
Glasgow Mathematical Journal (2024), 1–17
doi:10.1017/S0017089524000211

RESEARCH ARTICLE

The combinatorics of N∞ operads for Cqpn and Dpn

Scott Balchin1 , Ethan MacBrough2,3 and Kyle Ormsby2,3

1Queen’s University Belfast, Belfast, BT7 1NN, UK
2Reed College, Portland, OR, 97202, USA
3University of Washington, Seattle, WA, 98195, USA
Corresponding author: Kyle Ormsby; Email: ormsbyk@reed.edu

Received: 12 October 2022; Revised: 23 May 2024; Accepted: 12 June 2024

Keywords: homotopical combinatorics; equivariant homotopy; N-infinity operads

Abstract
We provide a general recursive method for constructing transfer systems on finite lattices. Using this, we calculate
the number of homotopically distinct N∞ operads for dihedral groups Dpn , p > 2 prime, and cyclic groups Cqpn , p �= q
prime. We then further display some of the beautiful combinatorics obtained by restricting to certain homotopically
meaningful N∞ operads for these groups.

1. Introduction

Throughout, Dpn denotes the dihedral group of order 2pn, p > 2 prime, and Cqpn the cyclic group of order
qpn, for q, p distinct primes. (We allow p= 2 in the cyclic case.)

This paper—at its heart—is concerned with the combinatorial data arising when studying commuta-
tive G-equivariant spectra for G either Dpn or Cqpn . In particular, we wish to study the set of N∞ operads
for these groups, as introduced by Blumberg–Hill [2], which govern the ways in which the commutativity
respects the group action.

Such an exploration of N∞ operads for G=Cpn was undertaken in [1], where it was proved that the
collection of these operads (up to homotopy) was in bijection with the Tamari lattice, and in particular,
there are Cat(n+ 1) many of them, where Cat(k) is the k-th Catalan number. This was achieved using an
explicit representation of N∞ operads as combinatorial structures called transfer systems on the subgroup
lattice of Cpn . As such, one is led to study transfer systems on arbitrary finite lattices. We refer the reader
to [9, Section 4] and Definition 2.1 for definitions in this context.

Note that the subgroup lattice for Cpn is isomorphic to [n]= {0 < 1 < · · ·< n}. A key method
employed in [1] was a recursive method for building all transfer systems on [n] from ones on [i] where
i < n. It is this powerful point of view that we will generalize in this paper. In particular, in Section
2, we shall exhibit an extremely general method of iteratively building all transfer systems on a finite
lattice L.

We will then implement the algorithm of Section 2 in the case of L= [1]× [n]. From a homotopical
viewpoint, we observe that [1]× [n]∼= Sub (Cqpn ), and as such, transfer systems on [1]× [n] corre-
spond to N∞ operads for Cqpn . To do so, we will first begin by considering a restricted collection of
transfer systems, namely the liftable transfer systems (Definition 3.1). From the work of the authors in
[5], liftable transfer systems on [1]× [n] are in bijection with N∞ operads for Dpn (provided p �= 2). A
recursive formula for computing the number of liftable transfer systems appears as the main result in
Theorem 3.12.

We are then able to exploit the self-duality of transfer systems on [1]× [n] as observed in
[9, Theorem 4.21] to complete the computation for Cqpn almost immediately from the case of Dpn .
This leads to Theorem 4.3 where we provide a recursive formula for computing the number of transfer
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2 Scott Balchin et al.

systems on [1]× [n].1 Thus, we obtain a (recursive) formula for a second and third infinite family of
groups following the work of [1].2

Following these enumerative results, we begin to explore some of the combinatorial structures appear-
ing in the recursions that we have provided. In Section 5, we study the notion of restricted Tamari
intervals, which form an important part of the recursions for Cqpn and Dpn and see that this is related to
certain triangulations of polygons.

Finally, in Section 6, we will restrict ourselves to what we call maximally extendable transfer systems.
In terms of the lattice [1]× [n], these are those transfer systems whose restriction to the bottom row is the
maximal transfer system on [n]. We shall see that in the liftable case these have specific combinatorial
interpretation (in terms of large Schröder numbers), and we make a conjecture relating the general case
to rooted subtrees of a rooted planar tree. Returning to the world of homotopy theory, these maximally
extendable transfer systems have a meaninful interpretation. Indeed, they are precisely those transfer
systems cooresponding to N∞ operads which restrict to the genuine G-E∞ operad on Cpn .

2. Transfer systems and a generalized � construction

We begin by recalling the definition of a transfer system on a poset from [5, 9].

Definition 2.1. Let P = (P , � ) be a poset. A (categorical) transfer system on P consists of a partial
order R on P that refines � and such that whenever x R y and z � y, then for all maximal w ∈ x↓ ∩ z↓

we have w R z where x↓ denotes the set of all y � x.

For a lattice L, we write Tr(L) for the collection of all transfer systems of L. In [1], it was proved
that |Tr([n])| coincides with the (n+ 1)-th Catalan number. The proof for this proceeded in a recursive
fashion which was governed by an operation denoted 	 in loc. cit.

Let R be a transfer system on [n]. Denote by x the minimal element such that x R n, and consider the
partition of [n] as [0, x− 1]
 [x, n]. The key observation is that the restriction of R to [0, x− 1] and
[x, n] yields two transfer systems, and moreover, R can be recovered from the disjoint union of these two
transfer systems. To retrieve the aforementioned 	 operation from this, we note that the pivot element
in [1] is simply x.

