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On the Counting Function of Elliptic
Carmichael Numbers
Florian Luca and Igor E. Shparlinski

Abstract. We give an upper bound for the number of elliptic Carmichael numbers n ≤ x that were
recently introduced by J. H. Silverman in the case of an elliptic curve without complex multiplication
(non CM). We also discuss several possible further improvements.

1 Introduction

Let E be an elliptic curve over the field of rational numbers Q given by an affine
Weierstraß equation:

E : Y 2 = X3 + aX + b.

In particular, it has a nonzero discriminant ∆ = 4a3 + 27b2. We refer to [7] for a
background on elliptic curves. For a prime p, we define ap by #E(Fp) = p + 1− ap,
where E(Fp) in the set of Fp-rational points on the reduction of E modulo p including
the point at infinity Op. We also recall that if p - ∆, then E(Fp) has a structure of an
Abelian group (see [7, Chapter III, Section 2]).

Since ap = O(p1/2) by the Hasse bound (see, for example, [7, Chapter V, Theo-
rem 1.1]), for <s > 3/2 we can define the L-function

L(s) =
∏
p|∆

(1− ap p−s)−1 ∏
p-∆

(1− ap p−s + p1−2s)−1,

which we expand to the power series

L(s) =

∞∑
n=1

an

ns

(see, for example, [7, Chapter V, Exercise 8.19]).
Slightly relaxing the definition given in [8] and thus expanding the class of num-

bers we consider, we say that a positive integer n is an E-Carmichael number if

• it is not a prime power;
• gcd(n,∆) = 1;
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• for any point P ∈ E(Fp) we have

(1.1) (n + 1− an)P = Op,

where both the equation and the group law are considered over Fp.

In this paper, we address only the instance of non CM curves E, which are those
curves whose endomorphism ring over the field of complex numbers consists of the
ring of integers; that is, their only endomorphisms are the maps nE, which, for a fixed
integer n, send P to nP for all P ∈ E(C). We show that the sequence of E-Carmichael
numbers is of asymptotic density zero.

2 Notation

We recall that the notations U = O(V ), U � V and V � U are all equivalent to the
statement that the inequality |U | ≤ c V holds with some constant c > 0. Through-
out the paper, any implied constants in the symbols O,�, and� may occasionally
depend, where obvious, on the curve E, and are absolute otherwise.

We write log1 x = max{1, log x}. For an integer k ≥ 2, we write logk x for the
iteratively defined function given by logk x = log1(logk−1 x). When k = 1 we omit
the subscript and thus understand that all natural logarithms that appear exceed 1.

3 Main Result

For a real x ≥ 1, let NE(x) be the number of E-Carmichael numbers n ≤ x.

Theorem 3.1 Let E be a non CM curve. For a sufficiently large x

NE(x)�
x log3 x

log2 x
.

4 Preparations

We need a version of the following result of David and Wu [4, Theorem 2.3(i)], which
improves and generalizes several previous bounds (see [2, 3]). For integers a and
t ≥ 1 let

πE(x; a, t) = #
{

p ≤ x : #E(Fp) ≡ a (mod t)
}
.

Let ϕ(k) denote the Euler function of the positive integer k. Then David and
Wu [4, Proposition 2.1] show that if E is a non CM curve, the estimate

(4.1) πE(x; a, t)� π(x)

ϕ(t)
+ x exp

(
−At−2

√
log x

)
.

holds uniformly for log x� t12 log t , where A is an absolute constant and the implied
constant depends only on E.
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We prove that a slightly weaker result holds for the counting function of the primes
p for which p and ap satisfy a certain type of linear relation modulo a positive inte-
ger t . The result is uniform in the coefficients of the linear relation. More precisely,
let U and V be fixed integers and let

πE,U ,V (x; t) = #
{

p ≤ x : U p + 1−Vap ≡ 0 (mod t)
}
,

respectively. We have the following result. Let τ (t) denote the number of divisors of
the positive integer t .

Lemma 4.1 Let E be a non CM curve. The estimate

πE,U ,V (x; t)� τ (t)π(x)(log log t)κ

t
+ x exp

(
−At−2

√
log x

)
holds uniformly for integers U and V and for log x � t12 log t, where the implied con-
stants depend only on the elliptic curve E. Here A and κ are positive absolute constants.

Proof We follow the notation and arguments from [4, Section 2]. Let Lt be the field
extension of Q obtained by adjoining to Q the coordinates of the t-torsion points of
E and let Gt = Gal(Lt/Q). Since E[t](Q) ∼= Z/tZ × Z/tZ, by fixing a basis for the
t-torsion one gets an injective map ρt : Gt 7→ GL2(Z/tZ), so we identify Gt with some
subgroup of GL2(Z/tZ) via the map ρt . For unramified primes p, let σp be the Artin
symbol of Lt/Q . Then ρt (σp) can be identified with a conjugacy class of matrices in
GL2(Z/tZ). Furthermore, under such identification, for the trace and determinant of
ρ(σp) we have tr(ρt (σp)) ≡ ap (mod t) and det(ρt (σp)) ≡ p (mod t), respectively.
Thus, in order to count such primes p, we need to count matrices g ∈ Gt such that

U det(g) + 1−V tr(g) ≡ 0 (mod t).

