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Abstract. Let A be the inductive limit of a sequence
91,2 $2,3

Al =5 Ay —225 Ay —> e
with A, = GB:.':"I Afp,i]> where all the A[,, ;; are Elliott-Thomsen algebras and ¢, s+1 are homomor-
phisms. In this paper, we will prove that A can be written as another inductive limit
Y1,2 ¥2,3

Bl—>Bz—>B3—>---

with By, = @ 1 B[n,i7> where all the B[, ;)s are Elliott-Thomsen algebras and with the extra con-
dition that all the Yn,n+1 are injective.

1 Introduction

In 1997, Li proved the result that if A = hm(A,,, @m,n ) is an inductive limit C*-algebra
with A, = @7, M,,1(C(X[n,17)) where all X[,,;] are graphs, n; and [#, i] are pos-
itive integers, then one can write A = lim(By, Ym,n ), where

eaMn, (C(Y[n,i1))

are finite direct sums of matrix algebras over graphs Y}, ;) with the extra property
that the homomorphisms v, , are injective [10]. This played an important role in the
classification of simple AH algebras with one-dimensional local spectra (see [2,3,10-
12]). This result was extended to the case of AH algebras [5], in which the space X, ;;
are replaced by connected finite simplicial complexes.

In this article, we consider the C*-algebra A that can be expressed as the inductive
limit of a sequence

Ay mAz Eﬂ% —

where all A; are Elliott-Thomsen algebras and ¢, ,+1 are homomorphisms. These
algebras were introduced by Elliott in [4] and Thomsen in [6], and are also called
one-dimensional non-commutative finite CW complexes. We will prove that A can
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be written as inductive limits of sequences of Elliott—-Thomsen algebras with the prop-
erty that all connecting homomorphisms are injective. The results in this paper will
be used in to classify real rank zero inductive limits of one-dimensional non-commu-
tative finite CW complexes.

2 Preliminaries

Definition 2.1 Let F; and F, be two finite dimensional C*-algebras. Suppose that
there are two homomorphisms ¢g, ¢;: F; = F,. Consider the C*-algebra

A= A(F;, Fy, 90, 91) = { (f,a) € C([0,1], F2)®F: : f(0) = go(a), f(1) = g1(a)}.

These C*-algebras have been introduced into the Elliott program by Elliott and
Thomsen in [6]. Denote by C the class of all unital C*-algebras of the form
A(Fy, F2, 9o, ¢1). (This class includes the finite dimensional C*-algebras, the case
F, = 0.) These C*-algebras will be called Elliott-Thomsen algebras. Following [9], let
us say that a unital C*-algebra A € € is minimal if it is indecomposable, i.e., not the
direct sum of two or more C*-algebras in C.

Proposition 2.2 ([9]) Let A = A(F, Fa, @o, ¢1), where Fy = @leMkj((C), F, =
EBLIMI,.((C) and ¢q, 91: F; > F, be two homomorphisms. Let ¢, ¢1.:Ko(F) =
ZP — Ko(F;) = Z' be represented by matrices & = (a;;)1xp and B = (Bi;)1xp» where
&ijs Bij € Zy for each pair i, j. Then

Ko(A) =Ker(a-B), Ki(A)=Z'/Im(a-p).

2.1 We use the notation #( - ) to denote the cardinal number of a set, the sets under con-
sideration will be sets with multiplicity, and then we shall also count multiplicity when
we use the notation #. We use « or » to denote any possible positive integer. We shall
use {a~*} to denote {a, ...,a}. For example, {a™>,b~2} = {a,a,a,b,b}.

——

k times

2.2 Let us use 0y, 0,,...,0, to denote the spectrum of F; and denote the spectrum of
C([0,1],F,) by (t,i), where 0 < t < land i € {1,2,...,1} indicates that it is in i-th
block of F,. So

Sp(C([0,1],F)) = g{(t,i), 0<t<1}.

Using identification of f(0) = ¢o(a) and f(1) = ¢i(a) for (f,a) € A, (0,i) «
Sp(C[0,1]) is identified with

(07, 05%2,...,0,%") c Sp(F)
and (1,7) € Sp(C([0,1], F)) is identified with
(677,655, 65F) c sp(Fy)

as in Sp(A) = Sp(F) u11},(0,1);.
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2.3 With A = A(F,, F,, @9, ¢1) as above, let p: A - M,,(C) be a homomorphism; then
there exists a unitary u such that

o(f,a) =
u*-diag( a(61),...,a(601),...,a(0p),...,a(0,), f(31)s---» f(ye),00) -1,

t

tp

where y1, y2, ..., yo € [1,[0,1];. For y = (0, i) (also denoted by 0;), one can replace
f(y) by

(a(61),...,a(61),...,a(6,),...,a(6,))

a1 Kip

in the above expression, and do the same with y = (1, ). After this procedure, we
can assume each yy is strictly in the open interval (0,1); for some i. We write the
spectrum of ¢ by

Spe = {07,057, ... 05"y, y2r ..o pehs

where yy € [1}_,(0,1);.
If f = f* € A, we use Eig(¢(f)) to denote the eigenvalue list of ¢(f), and then

#(Eig(¢(f))) = n (counting multiplicity).