In this section, we will follow a suggestion of Mike Hill to extend this observation to transfer systems
on an arbitrary finite lattice L, which provides a method for producing recursive formulas for counting
transfer systems. To this end, let L be a finite lattice equipped with a transfer system R. Let m be the
maximal element of L, we will say that x ∈ L is fibrant if x R m. (This terminology is inspired by the
corresponding statement under the equivalence of transfer systems to weak factorization systems.)

Lemma 2.2. Let L and R be as above. Then R has a unique minimal fibrant element.

Proof. Let {xi}i be the collection of fibrant elements of R. Then by the definition of transfer sys-
tems, it follows that (

∧
i xi) R m. In particular,

∧
i xi is a fibrant element and (

∧
i xi) � xj for all j as

required.

Definition 2.3. Let L be a lattice, and x ∈ L. We denote by x↑ the set of all y � x. The set theoretic
complement of x↑ in L will be denoted xc

↑.

The following is a standard result in the theory of finite lattices.

1Python code for computing the number of N∞ operads for Cqpn and Dpn using the results of this paper can be found at
https://github.com/bifibrant/recursion/.
2 Since the writing of this paper, a formula for transfer systems for a fourth infinite family of groups, namely groups of the form

Cp ×Cp for p prime, was obtained in [3]
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Lemma 2.4. Let L be a finite lattice and x ∈ L. Then the collection x↑ is a sublattice of L, and xc
↑ is a

sub-meet-semilattice of L.

Via Lemma 2.4, one sees that there is a well-defined notion of transfer system for x↑ and xc
↑. Indeed,

the axioms for a categorical transfer system only depend on the meet operation, so we can use the same
definition for meet-semilattices like xc

↑. In particular, for L a finite lattice and R a transfer system on L,
if x is the unique minimal fibrant element, then R restricts to transfer systems R2 and R1 on x↑ and xc

↑,
respectively.

Given R1 and R2 as above, we can construct a candidate transfer system R1 
R2 by simply tak-
ing their disjoint union over L. The following lemma proves that this retrieves the starting transfer
system R.

Lemma 2.5. Let R, R1, and R2 be as above. Then R=R1 
R2.

Proof. Assume that there is some y ∈ xc
↑ and z ∈ x↑ such that y R z. By the property of a transfer

system, we have (x∧ y) R x, and by transitivity we have (x∧ y) R xR m, that is, x∧ y is fibrant. However,
as y ∈ xc

↑, (x∧ y) < x, violating the assumed minimality of x.

Example 2.6. Let L= [1]× [3], and consider the following transfer system.3

The minimal fibrant element (0, 1) is highlighted in red. One clearly sees pictorially that R splits as
a transfer system R2 on (0, 1)↑ ∼= [1]× [2] and a transfer system R1 on (0, 1)c

↑ ∼= [1]× [0]∼= [1].

As such, every transfer system R on L can be split into a pair of transfer systems R1, R2 on sub-
(semi-)lattices xc

↑ and x↑ of L where R2 has minimal fibrant element x. In the converse direction, given
two transfer systemsR1 and R2 on xc

↑ and x↑, respectively, we can ask when R1 
R2 is a transfer system
for L. This happens if and only if the relations in R2 when restricted to xc

↑ (i.e., those relations that are
forced by the relations of R2 under the restriction property of a transfer system on the larger lattice L)
are relations in R1. We will say that such an R1 and R2 is a restriction closed pair over L.

Example 2.7. If we modify Example 2.6 so that R1 is the empty transfer system on [1], then this pair is
not restriction closed and R1 
R2 does not form a transfer system for [1]× [3].

From this discussion, we can form the basis of a recursive formula for computing Tr(L) based on the
geometry of L. We summarize this in the following theorem.

Theorem 2.8. Let L be a finite lattice. Then there is a bijection between transfer systems on L and triples
(x, R1, R2) where x ∈ L, R1 is a transfer system on xc

↑, R2 is a transfer system on x↑ with minimal fibrant
element x, and R1, R2 form a restriction closed pair.

Remark 2.9. The condition that R2 has minimal fibrant element x is equivalent to R2 being connected
when its relations are considered as edges in an undirected graph.

3 Warning: For typographical reasons, we plot the first coordinate vertically and the second coordinate horizontally; this same
convention is held in all our diagrams and nomenclature (especially bottom row, top row, verticals, and diagonals.
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Construction 2.10. To rephrase this strategy in the form of an 	 operation, we use the observation
from the beginning of this section that the pivot element of the 	 operation for [n] was given by the
minimal fibrant element of R. If L is now an arbitrary finite lattice with R, R1, and R2 as above, we let
R2 � {x} be the collection of relations where we have removed the initial element (i.e., we remove the
fibrant element x). Then we could sensibly define R=R1 	 (R2 � {x}), where the operation 	 inserts
a new element x and adds in the relation x R m and all relations induced by this.

In this notation, one would decompose the R of Example 2.6 as

3. Enumerating transfer systems for Dpn

The eventual goal of this paper is to provide a recursive formula for transfer systems on [1]× [n] which
we realize as the subgroup lattice of G=Cqpn for p, q distinct primes. We will begin with a slightly more
tame count, that of liftable transfer systems of [1]× [n] as we now define.

