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Abstract

Expectiles have received increasing attention as a risk measure in risk management
because of their coherency and elicitability at the level α ≥ 1/2. With a view to prac-
tical risk assessments, this paper delves into the worst-case expectile, where only partial
information on the underlying distribution is available and there is no closed-form rep-
resentation. We explore the asymptotic behavior of the worst-case expectile on two
specified ambiguity sets: one is through the Wasserstein distance from a reference
distribution and transforms this problem into a convex optimization problem via the
well-known Kusuoka representation, and the other is induced by higher moment con-
straints. We obtain precise results in some special cases; nevertheless, there are no
unified closed-form solutions. We aim to fully characterize the extreme behaviors; that
is, we pursue an approximate solution as the level α tends to 1, which is aesthetically
pleasing. As an application of our technique, we investigate the ambiguity set induced by
higher moment conditions. Finally, we compare our worst-case expectile approach with
a more conservative method based on stochastic order, which is referred to as ‘model
aggregation’.
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1. Introduction

In recent years there has been increasing interest in using expectiles as an alternative risk
measure to value at risk (VaR) in risk theory. Expectiles, a new least-squares analogue of
quantiles introduced by [21], have recently become very popular in applications such as quan-
titative finance and risk management; see [4] and [32]. Indeed, the papers [3] and [32] have
shown that expectiles with α ≥ 1/2 are the only risk measures that are coherent and elicitable.
For a given level α ∈ (0, 1) and an integrable random variable Y , the αth expectile is defined as
the minimizer of an asymmetrically weighted mean-squared deviation,

eα(Y) = argmin
θ

E [ηα(Y − θ ) − ηα(Y)] , (1.1)
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where ηα(y) = |α − 1{y≤0}|y2 is the expectile check function. Subtracting ηα(Y) in the expec-
tation makes the integrand well-defined and finite without the need to assume that E(Y2) < ∞,
while for Y we only require a finite first-order moment.

Expectiles have emerged as an important risk measure, especially in the study of extreme
risks characterized by their low-probability, high-consequence nature. A paramount challenge
in this area is data uncertainty, as the loss distribution is often only partially known or ambigu-
ous. Typically, we only have access to limited information about the underlying distribution.
This leads to the pivotal question in risk management: how can we robustly measure risk
amidst such distributional uncertainties? In this paper, we investigate a worst-case expectile
problem for datasets with ambiguous data, proposing a robust risk measure constrained by cer-
tain parameters. Recently, we have been confronted with a variety of extreme risks in many
fields, such as finance, insurance, and environmental science. In many of these fields, the partial
availability of distribution information can result in decisions that are overly sensitive to shifts
in the underlying loss distribution, as pointed out in studies such as [10] and [23]. Hence, the
lack of complete information can render traditional risk measures, such as VaR and expectiles,
less effective when based solely on stochastic data.

We aim to investigate the corresponding optimization problem based on a set of uncertain
distributions, i.e., ambiguity sets. To address this problem, many researchers have proposed
robust distribution optimization methods, the most widely used of which is the worst-case risk
measure. Specifically, the worst-case risk measure is the worst risk measure calculated for all
distributions under the ambiguity set. To be precise, for a random variable Y , given the level
α ≥ 1/2, which corresponds to the case where eα is law-invariant and coherent [4], we define
the worst-case value of the expectile (WCE) under a set M as follows:

WCEM
α = sup

FY∈M
eα(Y), (1.2)

where FY denotes the distribution of Y and M is a set of plausible distributions for Y .
This paper investigates the worst-case expectiles on two specified ambiguity sets, namely,

moment-based and Wasserstein-metric-based ambiguity sets. These robust measures play a
pivotal role in risk management, enabling market risk assessment under stressed scenarios.
They offer insights into data modeling during financial crises through the worst-case approach.
The worst-case expectile measure we introduce aligns with what has recently been termed
the distributionally robust stochastic optimization problem. As shown in [26], there are two
natural methods of constructing the ambiguity set M. On the one hand, an ambiguity set
of distributions can be defined as the set of all distributions that are in a neighborhood of a
given reference distribution with respect to a transportation distance, such as the Wasserstein
distance; this is discussed by [19], [7], and others. On the other hand, an alternative ambiguity
set can be described by specifying the moments of the distributions, as discussed by [8] and
[30], among others. These two kinds of ambiguity sets are fundamentally different. In this
paper we provide the worst-case expectiles under both scenarios.

The contributions of this paper are summarized as follows. First, we formally define the
worst-case expectiles on the two types of ambiguity sets defined. Second, we transform the
problem into a convex optimization problem for the ambiguity set specified by Wasserstein
distance and a reference distribution G. Moreover, we obtain precise solutions to this prob-
lem in several special cases. Third, we focus on a more general ambiguity set defined by the
moments of the distribution, i.e., where only the expectation and the pth-order central moment
with p > 1 are acknowledged; this encompasses the scenario in which only the initial two
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moments are recognized. In addition, we derive some asymptotic behaviors of the worst-case
expectiles for these two ambiguity sets.

The paper is organized as follows. In Section 2, we start with an overview of distortion risk
measures and then transform the infinite-dimensional problem (1.2) into a finite one, focusing
on the maximum of a series of worst-case distortion risk measures for two specified ambiguity
sets induced by Wasserstein distance and moment constraints. In Section 3, we first give some
precise results on the worst-case value of the expectile over the p-Wasserstein ball and analyze
the asymptotic behavior of the worst-case expectile as α tends to 1, with most circumstances
taken into account. Then we compare our worst-case approach with the recently proposed
‘model aggregation’ approach of [18] and offer an alternative way of reformulating the problem
(1.2), with full discussion. Finally, in Section 4 we discuss our findings and research perspec-
tives. The proofs of all theoretical results and the details of extensive simulation studies are
given in our supplementary material.

2. Reformulation of worst-case expectile through two important ambiguity sets

We first introduce some notation. Consider an atomless probability space (�,F , P) and
let Lp be the set of all random variables in (�,F , P) with finite pth moment, p ∈ (0, ∞). We
denote by L0 the set of all random variables and by L∞ the set of essentially bounded random
variables. In addition, we denote by Mp the set of the distribution functions of random vari-
ables in Lp, i.e., Mp = {FY (y) : Y ∈Lp}. For a random variable Y , FY (y) = P(Y ≤ y) represents
its distribution function, and the corresponding left-continuous inverse is defined as

F−1
Y (u) = inf{y ∈R : FY (y) ≥ u}, u ∈ (0, 1].