2.4 Let A=A(F,F,, ¢o,¢1) € Cbe minimal. Write a € F, as

a=(a(6).a(6).....a(6,)),  f(£)eC([0.1].F2)
£ = (F(D), f(1.2), .. f(B D)),

where a(8;) € My, (C), f(t,1) € C([0,1], M;,(C)).

Forany (f,a) € Aand i€ {1,2,...,1}, define m;: A —» C([0,1], F,) by m:(f, a) =
f(t) and ni:A - C([0,1], M;,(C)) by ni(f,a) = f(t,i), where t € (0,1) and
n(f,a) = £(0,i) (denoted by ¢i(a)), ni (f,a) = f(1,i) (denoted by ¢i(a)). There
is a canonical map 7,: A - F; defined by 7. ((f,a)) = a,forall j={1,2,..., p}.

2.5 We use the convention that A = A(Fy, Fa, 9o, ¢1), B = B(F|, F;, 95, ¢1), where
p ! , , v
F=®M(©), B=©M(©). F=®My(0). F=® My(O)
j= i= j'= i'= i

Set L(A) = ¥\, I, L(B) = ¥4, I/,. Denote by {el,}(1<i<[,1<s,s <I;)the
set of matrix units for @!_, M;,(C) and by {f/,}(1< j < p,1<s,s" < k;) the set of
matrix units for 595:1 My, (C).
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2.6 For each 7 = .- where m € N, let 0 = xo < x; < --- < X, = 1be a partition of [0,1]
into m subintervals with equal length L. We will define a finite subset H(%) c A,
consisting of two kinds of elements as described below.

(a) For each subset X; = {6;} c Sp(F,) = {61,60,,...,0,} and a list of integers
ay, by, ., a;, by with 0 < a; < a; +2 < b; < m, denote W; = ]_I{i‘aij%o}[o,aiq]i u
Ll ¢ip,; 0} [bin,1];. Then we call Wj the closed neighborhood of X j; we define element
(f,a) € A corresponding to X; U Wj as follows:

Leta = (a(6:),a(62),...,a(0,)) € F;, where a(0;) = Iy, and a(6;) = O, ifs # j.
Foreach t € [0,1];,i={1,2,...,1}, define

goé(a)w ifo<t<(a;+1)n,

flti) =10 if (ai + Dy < £ < (bi =7,
gi(a) b bmll) if (p, 1)y < £ <.

All such elements (f,a) = (f(t,1), f(t,2),..., f(t,1)) € A, are included in the set
H(#) and are called test functions of type 1.

(b) For each closed subset X = Ug[x/,,%r.,,]i € [#,1— n]; (the finite union of
closed intervals [x,, x,+1] and points), so there are finite subsets for each i. Define
(f,a) corresponding to X by a = 0 and for each ¢ € (0,1),,7 # i, f(t,r) = 0 and for
t € (0,1);, define

_ dist(t,X)

Fti) = y if dist(¢, X) < 1,
0 if dist(¢, X) > .

All such elements are called test functions of type 2.

Note that for any closed subset Y c [#,1 — 7], there is a closed subset X con-
sisting of the union of the intervals and points such that X > Y and for any x ¢ X,
dist(x,Y) < 7.

2.7 Take 7 as above, define a finite set H(#) as follows:

In the construction of test functions of type 1, we can use f/, € F; in place of

a € Fj, assume that all these elements are in H(#), and for all test functions & € H(#)
of type 2, assume that all these elements e, - h are in H(7).

Then there exists a natural surjective map x: H(y) — H(#). For any subset
G c H(#), define a finite subset G ¢ H(#) by

G={h|heH(n), x(h) € G}.
2.8 Suppose A isa C*-algebra, B c Aisasubalgebra, F c Ais afinite subset, and let ¢ > 0.
If for each f € F, there exists an element g € B such that || f — g| < ¢, then we say that

F is approximately contained in B to within ¢, and denote this by F c, B.
The following is clear by the standard techniques of spectral theory [1].
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Lemma 2.3 Let A = li_rI}(An, Gm,n) be an inductive limit of C*-algebras A, with
morphisms G, i Am — A,. Then A has RR(A) = 0 if and only if for any finite self-
adjoint subset F c A,, and € > 0, there exists n > m such that

Gmn(F) ce { f € (An)sa | f has finite spectrum} .

Lemma 2.4 ([13,Lemma23]) LetA€C, foranyl>e>0andn = - wherem € N,.
If ¢, y: A - M,(C) are unital homomorphisms with the condition that Eig(¢(h))
and Eig(y(h)) can be paired to within € one by one for all h € H(y), then for each
i €{1,2,...,1}, then there exists X; c Sp¢ n (0,1);, X} c Spy n (0,1); with X; >
Spon[n,1-nli, X; 2Spwn[y,1-nl; such that X; and X can be paired to within
21 one by one.

