh1,�xi in G. We will work in as great a generality as is convenient. In particular,
we will work with abstract Witt rings in the first two sections and switch to the field case
in the last two sections. We close this introduction with a statement of the usual way to
verify conjecture (C) for our Gorenstein Witt rings of socle degree three.

PROPOSITION 0.1. The following are equivalent:

(1) G has a rigid element.

(2) R ≥ L[E1] for some Witt ring L of local type.

(3) R is of elementary type.

PROOF. (1)!(2): Let t 2 G be a rigid element. Then, since char R Â≥ 0, t is birigid
by [1, Corollary to Theorem 1] (the proof in [1] is valid for abstract Witt rings, see [12,
4.15]). Thus R ≥ S[E1], for some Witt ring S, by [11, 5.19]. S is isomorphic to the Pfister
quotient RÛ annh1,�ti. So S is Gorenstein of socle degree two by [5, 2.6], and hence of
local type by [5, 2.5].

(2)!(3) is clear. (3)!(1): R is not of local type since I3
R Â≥ 0. If R is a product then

G ³ H ð K, for some non-trivial subgroups H and K of G. For each h 2 H, k 2 K we
have:

Dh1,�hki ≥ Dh1,�hi \Dh1,�ki,

by [11, pp. 100-101]. In particular, if h Â≥ 1, k Â≥ 1 then Dh1,�hki ² Dh1,�hi, so
that, by definition, h 2 rad(hk). But rad(hk) ≥ f1, hkg by [5, 2.9] which forces h ≥ 1
or h ≥ hk. Either case contradicts the supposition that h Â≥ 1, k Â≥ 1. Hence R is not a
product. R being of elementary type then implies that R is a group ring extension. Thus
G has a rigid element by [11, pp. 115-116].
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1. Elements of Index 4. The case where G has an element of index 4 will be the
first step in the induction argument proving our result. However, it requires a different
treatment than the other cases. We begin that study here for abstract Witt rings. Set:

Bk ≥ fx 2 G j i(x) ≥ 2kg
B+

2 ≥ B2 [ f1g.

LEMMA 1.1. (1) B+
2 is a subgroup of G.

(2) B2Bk ² Bk. In particular, Bk is a union of cosets of B+
2 .

(3) If a 2 B2 and x Â≥ 1, a then jDh1,�ai \Dh1,�xij ≥ 1
2 jDh1,�xij.

PROOF. We start with (3). Dh1,�xi is not a subset of Dh1,�ai [5, 2.9] and
i(a) ≥ 4 implies that jDh1,�ai \ Dh1,�xij ≥ 1

2 jDh1,�xij or 1
4 jDh1,�xij. Suppose

that jDh1,�ai \Dh1,�xij ≥ 1
4 jDh1,�xij. Then by (0.0.2):

g
4
Ð jDh1,�xij Ð jDh1,�axij ≥ g Ð 1

16
jDh1,�xij2

jDh1,�axij ≥ 1
4
jDh1,�xij

≥ jDh1,�ai \Dh1,�xij.

But then Dh1,�axi ≥ Dh1,�ai \ Dh1,�xi ² Dh1,�ai, which is impossible by [5,
2.9]. This proves (3).

Now suppose that x 2 Bk. Again using (0.0.2):

g
4
Ð jDh1,�xij Ð jDh1,�axij ≥ g

�1
2
jDh1,�xij

�2

jDh1,�axij ≥ jDh1,�xij.

So ax 2 Bk giving (2). When k ≥ 2 this is (1).
Fix a 2 B2 and b1, b2, b3 ≥ b1b2 such that G ≥ f1, b1, b2, b3gDh1,�ai. Set öi ≥

q(a, bi) for i ≥ 1, 2, 3. Then Q(a) ≥ f1, ö1, ö2, ö3g. Further, we will always assume that:

jDh1,�b1ij ½ jDh1,�b2ij ½ jDh1,�b3ij.

LEMMA 1.2. Let ã,å 2 Dh1,�ai and let i Â≥ j for 1 � i, j � 3. Then Dh1,�biãi \
Dh1,�bjåi ≥ f1g.

PROOF. If x 2 D(ö0i) \ D(ö0j) then öi, öj 2 Q(x) \ Q(a). Hence Q(a) ² Q(x) and
x ≥ a. That is,

D(ö0i) \D(ö0j) ≥ f�ag.

Let y 2 Dh1,�biãi \Dh1,�bjåi. Then öi ≥ q(a, bi) ≥ q(ay, biã) and öj ≥ q(a, bjå) ≥
q(ay, bjå). Thus �ay 2 D(ö0i) \D(ö0j) ≥ f�ag and so y ≥ 1.

https://doi.org/10.4153/CJM-1997-023-1 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1997-023-1


502 ROBERT W. FITZGERALD

LEMMA 1.3. If R is not of elementary type then B2 ² Dh1,�ai for all a 2 B2.

PROOF. Let x 2 B2 n Dh1,�ai. We may assume that x 2 b1Dh1,�ai. By (1.2)
Dh1,�xi \Dh1,�b2i ≥ f1g and so by (0.0.2):

jDh1,�xij jDh1,�b2ij jDh1,�xb2ij ≥ g.

Since x 2 B2, jDh1,�b2ij jDh1,�xb2ij ≥ 4. So b2 and xb2 are rigid and R is of elemen-
tary type by (0.1).

THEOREM 1.4. Let R be a Gorenstein Witt ring of dimension zero and socle degree
three. Suppose a 2 G has index 4. If R is not of elementary type then there exists an
m ½ 3, such that:

(1) B2, . . . , Bm�1 ² Dh1,�ai,
Bm Â² Dh1,�ai,

(2)
b1Dh1,�ai ² Bm

b2Dh1,�ai ² Br

b3Dh1,�ai ² Bs,

for some s ½ r ½ m.

PROOF. Let b ≥ b1, b2 or b3. We will show that for all ã 2 Dh1,�ai we have
jDh1,�bij ≥ jDh1,�bãij. This proves the result since this omits only the statement
that m ½ 3, which follows from (1.3). We may assume, without loss of generality, that
b ≥ b1. We have by (1.2) and (0.0.1):

jDh1,�b1ãij jDh1,�b2åij jDh1,�b3ãåij ≥ jGj
for all ã,å 2 Dh1,�ai. Replacing in turn ã and å by 1; å alone by 1; å by ã; and ã by
1, å by ã gives:

jDh1,�b1ij jDh1,�b2ij jDh1,�b3ij ≥ jGj
jDh1,�b1ãij jDh1,�b2ij jDh1,�b3ãij ≥ jGj
jDh1,�b1ãij jDh1,�b2ãij jDh1,�b3ij ≥ jGj
jDh1,�b1ij jDh1,�b2ãij jDh1,�b3ãij ≥ jGj.