The mappings ess inf(·) and ess sup(·) on L0 give the essential infimum and the essential
supremum, respectively, of a random variable. For a distribution G ∈M1, we denote its essen-
tial supremum and first moment by ess supG := ess sup(G) and μG := ∫

xdG(x), respectively.
Throughout this paper, we denote the right and left derivatives of the function g at the point x0
(if they exist) by g′+(x0) and g′−(x0). Similarly, we denote the left and right limits of the func-
tion g at x0 by g(x−

0 ) and g(x+
0 ), respectively. For a real x, we denote its positive and negative

parts by x+ and x−, respectively; that is, x+ = max (x, 0) and x− = max (0, −x).

2.1. Distortion risk measure

We now give the definition and some examples of distortion risk measures, which are
commonly used in risk management. Recall that a non-decreasing function H:[0, 1] → [0, 1]
satisfying the boundary condition H(0) = 0, H(1) = 1 is called a distortion function. A precise
definition and detailed discussion of the distortion risk measure associated with H can be found
in [28] and [29]. In particular, when H is continuous, the corresponding distortion risk measure
ρH for the random variable Y has the following representation:

ρH(Y) =
∫ 1

0
F−1

Y (u)dH(u),

if the integral is finite. Obviously, for Y ∈L1, if we take H(u) = u, then ρH(Y) =∫ 1
0 F−1

Y (u)du =E[Y].
Another important risk measure that is highly relevant to expectiles is the expected shortfall

(ES). Given α ∈ (0, 1), the expected shortfall at level α [25] is a distortion risk measure with
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H(u) = (1 − α)−1(u − α)+. Specifically, for Y ∈L1,

ESα(Y) = 1

1 − α

∫ 1

α

F−1
Y (u)du. (2.1)

2.2. Reformulation

In addition to the original definition introduced in Equation (1.1), there are a number of other
representations of the expectile, such as those mentioned in [4]. For our problem, a useful tool
is the well-known Kusuoka representation, which expresses the expectile as the maximum of
a convex combination of the expected shortfall at a certain level and the expectation.

Proposition 1. ([4, Proposition 9].) Let Y ∈L1, α ≥ 1/2, and β = α/(1 − α); then

eα(Y) = max
γ∈[ 1

β
,1]

{(1 − γ )ESτ (Y) + γE[Y]} , (2.2)

where τ = (β − 1/γ )
/

(β − 1).

Although there is no closed-form representation for the expectile, Proposition 1 allows us
to reformulate the problem (1.2). Since a convex combination of two distortion risk measures
is again a distortion risk measure, the expectile is actually the maximum of a one-parameter
family of distortion risk measures indexed by γ ∈ [1/β, 1]. Later, we will use τ to represent
(β − 1/γ )

/
(β − 1); we also use τ (γ ) to emphasize the interdependence between γ and τ .

Specifically, combining Proposition 1 and (2.1), we can rewrite WCEM
α as follows:

WCEM
α = sup

FY∈M
eα(Y)

= sup
FY∈M

sup
γ∈[ 1

β
,1]

{(1 − γ )ESτ (Y) + γE[Y]}

= sup
γ∈[ 1

β
,1]

sup
FY∈M

{(1 − γ )ESτ (Y) + γE[Y]}

= sup
γ∈[ 1

β
,1]

sup
FY∈M

{
1 − γ

1 − τ

∫ 1

0
F−1

Y (u)1(τ,1)(u)du + γ

∫ 1

0
F−1

Y (u)du

}

=: sup
γ∈[ 1

β
,1]

sup
FY∈M

ρHγ (Y), (2.3)

where the distortion function Hγ (u) = 1−γ
1−τ

(u − τ )+ + γ u. The inner supremum has been well
studied for a wide variety of ambiguity sets [5, 17, 24]. If the inner problem has an explicit
representation for γ , then the infinite-dimensional problem (1.2) is reduced to an optimization
problem for some function of γ . For this reason, we start by introducing two ambiguity sets,
defined in terms of the Wasserstein distance and moment conditions, respectively, and illustrate
some existing results that we will use later.

2.3. Ambiguity set induced by the Wasserstein distance

The Wasserstein distance of order p ∈ [1, ∞) between two univariate distribution functions
F1, F2 ∈Mp is defined as the smallest Lp distance between a pair of random variables with
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marginal distributions F1, F2, i.e.,

Wp(F1, F2) = inf

{[
E
∣∣Y1 − Y2

∣∣p]1/p
: Y1 ∼ F1, Y2 ∼ F2

}
.

For univariate distributions, the Wasserstein distance has the following closed-form expression:

Wp(F1, F2) =
(∫ 1

0

∣∣F−1
1 (u) − F−1

2 (u)
∣∣pdu

)1/p

, p ∈ [1, ∞).

For details on the Wasserstein distance, see e.g. [27]. The ambiguity set induced by the
Wasserstein distance is then defined as a ball centered on the reference distribution G with
radius ε > 0,

Wp,G,ε = {
F ∈Mp : Wp(F, G) ≤ ε

}
. (2.4)

First we consider the reformulation (2.3) in the context of M=Wp,G,ε. Note that the expec-
tile reduces to expectation at the level of α = 1/2 in Equation (1.1); hence the problem (1.2) is
reduced to the following:

WCE
Wp,G,ε

1/2 := sup
FY∈Wp,G,ε

e1/2(Y) = sup
FY∈Wp,G,ε

∫ 1

0
F−1

Y (u)du

= sup
F∈Wp,G,ε

∫ 1

0

(
F−1(u) − G−1(u)

)
du +

∫ 1

0
G−1(u)du

≤ sup
F∈Wp,G,ε

(∫ 1

0

∣∣F−1(u) − G−1(u)
∣∣pdu

)1/p

+ μG

≤ ε + μG, (2.5)

where the first inequality is due to the Hölder inequality. Then, letting F−1
0 (x) := G−1(x) +

ε, x ∈R, we obtain the opposite inequality to (2.5); thus we have

WCE
Wp,G,ε

1/2 = ε + μG.

As a result, we only need to concentrate on the case where α > 1/2 and β > 1. The fol-
lowing proposition is a special version of Proposition 4 in [17], giving the precise value
for sup

FY∈Wp,G,ε

ρHγ (Y) and an explicit expression for the distribution function at which the

supremum is attained.