3 Main Results

In this section, we will prove the following theorem.

Theorem 3.1  Let A = lim(An, $m,n) be an inductive limit of Elliott-Thomsen al-
gebras. Then one can write A = im(By, Ym,n), where all the B, are Elliott-Thomsen
algebras, and all the homomorphisms Y, , are injective.

Lemma 3.2 ([10]) Let Y c [0,1] be a closed subset containing uncountably many
points. Then there exists a surjective non-decreasing continuous map p: Y — [0,1].

3.1 Let A= A(F, F,, ¢g, ¢1) € Cbe minimal. The topology base on

!
SP(A) = {61, 92, N Hp} ] IZII(O’ 1),
at each point 0; is given by
{GJ}U ]_I (O,S)iU ]_I (1—8,1),'.
{ilai;#0} {ilBi#0}

In general, this is a non-Hausdorft topology.

For closed subset Y c Sp(A) and § > 0, we will construct a space Z and a continu-
ous surjective map p: Y — Z such that Zn (0,1); is a union of finitely many intervals
for each i € {1,2,...,1}, and dist(p(y),y) < § forall y € Y. We can find a similar
discussion in an old version of [8].

For any closed subset Y c Sp(A), define index sets

Jy={jl0jeY},
Loy ={i| (0,1); nY =g},
Liy={i | (0,1); c Y},
Liy={i|i¢L,yand3s>0suchthat (0,s]; c Y},
Lyy={i|li¢LyyuL,yand 3{y,}ne; c(0,1); nY such that nh—{iloy" =0;},
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L,y={i|i¢Lyyand3t>0suchthat[1-t1);cY},
Lyy={ili¢L,yuL,yand 3{y,}oz; c(0,1); nY such that lim y, =1;},
n—oo

La’y = {1 | i ¢ LO,Y @] Ll,y}.
Then we have

LyyuLyyUL,yUL, ycL,y,
LO,Y ] Ll,y @] La,y = {1, 2, l}

Consider Y ¢ Sp(A); ifi € L,y ULjy U Ly y, assume that (0,i) € Y and if
i€l yUL,yUL, y,assume that (1,i) € Y. For § > 0, there exists m € N, such that
L g. Denote Y; = YN [0,1];,i € {1,2,...,1}, then we can construct a collection of
finitely many points ¥; = {y1, y2,...} c Y; as below.

() IficLyy,letY; =g.
(b) IfieLyy,letY;={(0,i),(%,i),....(Li)}

(c) Foreachi € L, y, consider the set Y; N [%1, —]i IfYin [%1, )i # @, then set
. . r—-1 r
xi:mln{x‘ xeY,-m[—,—]'},
m mii

r—1 r
Tc'i’:max{x|xe}’,‘m[—,—]}.
m mli
Assume that Y; n[=, L1, 4 gifand onlyifr € {r,r5,...,7e} ¢ {1,2,...,m}. Then
we have a finite set

r T (23 re ~Te
X0 X2, x, % )

Some of the points may be the same; we can delete the extra repeating points and
denote the result by Y.

Denote Y = [['_, Y;. Two points (ys,i), (y1,i’) € Y are said to be adjacent if
(¥s-1), (1, i") are in the same interval (the case i = i’), and inside the open interval
(¥s» ¥1)i» there is no other point in Y. Note that if { (ys, i), (s, 1)} is an adjacent pair
and (ys, y¢)i N Y # @, then dist((ys,), (y1,1)) < 8, and forany y € Y n [1}_,[0,1];,
there exists y’ € Y such that dist(y, y') < 6.

It is obvious that Y; can be written as the union of [ys, y;]; N Y;, where {(ys, 1),
(y1,1)} runs over all adjacent pairs. We will define a space Z and a continuous sur-
jective map p: Y — Z as follows (see also [10]).

First, Y n Sp(F) c Z and Z contains a collection of finitely many points P(Z) =
{z1,2,...}, each (z,, i) € P(Z) corresponding to one and only one (y,,i) € Y. To
define the edges of Z, we consider an adjacent pair {(ys,1), (y1,i)}. We have the
following two cases.

Casel: If [ ys, y:]:nY has uncountably many points, then we let Z contain [z, z¢];, the
line segment connecting (z;, i), (2¢, i). By Lemma 3.2, there exists a non-decreasing

surjective map p:[ys, y¢]i N Y = [z, 2¢]; such that p((ys,1)) = (25, 1), p((y1, 1)) =
(21, 1). (Here both [ ys, y¢]; and [z, z¢]; are identified with interval [0,1].)

Case 2: If [ y5, y+]; N Y has at most countably many points, then it is defined that there
is no edge connecting (zs, i) and (z¢, i). Since [ ys, y¢];NY is a countable closed subset
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of [ ys, y¢]i, there exists an open interval (., y;); ¢ (¥s, ¢ )i such that (y., y});nY =
@. Let p:[ys, e ]i 'Y = {(2, 1), (24, 1)} be defined by

(zs,i) ifyelys,yi]iny,
(z,i) ifye[yLyinY.

