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Abstract

Let V be a polarized variation of Hodge structure over a smooth complex quasi-
projective variety S. In this paper, we give a complete description of the typical Hodge
locus for such variations. We prove that it is either empty or equidistributed with respect
to a natural differential form, the pull–push form. In particular, it is always analytically
dense when the pull–push form does not vanish. When the weight is two, the Hodge
numbers are (q, p, q) and the dimension of S is least rq, we prove that the typical locus
where the Picard rank is at least r is equidistributed in S with respect to the volume
form crq, where cq is the qth Chern form of the Hodge bundle. We obtain also several
equidistribution results of the typical locus in Shimura varieties: a criterion for the den-
sity of the typical Hodge loci of a variety in Ag, equidistribution of certain families of
CM points and equidistribution of Hecke translates of curves and surfaces in Ag. These
results are proved in the much broader context of dynamics on homogeneous spaces
of Lie groups which are of independent interest. The pull–push form appears in this
greater generality, we provide several tools to determine it, and we compute it in many
examples.
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1. Introduction

Let G be a semi-simple Lie group and let Γ ⊂ G be a lattice. Homogeneous dynamics is tradi-
tionally interested in the equidistribution properties of the orbits of a Lie subgroup H acting
on Γ\G by right multiplication and, dually, on the dynamics of the left action of Γ on G/H.
Classifying the closure of orbits of such actions is the subject of an extensive body of literature
with far-reaching applications to number theory and ergodic theory.

In this paper, our first purpose is to provide a fairly general answer to the following question.

Question 1. Assume that a sequence of closed H-orbits is equidistributed in Γ\G. Can we deduce
an equidistribution result for the intersection of these H-orbits with a fixed analytic subvariety
V ⊂ Γ\G?

We consider more generally the following setting: let G be a real semi-simple Lie group, Γ a
lattice in G, H a semi-simple subgroup of G, K a compact subgroup of G (which is not assumed
to be maximal), and L = H ∩K. Denote by p the projection map G/L→ G/H and by π the
projection map G/L→ G/K. We fix compatible choices of invariant volume forms ωG, ωG/H ,
and ωH on G, G/H, and H, respectively (see § 2.3).

Let (On)n∈N be a sequence of finite unions of closed H-orbits in Γ\G. As H is semi-simple,
On has finite volume with respect to the volume form ωH along H-orbits for every n ∈ N. We
say that the sequence (On)n∈N is equidistributed in Γ\G if the normalized integration measure1

on (On, ωH) converges weakly to the Haar measure ωG on Γ\G.
Now let S be a real analytic subvariety of Γ\G/K of codimension dim(H/L) whose smooth

locus is oriented. Denote by μS∩π(On) the transverse intersection measure of V and On, which
counts (with an orientation sign and multiplicity) the transverse intersection points between S
and π(On) (see § 3.2 for precisions). We prove the following.

Theorem 1.1. Assume that the sequence (On)n∈N is equidistributed in Γ\G. Then the sequence
of signed measures (1/Vol(On))μS∩π(On) on S converges weakly to the restriction of the
G-invariant form

1
Vol(Γ\G/L)

π∗p∗ωG/H .

1 See Definition 2.11 for our convention on the normalization of this measure.
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This general result has countless potential applications, some of which will be detailed in the
paper. What is interesting about this theorem is that the pull–push form π∗p∗ωG/H is not easy,
in general, to determine precisely and depends greatly on the subgroup H. These forms were
studied extensively by the second author in [Tho15] with a very different motivation. Building
on this previous work, we will give tools to analyze this pull–push form and characterize it in
various examples.

It sometimes happens that the form π∗p∗ωG/H vanishes (this vanishing played an important
role in [Tho15]). In that case, our theorem only asserts that positive and negative intersection
points ‘cancel each other’ asymptotically.

The theorem is stronger when G/K, H/L, and S are complex analytic. Then, all intersections
are counted positively and the form π∗p∗ωG/H does not vanish (see Corollary 4.6). It vanishes
in restriction to S if and only if all the intersections S ∩ On have ‘exceptional dimension’ (i.e.
complex dimension ≥ 1).

In the applications we develop in the next sections, H/L ⊂ G/K will be Mumford–Tate
domains of Hodge structures and S → Γ\G/K is the period map of a polarized variation of
Hodge structure. In Proposition 5.9, we give an algebraic characterization of when the form
π∗p∗ωG/H is non-zero in restriction to some analytic variation of Hodge structure.