Thus:
(i) jDh1,�b1ij jDh1,�b3ij ≥ jDh1,�b1ãij jDh1,�b3ãij

(ii) jDh1,�b1ij jDh1,�b2ij ≥ jDh1,�b1ãij jDh1,�b2ãij
(iii) jDh1,�b2ij jDh1,�b3ij ≥ jDh1,�b2ãij jDh1,�b3ãij.

Suppose jDh1,�b1ij Ú jDh1,�b1ãij. Then (i) gives jDh1,�b2ij Ù jDh1,�b2ãij and
(ii) gives jDh1,�b3ij Ù jDh1,�b3ãij. But this contradicts (iii). Thus we have that
jDh1,�b1ij ≥ jDh1,�b1ãij.
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2. Improvements when �1 is a sum of two squares. The goal of this section is to
refine (1.4). The additional assumption that �1 is a sum of two squares will turn out not
to be restrictive in the field case. However, we continue to work here with abstract Witt
rings.

LEMMA 2.1. g � jDh1,�xij (mod 3) iff x 2 D(4).

PROOF. (RÛ annh1,�xi, GÛDh1,�xi) is Gorenstein of socle degree two [5, 2.6],
hence of local type [5, 2.5]. Then g � jDh1,�xij (mod 3) iff jGÛDh1,�xij ≥ 22k for
some k iff�1 is a sum of two squares in RÛ annh1,�xi iff

D
h1, 1,�xiE ≥ 0 iff x 2 D(4).

From now on suppose that �1 2 D(2). We thus have that g � jDh1,�xij (mod 3)
for all x in G. Set

Ak ≥ fx 2 Gž j i(x) ≥ 22kg
A+

1 ≥ A1 [ f1g.

Thus, in terms of the notation in the last section, Ak ≥ B2k.

PROPOSITION 2.2. Suppose G has an element a of index 4. Then g � 2 (mod 3).

PROOF. Let a 2 A1 and g ≥ 2k. We count using (0.0.3), with A ≥ G and B ≥
Dh1,�ai. For each x 2 Ai, x Â≥ 1 we have by (1.1) that jDh1,�ai \ Dh1,�xij ≥
1
2 jDh1,�xij ≥ 2k�2i�1. Thus:

(LHS)
X
x2G

jDh1,�ai \Dh1,�xij ≥ 2 Ð 2k�2 + (jA+
1 j � 2)2k�3 +

nX
i≥2

jAij2k�2i�1

where n Ú m�2
2 . Using G ≥ A+

1 [
S

Ai:

(LHS) ≥ 2k�2 + 22k�2n�1 + (2k�3 � 2k�2n�1)jA+
1 j

+
n�1X
i≥2

(2k�2i�1 � 2k�2n�1)jAij.
And thus we have:

(LHS) � 2 + 2k�2 (mod 3).

Next we have:
(RHS)

X
y2Dh1,�ai

jDh1,�yij ≥ 2k + (jA+
1 \Dh1,�aij � 1)2k�2

+
nX

i≥2
jAi \Dh1,�aij2k�2i.

Using Dh1,�ai ≥ (A+
1 \Dh1,�ai)[S(Ai \Dh1,�ai):

(RHS) ≥ 2k � 2k�2 + 22k�2n + (2k�2 � 2k�2n)jA+
1 \Dh1,�aij

+
n�1X
i≥2

(2k�2i � 2k�2n)jAi \Dh1,�aij.
And so we have:

(RHS) � 1 (mod 3).

Since LHS = RHS, we have 2k�2 + 2 � 1 (mod 3), 2k � �4 (mod 3) and so g ≥
2k � 2 (mod 3).
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COROLLARY 2.3. If G has an element of index 4 then jDh1,�xij Â≥ 4 for all x 2 G.

PROOF. We have that G ≥ D(4) so that for any x 2 G (2.1) and (2.2) combine to
give:

jDh1,�xij � g � 2 (mod 3).

Thus jDh1,�xij Â≥ 4.
We recall the setup and result of (1.4). We continue to assume that �1 2 D(2),

and that G has an element a of index 4. Fix b1, b2, b3 ≥ b1b2 such that G ≥
f1, b1, b2, b3gDh1,�ai. Set öi ≥ q(a, bi) for i ≥ 1, 2, 3. Then Q(a) ≥ f1, ö1, ö2, ö3g.
Now using (1.3) set g ≥ 22k+1. Further, we assume that:

jDh1,�b1ij ½ jDh1,�b2ij ½ jDh1,�b3ij.

(1.4) said that there are s ½ r ½ m ½ 2 such that:

A1, . . . , Am�1 ² Dh1,�ai,
Am Â² Dh1,�ai,

b1Dh1,�ai ² Am,

b2Dh1,�ai ² Ar,

b3Dh1,�ai ² As.

(Note that, as written, (1.4) in fact says m ½ 3, but that refers to the index of Bi while
we are now working with Ai ≥ B2i. So in this notation we have only that m ½ 2).

THEOREM 2.4. Suppose R is not of elementary type. Then there exists an odd m ½ 3
such that A1, . . . , Am�1 ² Dh1,�ai and Am Â² Dh1,�ai. Further:

(1) 23m Ú g � 24m�1 (or, equivalently, 1
2 (3m � 1) Ú k � 2m� 1).

(2)

Dh1,�ai ² A+
1 [ A2 [ Ð Ð Ð [ Am

b1Dh1,�ai ² Am

fb2, b3gDh1,�ai ≥ Ar where r ≥ k � m� 1
2

.

(3) If t Û2 [1, m] [ frg then At ≥ ;.

PROOF. Set p ≥ 2k � 2r + 1 and q ≥ 2k � 2s + 1. Then jDh1,�b2ij ≥ gÛ22r ≥ 2p

and jDh1,�b3ij ≥ gÛ22s ≥ 2q. Note that p ½ q. Also, from (2.1) and (2.2) we have that
p and q are odd. (1.2) gives:

jDh1,�b1ij jDh1,�b2ij jDh1,�b3ij ≥ g

2p+q ≥ 22m

p + q ≥ 2m.
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Since p ½ q, this implies m ½ q. Further, for 1 Â≥ å 2 Dh1,�ai then (0.0.2) gives:

jDh1,�åij jDh1,�b3ij jDh1,�b3åij ≥ gjDh1,�åi \Dh1,�b3ij2 ½ g

jDh1,�åij ½ 22k+1�2q

i(å) � 2q.

So Dh1,�ai ² A+
1[A2[Ð Ð Ð[Aq. If x 2 At where t Û2 [1, q][fr, s, mg then x Û2 Dh1,�ai,

x Û2 b1Dh1,�ai ² Am, x Û2 b2Dh1,�ai ² Ar and x Û2 b3Dh1,�ai ² As. Thus At ≥ ;.

STEP 1. m ≥ q and r ≥ s.
We have s ½ r ½ m ½ q and 2m ≥ p + q. Thus m ≥ q iff q ≥ p iff r ≥ s. Suppose

that m Ù q. Then:
s Ù r ½ m Ù q.