By the above procedure for all adjacent pairs, we obtain a space Z such that
Z n (0,1); is a union of finitely many intervals for each i € {1,2,...,1}.

Notice that p is defined on each [ ys, y:];NY piece by piece, and p((ys, 1)) = (25, 1)
for each s, i. The definitions of p on different pieces are consistent. Then we obtain a
surjective map p: YN (0,1); > Zn(0,1);. Let p: Y nSp(F;) = ZnSp(F;) be defined
by p(0;) = 0; forall j e J.

Then we obtain a surjective map p: Y — Z, and we have dist(p(y), y) < ¢ for all
yevY.

3.2 For any closed subset X c Sp(A), denote that A|x = {f|x | f € A}. For the ideal
I c A, there exists a closed subset Y c Sp(A) such thatI = {f € A| f|y = 0}. Then
A/I = A|Y

Lemma 3.3 Let A € C be minimal, let ¢ > 0, Y c Sp(A) be a closed subset, and let
G c A|y be a finite subset. Suppose that 8 > 0 satisfies that dist(y, y') < & implies that
lg(y) — g(¥")| < eforall g € G. Then there exists a closed subset Z c Sp(A) and a
surjective map p: Y — Z such that A|z € C and G c, A|z, where A|z is considered as a
subalgebra of Aly by the inclusion p*: Az — Aly.

Proof For a closed subset Y c Sp(A) and § > 0, we can construct Z and p as in 3.1.
The surjective map p: Y — Z induces a homomorphism

pAlz — Aly,
(P () (y)=g(p(y)), VyeY.

Then we have
" (8) - gl = max|g(y) - g(p(y))l < £

forany g € G,and G c, A|z.
We need to verify Al € C. Defining index sets for Z, we will have

Jz =]y Lo,z = Ly,y,
L,z > Lyy, Liyz=Lyz=2.

We will define positive numbers s; for all i € L; 7, positive numbers ¢; foralli € L, z,
and positive numbers a; < b; for all i € L, 7 to satisfy thats; < a; < b; (if i € L;,z)
anda; < b; <t; (ifi € L, z) as below.

ForieL;y, lets; =max{s|(0,s]; c Z}.ForieL, z lett; =min{t|[t,1); c Z}.
Note thatifi € L; N L, z, thens; < t;.

Fori € L; z,choose a; withs; < a; < Isuchthat (s;,a;);nY = @. Fori € L, z\L, 7,
choose a; with 0 < a; < § such that (0,a;); N Y = @ (we do not need to define s; in
this case). Evidently the numbers a; satisfies that a; < t; provided i € L, .
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For i € L, 7, choose b; with a; < b; < t; such that (b;,t;); nY = @. Fori ¢
La,z\L;,z, choose b; with b; > 1 - § such that (b;,1); N Y = @ (we do not need to
define t; in this case).

Define closed subsets of Sp(A) as below:

Zi= 1 [aibi]is
ieLa,Z
Zz = {91, jE ]} @] IZI (0,1),' @] ]f[ (O,Si]i U ]f[ [ti,l),‘.
i€Ly 7z i€l 7z 1€lr,z

Then ZNZ, = @and Z c Z, U Z,, we have A|; = A, ® Az, where Az, is a direct
sum of matrices over interval algebras or matrix algebras.

Now we consider Az, for each i € L;,z, we denote Fj = M;,(C) by F; ;, and for
each i € L, 7, we denote Fj = M;,(C) by Fj . Let

E=®Fe ® Fi,e © Fi,

j€lz iel; z i€l, z
i i i
E,= & ¢ & F,,© @ F,,.
ielyz ieL;z ieL, z

Write a € Fy by a = (a(6,),a(62),...,a(8,)). Define m: F; — F, by
n(a)=a'=(a'(61),a'(62),....a'(6,)),

where
iy 100 1o
O; ifj¢Jz.
Then there exist a natural inclusion ¢ and a projection ¢* such that

1o =mF - F,

For=id: @ Fl — @ F/.
jelz jelz

Then we have if i € L,z U L; 7, then ¢i(a) = ¢}(n(a)) forany a € F;, and if i €
L1z UL,z then ¢i(a) = ¢i(n(a)) forany a € F,.
Let wo: E; — E, be defined as follows:

(1) For the part ®jej, FIJ in E;, the partial map of v, is defined to be
D gpoi® D phor® @ 0.

i€l z i€l z ieL, z
(2) For the part @y, , F; | in Ey, the partial map of yy is zero.
(3) For the part @je, , FZ"), in E;, the partial map of v, is defined to be

® 00 ® 00 &P id;,

iely; e,y  ielng

where id; (i € L,,z) is the identity map from M;,(C) to M;,(C).
Similarly, let yq: E; — E, be defined as follows:
(1) For the part ®je;, F] in E,, the partial map of y, is defined to be

D gioi® ® 00 @ gion

i€l z i€l z i€eL, z
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(2) For the part @y, , in,l in E;, the partial map of v, is defined to be
® 00 @ idio B O,

ielyz i€l z iel, z
where id; (i € L; ) is the identity map from M;,(C) to M;,(C).
(3) For the part Dje;, , F2i,r in E;, the partial map of v, is zero.
Evidently, A|z, = B(Ey, E2, %o, ¥1) € C; then we have Al € C. ]

We will apply some techniques from [14] and obtain some perturbation results.