1.1 Equidistribution of typical Hodge loci
One of the main motivations of Theorem 1.1 is its application to the equidistribution of Hodge
loci of variations of Hodge structure. In fact, the present paper is a continuation of the first
author’s previous work [Tay20], which studied the particular case of the Noether–Lefschetz locus
of a one-parameter family of K3 surfaces.

Let V = {VZ,F•V, B} be a polarized variation of Hodge structure (Z-PVHS) of weight 2k
over a complex quasi-projective algebraic variety S of dimension d ≥ 1 (see § 5). The group of
Hodge classes Hdg(s) at a point s is the free abelian group VZ,s ∩ FkVs. An important class of
examples of Z-PVHS is provided by those of geometric origin: starting from a smooth projective
morphism f : X → S where S is a smooth complex quasi-projective variety, the 2kth cohomology
groups of the fibers, modulo torsion, endowed with their Hodge structure give rise to a Z-PVHS
of weight 2k on S, see [Voi02, Partie III] for more details.

More generally, let V⊗ be the countable direct sum of Z-PVHS
⊕

a,b≥0 Va ⊗ (V∨)b, where
V∨ is the dual Z-PVHS. Then the Hodge locus HL(S,V⊗) is defined as the subset s ∈ S where
Vs has more Hodge tensors than the very general fiber Vs′ . It is a countable union of algebraic
subvarieties by [CDK95, BKT20].

In this paper, we give a precise description of the typical part of this Hodge locus. More
precisely, let G be the generic Mumford–Tate group of the variation. The Hodge locus can also
be seen as the locus of points of S where the Mumford–Tate group is strictly contained in G.

For H ⊂ G a sub-Mumford–Tate group, the typical Hodge locus for H is the set of points
s ∈ HL(S,V⊗) whose Mumford–Tate group is contained inH and such that π∗p∗ωG/H,s �= 0. The
typical Hodge locus is then the union of typical Hodge loci over all Mumford–Tate subgroups H.

We prove then the following theorem, see Proposition 5.9.

Theorem 1.2. The following statements are equivalent.

(i) There exists H ⊆ G such that the typical Hodge locus for H is equidistributed with respect
to π∗p∗ωG/H and in particular analytically dense.

(ii) There exists H ⊆ G and one point s ∈ S such that π∗p∗ωG/H is non-zero at x.
(iii) The typical Hodge locus is non-empty.
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Remark 1.3. The equidistribution assertion in this theorem as well as in all the subsequent
theorems in this article, when not explicitly specified, should be understood in the sense of
Theorem 1.1.

Remark 1.4. In the case of the Noether–Lefschetz loci, the theorem is a strengthening of the
classical criterion of Green, see [Voi02, Proposition 17.20].

The following proposition gives a criterion for the emptiness of the typical Hodge locus, see
Proposition 5.11.

Proposition 1.5. If for every sub-Mumford–Tate group H ⊆ G the Hodge structure g/h
satisfies

(g/h)−p,p �= 0 for some |p| ≥ 2,

then the typical Hodge locus is empty.

Theorem 1.2 will be applied to situations where we know how to compute the form π∗p∗ωG/H .
These applications are explained in the next section.

Theorem 1.2 and Proposition 1.5 have also been independently studied by Baldi, Klingler,
and Ullmo [BKU21], see also the prior work of Klingler and Otwinowska [KO21]. Moreover, the
authors proved in [BKU21, Theorem 2.3] that the condition in Proposition 1.5 is always satisfied
whenever V has level more than three.

1.2 Applications
We explain now further applications of our main theorem. They correspond to situations where
we know how to compute the pull–push form and they are hence far from exhaustive.

1.2.1 Refined Noether–Lefschetz loci. Let V be a polarized variation of Hodge structure of
weight two over a complex quasi-projective algebraic variety S of dimension d ≥ 1. Let (q, p, q)
be the Hodge numbers.

Without loss of generality, one can assume that the Z-PVHS is simple, so that the group
of Hodge classes at a generic point is zero. The Noether–Lefschetz locus is then defined as the
subset of elements of S which admit non-trivial Hodge classes. More generally, we define the
refined Noether–Lefschetz locus of rank r as the subset where the group of Hodge classes has
rank at least r, and denote it by NL≥r(S).