Definition 3.1. A transfer system R on [1]× [n] is liftable if R additionally satisfies

If (1, i) R (1, j) for i < j then (0, i) R (1, i). (L)

We write L(n) to denote the collection of liftable transfer systems on [1]× [n].

The relevance of liftable transfer systems in the general machinery of N∞ operads is provided by the
following key result of [5].

Proposition 3.2 ([5, Section 4]). Let n � 0. Then there is a bijection between liftable transfer systems
on [1]× [n] and transfer systems for the group G=Dpn .

The link between liftable transfer systems and dihedral transfer systems arises via the lattice iso-
morphism Sub (Dpn )/Dpn ∼= [1]× [n]. (Here the quotient is with respect to the conjugation action of Dpn

on its subgroups.) Once we have given a recursive formula for L(n), we will, in the following section,
exploit the involution on transfer systems as uncovered in [9] to prove a recursion for Tr([1]× [n]).

As a warmup, let us see how the liftable condition (L) allows us to enumerate the number of saturated
transfer systems in L(n). Recall that a transfer system is said to be saturated if it satisfies 2-out-of-3.

Proposition 3.3. There are (n+ 2)2n saturated transfer systems for Dpn .

Proof. In [10], it was proved that there are 2n saturated transfer systems on [n]. Consider the bottom
row of [1]× [n] given by the coordinates (0, i), then we can freely pick any saturated transfer system
to fill this in. Let j be the maximal number such that (0, j) R (1, j). Clearly there are n+ 2 such choices
(including the possibility of no such j existing). We then claim that this data uniquely determines a
saturated transfer system on [1]× [n] which moreover satisfies (L).

We begin by observing that if j′, j′′ > j, we cannot have (1, j′) R (1, j′′). If this were the case then by
(L), we would be forced to have (0, j′) R (1, j′) which contradicts the maximality of j. Instead consider the
existence of (1, j) R (1, j+ 1). By restriction, we must have (0, j) R (1, j+ 1) as well as (0, j) R (0, j+ 1).
As saturated transfer systems satisfy two-out-of-three, it would imply that we moreover have (0, j+
1) R (1, j+ 1), once again contradicting the maximality of j. As such, everything to the right of j on the
top row of [1]× [n] must be empty.
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As we have (0, j) R (1, j), by restriction we also have (0, �) R (1, �) for all 0 � �� j. By the saturation
condition, this forces the top row to the left of j to be identical to the bottom row.

Assembling everything, it follows that there are (n+ 2)2n possibilities as claimed.

Remark 3.4. Saturated transfer systems have a simple description as those transfer systems which
satisfy the 2-out-of-3 property; however, they are extremely important in the realm of commutative equiv-
ariant homotopy theory. Indeed, they are related to the equivariant linear isometry operads. Every linear
isometry operad arises from a saturated transfer system, but this relation need not be bijective. We refer
the reader to [13, 16] for more details.

We will use the strategy outlined in Section 2 to give a recursion for L(n). In particular, we begin by
considering the partition of L(n) as:

L(n)=
∐

(a,b)∈[1]×[n]

L(n, (a, b))

where L(n, (a, b)) is the set of liftable transfer systems such that (a, b) is the minimal fibrant element
(i.e., (a, b) is minimal such that (a, b) R (1, n)).

We will find it advantageous to further split up the elements L(n, (a, b)) based on further partitioning
properties of transfer systems.

Definition 3.5. Let R be a transfer system on [1]× [n]. We say that (a, b) ∈ [1]× [n] is

• Stationary if a= 1 and there exists no d > b � c with (1, c) R (1, d).
• Extendable if a= 0 and (a, b) R (0, n).

It is clear that any transfer system possesses at least one stationary and at least one extendable element,
namely (1, n) and (0, n) respectively. We now have a different partition of L(n) as:

L(n)=
∐

1�k�n+1

L(n, k)

where L(n, k) is the collection of transfer systems such that exactly k elements are stationary. We then
further refine each L(n, k) as:

L(n, k)=
∐

1���n+1

L(n, k, �)

where L(n, k, �)⊆ L(n, k) is the subset of those transfer system where exactly � elements are extendable.
Finally, we can define L(n, k, �, (a, b)) to be L(n, k, �)∩ L(n, (a, b)). We provide a full description of

these transfer systems in the following definition.

Definition 3.6. Let n � 0, 1 � k, �� n+ 1, (a, b) ∈ [1]× [n]. We define L(n, k, �, (a, b)) to be the collec-
tion of liftable transfer systems R on [1]× [n] such that:

• R has k stationary elements.
• R has � extendable elements.
• (a, b) is the minimal fibrant element of R.

In the next collection of propositions, we will provide recursions for L(n, k, �, (a, b)) for varying
families of (a, b) ∈ [1]× [n]. We require one more definition before continuing to the first case.

Definition 3.7. We denote by Tam(n)⊂ L(n) the set of all transfer systems R with (0, n) R (1, n) and
Tam(n, k)= Tam(n)∩ L(n, k).
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We will provide an in-depth exploration of Tam(n, k) in Section 5. In particular, we will explain
their namesake (Tamari intervals) and provide explicit formulæ for |Tam(n)| and |Tam(n, k)|; see
Proposition 5.2.