Proposition 2. For any fixed γ ∈ [1/β, 1], let Hγ (u) = 1−γ
1−τ

(u − τ )+ + γ u. Let hγ represent
the left derivative of the distortion function Hγ , and let ‖ · ‖q represent the standard q-norm.
Then

sup
FY∈Wp,G,ε

ρHγ (Y) = ε‖hγ ‖q +
∫ 1

0
G−1(u)hγ (u)du, (2.6)

where q is the conjugate index of p, i.e., q = p/(p − 1) with p > 1, and q = ∞ with p = 1.
Moreover, the supremum in Equation (2.6) is attained by a certain distribution function, whose
quantile function is given by

F−1
p,G,ε,γ (u) = G−1(u) + Cp,γ,ε

(
1{0<u≤τ } + βq−11{τ<u≤1}

)
, p > 1, (2.7)
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where Cp,γ,ε = ε/[τ + βq(1 − τ )]1/p. For p = 1, we have

F−1
1,G,ε,γ (u) =

⎧⎨
⎩

G−1(u) + ε
1−τ

1{τ<u≤1} if γ < 1,

G−1(u) + ε if γ = 1.
(2.8)

The above proposition can easily be verified using Proposition 4 in [17], where the result
for the worst-case value of a general distortion risk measure is provided. For convenience, let
us write

zp,G,ε(γ ) := ε‖hγ ‖q +
∫ 1

0
G−1(u)hγ (u)du; (2.9)

then, using the reformulation (2.3) and the setting M=Wp,G,ε, we obtain that the problem
(1.2) essentially becomes a convex optimization problem (the concavity of zp,G,ε(γ ) will be
clarified in Theorem 1), i.e.,

WCE
Wp,G,ε
α = sup

γ∈[ 1
β
,1]

zp,G,ε(γ ). (2.10)

Therefore, we devote a great deal of space to describing the behavior of zp,G,ε(γ ) in the next
section.

2.4. Ambiguity set induced by moment conditions

We now focus on another important ambiguity set, this one induced by moment condi-
tions; for details see [6] and [24]. Assume that p > 1, μ ∈R, and σ is a positive real number.
Specifically, we concentrate on the ambiguity set defined as follows:

Mp,μ,σ =
{

F ∈Mp :
∫

xdF(x) = μ,

∫ ∣∣x − μ
∣∣pdF(x)≤σ p

}
. (2.11)

Let Y ∈Lp be a random variable such that FY ∈Mp,μ,σ ; then its expectation is clarified by
μ, while its pth center moment is confirmed to have an upper bound σ p. We would like to
emphasize here that there are many other comparable versions of Mp,μ,σ , in one of which
the restriction on the expectation is given by a pre-specified range rather than an equality; this
indicates that the information about the expectation of an unknown distribution is not fully
determined, which is often the case in parameter estimation problems. Many risk measures,
including those explored in this article, share a similar structure in relation to the worst-case
problem; thus we do not elaborate further here.

The case p �= 2 is less commonly discussed in literature than M2,μ,σ . This is not just
because the expectation and variance are the most fundamental attributes of random variables,
but also because of computational convenience. For example, [18] establishes an explicit solu-

tion for WCE
M2,μ,σ
α . However, it is still necessary to consider the general order condition when

we have information on higher or lower moments than p = 2. To the best of our knowledge,
there is no literature concentrating on the worst-case value of the expectile through Mp,μ,σ

when p �= 2. Note that if α = 1/2, then obviously WCE
Mp,μ,σ

1/2 = μ; therefore, we focus on the
situation M=Mp,μ,σ at level α > 1/2, similarly to Section 2.3.

In parallel to Proposition 2, we can derive the following, which covers the case of a moment-
constrained ambiguity set.

Proposition 3. Following the notation and definitions in Proposition 2, we have

sup
FY∈Mp,μ,σ

ρHγ (Y) = μ + min
x∈R σ‖hγ − x‖q = μ + σ [hγ ]q,
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where [hγ ]q = min
x∈R ‖hγ − x‖q. Moreover, the above supremum can be attained by a two-point

distribution, whose quantile function is defined by

F−1
p,μ,σ,γ (u) = μ + σ[

τ p−1 + (1 − τ )p−1
]1/p

(
− (1 − τ )1/q

τ 1/p
1{0<u≤τ } + τ 1/q

(1 − τ )1/p
1{τ<u≤1}

)
.

(2.12)

The specific form of the above quantile function requires careful computational verification
and is essentially contained in the proof of Theorem 7; hence we omit its proof. According to
Proposition 3, Equation (2.3) is reduced to

WCE
Mp,μ,σ
α = μ + σ sup

γ∈[ 1
β
,1]

[hγ ]q. (2.13)

Therefore, in the next section, we need to solve Equation (2.13), where the optimized function
is not concave in general.

3. Main results

In this section, we first provide some exact results on the function zp,G,ε(γ ), discussing
both scenarios p = 1 and p > 1 in detail (see Theorems 1 and 2). Moreover, we find either a
single distribution function Fα,M or a sequence of distribution functions Fn,α,M to attain or
approximate the supremum in Equations (2.10) and (2.13), i.e., to satisfy eα(Fα,M) = WCEM

α

or limn→∞ eα(Fn,α,M) = WCEM
α , for M=Wp,G,ε (Theorems 1 and 2) and M=Mp,μ,σ

(Theorem 7). As expected, the construction of these functions is extremely dependent on the
behavior of the optimized functions. Unlike in most of the existing literature, which focuses on
the exact worst-case value of certain risk measures, there is no explicit solution in most cases
for the worst-case value of the expectile; we will explore this further below. However, when
we consider extreme situations, i.e., α → 1, or equivalently β → ∞, we can obtain asymptotic
representations under extra conditions (see Theorems 3–7). In addition to studying WCEM

α , in
Section 3.1.3 we give a concise introduction to an alternative approach called ‘model aggrega-
tion’ for prudent risk evaluation based on stochastic dominance, which was recently proposed
in [18]. We then present a comprehensive comparison between model aggregation and our
approach, simultaneously giving an upper bound to our problem for M=Wp,G,ε.