We claim that:
(i) Dh1,�ai ≥ A+

1 [ Ð Ð Ð [ Aq

(ii) fb1, b2gDh1,�ai ≥ Am [ Ar

(iii) b3Dh1,�ai ≥ As.
Namely,

A+
1 [ Ð Ð Ð [ Am�1 ² Dh1,�ai ² A+

1 [ Ð Ð Ð [ Aq

and m Ù q implies:
A+

1 [ Ð Ð Ð [ Aq ² A+
1 [ Ð Ð Ð [ Am�1.

Thus (i) holds. If x 2 As then x Û2 Dh1,�ai by (i), and x Û2 fb1, b2gDh1,�ai by (1.4).
So x 2 b3Dh1,�ai. This proves (iii). And (ii) follows from (i) and (iii).

We use block design counting (0.0.3) with A ≥ Dh1,�ai and B ≥ G nDh1,�ai. We
break the sum on the left into sums over biDh1,�ai, for i ≥ 1, 2, 3, each of size gÛ4 ≥
22k�1. Recall from (1.1) that for z Â≥ 1, a we have jDh1,�ai \Dh1,�zij ≥ 1

2 jDh1,�zij.
We thus get on the left:

X
zÛ2Dh1,�ai

jDh1,�zi \Dh1,�aij ≥ 22k�1(22k�2m + 2p�1 + 2q�1).

The right hand side sums over Dh1,�ai. Working with sums over 1, a, A1 n fag, A2, . . . ,
Aq and again using (1.1)(3) gives:

X
w2Dh1,�ai

jDh1,�wi nDh1,�aij ≥ 3 Ð 22k�1 + (jA1j � 1)22k�2 +
qX

i≥2
jAij22k�2i

≥ 5 Ð 22k�2 +
qX

i≥1
jAij22k�2i

≥ 5 Ð 22k�2 + 24k�2q�1 � 22k�2q

+
q�1X
i≥1

jAij(22k�2i � 22k�2q),
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where the last equation comes from [Ai ≥ Dh1,�ai n f1g, and so
P jAij ≥ 22k�1 � 1.

Equating the two sides of (0.0.3) and dividing by 22k�2q gives:

(2. 4. 1)

22q�1(22k�2m + 2p�1 + 2q�1)

≥ 5 Ð 22q�2 + 22k�1 � 1 +
q�1X
i≥1

jAij(22q�2i � 1).

We have 22q�1(22k�2m + 2p�1 + 2q�1) Ù 22k�1. Divide by 22q�1 to get:

22k�2m + 2p�1 + 2q�1 � 1 Ù 22k�2q.

Since p Ù q:
2p Ù 2p�1 + 2q�1

Ù 22k�2q � 22k�2m

Ù 22k�2q�1.

Thus p Ù 2k�2q�1 and p�1
2 Ù k�q�1. Thus r ≥ k� (p�1

2 ) Ú k� (k�q�1) ≥ q+1.
But r Ù q, a contradiction.

Hence m ≥ q and r ≥ s.
We summarize. We have m is odd since m ≥ q. By (1.3) m Â≥ 1 so that m ½ 3.

Combining (1.4) and Step 1 gives:

Dh1,�ai ² A+
1 [ Ð Ð Ð [ Am

b1Dh1,�ai ² Am

fb2, b3gDh1,�ai ² Ar,

where r ≥ k � ( m�1
2 ) ≥ s. Also, (3) was verified in the last sentence before Step 1. To

prove (2) we need only show fb2, b3gDh1,�ai ≥ Ar. Nearly all of (1) remains to be
shown. At this point, we can only show that 23m � g. Namely, p ≥ 2k + 1 � 2r, by
definition, and r ½ m by (1.4). Thus p � 2k + 1 � 2m. Step 1 gives that p ≥ m ≥ q, so
2k + 1 ½ 3m (and g ≥ 22k+1 by definition of k).

STEP 2. 23m Ú g and fb2, b3gDh1,�ai ≥ Ar.
First note that if g Ù 23m then 2k + 1 Ù 3m and r ≥ k � (m�1

2 ) Ù 3m�1
2 � m�1

2 ≥ m.
If x 2 Ar then x Û2 f1, b1gDh1,�ai ² A+

1 [ Ð Ð Ð [ Am. So x 2 fb2, b3gDh1,�ai. Thus to
complete Step 3 we need only show g Â≥ 23m.

Suppose g ≥ 23m. Then r ≥ m. Also Am \ Dh1,�ai ≥ ;. Otherwise, if x 2 Am \
Dh1,�ai and b Û2 Dh1,�ai then

jDh1,�xij jDh1,�bij jDh1,�bxij ≥ 23mjDh1,�xi \Dh1,�bij2

hence jDh1,�xi \Dh1,�bij ≥ 1. This shows that if b Û2 Dh1,�ai then �b Û2 Dh1,�xi
(else �b 2 Dh1,�xi \ Dh1,�bi). Thus Dh1,�xi \ �fb1, b2, b3gDh1,�ai ≥ ;. Now
a 2 A1 ² Dh1,�ai, so �1 2 Dh1,�ai. Thus Dh1,�xi \ fb1, b2, b3gDh1,�ai is empty
and Dh1,�xi ² Dh1,�ai, a contradiction.
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Thus Dh1,�ai ≥ A+
1 [ Ð Ð Ð [ Am�1 and G n Dh1,�ai ≥ Am. Apply (2.4.1) with

m ≥ p ≥ q and 2k + 1 ≥ 3m:

(2.4.2)

22m�1(2m�1 + 2m�1 + 2m�1) ≥ 5 Ð 22m�2 + 23m�2 � 1 +
m�1X
i≥1

jAij(22m�2i � 1)

23m�1 � 5 Ð 22m�2 + 1 ≥
m�1X
i≥1

jAij(22m�2i � 1).

Now jA1j + Ð Ð Ð + jAm�1j ≥ jDh1,�aij � 1 ≥ 23m�2 � 1. Solve for jAm�1j and plug into
(2.4.2). Since the coefficient of jAm�1j is 3 we have:

23m�1 � 5 Ð 22m�2 + 1 ≥ 3 Ð 23m�2 � 3 +
m�2X
i≥1

jAij(22m�2i � 4)

4 � 23m�2 � 5 Ð 22m�2 ≥
m�2X
i≥1

jAij(22m�2i � 4).

But the sum on the right is non-negative while the left is negative since m ½ 3. This
contradiction proves Step 2. Thus the proof of (2) is complete. To finish the proof of (1),
and hence of the Theorem, we need:

STEP 3. g � 24m�1.
Fix c 2 fb2, b3gDh1,�ai. Then i(c) ≥ r ≥ k � ( m�1

2 ) so that jDh1,�cij ≥ 2m. For
any x 2 Dh1,�ai:

jDh1,�xij jDh1,�cij jDh1,�cxij ≥ 22k+1jDh1,�xi \Dh1,�cij2
jDh1,�xij ≥ 22k�2m+1jDh1,�xi \Dh1,�cij2
jDh1,�xi \Dh1,�cij ≥ 2m�i for x 2 Ai.