Proposition 3.8. Let b > 0. Then

L(n, k, �, (0, b))=
∐

0�i�k

Tam(b− 1, i)× L(n− b, k− i, �, (0, 0)).

Proof. Let R ∈ L(n, (0, b)). Then by restriction to (0, b)c
↑ ∼= [1]× [b− 1], we obtain a transfer system

R1 ∈ L(b− 1), and by restricting to (0, b)↑ ∼= [1]× [n− b], we obtain a transfer system R2 ∈ L(n− b).
Since (0, b) is fibrant in R and the minimal element of (0, b)↑, we see that R2 ∈ L(n− b, (0, 0)).

Similarly, since (0, b) R (1, b) by assumption, we also have (0, b− 1) R (1, b− 1). As such, (1, b− 1)
is fibrant in R1. In particular, we conclude that

R1 ∈ Tam(b− 1)

and

R2 ∈ L(n− b, (0, 0)).

Conversely, given an arbitrary R1 ∈ Tam(b− 1) and R2 ∈ L(n− b, (0, 0)), we can construct a relation
R on [1]× [n] by placing R2 to the right of R1 (i.e., we reindex R2 via a horizontal shift of b). We will
show that R1 and R2 form a restriction closed pair.

Clearly such an R is transitive and satisfies the lifting condition. Suppose that (c, d) R (e, f ) and
(g, h) � (e, f ). If (e, f ) � (1, b− 1), then we know that (c, d)∧ (g, h) R (g, h) by the virtue of R1 being
a transfer system.

Else, if (e, f ) �� (1, b− 1), then we must have (e, f ) � (0, b), and since (c, d) R (e, f ) and we have no
relations from (0, b)c

↑ to (0, b)↑, we must also have (c, d) � (0, b). If (g, h) � (0, b) as well, then (c, d)∧
(g, h) R (g, h) from that fact that R2 is a transfer system.

The last remaining case is (0, b) � (c, d) and (g, h) � (1, b− 1), then (c, d)∧ (g, h)= (c∧ g, h). If
c∧ g= g, then we have (c∧ g, h)R(g, h). Otherwise, c= 0 and g= 1, so that we just need to ensure that
(0, h) R (1, h) fo all h � b, but this follows from that fact that (0, b− 1) is fibrant in R1.

As such, we have shown that

L(n, (0, b))= Tam(b− 1)× L(n− b, (0, 0)).

Now we note that (1, d) is stationary in R if and only if d � b− 1, and (1, d) is stationary in R1, or
d � b and (1, d− b) is stationary in R2. Furthermore, (0, d) is extendable in R if and only if d � b and
(0, d− b) is extendable in R2. As such, we can refine the above formula to the desired result.

Proposition 3.8 is valid whenever b > 0. However, we see that the formula is trivial if b= 0, even
though there are liftable transfer systems on [1]× [n] where the minimal fibrant element is (0, 0) (in
particular the maximal transfer system is such). The next proposition resolves that case of b= 0.

Proposition 3.9.

L(n, k, �, (0, 0))=
∐

k−1�k′�n

L(n− 1, k′, �− 1).

Proof. LetR ∈ L(n, k, (0, 0)), andR′ ∈ L(n− 1) be the restriction to (0, 1)↑ ∼= [1]× [n− 1]. Let b � n
be the maximal such that (1, 0) R (1, b). Then R is determined by R′ and b. Further, the only constraint
that we have on R′ and b is that if b �= 0 then (1, b− 1) must be stationary in R′.
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We then note that an element (1, d) is stationary in R if and only if d � b, and either d= b= 0 or
(1, d− 1) is stationary in R′. Conversely, an element (0, d) is extendable if and only if d= 0 or (0, d− 1)
is extendable in R′. The result follows.

Via Propositions 3.8 and 3.9, we have now computed |L(n, k, �, (0, b))| for all possible values of b.
As such we now turn our attention to computing |L(n, k, �, (1, b))|. The case where b < n is trivial as we
now prove.

Proposition 3.10. Let b < n, then

L(n, k, �, (1, b))=∅.

Proof. Recall that L(n) consists of the liftable transfer systems. Assume that R ∈ L(n, k, �, (1, b))
then by assumption we have (1, b) R (1, n). However, by the lifting condition, this implies that
(0, b) R (1, b) R (1, n), violating the minimality of (1, b). Therefore, no such R exists.

The simplicity of the case of (1, b) where b < n is one of the reasons why working with liftable
transfer systems is simpler than the general case. Given Proposition 3.10, it now suffices to compute
L(n, k, �, (1, n)):

Proposition 3.11. We have

L(n, k, �, (1, n))=
∐

�−1��′�n

L(n− 1, k− 1, �′).

Proof. Let R ∈ L(n, k, (1, n)), and R′ ∈ L(n,−1) be the restriction to [1]× [n− 1]. Clearly there are
no constraints on R′ except from that it must have k− 1 stationary elements.

We begin by assuming that there are no relations (0, d) R (0, n) for d < n, that is, R has a single
extendable element. Thus, all relations in R are contained in (0, n)c

↑ and hence R is determined solely
by R′. In particular, we have

L(n, k, 1, (1, n))= L(n− 1, k− 1)=
∐

0��′�n

L(n− 1, k− 1, �′).