3.1. Results on WCE
Wp,G,ε
α

3.1.1. Some precise results. As shown in Equation (2.10), WCE
Wp,G,ε
α is the supremum of a

function zp,G,ε(γ ) on
[
1/β, 1

]
. Unfortunately, there is no closed-form solution for this prob-

lem in general, because of extreme dependence on both the reference distribution G and the
order p (even in some simple cases, such as when p = 2 and G is the standard normal distri-
bution function). Fortunately, the function zp,G,ε(γ ) possesses good properties, in particular
continuity and concavity, which implies that we can transform the infinite-dimensional prob-
lem (1.2) into a tractable one. Before we give the main results, it is worth mentioning that when
p = 1, lp (γ ) := ‖hγ ‖q is neither continuous at γ = 1 nor strictly concave on (1/β, 1), which
is different from the case p > 1. Consequently, we discuss the two cases of p > 1 and p = 1
separately.
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Theorem 1. When p > 1, zp,G,ε (γ ) is continuous and strictly concave on
[
1/β, 1

]
for any G;

thus, its maximum value point γ ∗ exists and γ ∗ ∈ (1/β, 1), that is to say,

WCE
Wp,G,ε
α = zp,G,ε

(
γ ∗) .

Moreover, we have

WCE
Wp,G,ε
α = eα(Fp,G,ε,γ ∗ ),

where Fp,G,ε,γ ∗ is defined in (2.7).

Based on the fact that τ is a strictly increasing function of γ that maps
[
1/β, 1

]
into [0,1],

we may seek the corresponding τ ∗ instead of γ ∗, i.e.,

τ ∗ = sup
τ∈(0,1)

{
z′

p,G,ε− (γ (τ )) ≥ 0
}

. (3.1)

In the following, we focus on the situation when p = 1. Noting that z1,G,ε (1) = z1,G,ε (1/β) =
ε + μG and limγ→1− z1,G,ε (γ ) = εβ + μG > ε + μG, we consider only sup

γ∈
(

1
β
,1
) z1,G,ε (γ ).

Theorem 2. When p = 1, we have the following:

(i) If ess supG ≤ μG + εβ, then WCE
W1,G,ε
α = μG + εβ, and there exists a sequence of

distribution functions Fn,G,ε such that limn→∞ eα(Fn,G,ε) = μG + εβ, whose quantile
function is given by

F−1
n,G,ε(u) = G−1(u) + ε

1 − τn
1{τn<u≤1},

where τn ∈ (0, 1) is an arbitrary sequence tending to 1 as n → ∞.

(ii) If ess supG > μG + εβ, then z1,G,ε (γ ) attains its maximum on γ ∗ ∈ (1/β, 1)

and WCE
W1,G,ε
α = z1,G,ε (γ ∗). Analogously to Theorem 1, we have WCE

W1,G,ε
α =

eα(F1,G,ε,γ ∗ ), where F1,G,ε,γ ∗ is as defined in (2.8).

Recalling Equations (2.7) and (2.8), we know that the quantile function that attains the
supremum is in fact equal to the sum of G−1 and the quantile function corresponding to some
non-negative two-point distribution indexed by γ ∗, p, and ε. See Figure 3.1 for a numerical
illustration.

Theorem 10 in [4] reveals that expectiles are Lipschitz with respect to the 1-Wasserstein
metric, with Lipschitz constant β, i.e., for any distribution functions F1, F2 ∈M1, it holds
that

|eα(F1) − eα(F2)| ≤ βW1(F1, F2). (3.2)

In conjunction with our Theorem 2, there are two counterintuitive aspects worth mention-
ing. First, there are circumstances in which the supremum in (1.2) may not be attained,
which seems to contradict the fact that the expectile is a continuous functional under the
1-Wasserstein distance. However, this should not be surprising, because the Wasserstein ball is
not compact under the induced Wasserstein topology (see Proposition 2.2.9 in [22].) Second,
one may conjecture that

WCE
W1,G,ε
α = eα(G) + βε (3.3)
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(a) (b)

FIGURE 3.1: Illustration of the distribution function at which the supremum is attained in Theorems 1
and 2: (a) Here p = 1, ε = 0.2, and α = 0.8; the standard normal distribution (green line) and exponential
distribution (red line) and the corresponding transformed distributions F1,G,ε,γ ∗ (purple and blue lines)
are shown. (b) Here p = 2, ε = 1, and α = 0.9; the standard normal distribution (red line) and uniform
distribution (purple line) and the corresponding transformed distributions F2,G,ε,γ ∗ (green and blue lines)
are shown.

from Equation (3.2). However, interestingly, this is clearly not the case, since from
Theorem 2(i), it follows that under the condition ess supG ≤ μG + εβ, we have

WCE
W1,G,ε
α = μG + βε,

which is strictly less than eα(G) + βε, for any non-degenerate distribution function G. A
natural question is under which assumptions on G and ε the Lipschitz bound (3.3) is optimal,
and when it can be improved. The following proposition provides a detailed answer.

Proposition 4. If G is a non-degenerate distribution function, then WCE
W1,G,ε
α < eα(G) + βε.

By contrast, if G = 1{x≥x0}, then WCE
W1,G,ε
α = eα(G) + βε.

Proposition 4 implies that the Lipschitz bound (3.3) is optimal if and only if G is degen-
erate, in which case the Wasserstein constraint is reduced to a restriction on the absolute first
moment, i.e., M= {FY ,E|Y − x0| ≤ ε} for some real number x0. The proof of this proposition
is deferred to Appendix B, as a continuation of that of Theorem 2. In addition, we have the
following corollary, which is a direct consequence of Theorem 2 and Proposition 4.

Corollary 1. When p=1, we have the following:

(i) If G is bounded from above, i.e. ess supG < ∞, then there exists some level α close

enough to 1 so that WCE
W1,G,ε
α = εβ + μG.

(ii) If G is not bounded from above, then z1,G,ε (γ ) attains its maximum on (1/β, 1), and

εβ + μG < WCE
W1,G,ε
α < εβ + eα(G). (3.4)
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3.1.2. Some asymptotic results. So far we have generally analyzed the properties of the func-

tion zp,G,ε and obtained some precise results for WCE
Wp,G,ε
α , along with a rough range (3.4)

for WCE
W1,G,ε
α . The worst-case value of the expectile has a closed-form solution only in a few

special circumstances, namely p = 1 and ess supG ≤ μG + εβ, which excludes a large class of
distribution functions. It is clearly unsatisfactory simply to know that (2.10) is a convex opti-
mization problem and can be calculated with respect to the specific reference distribution, since
this does not provide meaningful understanding of the characteristics of the worst-case value
of the expectile. Therefore, we take an alternative approach and explore its extreme behavior,
i.e., we consider α → 1, which is a case often relevant in risk management. For this, we need to
make some additional assumptions on the distribution function G. We start by collecting some
notation.