Lemma 3.4 Let A= A(F,, F,, 99, ¢1) € C be minimal, B= M,,(C), and let F c A be
a finite subset. Given1> ¢ > 0, there exist 11, €’ > 0 such that, if unital homomorphisms
¢, y: A — B satisfy the conditions

(i) Spg=Spy, ~

(i) [¢(h) —y(h)| <& forallh e H(n) v H(n),

then there is a continuous path of homomorphisms ¢.: A — B such that ¢o = ¢, ¢1 = v,

and | $:(f) - $(f)| < eforall f  F, t € [0,1].

Proof Without loss of generality, we can suppose that for each f € F, | f| < L. Since
F c Ais a finite set, there exists an integer m > 0 such that for any dist(x,x") < =,
If(x)=f(x")| <% holds for all f~€ F, and ¢’ will be specified later. Set 77 = -—; then
we have finite subsets H(#) and H(#).

There exist unitaries U, V such that
¢(f,a)=U"d'(f,a)U, w(f.,a)=V"¢'(f,a)V.
Here we denote ¢": A - B by

¢ (f,a)= diag(a(@l)Nt‘,...,a(Gp)NtP,f(xl),f(xz),...,f(x.)),

where x1, x5, ... € [11,,(0,1);.
Divide (0,1); into 2mn intervals of equal length ﬁ For each sub-interval
k-1 k

m > m

)i» k =1,2,..., m, there exist an integer a} such that

o k-1 k o

! s ‘n+2 i _— d ! 5 ‘n+2 iﬂS = .
(agn, apn +2n) C( - m)i and  (apn,apn+2n)iNSp¢

Then we have
1 . . m-1_ . .
Sp¢’=Sp¢’n LI ([0 ainls v apn + 20110 U [aicn + 21, a.an]).

For each X; = {6;} and W; = 14,0, [0, ainl; u LI{,-w,,j#O}[ainn +2n,1];, we
can define h; corresponding to X; U Wj forall j € {1,2,..., p}, and we can define h},
corresponding to [a}n + 27, a}, n]i foreachi € {1,2,...,1}, ke {1,2,...,m - 1}.

Denote

G={hi,hy....hphlse By e by hl )

We will construct G as in 2.7:

G={h|heH(n), k(h) e G}.
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To define ¢'": A — B, change all the elements
xeSp¢' n(0,ain]; to 0;~{67%,...,0,%"},
xeSp¢'n(aln+2n1); to 1~ {9;5‘1,...,9;&"},
change all the elements x € Sp ¢’ N [a}_, 5 +2n,akn]; to (51,1) € [af_ n+2n,aln];
foreachi€{1,2,...,1}, ke {2,...,m}. Setw; = #(Sp¢' N [a}_,n+2n,a,n];).
There exists a unitary W such that
a(@l) ®It{(x)
a(6,) ‘Xl’lt;,(x)
f(GD) @ Ly

f( D)@y,

We (fIW" =

From the construction of ¢, we have
¢'(h)=¢"(h), VheGuG.
Let Pj = W¢'(h;)W*, Pi = W¢'(hi)W*; then Py,..., Py, P},...,P,...,P. | are

projections; some of them may be zero. We rewrite the nonzero ones as P, ..., P,.
Note that n’ < #, and we can write
I, 0
P = 0 . seees Py = 0 )
0 I,
Since

[¢(h) —w(h)| <€, ¥heH(n)wH(),

we have the inequality
|[U*W*P,WU - V*W*P,WV| <, r=12,...,n"

Set W = WVU*W*. Let us write the unitary W = wi W), where the size of wy
is the same as the rank of P;. Then we have |wy.| < ¢ and |w.;| < €. Applying this
computation to P,, ..., P,/, we then have

2
W - <n'¢ <n?e.

| wi

Wn/n/

1u

Writing T = (W
T =|T*|S, so

» ), T is invertible if n%¢’ < 1. There is a unitary S such that

|[WS* —|T*|| < n?¢.
Since WS* is a unitary and | T*| is close to I to within n?¢’, we have
|WS* ~ 1] < [WS* —[T*[| + |T*] - I] < 2n%¢'.