We now move to the case where R has more than a single extendable element. That is, we assume that
there exists some d < n with (0, d) R (0, n) for d < n. The set of all d < n admitting arrows (0, d) R (0, n)
is determined by the maximal such d, which we denote b. Indeed, if (0, d) R (0, n) then by restriction
we also have (0, d) R (0, b), and hence by definition (0, d)R′(0, b). Conversely if (0, d)R′(0, b), then by
transitivity we have (0, d) R (0, b) R (0, n). The only constraint that we have on b is that (0, b) must be
extendable in R′. Note that if b is the i-th smallest extendable element in R′, then R has i+ 1 extendable
elements. If R′ has k stationary elements, then R has k+ 1 stationary elements. Thus we have shown
that

L(n, k, �, (1, n))=
∐

�−1��′�n

L(n− 1, k− 1, �′).

as required. We note that this retrieves the above formula when �= 1.

We are now in a position to combine the above results into the main theorem of this section which
provides an explicit recursive algorithm for computing |L(n)|.
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Table 1. Values of |L(n)|, the num-
ber of transfer systems for Dpn (p �= 2),
computed via Theorem 3.12.

n |L(n)|
0 2
1 9
2 56
3 416
4 3457
5 31,063
6 295,834
7 2,948,082
8 30,471,080
9 324,580,196
10 3,546,142,551

Theorem 3.12. Let n � 0. Then for 1 � �, k � n+ 1 and (a, b) ∈ [1]× [n] we have

|L(n, k, �, (0, 0))| =
∑

k−1�k′�n

|L(n− 1, k′, �− 1)|

|L(n, k, �, (1, n))| =
∑

�−1��′�n

|L(n− 1, k− 1, �′)|

|L(n, k, �, (0, b))| =
∑

0�i�k

|Tam(b− 1, i)| · |L(n− b, k− i, �, (0, 0))| (b > 0)

|L(n, k, �, (1, b))| = 0 (b < n).

By convention, set |L(n, k, �, (a, b))| = 0 when k, � are out of range. Then

|L(n)| =
∑

1�k,��n+1
(a,b)∈[1]×[n]

|L(n, k, �, (a, b))|.

Corollary 3.13. Let n � 0. Then the number of homotopically distinct N∞ operads for Dpn is given by
the recursion in Theorem 3.12.

Remark 3.14. Note that in Theorem 3.12, it is only the computation |L(n, k, �, (1, b))| = 0 for b < n
where we use the fact that we are working with liftable transfer systems. This will be relevant in the next
section we consider transfer systems for Cqpn .

Computation 3.15. By starting at m= 0, we inductively store the values of |L(m, k, �, (a, b))| for all
m � n, 1 � k, �� m+ 1 and (a, b) ∈ [1]× [m]. The entries for all m < m′ allow us to compute the values
for m=m′ via Theorem 3.12 and Proposition 5.2; some small values are recorded in Table 1, and
large-scale structure appears at the end of the paper in Figure 1.

Remark 3.16. We leave open the challenge of finding a closed formula for |L(n)|. One might begin with
a five-variable generating function and the functional equation implied by Theorem 3.12. Of course, a
bijective enumeration would be even more desirable.

Remark 3.17. In Proposition 6.11, we deduce a nontrivial lower bound on the asymptotics of |L(n)|.
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Figure 1. A (nonlogarithmic) plot of |L(n)|/|T(n)| for 0 � n � 80. The semilogarithmic plot appears
approximately linear.

4. Enumerating transfer systems for Cqpn

In the previous section, we enumerated the liftable transfer systems on [1]× [n]. We will now move to
the general case. For clarity, we will write T(n) for the collection of all transfer systems [1]× [n] (i.e.,
L(n)⊆ T(n)). We will employ the same strategy as before, and T(n, k, �, (a, b)) will be as before (but
without the lifting condition).

From Remark 3.14, we see that we need only consider how to resolve the case of T(n, k, �, (1, b))
for b < n, and in the other cases the recursion for T(n, k, �, (a, b)) is the same as the recursion for
L(n, k, �, (a, b)). To resolve this remaining case, we will use a powerful observation regarding the duality
of transfer systems as described in [9] which we now recall. For a transfer system R on a finite lattice
L, we write

E(R)= {(z, y) | there exists x ∈ L such that z � x < y and x R y}
for the downward closure of R.

We recall that a lattice L admits a self-duality if there exists a bijection ∇:L→ L such that x � y if
and only if y∇ � x∇ for all x, y ∈ L.

Definition 4.1. Let L be a finite lattice admitting a self-duality ∇ and let R be a transfer system on L.
The dual of R is the transfer system R∗ defined as:

R∗ = ((E(R)op)∇)c.

From [9, Theorem 4.21], we have that (R∗)∗ =R so this provides an involution on the set Tr(L). In
the case that L= [1]× [n], we use the canonical duality given by (a, b)

∇�−→ (1− a, n− b). In particular,
we have (a, b) R (c, d) if and only if (1− c, n− d)���E(R) (1− a, n− b).

Proposition 4.2. The duality on Tr([1]× [n]) restricts to a duality:

T(n, k, �, (a, b))←→ T(n, �, k, (1− a, n− b)).

This duality does not preserve the property of being liftable.