Let EG[·] represent taking the expectation under the distribution function G. Throughout
this paper, the notation f (α) = O(g(α)) means that there exists a constant c such that
f (α)/g(α) → c as α → 1. All limits are at α → 1, or equivalently β → ∞, unless otherwise
specified.

Theorem 3. When p = 1, if EG[(Y+)2] < ∞, G−1 is continuous, and ess supG = ∞, then

WCE
W1,G,ε
α = μG + εβ + o (1) as α → 1.

Remark 1. From the proof in Appendix B, it can easily be seen that the remainder in

Theorem 3 is actually O
(
βEG

[
Y1{Y>εβ/2}

] )
, which is of lower order than εβ because

G ∈M1. A trivial application of Chebyshev’s inequality implies that the higher the moments
of G, the faster the residuals converge. In particular, when G is a normally distributed dis-
tribution function, the residuals are of exponential order infinitesimal. However, when G is a
heavy-tailed distribution with an infinite moment of order p ∈ (1, 2), the residual term is large,
which motivates us to relax the assumption that EG[(Y+)2] < ∞ (see Theorem 4).

The following example shows that even if G ∈⋂p∈(1,2) M2−δ for all δ > 0, but G /∈M2,
the residual term is just O(1) rather than o(1).

Example 1. Let G be a Pareto distribution function with density 2x−31(1,∞)(x); then we derive
the following:

WCE
W1,G,ε
α = εβ + 2 + 1/ε + o(1).

Now we see that the approximation in Theorem 3 is valid only for E
G[(Y+)2] < ∞.

Therefore, we generally consider a class of heavy-tailed distributions whose survival function
satisfies

G(x) := 1 − G(x) = x−θ L(x), (3.5)

where L(x) is a slowly varying function at infinity, i.e., limx→∞ L(cx)/L(x) = 1 for any c > 0.
Intuitively, G(x) is ‘almost’ x−θ as x → ∞, and the ‘tail’ becomes heavier as θ → 0. When
θ > 2, the condition in Theorem 3 is fulfilled. Moreover, θ > 1 is required to guarantee that
G ∈M1. Consequently, we assume that θ ∈ (1, 2]. However, when θ approaches 1, it seems
difficult to give uniform and simple bounds connected to θ . Worse still, when L is a general
slowly varying function, the analysis is beyond the scope of this paper. Therefore, we impose
additional restrictions on both θ and L.

Theorem 4. Suppose that when x is large enough, the survival function of G has the rep-
resentation (3.5), and assume 3/2 < θ ≤ 2, limx→∞ L(x) =: ζ > 0. In addition, assume L is
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differentiable with limx→∞ x3−θ L′(x) = 0. Then

WCE
W1,G,ε
α = εβ + μG + ζε1−θ

θ − 1
β2−θ + o(1), as α → 1.

Remark 2. Through a careful check of the proof in Appendix B, we can verify that our approx-
imation for τ ∗ only requires the assumption limx→∞ L(x) =: ζ > 0, which is not restrictive
because there are large numbers of common heavy-tailed distributions satisfying these con-
ditions. This is evidently the central condition to be checked as part of Theorem 4, excluding
some irregular slowly varying functions such as log (x), which are difficult to analyze using our
techniques. The other assumptions we made are utilized to guarantee that the residual term is
o(1) rather than o(β2−θ ). Even so, a large category of distributions is still included; see Table 1.
A similar table can be found in [1].

It is easily confirmed from the above table that our assumption on L′(x) is automatically
satisfied whenever the parameter θ > 1, except for the Burr distribution, which requires 2 −
αβ − α < 0. Therefore, the assumptions in Theorem 4 should not be viewed as restrictive in
practice.

We now turn to the case p > 1. We can establish a more accurate approximation for

WCE
Wp,G,ε
α when ess supG < ∞.

Theorem 5. If p > 1 and G has bounded support, i.e. ess supG < ∞, then

WCE
Wp,G,ε
α = p−1[ε (p − 1)1/q β1/p + μG

]+ q−1ess supG + o (1) , as α → 1. (3.6)

In fact, as noted in Remark 1, the remainder o(1) in Equation (3.6) may also be replaced by
a precise order of particular relevance to p and G, through a slight modification of the proof
in Appendix B. However, tedious arguments are required to analyze the relationship between
terms related to p and those related to G, or even both of them. The form of Theorem 5 is

consistent with Theorem 2(i), in the sense that WCE
Wp,G,ε
α → WCE

W1,G,ε
α as p → 1, regard-

less of the residual term. In detail, (p − 1)1/q → 1 as p → 1. We must inevitably make the
strong assumption ess supG < ∞, since there are essential difficulties in tackling a general dis-
tribution G, on account of the complexity of zp,G,ε and the entanglement of lp and kG, which
are defined in the proof of Theorem 1. However, a broad class of distributions is still cov-
ered, including the empirical distribution, which has attracted considerable research interest
recently. In the following supporting example, G is chosen to be a degenerate distribution
function, and the restrictions related to the Wasserstein distance are effectively translated into
moment constraints.

Example 2. Let G be the distribution function corresponding to a point measure δx0 . Then we

can provide a specific expression for WCE
Wp,G,ε
α as follows:

WCE
Wp,G,ε
α =

⎧⎨
⎩

εβ + x0, p = 1,

εp−1(p − 1)1/qβ1/p
(

1 + β−1
βq−β

) (
1 + 1−β2−q

β−1

)1/q + x0, p > 1.

From Theorems 3–5, it appears that the worst-case value of the expectile through Wp,G,ε is
mainly influenced by the level α when extreme risk is involved. On the one hand, it is intuitively
clear that for a distribution G bounded from above, there is a bounded expectile at any level,
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TABLE 1. A list of heavy-tailed distributions satisfying the assumptions in Theorem 4 with correspond-
ing θ , ζ , and L′(x). Here �( · ) and B(·, ·) denote the gamma and beta functions, respectively.