We will use block design counting (0.0.3) for A ≥ Dh1,�ai and B ≥ Dh1,�ci.
Summing over f1g, A1, . . . , Am�1, and Am \Dh1,�ai gives:

(LHS)
X

x2Dh1,�ai
jDh1,�xi \Dh1,�cij ≥ 2m +

m�1X
i≥1

jAij2m�i + jAm \Dh1,�aij.

Since
Pm�1

i≥1 jAij + jAm \Dh1,�aij ≥ jDh1,�aij � 1 ≥ 22k�1 � 1 we have:

LHS ≥ 22k�1 + 2m � 1 +
m�1X
i≥1

(2m�i � 1)jAij.

Now if y 2 Dh1,�ci and y Â≥ 1, then jDh1,�yi \ Dh1,�aij ≥ 1
2 jDh1,�yij by

(1.1)(3). Thus:

(RHS)
X

y2Dh1,�ci
jDh1,�yi \ Dh1,�aij ≥ 22k�1 +

m�1X
i≥1

jAi \Dh1,�cij22k�2i

+ jAm \ Dh1,�ai \Dh1,�cij22k�2m

+ jb1Dh1,�ai \Dh1,�cij22k�2m

+ jfb2, b3gDh1,�ai \ Dh1,�cij2m�1.
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Now b1Dh1,�ai \ Dh1,�ci ≥ ; by (1.2) and jfb2, b3gDh1,�ai \ Dh1,�cij ≥
1
2 jDh1,�cij ≥ 2m�1. So:

RHS ≥ 22k�1 + 22m�2 +
m�1X
i≥1

jAi \Dh1,�cij22k�2i

+ jAm \Dh1,�ai \ Dh1,�cij22k�2m.

Since
Pm�1

i≥1 jAi\Dh1,�cij+ jAm\Dh1,�ai\Dh1,�cij ≥ jDh1,�ai\Dh1,�cij�1 ≥
2m�1 � 1,

RHS ≥ 22k�1 + 22m�2 + 22k�m�1 � 22k�2m + 22k�2m
m�1X
i≥1

(22m�2i � 1)jA+
i \ Dh1,�cij.

Equating LHS=RHS and cancelling 22k�1 gives:

(2. 4. 3)

2m � 1 +
m�1X
i≥1

(2m�i � 1)jAij ≥ 22k�m�1 + 22m�2 � 22k�2m

+ 22k�2m
m�1X
i≥1

(22m�2i � 1)jAi \Dh1,�cij.

Dividing (2.4.2) by 3 gives:

jAm�1j ≥ 1
3

(23m�1 � 5 Ð 22m�2 + 1)�
m�2X
i≥1

1
3

(22m�2i � 1)jAij.

Plugging into (2.4.3) gives:

1
3

(23m�1 � 5 Ð 22m�2 + 1)+2m � 1 + 22k�2m

≥ 22m�2 + 22k�m�1

+
m�2X
i≥1

�1
3

(22m�2i � 1)� (2m�i � 1)
�
jAij

+ 22k�2m
m�1X
i≥1

(22m�2i � 1)jAi \Dh1,�cij.

We thus have:
1
3

(23m�1 � 5 Ð 22m�2) + 2m + 22k�2m Ù 22m�2 + 22k�m�1

1
3

(23m�1 � 22m) � 1
3

22m�2 + m�1 � 22m�2 + 2m�1 Ù 22k�m�1 � 22k�2m

1
3

22m(2m�1 � 1)� 2m�1(2m�1 � 1) + 2m�1 � 1
3

22m�2 Ù 22k�2m(2m�1 � 1).

Now 2m�1 � 1
3 22m�2 Ú 0, since m ½ 3 implies that 22m�2 ≥ (2m�1)2 Ù 3 Ð 2m�1. Thus:

(2m�1 � 1)
�1

3
22m � 2m�1

�
Ù (2m�1 � 1)22k�2m

1
3

22m � 2m�1 Ù 22k�2m

22m�2 ½ 22k�2m,
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and so k � 2m� 1 and g � 24m�1.

REMARK. By a detailed analysis of equations (2.4.2), (2.4.3) and similar equations
one can show that if �1 2 D(2), G has an element of index 4 and R is not of elemen-
tary type then m ½ 9 and g ½ 229. Unfortunately, we are unable to eliminate this case
completely. To improve these results further requires the use of field techniques.

3. Quadratic Extensions. The key to better results for Witt rings of fields is the
result [5, 2.6] that if WF is Gorenstein of socle degree k then WF(

p
w) is also Gorenstein

of socle degree k.
We will be working with several fields at once, so for clarity we now write GF for

FžÛFž2, DF(q) for the values represented by a quadratic form q defined over F, and iF(x)
for the index [GF : DFh1,�xi]. We begin with two results valid for any field F (of
characteristic not two).

LEMMA 3.1. Let ö be a Pfister form over F and let K ≥ F(
p

w). Let N denote the
restriction of NKÛF to DK(ö). Then:

1 ! DK(ö) \GF

f1, wgFž2

i�! DK(ö)
N�! DF(ö) \DFh1,�wi ! 1

is exact.

PROOF. The map i induced by inclusion is clearly injective and its image is the kernel
of N. That N maps into DF(ö) \DFh1,�wi follows from Scharlau’s Norm Principle [9,
VII 4.3]. Thus we need only show that N is surjective. Pick an a 2 DF(ö) \DFh1,�wi.
Then there is a z 2 K such that N(z) ≥ a, since the norm maps onto DFh1,�wi by [9, VII
3.4]. Then sŁ(ö
h1,�zi) ≥ ö
 sŁ(h1,�zi) ≥ ö
 sŁ(h�zi), using Frobenius reciprocity
[9, VII 1.3]. So for some b 2 F, we have sŁ(ö 
 h1,�zi) ≥ hbiö 
 h1,�N(z)i ≥
hbiö
 h1,�ai ≥ 0. Thus ö 
 h1,�zi is defined over F. By [3, 2.11], ö
 h1,�zi ≥ ö

h1,�ci
K, for some c 2 F. Then cz 2 DK(ö) and (modulo squares) N(cz) ≥ N(z) ≥ a.

COROLLARY 3.2. Let K ≥ F(
p

w) and let x 2 Fž.
(1) jDKh1,�xij ≥ 1

2 jDFh1,�xij jDFh1,�xwij.
(2) If x has finite index in GF then:

iK(x) ≥ iF(x)
jDFh1,�xwij
jDFh1,�wij .

PROOF. We begin with the

CLAIM. DKh1,�xi \GF ≥ DFh1,�xiDFh1,�xwi.
Namely, z 2 DKh1,�xi \ i(GFÛf1, wg) if and only if

Dh�x,�ziE 
 F(
p

w) ≥ 0 if

and only if h1,�wi divides
Dh�x,�ziE if and only if �w 2 DFh�x,�z, xzi if and only

if �w 2 DFh�x, zãi for some ã 2 DFh1,�xi if and only if zã 2 DFh�x, wi if and only
if zw 2 DFh1,�xiDFh1,�xwi if and only if z 2 DFh1,�xiDFh1,�xwi.
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The Claim combined with (3.1) gives:

jDKh1,�xij ≥ 1
2
jDFh1,�xi \DFh1,�wij jDFh1,�xiDFh1,�xwij

≥ 1
2
jDFh1,�xij jDFh1,�xwij.