Proof. Let R ∈ T(n, k, �, (a, b)). We first observe that (1− a, n− b) is the minimal fibrant element
in R∗. Indeed, we have (a, b) as the minimal element such that (a, b) R (1, n). From the definition, we
see that (1− a, n− b) R∗ (1, n) if and only if (0, 0)���E(R) (a, b). Assume that we have (0, 0) E(R) (a, b),
then this implies the existence of some (i, j) < (a, b) such that (i, j) R (a, b), but by transitivity we would
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Table 2. Values of |T(n)|, the number
of transfer systems for Cqpn , computed
via Theorem 4.3.

n |T(n)|
0 2
1 10
2 68
3 544
4 4828
5 46,124
6 465,932
7 4,919,062
8 53,832,832
9 607,000,122
10 7,019,272,236

get (i, j) R (a, b) R (1, n), contradicting the minimality of (a, b). The minimality of (1− a, n− b) as a
fibrant element of R∗ is afforded by the minimality of (a, b) in R.

We will now explore the duality between the extendable and stationary elements. Let y � 1, we will
show that (1, y− 1) is stationary inR if and only if (0, n− y) is extendable inR∗. Again by definition, this
happens if and only if (1, 0)���E(R) (1, y). Assume that (1, 0) E(R) (1, y), then this implies the existence
of some 0 � z < y with (1, z) R (1, y). However, we have assumed that y− 1 is stationary, so no such z
can exist.

The remaining case of y= 0 is covered by the fact that (1, n) is always stationary and (0, n) is always
extendable.

Combining Proposition 4.2, Theorem 3.12, and Remark 3.14, we arrive at our desired result.

Theorem 4.3. Let n � 0. Then for 1 � �, k � n+ 1 and (a, b) ∈ [1]× [n], we have

|T(n, k, �, (0, 0))| =
∑

k−1�k′�n

|T(n− 1, k′, �− 1)|

|T(n, k, �, (0, b))| =
∑

0�i�k

|Tam(b− 1, i)| · |T(n− b, k− i, �, (0, 0))| (b > 0)

|T(n, k, �, (1, b))| = |T(n, �, k, (0, n− b))|.
By convention, set |T(n, k, �, (a, b))| = 0 when k, � are out of range. Then

|T(n)| =
∑

1�k,��n+1
(a,b)∈[1]×[n]

|T(n, k, �, (a, b))|.

Corollary 4.4. Let n � 0. Then the number of homotopically distinct N∞ operads for Cqpn is given by
the recursion in Theorem 4.3.

Computation 4.5. Following the methods of Computation 3.15, we are once again able to efficiently
compute values of |T(n)|; for small values of n, these are presented in Table 2, and larger-scale behavior
appears at the end of the paper in Figure 1.
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Remark 4.6. The strategy outlined Section 2 is extremely general, and one could envisage running the
machine for other fundamental lattices such as [m]× [n] and [1]n. What is evident from the discussions
in Sections 3 and 4 is that the power of the computation can be improved by understanding the inherent
structures of transfer systems and how they arise (e.g., the existence of suitable liftable families and
dualities).

Remark 4.7. As with |L(n)|, it would be desirable to derive a closed formula for |T(n)| via generating
function or bijective techniques.

5. Restricted Tamari intervals

In this section, we will study the term Tam(n, k) which appears in Proposition 3.8, Theorems 3.12, and
4.3.

We begin by recalling from Definition 3.7 that we denote by Tam(n) the set of all transfer systems R
with (0, n) R (1, n) and Tam(n, k)= Tam(n)∩ L(n, k).

Recall from [6, Proposition 2.23, Proposition 4.17] that Tr([n]) admits a lattice bijection to the Tamari
lattice. As such for R and R′ transfer systems on [n], we say that R�R′ is a Tamari interval. The next
lemma justifies our choice of notation for Tam(n). We note that if R is a transfer system on [n], then
we—analogously to the [1]× [n] case—say that b ∈ [n] is stationary for R if there exists no d > b � c
with (1, c) R (1, d).

Lemma 5.1. Let n≥ 0. Then Tam(n) is in bijection with Tamari intervals in Tr[n]. In particular,
Tam(n, k) is in bijection with the Tamari intervalsR�R′ in Tr[n] such thatR has k stationary elements.

Proof. By restriction, a transfer system in Tam(n) has all vertical relations (0, a) R (1, a) for 0 � a � n.
We have the diagonal (0, b) R (1, c) if and only if (0, b) R (0, c). Indeed, the forward implication follows
by pullback closure, and the reverse implication is given by composition with (0, c) R (1, c). Therefore,
such an R restricted to the bottom row determines all diagonals. In particular, R is determined uniquely
by its restriction to the top and bottom and is therefore the data of a Tamari interval.

From work of Chapoton [8], we know that the cardinality of the set of Tamari intervals for [n] has
closed form given by:

|Tam(n)| = 2

(n+ 1)(n+ 2)

(
4n+ 5

n

)
.

(We warn the reader that our indexing conventions differ from those of [8]). The following proposition
provides a closed formula for |Tam(n, k)|.

Proposition 5.2. Let n � 0 and 1 � k � n+ 1. Then

|Tam(n, k)| = 2(2k+ 1)!(4n− 2k+ 3)!
(k− 1)!(k+ 1)!(n− k+ 1)!(3n− k+ 4)!

Proof. An explicit bijection between transfer systems on [n] and rooted binary trees with (n+ 1) inter-
nal nodes was constructed in [1]. One can check that under this bijection that the number of stationary
elements of a transfer system R on [n] is equal to the number of elements on the corresponding binary
tree whose path from the root is a straight line to the left.