Distribution (parameters) Density function θ ζ L′(x)

Generalized Pareto (σ, ξ > 0) 1
σ

(
1 + ξx

σ

)−1/ξ−1
1{x>0} 1/ξ

(
σ
ξ

)1/ξ

O(x−2)

Burr (α, β > 0) αβxα−1(1 + xα)−β−11{x>0} αβ 1 O(x−α−1)
Fréchet (α > 0) αx−α−1e−x−α

1{x>0} α 1 O(x−α−1)

Fisher (ν1, ν2 > 0)

(
ν1
ν2

) ν1
2

B(
ν1
2 ,

ν2
2 )

x
ν1
2 −1

(
1 + ν1x

ν2

)− ν1+ν2
2
1{x>0} ν2/2

2
(

ν2
ν1

) ν2
2

ν2B(
ν1
2 ,

ν2
2 )

O(x−2)

Inverse gamma (α, β > 0) βα

�(α) x−α−1e− β
x 1{x>0} α

βα

�(α) O(x−2)

Student (ν > 0) 1√
νπ

�
(

ν+1
2

)
�( ν

2 )

(
1 + x2

ν

)− ν+1
2

ν ν
ν
2 −1√
π

�
(

ν+1
2

)
�( ν

2 )
O(x−3)
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and so it is reasonable to expect that at extreme levels, the effect of G on WCE
Wp,G,ε
α is lim-

ited. In detail, Theorems 3 and 5 quantitatively characterize this effect in terms of a weighted
average of expectation and essential supremum, i.e., μG/p + ess supG/q (μG by continuity
when p = 1). On the other hand, as the tail of the reference distribution becomes heavier and
heavier, the ‘invasion’ of G becomes more and more prominent, because more and more terms

related to G are included in the asymptotic expression for WCE
W1,G,ε
α (see Theorems 3 and 4).

An analogous phenomenon is found for WCE
Mp,μ,σ
α , which will be discussed in Section 3.2.

Even if ε is small and G is a degenerate distribution, we find that the worst-case value of
the expectile explodes as α → 1. This is because the shape of the distribution may be greatly
altered, regardless of how slight the perturbation induced by the Wasserstein distance is (see
Figure 3.1 for a simple illustration). Specifically, we observe that the transformed distribution
function Fp,G,ε,γ ∗ elongates the tail of G dramatically when α is sufficiently close to 1; this
can be theoretically verified in many cases. Indeed, in the several scenarios contemplated in
Theorems 3–5, τ ∗ → 1 and βq−1/[τ ∗ + βq(1 − τ ∗)]1/p → ∞ always hold when p > 1, indi-
cating that F−1

p,G,ε,γ ∗ substantially elevates G−1 in an extremely narrow interval [τ ∗, 1]. These
results should be significant as a feature of model ambiguity at extreme levels.

3.1.3. Comparison with the model aggregation approach. As suggested by [18], instead of
directly calculating the maximum (or supremum) of eα(F) over F ∈M, it may be better to cal-
ibrate a robust (conservative) distribution F∗ from M and calculate eα(F∗); the latter is called
the ‘model aggregation’ approach. As will be seen later, this element F∗ does not necessarily
belong to M, although it ‘dominates’ M in some sense. In the presence of model uncertainty,
a natural problem in risk management is how to generate such a robust model F∗ from the
collection of models generated by various scenarios. Indeed, F∗ is typically referred to as a
maximal element (or supremum) of the ambiguity set M in the sense of stochastic dominance;
it has been explicitly derived in many situations. Below, we will use the abbreviation ‘MA’ to
refer to the model aggregation approach. It can be argued that both the worst-case approach and
the MA approach are reasonable ways to assess the risk posed by model uncertainty, although
they may yield different values over the same ambiguity set M. Figure 1 in [18] illustrates the
two methods.

Now we are in a position to properly formulate the MA approach by giving a partial order 

on M1. At this point, (M1, 
 ) is called an order set. The most commonly used partial orders
in finance and economics are the usual stochastic order 
st and the increasing convex order

icx, defined as follows.

Definition 1. For F1, F2 ∈M1,

(i) F1 
st F2 if
∫

udF1 ≤ ∫ udF2 for increasing functions u;

(ii) F1 
icx F2 if
∫

udF1 ≤ ∫ udF2 for increasing convex functions u.

A natural interpretation of a partial order is that F2 is riskier than F1 if F1 
 F2. This is
the case when F1 and F2 are viewed as loss distributions rather than wealth distributions: a
larger element with respect to 
st or 
icx corresponds to higher risk. Thus, we expect the
risk measure ρ to maintain the order, i.e., ρ(F1) ≤ ρ(F2) if F1 
 F2, which is formally defined
being as 
-consistent. The expectile is consistent with both 
st and 
icx. For an ambiguity set
M ∈M1, the supremum of M in M1 is defined by

∨M ∈M1 such that F1 
∨M
 F2
for all F1 ∈M and for any F2 that dominates every element in M. If such an F2 exists, we say
that M is bounded from above. In what follows, we denote the supremum of M with respect
to 
st and 
icx on M1 by

∨
st M and

∨
icx M, respectively.
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For an ambiguity set M whose supremum
∨M exists, we formally formulate the MA

approach for an expectile, in parallel with (1.2), as

MAEM
α,
 = eα

(∨
M
)

, (3.7)

and MAEM
α,
 = ∞ if M is not bounded from above. From the definition and the 
icx-

consistency of the expectile, it is easily verified that eα

(∨
icx M

)≥ eα(F) for any F ∈M.
Moreover, since the expectile is consistent with the two partial orders 
st and 
icx, the
MA approach with the stronger partial order 
st leads to a higher risk evaluation, i.e.,
MAEM

α,
icx
≤ MAEM

α,
st
. Combining these two statements, we have the chain of inequalities

WCEM
α ≤ MAEM

α,
icx
≤ MAEM

α,
st
, (3.8)

which indicates that the MA approach may produce a more conservative risk evaluation.
Although the supremum of Wasserstein balls with respect to 
st and 
icx is explicitly derived
in [18, Theorem 6], there is no closed-form expression for the supremum under the partial
order 
st, and the Wp,G,ε is not bounded from above under 
icx when p = 1. Therefore, in the
following we will restrict our attention to M=Wp,G,ε with p > 1 and the partial order 
icx.
From [18, Theorem 6], the quantile function of

∨
icx Wp,G,ε with p > 1 is given by

(Ficx
p,G,ε)−1(u) = G−1(u) +

(
1 − 1

p

)
(1 − u)−1/pε, (3.9)

which is the sum of the quantile function G−1 and a Pareto quantile with a tail index p > 1.
It is surprising that Ficx

p,G,ε is a heavy-tailed distribution even if the reference distribution G is
light-tailed, while Fp,G,ε,γ ∗ is not so. Another significant difference between the worst-case
approach and the MA approach is that the construction for Fp,G,ε,γ ∗ is highly dependent on
the specific choice of risk measure, rather than simply arising from the ambiguity set Wp,G,ε.
Also, one may wonder whether the inequality in Equation (3.8) could be refined to an equality.
The theorem below provides a negative answer, as well as an asymptotic representation for
Equation (3.7), where M=Wp,G,ε.