Also jGKj ≥ 1
2 jGFj jDFh1,�wij by [9, VII 3.4]. So:

iK(x) ≥
1
2 jGFj jDFh1,�wij

1
2 jDFh1,�xij jDFh1,�xwij

≥ iF(x)
jDFh1,�wij
jDFh1,�xwij .

PROPOSITION 3.3. Suppose WF is Gorenstein of socle degree k + 2 for some k ½ 1.
Suppose further that WF(

p
w) ³ L[Ek], for some Witt ring of local type L. Then WF ³

L0[Ek] for some Witt ring of local type L0.

PROOF. First suppose that k ½ 2. Let t, s, ts 2 GK, where K ≥ F(
p

w), be birigid.
Then

D
ht, si

E
'
D
hx,ãi

E
for some x 2 F, by [2, Lemma 2]. But then x 2 Dht, s, tsi ≥

ft, s, tsg. Thus some x 2 F is birigid in K. That is, jDKh1,�xij ≥ 2. Then (3.2) implies
that jDFh1,�xij jDFh1,�xwij ≥ 4. But then either x or xw is rigid. So, as char WF Â≥ 0,
either x or xw is birigid by [1, Corollary to Theorem 1] (or [12, 4.15]). WF is then a
group ring extension and a simple induction argument shows WF is in fact a group ring
extension of a Witt ring of local type.

Now suppose that k ≥ 1. We may assume jDKh1,�xij Â≥ 2 as in the previous para-
graph. Since WK ≥ L[E1], we must have iK(x) ≥ 4. Thus jDKh1,�xij ≥ jGKjÛ4 ≥
jGFj jDFh1,�wijÛ8 using [9, VII 3.4] again. Hence, multiplying (3.2)(1) by jDFh1,�wij:

1
8
jGFj jDFh1,�wij2 ≥ 1

2
jDFh1,�xij jDFh1,�xwij jDFh1,�wij.

Now apply (0.0.2):

jDFh1,�wij2 ≥ 4jDFh1,�xi \ DFh1,�wij2
jDFh1,�wij ≥ 2jDFh1,�xi \ DFh1,�wij.

We use block design counting (0.0.3) for A ≥ GF, B ≥ DFh1,�wi. Break the sum
over GF into sums over f1, wg and GF n f1, wg. Set d ≥ jDFh1,�wij.

(LHS)
X
x2G

jDFh1,�xi \DFh1,�wij ≥ 2d +
1
2

(g � 2)d ≥ d
�g

2
+ 1
�

,

(RHS)
X

z2DFh1,�wi
jDFh1,�zij ≥ g +

X
z2Dž

Fh1,�wi
jDFh1,�zij.

Thus: X
z2Dž

Fh1,�wi
jDFh1,�zij ≥ g

�d
2
� 1

�
+ d.
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Thus there exists 1 Â≥ z 2 DFh1,�wi such that:

jDFh1,�zij ½ g
�

d
2 � 1

�
+ d

d � 1
.

We claim that jDFh1,�zij ½ g
2 , which is impossible (as then h1,�zi 2 ann IF) and so

finishes the proof. If not then:

g
4

(d � 1) ½ g
�d

2
� 1

�
+ d

3g
4
½ gd

4
+ d

3g ½ gd + 4d Ù gd.

Hence 3 Ù d and d ≥ jDFh1,�wij ≥ 2, which implies that WF is of elementary type by
(0.1).

We will concentrate on the socle degree three case even though the reduction of the
general case to this one is not known to be valid in the category of Witt rings of fields.

THEOREM 3.4. Let R ≥ WF be a Gorenstein Witt ring of a field F. Suppose R has
dimension zero, socle degree three and an element of index 4. Then R is of elementary
type.

PROOF. Suppose R is not of elementary type. Let a 2 F be an element of index 4.
We first show that we may assume�1 is a square in F. If not, set L ≥ F(

p�1). By (1.1)
jDFh1, aij ≥ jDFh1, 1ij, so by (3.2) iL(a) ≥ 4 also. WL is still Gorenstein of socle degree
three by [5, 2.6]. If we show that WL is of elementary type then so is WF by (3.3). Thus
we may replace F by L if necessary and assume that �1 is a square.

We review the notation and results of x2 for a field E satisfying our conditions (WE
is Gorenstein of socle degree three, not of elementary type, with an element of index 4
and having �1 a square). Choose b1, b2, b3 ≥ b1b2 with GE ≥ f1, b1, b2, b3gDEh1, ai,
and jDEh1, b1ij ½ jDEh1, b2ij ½ jDEh1, b3ij. Set Ai(E) ≥ fx 2 GE j iE(x) ≥ 22ig. Write
GE ≥ 22k(E)+1. Then there exists an odd m(E) ½ 3 such that:

(i) A1(E), . . . , am(E)�1(E) ² DEh1, ai; Am(E)(E) Â² DEh1, ai.
(ii) b1DEh1, ai ² Am(E)(E).

(iii) fb2, b3gDEh1, ai ≥ Ar(E)(E), with r(E) ≥ k(E) � m(E)�1
2 .

(iv) 1
2

�
3m(E) + 1

� Ú k(E) � 2m(E)� 1.
Set K ≥ F(

p
b2). Again (1.1) gives jDFh1, b2ij ≥ jDFh1, ab2ij so that (3.2) gives

iK(a) ≥ 4. WK is not of elementary type by (3.3). So (2.4) applies to WK as well as to
WF. Note:

jGKj ≥ 1
2
jGFj jDFh1, b2ij ≥ 24k(F)�2r(F)+1.

Thus k(K) ≥ 2k(F)� r(F).

CLAIM. m(F) Ú m(K). Suppose instead that m(F) � m(K). By (iv) 22(K)+1 �
24m(K)�1. So 1

2

�
k(K) + 1

� � m(K) � m(F). Now k(K) ≥ 2k(F)� r(F) so that:

k(F) � 1
2

r(F) +
1
2
� m(F).
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By definition r(F) ≥ k(F)� 1
2

�
m(F) � 1

�
so

k(F)� 1
2

k(F) +
1
4

m(F) � 1
4

+
1
2
� m(F)

1
2

k(F) +
1
4
� 3

4
m(F)

2k(F) + 1 � 3m(F).