Using the classical bijection between binary trees with n+ 1 nodes and Dyck paths of length 2n+ 2,
we see that the number of stationary elements is also given by one less than the number of times the
corresponding Dyck path touches the horizontal axis.

The result then follows from [4, Corollary 11] and the first remark following it.
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Table 3. Values of |Tam(n, k)| for small values of n and k using Proposition 5.2.

n/k 1 2 3 4 5 6 7
0 1 0 0 0 0 0 0
1 1 2 0 0 0 0 0
2 3 5 5 0 0 0 0
3 13 20 21 14 0 0 0
4 68 100 105 84 42 0 0
5 399 570 595 504 330 132 0
6 2530 3542 3675 3192 2310 1287 429

Remark 5.3. The values appearing in Table 3 make up some very well-known number sequences as we
now outline. The triangular array |Tam(n, k)| appears in a reindexed form in [7] where one enumerates
triangulations of k+ 3-gons with n+ 1-internal vertices. In particular, we have:

• The major diagonal where k= n+ 1 retrieves the Catalan numbers.
• The sum of the row |Tam(n,−)| computes the number of Tamari intervals for [n].
• The column |Tam(−, 1)| is the number of Tamari intervals for [n− 1].
• The column |Tam(−, k)| is the number of triangulations of a (k+ 2)-gon with n internal

nodes.

6. Maximally extendable Dpn transfer systems and Schröder numbers

In the remainder of this paper, we will explore a certain type of transfer system on [1]× [n] in the liftable
and nonliftable cases, the enumeration of which retrieve interesting number sequences. We begin by
introducing the class that we are interested in.

Definition 6.1. A (liftable) transfer system R for [1]× [n] is maximally extendable if it has n+ 1
extendable elements.

Remark 6.2. In a more intuitive description, a transfer system is maximally extendable if and only if
its restriction to the bottom row is the maximal transfer system on [n]. As such, for G=Dpn or Cqpn (in
the liftable and general scenarios, respectively) these are the transfer systems associated with G-N∞
operads restricting to genuine G-E∞ operads on Cpn � G.

We will once again begin with the case of liftable transfer systems.

Definition 6.3. Let n � 0. Then Sn, the nth (large) Schröder number, is the number of lattice paths from
the southwest corner (0, 0) of an n× n grid to the northeast corner (n, n) using single steps north (0, 1),
northeast (1, 1), or east (1, 0), that do not rise above the SW-NE diagonal. (Such paths are called royal
(n-)paths.)

Proposition 6.4 ([15]). If n= 0 then Sn = 1. For n≥ 1, the large Schröder numbers satisfy the
recurrence:

Sn = 3Sn−1 +
n−2∑
k=1

SkSn−k−1.
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Table 4. Values of Sn computed via
Proposition 6.4.

n Sn

0 1
1 2
2 6
3 22
4 90
5 394
6 1806
7 8558
8 41,586
9 206.098
10 1.037.718

Additionally, for n � 1 we have

Sn =
∑

1�k�n

Nar(n, k) · 2k =
∑

1�k�n

1

n

(
n

k

)(
n

k− 1

)
· 2k

where Nar(n, k) is the (n, k)-th Narayana number.

Computation 6.5. Table 4 provides a calculation of Sn for small values of n.

We can produce refined statistics on royal paths by tracking the number of diagonal returns each path
has, using the convention that a northeast step on the diagonal counts as a return. Let Sn(k) denote the
number of royal n-paths with k returns to the diagonal; call these the refined Schröder numbers.

Proposition 6.6 ([14]). The refined Schröder numbers take the values

Sn(k)=

⎧⎪⎨
⎪⎩

0 if n < k,

2n if n= k,

2k k
n−k

∑n−k
p=1

(
n−k

p

)(
n−1+p

p−1

)
if n > k.

Furthermore,
n∑

k=1

Sn(k)=Sn.

Computation 6.7. Table 5 provides a calculation of Sn(k) for small values of n and k.

While the above result is standard, we were unable to find a proof of the following recurrence in the
literature. It will be extremely useful in linking large Schröder numbers with transfer systems.

Lemma 6.8. The refined Schröder numbers satisfy the recurrence relation:

Sn(k)= 2Sn(k− 1)+
n∑

p=k

Sn−1(p)

for 1≤ k≤ n.
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Table 5. Values of Sn(k) computed via Proposition 6.6.

n/k 1 2 3 4 5 6
1 2 0 0 0 0 0
2 2 4 0 0 0 0
3 6 8 8 0 0 0
4 22 28 24 16 0 0
5 90 112 96 64 32 0
6 394 484 416 288 160 64

Proof. Write E for east steps, N for north steps, and D for diagonal steps. Given a royal n-path, consider
the location of its first diagonal return. If this return is in position (1, 1), then the path begins EN or D
and the rest of the path may be filled in by any royal (n− 1)-path with k− 1 returns. This accounts for the
2Sn(k− 1) term. If the first return is in position (r, r) with r > 1, then we may write our path as EPNQ
where P is a royal (r− 1)-path and Q is a royal (n− r)-path. The path PQ is then a royal (n− 1)-path
with at least k diagonal returns. This decomposition is unique and each such royal (n− 1)-path arises in
this fashion, so this accounts for the term

∑n
p=k Sn−1(p).