Theorem 6. Let p > 1 and let Ficx
p,G,ε be as defined in (3.9). Furthermore, let zicx

p,G,ε(γ ) =∫ 1
0 (Ficx

p,G,ε)−1(u)dHγ (u). Then the following hold:

(i) We have that zicx
p,G,ε(γ ) is continuous and strictly concave on [1/β, 1], and

MAE
Wp,G,ε

α,
icx
= max

γ∈[1/β,1]
zicx

p,G,ε(γ ).

(ii) For any G, ε, and level α > 1/2, WCE
Wp,G,ε
α is strictly less than MAE

Wp,G,ε

α,
icx
.

(iii) If we further assume ess supG < ∞, then

MAE
Wp,G,ε

α,
icx
= WCE

Wp,G,ε
α +ε

p
+ o(1), as α → 1.

Parts (i) and (iii) are parallel to Theorems 1 and 5 respectively, in which the worst-case
approach yields similar results. Moreover, they are proved via identical steps and using sim-
ilar techniques; thus we only give the proof of Part (ii), which is deferred to Appendix B.
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Additionally, because of technical constraints, we can only obtain an asymptotic solution for

MAE
Wp,G,ε

α,
icx
when ess supG is finite. Comparing these two methods, the MA approach yields

a more cautious risk assessment, whereas our worst-case approach takes full advantage of the
properties of expectiles. However, when extreme levels are considered, they are separated by

almost a constant ε/p, which is negligible relative to the diverging term MAE
Wp,G,ε

α,
icx
.

3.1.4. Alternative formulation of WCE
Wp,G,ε
α . We present an alternative way of formulating

WCE
Wp,G,ε
α , based on the general results of [2] on robust shortfall risk measures. As a par-

ticular category of risk measure, the utility-based shortfall risk measure (abbreviated as SR
hereafter) was proposed by [11] and has attracted rapidly increasing interest in recent years
[9, 13, 16]. We first give a brief definition of the shortfall risk measure, which is adopted from
[15] with some slight modifications for simplicity. Let l : R→R be a convex, increasing, and
non-constant loss function, and let λ be a pre-specified constant in the interior of the range of
l, indicating the risk level. Then the SR of X ∈L1 is defined as

SRλ,l (X) = inf{t ∈R : E(l(X − t)) ≤ λ}, (3.10)

whenever E(l(X − t)) is finite for some t ∈R. Viewing −X as a financial position, we see from
the definition that the SR is the smallest amount of cash that must be added to the position −X
to make it below a certain risk level, i.e., E(l(− (− X + t))) ≤ λ. Theorem 4.9 in [3] shows that
the expectile is indeed a shortfall risk measure with l(t) = αt+ − (1 − α)t− and λ = 0.

To hedge the risk arising from the ambiguity of the true probability distribution, much of
the extant literature considers the distributionally robust shortfall risk measure (abbreviated as
DRSR in the sequel); see [15, 2, 30]. Specifically, for an ambiguity set M, we concentrate on
the following problem:

DRSRM
λ,l = inf

{
t ∈R : sup

G∈M
E

G(l(X − t)) ≤ λ

}
. (3.11)

In [2], Equation (3.11) is reformulated as a finite-dimensional problem with M=Wp,G,ε and
a different loss function l. In fact, we have

DRSR
Wp,G,ε

0,l = inf
μ≥0

SR0,lμp+μεp (XG), (3.12)

where XG is an arbitrary random variable with distribution function G and lμp is the μc-
transform of function l with cost function c(x, y) = |x − y|p, which is formally defined as

lμp(x) = sup
{
l(y) − μ|x − y|p, y ∈R such that l(y) < ∞}

. (3.13)

Meanwhile, [15] reveals that the infimum and supremum in Equation (3.11) can be exchanged
in many circumstances, and in particular for l(t) = αt+ − (1 − α)t−, which gives rise to an
expectile. Indeed, we have

DRSRM
λ,l = sup

G∈M
SRλ,l (XG),

where the right-hand side is exactly the worst-case shortfall risk measure over M. Now, by tak-
ing M=Wp,G,ε and λ = 0 and combining this with Equation (3.12), we obtain the following
reformulation:

WCE
Wp,G,ε
α = inf

μ≥0
SR−μεp,lμp

α
(XG), (3.14)
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where lμp
α can be calculated explicitly from Equation (3.13) with l(y) = αy+ − (1 − α)y−.

Specifically, when p > 1 we have

lμp
α =

⎧⎨
⎩

αx + αq

q(μp)q−1 if x > 1
q(μp)q−1

(
αq−(1−α)q

1−2α

)
,

(1 − α)x + (1−α)q

q(μp)q−1 if x ≤ 1
q(μp)q−1

(
αq−(1−α)q

1−2α

)
.

We believe it would be difficult to simplify Equation (3.14) further in this case, not only
because of the complexity of lμp

α , but also because of the generality of G. However, when
p = 1, it is easy to obtain lμ1

α = l if μ ≥ α and lμp
α = ∞ otherwise, which further transforms

Equation (3.14) into

WCE
W1,G,ε
α = inf

μ≥α
inf{t ∈R : αEG(X − t)+ − (1 − α)EG(X − t)− ≤ −με}. (3.15)

Notice that the function

g(t) = αEG(X − t)+ − (1 − α)EG(X − t)− = α

∫ +∞

t
(1 − G(s))ds − (1 − α)

∫ t

−∞
G(s)ds

is a strictly decreasing continuous function that tends to −∞ as t → +∞ and tends to +∞
as t → −∞. Equation (3.15) can therefore be translated into a more concise form; that is,

WCE
W1,G,ε
α is the unique solution to the following equation:

α

∫ +∞

t
(1 − G(s))ds − (1 − α)

∫ t

−∞
G(s)ds = −αε. (3.16)

The above equation is quite succinct, although it is still difficult to use it to acquire general

results for WCE
W1,G,ε
α . However, if we assume ess supG ≤ βε + μG and substitute εβ + μG

into Equation (3.16), we obtain

α

∫ +∞

εβ+μG

(1 − G(s))ds − (1 − α)
∫ εβ+μG

−∞
G(s)ds

= − (1 − α)

(
εβ + μG − G−1(1) +

∫ G−1(1)

−∞
G(s)ds

)

= − (1 − α)

(
εβ + μG − G−1(1) +

∫ 1

0

(
G−1(1) − G−1(s)

)
ds

)

= − (1 − α)εβ = −αε,

which is consistent with Theorem 2(i), which shows that WCE
W1,G,ε
α = εβ + μG.