But (iv) gives 3m(F) Ú 2k(F) + 1. This proves the Claim.
Let x 2 b1DFh1, ai. Then b2, b2x 2 fb2, b3gDFh1, ai ≥ Ar(F)(F), and so we have that

jDFh1, b2ij ≥ jDFh1, b2xij. By (3.2) iK(x) ≥ iF(x) and iF(x) ≥ 22m(F) by (ii). Thus x 2
Am(F)(K). By the Claim m(F) Ú m(K), so x 2 DKh1, ai by (i). Thus f1, b1gDFh1, ai ²
DKh1, ai. Since b2 is, by construction, a square in K, b2DFh1, ai ² DKh1, ai also. Thus
GF ² DKh1, ai. But then

D
h�a,�xi

E

F(

p
b2) ≥ 0, for all x 2 GF. Then Q(a) ² Q(b2),

contradicting [5, 2.16].

4. The Field Case. Throughout this section we will assume that R ≥ WF is a
Gorenstein Witt ring of dimension zero and socle degree three. We begin with a gen-
eralization of (1.1).

LEMMA 4.1. Suppose that among all R with�1 a square in F and R not of elementary
type we know A1 ≥ Ð Ð Ð Ap�1 ≥ ; for some p ½ 1. Then for such an R:

(1) ApAm ² Am, for all m ½ p.
(2) If a 2 Ap and x Â≥ 1, a then jQ(a) \Q(x)j ≥ 2p.

PROOF. We use induction on m. The case m ≥ p � 1 is vacuous. Fix a 2 Ap and
x 2 Am, where we assume a Â≥ x if m ≥ p. We note that ax 2 Al for l Ú m. When
m ≥ p this is true by the assumption that A1 ≥ Ð Ð Ð ≥ Ap�1 ≥ ;. When m Ù p this is by
induction: if ax 2 Al with l Ú m then x ≥ a(ax) 2 Al, not Am. So suppose ax 2 Ak with
k ½ m. We get by (0.0.2):

(4.1.1)

g
22p

g
22m

g
22k

≥ gjDh1, ai \ Dh1, xij2
g

2p+m+k
≥ jDh1, ai \Dh1, xij.

Now jDh1, axij Ù jDh1, ai\Dh1, xij, since otherwise Dh1, axi ≥ Dh1, ai\Dh1, xi ²
Dh1, ai, contradicting [5, 2.9]. So gÛ22k Ù gÛ2p+k+m and p+m Ù k ½ m. Write k ≥ m+ i.
Set K ≥ F(

p
ax). Then by (3.2)(2):

iK(a) ≥ iF(a)
jDFh1, axij
jDFh1, xij ≥

iF(a)
2i

.

This implies that a 2 Ap�i(K). Now K has�1 a square and WK is not of elementary type
by (3.3). Thus our hypothesis applies to WK and we have Ap�i(K) ≥ ; for all i Ù 0.
Hence i ≥ 0 and ax 2 Am as desired.
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For statement (2), (4.1.1) gives Dh1, ai \Dh1, xij ≥ gÛ2p+2m. So:

jQ(a) \Q(x)j ≥ jDh1, axij
jDh1, ai \Dh1, xij ≥

gÛ22m

gÛ2p+2m
≥ 2p.

(4.1) is not known to hold in the category of abstract Witt rings. The following result
is valid for abstract Witt rings.

LEMMA 4.2. Let (R, G, B) be an abstract Witt ring that is Gorenstein of socle degree
three. For any a1, . . . , as, b1, . . . , bt in G:

þþþþ
sY

i≥1
Q(ai) \

tY
i≥1

Q(bi)
þþþþ ≥ jGjÛ

þþþþ
� s\

i≥1
Dh1,�aii

�� t\
i≥1

Dh1,�bii
�þþþþ.

PROOF. For any set S in G, let IS be the ideal in R generated by fh1,�ai j a 2 Sg.
To avoid confusion, in this proof we will denote the fundamental ideal of R by IR. Let
JS be the ideal in R generated by all ß 2 I2 such that G(ß) contains S. Here G(ß) ≥
fx 2 G j h1,�xiß ≥ 0g. Further, let C(S) denote the intersection of all Dh1,�ai, for
a 2 S.

We begin with results that appeared at least implicitly in [5].

CLAIM 1.

(i) ann IS ≥ IC(S) + JS.

(ii) If S ² G is a subgroup then jJSj ≥ 2jGjÛjSj.
(iii) If S ² G is a subgroup then ann JS ≥ IS + I2R.

(iv) If S, T ² G are subgroups then JS \ JT ≥ JST .

(v) jIS \ IT \ I2Rj ≥ 2jQa2S Q(a) \ Qb2T Q(b)j.
(i) Let † 2 ann IS and write † ≥ h1,�di + ß, where d ≥ dis† and ß 2 I2R. Then

h1,�di andß are in ann IS. Thus h1,�dih1,�ai ≥ 0 for all a 2 S and so d 2 C(S). Also
S ² G(ß) so ß 2 JS. Thus † 2 IC(S) + JS. The reverse inclusion is easy to check.

(ii) Let A ≥ fH ² G j H a subgroup of index at most 2, S ² Hg. Then jAj ≥
jGjÛjSj. Map:

ã: JSÛI3R ! A by

ß + I3R 7! G(ß).

That G(ß) 2 A for ß 2 JS is part of [5, 2.11]. Also, I3R ≥ f0,õg with õ universal, so
that G(ß) ≥ G(ß + õ) and ã is well-defined. ã is surjective by the second part of [5,
2.11]. If G(ß) ≥ G(†), for some forms ß,† 2 I2R, then ann(ß) ≥ IG(ß) + I2R ≥ ann(†).
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Taking annihilators of both sides and applying (0.0.1) yields (ß) ≥ (†). Thusß ≥ x† ≥
† + hx,�1i†, so that ß + I3R ≥ † + I3R. Hence ã is also injective. We obtain:

jJSÛI3Rj ≥ jGjÛjSj
jJSj ≥ 2jGjÛjSj.

(iii) JS ² I2R and I4R ≥ 0 so I2R ² ann JS. Let h1,�ai 2 ann JS. Then h1,�aiß ≥ 0
for all ß 2 JS, hence a 2 G(ß) for all ß 2 I2R having S ² G(ß). From the proof of (ii)
we have that a 2 H for all subgroups H ² G of index 2 containing S. And S equals the
intersection of all subgroups of index 2 containing it (think of G as a vector space over
Z2). Thus a 2 S and h1,�ai 2 IS. The inclusion IS ² ann JS is clear.

(iv) If ß 2 JS \ JT then S [ T ² G(ß). Since G(ß) is a group, ST ² G(ß). And if
ß 2 JST then S, T ² G(ß) so that ß 2 JS \ JT .