LetR;(t € [%, 1]) be a unitary path in a 2n%¢" neighbourhood of I such that R: = WS*
and R; = I.
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Since
|U* W (W¢' (W) WU-V*W*(W¢'(h)W*)WV| <&, Yhe H(n)uH(n).
Then we have
|U* W (W¢' (W) WU-V*W*R(W¢' (W)W*)RF WV < 4n’e’ +¢’ < 5n°¢,
forall h e H(n) U H(y), t € [2,1]. When = %, we have

IS(We' ()W) = (W¢'(h)W*)S| <5n°¢’, VYheH(n)uH(n).
For any h € G U G, we have ¢/ (h) = ¢”(h). Then
IS(Wo" (h)W*) = (We" (h)W™)S| <5n%’, YVheGuG.
Recall that S has diagonal form S = diag(S;,. .., S, ); write S = (w],) as

1 1
Wn o oo Wi
1 1
Wnl Wnn
S = ,
n n
wn o ot Wi,
;1’ n;
Wr;l Wrn/rn/

Then the matrix w!, commutes with the matrix units to within 5n2¢’, so there exist
d}, € C such that

lwge — dg, Il < 5nte,

where I, is the identity matrix with suitable size. Write D = (d[,I.,) as

dllllh ' d%rl. %rl

Ay e d T
aymy Ay
d:l;,ll':l;’l : d;‘i/ rn/.I:l,:/ [

Then we have
IS - D| < 5n°¢,
D(We"(f)W") = (W¢"(f)W")D, V feA.
Hence,
ID(W¢' (H)W*)=(W¢'(f)W*)D| <2|D|e" <2(1+5n°")e’ <12n°, VfeF.

Decompose D = |D*|O in the commutant of W¢" (f)W*. Let R} (¢ € [3,2]) be
an exponential unitary path in that commutant such that R}, = O* and R}, = L.
3 3

Notice that
[$*O* - |D*|| < 5n%¢’.
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Using the same technique as above, we have
|S*O* — 1| <10n°¢,
Hence there is a unitary path R (t € [0, 3]) ina10n%¢’ neighbourhood of I such that
R, =Iand R, = $*O*.
3
Finally, choose ¢’ such that 4n?¢’ + 12n°¢’ + 20n%¢’ < e. We can take ¢’ to be
and define a unitary path u; on [0, 1] as follows:

_£
40n°’

U*W*R,W  ifte[o,1],
up = U W*S*RIW  ifte[1,2],
V*W*RW  ifte[3,1].

Denote

O:(f) =u; ~diag(a(91)Nt‘,...,a(Gp)N'P,f(xl),f(xz),...,f(x.)) - Us.
Then ¢g = ¢, ¢1 = ¥, ug = U, u; = V, and we will have

[:(f) = ¢(f)l <e

forall feF,te[0,1]. [ |

Lemma 3.5 Let A= A(F, F,, @o,¢1) € Cbeminimal, let B= M, (C), andlet F c A
be a finite subset. Given 1 > ¢ > 0, there exist n, 11, € > 0, such that if ¢, y: A —> B are
unital homomorphisms that satisfy the following conditions:

@ o) -y <LV heH(m)

() [o(h) —y(h)| <5V heH(n)uwH(n)

then there is a continuous path of homomorphisms ¢: A — B such that ¢o = ¢, ¢1 =¥
and

[¢:(f) = ()] <&
forall f € F, t € [0,1]. Moreover, for each y € (Sp$ U Spy) n 11}_,(0,1);, we have

Byy(y)c U ]Sp s,

te[0,1

where By, (y) = {x € L, [0,1]; : dist(x, y) < 47, ).

Proof Take ¢',7,m as in Lemma 3.4. Let ; = m% < 1 satisfy |h(x) - h(x")| < %'

for any dist(x, x") < 4#; and for all h € H(n) u H(7).
There exist unitaries U, V such that

é(f,a)=U" -diag(a(@l)NS‘,...,a(Hp)NSP,f(xl),f(xz),...,f(x.)) -U,
y(f,a) = V* - diag (a(6)™, ...,a(0,)"%, F(3)s F(r2)s- s f(yee)) - V.

where f € A, x1,%2,..., Y1, Y2, € I_[LI(O, 1);.

From condition (i) and Lemma 2.4, for each i € {1,2,...,1}, there exists X; c
Sp¢n(0,1)i, X; « Spyn (0,1); with X; > Sppn [, 1-m]i, Xi > Spynlm, 1-m];
such that X; and X! can be paired to within 2#; one by one. Denote the one to one
correspondence by m: X; — X.
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To define ¢, change all the elements x; € (0,7:);\X; to 0; ~ {67%",..., 9;“”’}

and xx € (1-7%1,1);\X;to1; ~ {0;’3“,...,6;!;""}, and finally, change all the x; €
X; to m(x) € Xi. To define y’, change all the elements y; € (0,%;);\X} to 0; ~

{ervm, o 6;“1'?} and Yk € (1 — ﬂl:l)i\X: tol; ~ {6:,8,-1, ey 6;ﬁip}. Then we have

Sp¢’ n(0,1); =Spy' n(0,1);
foralli=1,2,...,1.