We write CU ,V (t) for the set of such g ∈ Gt . Let ME be a positive integer depending
on E such that if (t,ME) = 1, then Gt = GL2(Z/tZ). The existence of ME has been
proved by Serre [6]. Write t = dm, where (d,ME) = 1 and m consists only of primes
dividing ME. Then the argument of David and Wu [4] based on Chebotarev’s Density
Theorem shows that

πE,A,B(x; t) =
#CU ,V (m)

#G(m)

( ∏
`k‖d

#CU ,V (`k)

# GL2(Z/`kZ)

)
Li(x)

+ O
(

x exp
(
−At−2

√
log x

))
,

(4.2)

provided that log x � t12 log t . David and Wu [4] carefully analyze the quotients
#CU ,V (m)/#G(m) and #CU ,V (`k)|/# GL2(Z/`kZ) when U = V = 1. While there
is nothing in principle to stop us from performing the same analysis, we choose to
only give upper bounds on the above quantities, which are both easy to prove and
sufficient for our present purpose.
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Assume that ` - ME. We write g =
(

a b
c d

)
. Then we need to count the number of

(a, b, c, d) in Z/`kZ such that

U (ad− bc) + 1−V (a + d) ≡ 0 (mod `k).

Rewrite the above congruence as

(U a−V )d ≡ −1 + U bc + Va (mod `k).

Consider first the case when U a ≡ V (mod `k). Then also

Va ≡ 1−U bc (mod `k).

In this case, either ` - U or ` - V . From the above congruences, we conclude that a is
uniquely determined in terms of b and c, and d is arbitrary, so the number of such g
is at most `3k.

Next, let i ∈ {0, 1, . . . , k−1} be such that U a−V ≡ 0 (mod `i), but U a−V 6≡ 0
(mod `i+1). Again, as in the previous argument, we must have Va + U bc − 1 ≡ 0
(mod `i), otherwise there is no such g. Since one of U or V is not a multiple of `, we
conclude that a is unique modulo `i when b and c are fixed, so the number of lifts of
a modulo `k is at most `k−i . Further, we have

d(U a−V )/`i ≡ (−1 + U bc + Va)/`i (mod `k−i),

so d is uniquely determined modulo `k−i , therefore the number of lifts of d modulo
`k is at most `i . Since b and c can take at most `k values each, it follows that the
number of possibilities for (a, b, c, d) is at most `k−i × `k × `k × `i = `3k. Giving to i
the values 0, 1, . . . , k− 1, and summing up the above bounds, we conclude that

#CU ,V (`k) ≤ (k + 1)`4k.

Thus,
#CU ,V (`k)

# GL2(Z/`kZ)
≤ (k + 1)`3k

`4k(1 + O(1/`))
≤ τ (`k)

`k

(
1 +

1

`

)κ
for some absolute constant κ. Multiplying the above inequalities for all `k‖d, we get
that ∏

`k‖d

#CU ,V (`k)

# GL2(Z/`kZ)
≤
∏
`k‖d

τ (`k)

`k

(
1 +

1

`

)κ
≤ τ (d)

d

( σ(d)

d

)κ
� τ (d)

d
(log log d)κ,

(4.3)

where σ(d) is the sum of the divisors of d and we have used the well-known bound
σ(d)/d� log log d. A similar analysis can be performed to show that

(4.4)
#CU ,V (m)

#G(m)
� 1

m
.

Putting (4.3) and (4.4) into (4.2), we get the desired inequality on πE,U ,V (x; t).
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5 Proof of Theorem 3.1

We write x for a large positive real number. We also write w, y, and z for parameters
depending on x that tend to infinity with x and which is to be made more precise
later.

Let tp be the exponent of the group E(Fp), that is, the largest possible order of any
point P ∈ E(Fp).

We see from (1.1) that for any E-Carmichael number n we have

(5.1) tp | n + 1− an

for all primes p | n.
Now fix some z > y > 1 and remove n ≤ x without a prime divisor in [y, z]. Let

E1(x) be the set of such n. By the Brun sieve ([9, Section I.4.2]) and Mertens’ formula
([9, Section I.1.6]), we have

(5.2) #E1(x)� x
∏

y≤p≤z

(
1− 1

p

)
� x

( log y

log z

)
.

Then remove all n ≤ x such that p2 | n for some p ≥ y. Let E2(x) be the set of such
n. Fixing p, the number of n ≤ x that are divisible by p2 is at most x/p2. Hence,

(5.3) #E2(x) ≤
∑
y≤p

x

p2
= O

( x

y

)
.