(v) We begin with a small technical point. Since I3R consists of 0 and a 3-fold Pfister
form [5, 2.4], the Arason-Pfister property AP(3) holds trivially. Thus there is an embed-
ding i: B ! I2RÛI3R, that sends q(a, b) to

Dh�a,�biE+ I3R, by [11, 3.16, 3.23]. We may
replace B with the group it generates (inside the universal Steinberg symbol). Note that
B is a multiplicative group while I2ÛI3R is an additive group. We have in particular that:

i
�
Q(a)

� ≥ h1,�aiIRÛI3R.

i
�Y

a2S
Q(a)

�
≥X

a2S
h1,�aiIRÛI3R

≥ IS Ð IRÛI3R

≥ IS \ I2RÛI3R,

where the last equality is by [4, 2.15]. (The proof in [4] uses the Arason-Pfister theorem
which we have shown is valid for our abstract Witt ring. The result can also easily be
proven without the Arason-Pfister theorem for any abstract Witt ring.) We thus get:

i
�Y

a2S
Q(a) \ Y

b2T
Q(b)

�
≥ IS \ IT \ I2RÛI3R

þþþþ
Y
a2S

Q(a) \ Y
b2T

Q(b)
þþþþ ≥ 2jIS \ IT \ I2Rj.

This completes the proof of Claim 1.

CLAIM 2. IS \ I2R ≥ JC(S).
Let gS denote the group generated by S. Then JS ≥ JgS since S ² G(ß) iff gS ² G(ß).

If ß ≥ P†ih1,�aii, where each ai 2 S, then for all c 2 C(S) we have h1,�ciß ≥ 0.
Thus IS\I2 ² JC(S). Also, ann IS ≥ IC(S) +JS ≥ IC(S) +JgS, by (i). So taking annihilators of
both sides and applying (0.0.1) gives IS ≥ ann

�
IC(S) +JgS

� ≥ �
I
C
�

C(S)
�+JC(S)

�\(IgS+I2R),

by (i) and (iii). Clearly JC(S) ² I
C
�

C(S)
� + JC(S) and JC(S) ² IgS + I2R, so we have that

JC(S) ² IS. Hence JC(S) ² IS \ I2R, as desired. This proves Claim 2.
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Let S ≥ fa1, . . . , asg and T ≥ fb1, . . . , btg. Then:
þþþþ

sY
i≥1

Q(ai) \
tY

i≥1
Q(bi)

þþþþ ≥ 1
2
jIS \ IT \ I2j by (v)

≥ j(IS \ I2R) \ (IT \ I2R)j
≥ 1

2
jJC(S) \ JC(T)j by Claim 2

≥ 1
2
jJC(S)C(T)j by (iv)

≥ jGj
jC(S)C(T)j , by (ii).

which completes the proof.
We remark that (4.2) appears to be the key combinatorial result for Gorenstein Witt

rings of socle degree three. When s ≥ t ≥ 1 (4.2) is equivalent to (0.0.2).

THEOREM 4.3. If WF is Gorenstein of dimension zero and socle degree three then
WF is of elementary type.

PROOF. Suppose not. We may assume�1 is a square in F by passing to F(
p�1), if

necessary and applying (3.3) to see that the extended Witt ring is still not of elementary
type. Let p be the minimal index with Ap Â≥ ; among all Gorenstein WF of socle degree
three, �1 a square and not of elementary type. We note that p ½ 2 by (3.4). Among all
Gorenstein WF of socle degree three, �1 a square, not of elementary type and Ap Â≥ ;,
let k be the minimal index such that Ak Â² Dh1, ai, for some a 2 Ap.

Let F be a field that achieves both minima, that is, with an element a 2 Ap and an
element b1 2 Ak nDh1, ai.

STEP 1. Let b1, . . . , bp+1 be independent modulo Dh1, ai. Then
Tp+1

i≥1 Dh1, bii ≥ f1g.
Set öi ≥

D
ha, bii

E
. Then the öi are independent modulo I3F, since if

PDha, biji
E
2 I3F

then
Dha,

Q
biji

E 2 I3F. But then
Q

bij 2 Dh1, ai, contradicting the independence of the
bi modulo Dh1, ai. In particular, the öi generate a subgroup of order 2p+1 in Q(a).

Suppose that z 2 \Dh1, bii. Then z 2 a Ð \D(öi0). Thus föig ² Q(a) \ Q(az) and so
jQ(a) \Q(az)j ½ 2p+1. By (4.1)(2) az ≥ a and z ≥ 1. This proves Step 1.

STEP 2. For all x, y, xy Û2 f1, b1gDh1, ai, we have jDh1, xi \Dh1, yij � 24k.
Set b2 ≥ x and b3 ≥ y. Write G ≥ gp(b1, b2, . . . , b2p)Dh1, ai, where the notation

gp(S) means the group generated by S. We first Claim:

(4. 3. 1) jDh1, b1i \Dh1, b2i \Dh1, b3ij � 22k.

This is clear if p ≥ 2 since then the left-hand side of (4.3.1) is 1, by Step 1. Suppose
p Ù 2. Then:

g
22k

≥ jQ(b1)j
� jQ(b1)Q(b2)Q(b3) \ Q(b1)Q(b4) Ð Ð ÐQ(bp+1)j
≥ g
jDh1, b1i \Dh1, b2i \Dh1, b3ij jDh1, b1i \Dh1, b4i \ Ð Ð Ð j ,
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by (4.2) and Step 1. This proves (4.3.1).
Now using (4.2) again, we have:

1 � jQ(b2)Q(b3) \ Q(b1)j

� gjDh1, b1i \Dh1, b2i \ Dh1, b3ij
jDh1, b2i \Dh1, b3ij jDh1, b1ij
1 � 22k22k

jDh1, b2i \Dh1, b3ij ,

by (4.3.1). This gives Step 2.

STEP 3. If Am Â² f1, b1gDh1, ai then 23m�8k � g � 23m+12k.
Suppose b2 2 Am n f1, b1gDh1, ai. Choose b3, b4, . . . , b2p, (recalling that Dh1, ai has

index 2p in G), such that G ≥ gp(b1, b2, b3, . . . , b2p)Dh1, ai. Recall that p ½ 2. Now by
(0.0.2):

jDh1, b2ij jDh1, b3ij jDh1, b2b3ij ≥ gjDh1, b2i \Dh1, b3ij2.

Hence by Step 2:

(4.3.2) g � jDh1, b2ij jDh1, b3ij jDh1, b2b3ij � g Ð 28k

22m � jDh1, b3ij jDh1, b2b3ij � 22m+8k.

Similarly:

(4.3.3) 22m � jDh1, b4ij jDh1, b2b4ij � 22m+8k

(4.3.4) 22m � jDh1, b3b4ij jDh1, b2b3b4ij � 22m+8k.

Without loss of generality we may suppose jDh1, b3ij � jDh1, b2b3ij. So jDh1, b3ij �
2m+4k, by (4.3.2). Set ã ≥ jDh1, b4ij jDh1, b3b4ij and å ≥ jDh1, b2b4ij jDh1, b2b3b4ij.
Now:

(4. 3. 5) g � minfjDh1, b3ijã, jDh1, b3ijåg � 2m+4k minfã,åg,

where the first inequality is from (0.0.2) and the second is from our bound on jDh1, b3ij.
The product of (4.3.3) and (4.3.4) gives ãå � 24m+16k. Thus the minimum of ã,å is at
most 22m+8k. Then (4.3.5) gives g � 23m+12k.