Since 2771 < i = 3.—, then for each [0,1];, there exist integers a;, b; with 1 < a; <

a; +2 < b; < my such that

Sp¢ n (aim,bim)i =Spy n(aim,bim); = 2.

Then for X] = {6]} and VV] E H{i\(x;,—#o} [0, a,-m],- @] U{i\ﬁ,-j#o}[birlhl]i’ we can
define h; corresponding to X; and W; in H(#,), then ¢(h;),y(h;) are projections
and

¢(hj) = ¢'(hj),  y(hy) =y'(hy),  [¢(hj) —y(hy)] <1,
for each j=1,2,..., p, this fact means that
Sp¢" nSp(F1) = Spy’ nSp(Fy).

Now we have Sp ¢’ = Spy/.
For each xx € Sp ¢ n (0,1);, define a continuous map
. !
ye:[0,5] — L [0,1];

i=1

with the following properties:

(@) 7k(0) = xi3
0; if x € (0,11):\ X,
(i) ye(3) =4{m(xe) ifxg € X5,
1 if xp € (1-171,1):\ X5
- 1
(iii) Jyk = Bay, (xx) = {x € I;II[O’ 1];; dist(x, x¢) < 4’71}-

Define ¢, on [0, ] by
¢:(f) = U* - diag (a(6:)™,...,a(0,)™", f(71()), f(y2(x))s... f(yo(x))) - U.
Then ¢ = ¢ and

160~ < & v e HOp w )

Similarly, for each yx € Spy n (0,1);, define a continuous map

Y?&[;l] — iLill[O’l]i
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with the following properties:

Oi lf)/k € (0,1/[1)1‘\X:,

(2 .
M 7(3) = e
1,‘ lfyk € (1 — 1’]1,1),'\X1{;
(ii) Yi(1) = yis
1
(iif) 37k = Ban (i) = { v € LI[0, 1] dist(y, yi) < am}.

Define ¢, on [,1] by

¢:(f) = V" -diag (a(01)™,....a(0,)"", f(11 (D)) FH2(D))s s (e (1)) - V-
Then ¢: = y',and

MORAOIRES Vhe H(y)w H(n).
') -/ (W) <5+ 5+ 5 <, Vh e H(n) v H(n).

Apply Lemma 3.4; then there is a continuous path of homomorphisms ¢;:A — B,
t € [3,2], such that ¢1=¢",¢2=y and

[:(f) = ¢'(N <5, VfeF.

Now we have a continuous path of homomorphisms ¢:: A — B such that ¢ = ¢,

¢1=wand |¢:(f) - ¢(f)|| <eforall feF,¢te[0,1].
From property (iii) of y; and y},, for any y € (Sp ¢ U Spy) n 11..,(0,1);, we have

B4T11(y) c U Sp¢l
te[0,1]

where By, () = {x € L1:,,[0,1]; : dist(x, y) < 411} [ |

Theorem 3.6 Let A,B € C, let F c A be a finite subset, let Y c Sp(B) be a closed
subset, and let G c Bly be a finite subset. Let ¢: A — Bly be a unital injective homo-
morphism; then for any € > 0, there exist a closed subset Z c Y and a unital injective
homomorphism y: A — B|y such that

@ e -yv(Hl<eVfeF
(i) Gc,BlzeC.

Proof Setn = L(B), choose €, #,#; as in Lemma 3.5; then there exists § > 0 such
that for any dist(y, y') < 8, we have the following:

[95(h) =y (W) <1 Vh € H(m),
I9y(h) = ¢y ()] <5 VheH(p) v H(n),
lg(r) -g(y) <& VgeG.
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Applying Lemma 3.3, we can obtain a closed subset Z and a surjective map p: Y — Z
such that G c, Bz € C.

We will define an injective homomorphism y: A — B|; as follows.

Recall the construction of Y and P(Z) in 3.1. Let P(Z) = {21, 2z, ...} be the points
corresponding to the finite points {y1, y,,...} = Y. Define

Vo (f) =¥ (f) =6y (f), VfeA zre{z,z,...}.

For each adjacent pair {(ys,1), (y1.i)}, if (s, ¥¢); N Y has at most countably many
points, then (z,, z¢);NZ = @&, and we do not need to define y on (z;, z¢ ) i, if (s, y¢) i N
Y has uncountable many points, then we have dist((ys, i), (y+,1)) < 8 and [z;, 2 ]; C
Z. Then by Lemma 3.5, we can define ¥ on [z, z;]; and

lv=(f) =¢GNl <& VfeF, Vzelz,zli

Applying the above procedure to all adjacent pairs in Y, we can define v on each
[2s,2:]; © Z piece by piece, then we obtain y on Z n [I+_,[0,1];. For each 0jeZn
Sp(F,), define yq,(f) = ¢o,(f) forall 0; € Y nSp(F;). Then we have defined y on Z
and y satisfies property (i).

To prove v is injective, we only need to verify that Sp v = U,z Sp ¥ = Sp(A). The
proof is similar to the corresponding part of [10].