We are now prepared to demonstrate the connection between (refined) large Schröder numbers and
maximally extendable transfer systems on Dpn .

Theorem 6.9. Let n � 0. Then the number of maximally extendable transfer systems in L(n) is given by
Sn+1, and the number of maximally extendable transfer systems in L(n) with exactly k stationary nodes
is Sn+1(k).

Proof. It suffices to prove the second statement since the refined Schröder numbers Sn+1(k) add up to
Sn+1. Write m(n, k):= |L(n, k, n+ 1)| for the number of maximally exetndable transfer systems on Dpn

with exactly k stationary nodes. Clearly m(0, 1)= 2=S1(1), so it suffices to prove that m(n, k) satisfies
the recurrence of Lemma 6.8, that is,

m(n, k)= 2m(n, k− 1)+
n∑

p=k

m(n− 1, p).

This is a direct consequence of Theorem 3.12 specialized to the case �= n+ 1.

Remark 6.10. In [18, Exercise 6.39], Stanley provides a list of nineteen classical structures counted by
Schröder numbers. The challenge of finding an explicit bijection between maximally extendable transfer
systems on Dpn and one of these structures remains open.

Proposition 6.11. Let Lmax(n) denote the collection of maximally extendable liftable transfer systems on
[1]× [n]. The asymptotics of |Lmax(n)| satisfy

|Lmax(n)| ∼C
(3+√8)n

n3/2

where

C=
√

2(3+ 2
√

2)

2
√

π (−4+ 3
√

2)
≈ 4.720408926.

This provides a lower bound on the asymptotic behavior of |L(n)|.
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Proof. This follows directly from Theorem 6.9 and the asymptotics of the large Schröder numbers
(see for instance Exercise 12 on p. 539 of [12]).

We now shift our attention back to all transfer systems on [1]× [n], and consider the maximally
extendable transfer systems here. Recall from Proposition 4.2 that there is a duality:

T(n, k, �, (a, b))←→ T(n, �, k, (1− a, n− b)).

In particular, by summing up over all elements (a, b) ∈ [1]× [n] we obtain a duality:

T(n, k, �)←→ T(n, �, k).

Definition 6.12. A transfer system R for [1]× [n] is maximally stationary if it has n+ 1 stationary
elements.

Remark 6.13. In a more intuitive description, a transfer system is maximally stationary if and only if
its restriction to the top row is the minimal transfer system on [n].

Corollary 6.14. Let n � 0. Then the number of maximally extendable transfer systems in T(n) is the same
as the number of maximally stationary transfer systems in T(n) (and indeed the same as the number of
maximally stationary transfer systems in L(n)).

Definition 6.15. Let n � 1. Then An is the number of rooted subtrees in rooted planar tree with n nodes.

Remark 6.16. Rooted subtrees of a fixed planar tree are in bijection with nonempty antichains in the
same tree (with the canonical partial order in which the root is minimal and edges are covering rela-
tions). Rooted subtrees are analyzed in [17], while [11] studies the same problem in the language of
antichains.

Proposition 6.17 ([17, 11]]). Let n � 1. Then

An =

∑
0�i<n

(
2i+ 1

i

)(
2n− 1

n− i− 1

)

2n− 1
.

Moreover, An satisfies the recurrence A1 = 1 and

An =
n−1∑
j=1

An−jAj +An−jCat(j− 1)

where Cat(j) is the j-th Catalan number.

Computation 6.18. Table 6 provides a calculation of An for small values of n.

Numerical experiments lead us to conjecture that maximally extendable transfer systems in T(n) are
counted by An+2. By Corollary 6.14, we conjecture the same count for maximally stationary transfer
systems in T(n) and maximally stationary transfer systems in L(n).

Conjecture 6.19. For n � 0, the number of maximally extendable transfer systems in T(n) is given by
An+2.
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Table 6. Values of An computed via
Proposition 6.17.

n An

1 1
2 2
3 7
4 29
5 131
6 625
7 3099
8 15,818
9 82,595
10 439.259

Figure 2. A semilog plot of the values of |L(n)| (blue dots), |T(n)| (red dots), |Lmax(n)| (blue squares),
and |Tmax(n)| (red squares) for 0 � n � 80. Here, the superscript max indicates maximally extendable
transfer systems.

The authors’ attempts to prove this conjecture by standard enumerative methods (both bijective and
inductive) have been spoiled by the subtle effects of restriction on relations joining the bottom and top
rows. Following the argument of [11], we note that it would suffice to decompose the top row r of each
maximally extendable transfer system in T(n) into “primary components” r1, . . . , rk for which

w(r)=
k∏

i=1

(1+w(ri))

where w(s) measures the number of maximally extendable transfer systems with top row s.

6.1. Figures

We conclude by plotting of the behavior of our enumerations related to transfer systems for Dpn

and Cqpn . All of the data for these figures was produced using code available at https://github.com/
bifibrant/recursion/.

The graph in Figure 1 suggests that |L(n)| and |T(n)| might have subexponential growth rates of a
shape similar to the asymptotics of |Lmax(n)| from Proposition 6.11.

Finally, in Figure 2, we plot |L(n)|/|T(n)| and observe that the fraction of liftable transfer systems
appears to approach 0.
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