Next, since jDh1, b2b3ij ½ jDh1, b3ij, (4.3.2) implies jDh1, b2b3ij ½ 2m. We repeat
the previous trick and setç ≥ jDh1, b4ij jDh1, b2b3b4ij and é ≥ jDh1, b2b4ij jDh1, b3b4ij.
Then:

maxfjDh1, b2b3ijç, jDh1, b2b3ijég
≥ maxfgjDh1, b2b3i \Dh1, b4ij2, gjDh1, b2b3i \ Dh1, b2b4ij2g
� g Ð 28k.
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The equality here is (0.0.2) while the inequality is Step 2. So 2m Ð maxfç, ég � g Ð 28k.
The product of (4.3.3) and (4.3.4) gives çé ½ 24m. We obtain maxfç, ég ½ 22m. Thus
g ½ 23m�8k . This gives Step 3.

Write g ≥ 29n+i, for some 0 � i � 8.

STEP 4. If x Û2 f1, b1gDh1, ai then:

23n+i�6k�6 � jDh1, xij � 23n+i+8k.

Say x 2 Am. Then by Step 3:

3m� 8k � 9n + i � 3m + 12k.

The first inequality gives:

m � 3n +
8
3

k +
i
3
� 3n + 3k + 3,

while the second inequality gives:

m ½ 3n � 4k +
i
3
½ 3n� 4k.

Step 4 then follows from jDh1, xij ≥ 29n+i�2m.

STEP 5. g � 2108k+125.
Pick w Û2 D(ö1) where ö1 ≥

D
ha, b1i

E
. Since b1w Û2 D(ö1) also, we may assume that

jDh1, b1wij ½ jDh1, wij. Set K ≥ F(
p

w). We check that K satisfies our hypotheses. WK
is not of elementary type since WF is not, using (3.3). �1 is a square in K since it is in
F. By (4.1):

iK(a) ≥ iF(a)jDFh1, wijÛjDFh1, awij,
and so iK(a) ≥ iF(a) by (4.2)(1). Thus a 2 Ap(K) and Ap(K) Â≥ ;. Further:

iK(b1) ≥ iF(b1)jDFh1, wijÛjDFh1, b1wij � iF(b1) ≥ 2k.

If iK(b1) Ú 2k then by our minimality assumptions, b1 2 DKh1, ai. But then ö1 

F(
p

w) ≥ 0 and w 2 D(ö01), which is impossible as w Û2 D(ö1). Thus iK(b1) ≥ 2k,
that is, b1 2 Ak(K) nDKh1, ai. Thus all of Steps 1–4 apply to K.

Now:

jDFh1, aiDFh1, awij ≥ jDFh1, aij jDFh1, awij
jDFh1, ai \DFh1, wij

≥ jDFh1, aij jQ(a) \Q(w)j
≥ 2pjDFh1, aij.

Thus jDFh1, aiDFh1, awij ≥ gÛ2p. Choose then x 2 GF n f1, b1gDFh1, aiDFh1, awi,
which is possible since p ½ 2. Then x Û2 f1, b1gDKh1, ai, using the Claim of (3.2). So
we can apply Step 4 to K and x.
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First, however, apply Step 4 to F and w, noting that w Û2 f1, b1gDh1, ai ² D(ö1):

jGKj ≥ 1
2
jGFj jDFh1, wij � 1

2
29n+i23n+i+8k

� 212n+2i+8k .

Write 12n + 2i + 8k ≥ 9N + j, for some 0 � j � 8. Now apply Step 4 to K and x:

jDKh1, xij � 23N+j+8k.

Now 3N + j + 8k ≥ 4n + 2
3 i + 8

3 k � j
3 + j + 8k � 4n + 11k + 12, since i, j � 8. Thus

jDKh1, xij � 24n+11k+12.
However, x Û2 f1, b1gDFh1, ai, by constuction. Also xw Û2 f1, b1gDFh1, ai, since

otherwise xw 2 f1, b1gDFh1, aiDFh1, awi and x 2 f1, b1gDFh1, aiDFh1, awi, contrary
to our original choice of x. So using the lower bound of Step 4 applied to F, x, xw gives:

jDKh1, xij ≥ 1
2
jDFh1, xij jDFh1, xwij

½ 1
2

26n+2i�12k�12

≥ 26n+2i�12k�13

½ 26n�12k�13.

Hence:

6n� 12k � 13 � 4n + 11k + 12

2n � 23k + 25

n � 12k + 13.

Thus:
g ≥ 29n+i � 29(12k+13)+8 ≥ 2108k+125.

STEP 6. Completion of the proof.
Out of all G such that (a) R is not of elementary type, (b) �1 ≥ 1, (c) there exists

an element a in Ap, and (d) Ak Â² Dh1, ai, pick the maximal one. This is possible by
Step 5. Again, if we pick w Û2 D(ö1), where b1 2 Ak n Dh1, ai and ö1 ≥

D
ha, b1i

E
, then

WK satisfies (a)–(d) as was shown in the first part of the proof of Step 5. By maximality,
jGKj ≥ jGFj. But then jDFh1, wij ≥ 2, so w is rigid and WF is of elementary type, by
(0.1). This contradiction to property (a) proves the result.

Szymiczek [13] called a field F a n-Hilbert field if jFžÛDõj � 2 for all n-fold Pfister
forms õ, with equality holding for at least one õ. We can classify certain 2-Hilbert fields.

COROLLARY 4.4. Let F be a non-formally real linked 2-Hilbert field with trivial rad-
ical and jFžÛDõj ≥ 2 for all anisotropic 2-fold Pfister forms. Then F is Witt equivalent
(i.e. has a Witt ring isomorphic) to K

�
(t)
�
, where K is a local field.

PROOF. We check that WF is Gorenstein of socle degree three. I3F ≥ f0, úg, for
some anisotropic 3-fold Pfister form ú by [13, 2.3]. And ú is universal by Kneser’s Lemma
[9, XI 4.5]. In particular, I4F ≥ 0 and WF has socle degree three.
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To show WF is Gorenstein we check Bass’ criterion. Let ß 2 ann IF. We can write:

ß ≥ h1,�xi ? õ ? †,

where õ is a 2-fold Pfister form and † 2 I3F, since F is linked. Then h1,�xi and õ
are in ann IF. But h1,�xi 2 ann IF implies that

D
h�x,�yiE ≥ 0 for all y 2 Fž and

so x 2 rad F. By assumption, rad F ≥ Fž2 so that h1,�xi ≥ 0 in WF. Also õ 2 ann IF
implies Fž ≥ Dõ, which, by our assumption, forces õ ≥ 0 in WF. Thusß ≥ † 2 I3F and
so ann IF ≥ I3F. From the first paragraph then dim(ann IF) ≥ 1 and WF is Gorenstein.

Apply (4.3). WF ≥ L[E1], for some Witt ring of local type. L is the Witt ring of some
local field K by [11, p. 97]. Thus WF ³ WK

�
(t)
�
, by [11, p. 114].
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