In summary, Equations (2.10) and (3.14) are both tractable optimization problems that can
be solved easily by many popular algorithms, once the distribution function G is provided.
Nevertheless, it is clear that Equation (2.10) is easier to deal with, and it is possible to obtain a

transformed distribution function whose expectile is exactly WCE
Wp,G,ε
α by solving Equation

(2.10). Moreover, when considering extreme levels, it is more difficult to obtain asymptotic
results analogous to those of Theorems 3–7 by analyzing Equation (3.14).
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3.2. Results on WCE
Mp,μ,σ
α

We consider the problem (1.2) where M=Mp,μ,σ . As in Section 3.1, we observe that
there is no closed-form solution in most cases, apart from p = 2. Another difficulty is that the
function being optimized is not concave in general, so it is more fruitful to study the asymptotic
nature of the solution than simply to discuss the solvability of the problem (2.13). In other
words, we can obtain an asymptotic solution when α → 1, or equivalently β → ∞. We show
this in the following theorem.

Theorem 7. For any p > 1, there exists only one γ ∗ ∈ (1/β, 1) maximizing [hγ ]q, and

WCE
Mp,μ,σ
α = eα(Fp,μ,σ,γ ∗ ), where Fp,μ,σ,γ ∗ is defined in (2.12). Moreover, we have the

following:

• If p = 2, then γ ∗ = (1/β + 1)/2 and

WCE
M2,μ,σ
α = μ + σ

β − 1

2
√

β
.

• If p >> 2, then γ ∗ = 1/p + o(1) and

WCE
Mp,μ,σ
α = μ + σ

(β − 1)1/p

p1/pq1/q
+ o

(
β2−p−1/p

)
, as α → 1.

• If p < 2, then γ ∗ = 1/p + o(1) and

WCE
Mp,μ,σ
α = μ + σ

(β − 1)1/p

p1/pq1/q

(
1 − η1

βp−1
+ η2

β2p−2

)
+ o

(
β1/p−2p+2

)
, as α → 1,

where η1 = p−1(p − 1)p−1 and

η2 = p−2(p − 1)2p−1 + p−1(p − 1)2p + (2p2)−1(p − 1)p−1(p + 1).

The strategy of the proof is basically to use the same technique as in the proofs of
Theorems 4 and 5, with some tiny modifications when dealing with the case p < 2. The cal-
culations are so tedious that we do not elaborate further here, deferring the proof to Appendix
B; instead, we now discuss the results of the theorem in detail. Surprisingly, Theorems 5

and 7 indicate that the main terms of the asymptotic representations of WCE
Mp,μ,σ
α and

WCE
Wp,G,ε
α are of the same order, and the corresponding coefficients are also equal, when

p > 1, ess supG < ∞, and σ = ε (noting that p−1/pq−1/q = (p − 1)1/q/p). Alternatively, if we
ignore the constants and the terms of lower order than β1/p, the asymptotic behavior of WCEM

α

is totally captured by Cp−1/pq−1/qβ1/p, where C = ε for M=Wp,G,ε and C = σ for Mp,μ,σ .
We formally record this observation as follows.

Corollary 2. If p > 1 and ess supG < ∞, then

lim
α→1

WCE
Mp,μ,σ
α

p−1/pq−1/qβ1/p
= σ, lim

α→1

WCE
Wp,G,ε
α

p−1/pq−1/qβ1/p
= ε.

It can be seen from Equation (2.11) that for any given μ and σ , WCE
Mp1,μ,σ

α < WCE
Mp2,μ,σ

α

for any p1 > p2 > 1. This roughly characterizes the effect of the reduction in ambiguity on
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the worst-case value of the expectile, while our results describe in detail the influence of p on

WCE
Mp,μ,σ
α , at extreme levels. Regarding Theorem 7 alone, the first residual term O(β1/p−p+1)

is o (1) if and only if p > (
√

5 + 1)/2 ≈ 1.618, and the second residual term O(β1/p−2p+2) is
o (1) if and only if p > (

√
3 + 1)/2 ≈ 1.366. It seems that when p → 1, the error increases

greatly and there are essential difficulties in finding uniform bounds to control the error.

4. Concluding remarks and future work

In this paper, we have presented the worst-case value of the expectile over two common
ambiguity sets, one specified as a ball in the p-Wasserstein metric and the other specified by a
moment constraint. We initially focus on the p-Wasserstein ball, for which we reformulate the
problem as a convex optimization problem and provide a method of constructing elements that
attain or approach the worst-case expectile. In this case, it is established that the precise value
of the worst-case expectile can be derived only under specific conditions. However, the asymp-
totic behavior of the worst-case expectile at extreme levels is thoroughly understood for a wide
range of distribution functions. The technical results and simulation studies described in the
supplementary material show that our approximation is remarkably accurate, and the general
trends of worst-case expectiles at extreme levels are independent of the reference distribution.
Furthermore, we observe significant alterations in the shape of the distribution function within
the p-Wasserstein ball for which the extreme worst-case expectile is achieved; this highlights
a feature of distributional ambiguity.

We also compare our worst-case approach with the model aggregation approach in the case
of the expectile; the latter relies not on a specific risk measure but on the choice of stochastic
order. We observe that the model aggregation approach yields a more conservative risk eval-
uation at both fixed and extreme levels. Additionally, we attempt to reformulate our problem
using the general results of [2] on robust shortfall risk measures, and we re-derive Theorem 2(i)
from this new perspective. In parallel, we apply our techniques to investigate the worst-case
expectile over an ambiguity set with constraints on higher-order moments.

Although we have systematically studied the worst-case value of the expectile, there are
still some restrictions on our results, which reveal a few promising directions for future study.
First, we would like to remove the strong assumption ess supG < ∞ in Theorems 5 and 6,
which is essential for our proof. Second, one may want to offer more accurate and even uni-
fied approximations for the worst-case expectiles over both the p-Wasserstein ball and the
moment-constrained ambiguity set, to describe their asymptotic behavior in a more general
setting. Finally, a potential future problem would be to adapt the worst-case expectile to robust
portfolio selection, a topic that has already attracted great interest in recent years [12, 14, 20,
31].
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