Write A = @], Ay with all Ay minimal. Then Sp(A) = [}, Sp(Ak). Define an
indexset A c {1,2,...,m} such that Ay is a finite dimensional C*-algebra if and only
if k € A. For k € A, ¢|4, # 0 means that Sp(Ax) c Sp ¢, by the definition of y, we
have y|4, # 0, then Sp(Ax) c Spy.

Consider A = AV(E,E,%,%) = @pep Ak. We define two sets Y/, Y" c Y, for
each adjacent pair {(ys, i), (y+, 1) }. If (s, ¥¢)iNY has at most countably many points,
let (ys, y¢)inY ¢ Y. If (ys, y+); N Y has uncountably many points, let [ s, y:];nY ¢
Y”. Thenwehave Y N Y =gand Y UuY" =Y n I_[LI[O,I]I-. Note that Y’ has at
most countably many points.

For any point xo € [1'.,(0,1); and B, (x9) = {x € Sp(A) : dist(x,x0) < m},
By, (x0)N(Uyeyr Sp ¢, ) have at most countably many points. Following the injectivity
of ¢, we have

By (x0) cSp¢= U Spg,u U Spg,u U _ Sp¢,.

yey” yey’ yeYnSp(F)
Then the set U,ey» Sp ¢,NBy, (xo) has uncountably many points. Recall the definition
of Y”; there is at least one adjacent pair {(ys,1), (¢, 1)} such that [y, y¢]; 0 Y has
uncountably many points. Then we have v defined on [z, z¢]; ¢ Z.

Choose
X € U SpéynBy(xo)s

yelysyiliny”

then there exists x, € Sp ¢(,, ;) such that dist(x;, x,) < 2#;. We have

dist(xg, x,) < dist(x9,x71) + dist(x1, x3) < 371 < 47.

By Lemma 3.5, we will have

Xo € B4,11 (Xz) C U Sp l//z.

z€[zs,2¢]i
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This means that [}, (0,1); c Spv.

Note that, if we choose x such that xq € ]_[5;1(0, f1)i Y (11,1);, then we will have
0;,1; e Spyforallie {1,2,...,1}, this means that Sp(F,) c Spy.

Now we have

Spy = U Spy: = Sp(A)u L Sp(4) = Sp(4).

This ends the proof of the injectivity of y. ]

Remark 3.7 Theorem 3.6 still holds if we let ¢ be non-unital, then the homomor-
phism v will also be non-unital.

Proof of [10, Theorem 3.1] Let A, = ¢, 00(A,), n = 1,2,.... Then we can write
= lim, 00 (Ap, $.m )> Where the homomorphism ¢, ,, are 1nduced by ¢y,m, and
they are injective.
Lete, = 2% , {x:}$2, be a dense subset of A. We will construct an injective inductive
limit B; — B, — --- as follows.
Consider G; = x; c A. There is an Kil, and a finite subset G; c X,-l such that
G Ca G;
For G c A,l, apply Lemma 3.3; there exists a sub-algebra B, ¢ A;, such that B, € €
and G, Ca By. This give us an injective homomorphism B, < A;,. Let {b1j}72, bea

dense subset of B;. Set Fl {bn} c Byand GZ = {x1,x,} c A. There exist A; , i, > i
and a finite subset Gz c A such that G, c 2 Gz Apply Theorem 3.6 and Remark 3.7

D

toF, c By, G, A,z, and the injective map B1 = A - Av,z, there exist a sub-algebra
B,cA; , and an injective homomorphism y, »: B; — Bz such that G, ¢ 2 B, and such
that the dlagram

~ ¢ i,ip Av
¢'1 iy j

almost commutes on F; to within &;. Let {b, j}]f’zl be a dense subset of B,. Choose

ﬁz = {521, bzz} u {1//1,2(511))1//1,2(512)}, Gz = {Xz,xz,x3}

in the place of F, and G, respectively, and repeat the above construction to obtain A,
B; c Aj, and an injective map v, 3: B, — Bs (using ¢, and €3 in place of ¢; and ¢,
respectively).
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In general, we can construct the diagram

-~ ai 5i —~ $i 5i ~ ~
A #>Aiz #>Ai3 — Ay ——
By —"> B, "> By —> - By

with the following properties:

(i) The homomorphism yy k1 are injective;

(ii) For each k, Gy = {x1,%2, ..., Xk | Cq, (’E,-k,oo(Bk), where By, is considered to be
a sub-algebra of A; ;

(iii) The diagram

~ $i,i+ ~
A, kklA'

k Tk+1
Yk k+1

By —— Bin

almost commutes on F = {b;j;1< i <k, 1 < j < k} to within &, where {bij} 32 isa
dense subset of B;.

Then by [3, 2.3 and 2.4], the above diagram defines a homomorphism from B =
im(By, Yn,m) to A = lim(Ay, §u,m). It is routine to check that the homomorphism
is in fact an isomorphism. This concludes the proof. ]
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