Let P(n) be the largest prime factor of n. We remove n ≤ x such that P(n) ≤ w,
where

w = exp
( log x log4 x

2 log3 x

)
.

Put E3(x) for the set of such n. It is well known that

#E3(x) =
x

exp((1 + o(1))u log u)
,

as x→∞, where

u =
log x

log w
=

2 log3 x

log4 x

(see, for example, [1, Corollary, p. 15]). Since u log u = (2 + o(1)) log3 x as x → ∞,
we derive

(5.4) #E3(x) =
x

(log2 x)2+o(1)
= O

( x

log2 x

)
.

Assume that w > 2z. Then any remaining integer n ≤ x can be written under the
form n = pPm, where p ∈ [y, z], P = P(n) > w and pP is coprime to m. Since
the coefficient an is a multiplicative function of n, we have an = amapaP. Then we see
from (5.1) that

(5.5) tp

∣∣ mPp + 1− amapaP.
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Note that tp � p1/2 (see [5] for a slightly more precise result). We fix p ∈ [y, z] and
m and count the number of choices for P ≤ x/mp. Put U = mp and V = amap.
Relation (5.5) implies

U P + 1−VaP ≡ 0 (mod tp).

By Lemma 4.1, we derive that number of such P ≤ x/(mp) is of order at most

(5.6)
τ (tp)π(x/mp)(log log tp)κ

tp
+

x

mp
exp
(
−At−2

p

√
log(x/mp)

)
�

x(log log p)κ

mptp log(x/mp)
+

x

mp
exp
(
−At−2

p

√
log(x/mp)

)
,

provided that

(5.7) tp log tp ≤
(

log(x/mp)
) 1/12

.

Since tp ≤ 2z, x/mp ≥ P ≥ w, and

log(x/mp) ≥ log w ≥
log x log3 x

log2 x
,

it follows that inequality (5.7) holds if we choose z ≤ (log x)1/13 and x is sufficiently
large. For such values of x and z, the second term in the estimate (5.6) is

x

mp
exp
(
−At−2

p

√
log(x/mp)

)
≤ x

mp
exp
(
−A(log x)11/26

( log3 x

log2 x

) 1/2)
and is negligible compared with the first. So, the number of such primes P ≤ x/(mp)
is of order at most

τ (tp)x(log log p)κ

mptp log(x/mp)
�

τ (tp)x(log2 z)κ

mptp log(x/mp)
.

Since x/(mp) > P > w, tp � p1/2, we get that the above estimate is of order at most

xτ (tp)(log3 x)(log2 z)κ

mp3/2 log x log4 x
.

Now we sum up the above inequality over all p ∈ [y, z] and m ≥ x, getting a bound
of shape

x log3 x(log2 z)κ

log x log4 x

∑
y≤p≤z

∑
m≤x

τ (tp)

mp3/2
�

x log3 x(log2 z)κ

y1/2+o(1) log4 x
,

as x→∞. Thus, we get that

(5.8) #E4(x) ≤
x log3 x(log2 z)κ

y1/2+o(1) log4 x
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as x→∞. From the estimates (5.2), (5.3), (5.4), and (5.8), we conclude that

NE(x)� x
( log y

log z
+

1

y
+

1

log2 x
+

log3 x(log2 z)κ

y1/2+o(1) log4 x

)
.

Since z ≤ (log x)1/13, the third term is dominated by the first, and the second term is
dominated by the fourth. Thus,

NE(x)� x
( log y

log z
+

log3 x(log2 z)κ

y1/2+o(1) log4 x

)
.

We now put ε(x) for the function that is o(1) appearing above, we choose

z = (log x)1/14, y1/2+ε(x) log y =
(log2 x)(log3 x)κ+1

log3 x
,

and we derive the desired result.

6 Comments

We recall that under the Generalized Riemann Hypothesis, David and Wu [4, Theo-
rem 2.3(iii)] show that one has the estimate

πE(x; a, t)� π(x)

ϕ(t)

uniformly for t � x1/8/ log x, instead of that of (4.1), and their argument can be
extended similarly to Lemma 4.1 to cover the instance of πE,U ,V (x; t). Using these
bounds in our argument, one can easily obtain a conditional improvement of The-
orem 3.1. It is also possible that for CM curves one can also obtain similar results.
However, in order to get substantially better bounds, our argument, which treats the
elements the set #E1(x) trivially and relies on the bound (5.2), ought to be augmented
with some new ideas.

Another approach to a possible improvement of Theorem 3.1 is via a more ef-
ficient treatment of elements of the set E4(x). In turn, this leads to a question of
obtaining nontrivial upper bounds on the cardinality of the set

{n ≤ x : an ≡ a (mod p)}

for a prime p and an integer a (only the case a = 1 is relevant to our applications).
Obtaining such bounds is certainly of independent interest.
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