Let (VZ, B) be the fiber of V at a point s ∈ S. The period domain associated with V is the
homogeneous space D = G/K, where G is the real group SO(B) and K the stabilizer of the
Hodge structure at s, and S has a period map to the quotient Γ\D, where Γ is the subgroup
of G preserving VZ. For our purposes, we assume that V has generically immersive period map.
Otherwise, we can replace S by its image by the period map, which still has an algebraic structure
by [BBT18].

The refined Noether–Lefschetz locus of rank r is a countable union of algebraic subvarieties
which are the intersection of S with certain Mumford–Tate subdomains obtained as projections
of right H-orbits for the subgroup H of G stabilizing a set of r integral elements in VZ with
positive intersection matrix. Applying Theorem 1.1 in this setting, we obtain equidistribution
results for refined Noether–Lefschetz loci.

For all n ∈ N>0, define NL≥r(n) as the set of points s such that (Hdg(s), B) contains a
primitive sublattice of rank r in restriction to which B has discriminant at most n. The set
NL≥r(n) is an algebraic subvariety of S. It has expected dimension d− rq but can contain
higher-dimensional components.
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Theorem 1.6. Let {VZ,F•V, B} be a simple Z-PVHS of weight two and Hodge numbers (q, p, q)
over a complex analytic variety S of dimension d = rq and which has generically immersive period
map. If r ≤ p, then there is a constant λ > 0 such that, for every relatively compact open subset
Ω ⊂ S with boundary of measure zero, we have

n−((p+2q)/2)|{(s, P ), s ∈ Ω, P ⊆ Hdg(s), rank(P ) = r, disc(P ) ≤ n}| −→
n→+∞ λ

∫
Ω
cq(F2V)r,

where cq denotes the qth Chern form of the bundle F2V endowed with the Hodge metric.

This theorem relies on an ‘elementary’ equidistribution result for positive-definite sublattices
of a quadratic lattice that we prove in § 6.1. Using a more refined equidistribution result of Eskin
and Oh [EO06b] based on Ratner theory, one can get a more precise equidistribution theorem for
the locus where the Néron–Severi group is a fixed quadratic lattice. For a positive-definite matrix
M , we denote by μ1(M) the square root of the smallest non-zero value integrally represented
by M . Say also that M is primitively represented by (VZ, B) if there exists a primitive sublattice
of VZ of rank r having a basis with intersection matrix equal to M .

Theorem 1.7. Let {VZ,F•V, B} be a simple Z-PVHS of weight two and Hodge numbers (q, p, q)
over a complex analytic variety S of dimension d = rq and which has generically immersive period
map. Assume that p, 2q ≥ 2 and rq < p.

Let (Mn)n∈N be a sequence of positive-definite integral matrices of rank r which are prim-
itively represented by (VZ, B) and such that μ1(Mn) → ∞, as n→ ∞. Then there exists a
sequence (a(Mn))n∈N of positive real numbers such that, for every relatively compact open
subset Ω ⊂ S with boundary of measure 0, we have

1
a(Mn)

|{(s, λ1, . . . , λr)) ∈ Ω × Vr
Z,s, (B(λi · λj)) = Mn, λi ∈ Hdg(s)}| −→

n→∞

∫
Ω
cq(F2V)r.

Remark 1.8. In these theorems, one needs to exclude the points belonging to exceptional com-
ponents of NL≥r(S) of dimension at least one from the counting, i.e. the non-typical ones. The
precise versions of these theorems are given in § 6.1.3.

Remark 1.9. The Siegel–Weil formula gives an arithmetic expression for the asymptotic behavior
of the sequence a(Mn) in Theorem 1.7. The precise expression and how it grows with det(Mn)
are discussed in Lemma 6.7.

Remark 1.10. A base of dimension rq is the minimal dimension for which a refined
Noether–Lefschetz locus is expected to exist for dimension reasons. If the dimension of the base
S is greater than rq, then Theorem 1.7 gives the equidistribution of NL≥r(S) towards cq(F2V)r

in terms of currents (see Theorem 3.7).

Remark 1.11. As soon as q ≥ 2, Griffiths’ transversality combined with the integrability con-
dition of the tangent space to S imply that the dimension of S is at most pq/2 by [Carl86,
Theorem 1.1].

Remark 1.12. These theorems are already interesting when r = 1, for which they give the equidis-
tribution of the Noether–Lefschetz locus. The case r = q = 1 was treated by the first author
in [Tay20].

Remark 1.13. If the base S of the variation V is a complex projective variety, one can apply
Theorem 1.1 to Ω = S and get an asymptotic estimate of the ‘growth’ of the Noether–Lefschetz
locus of S. We conjecture that the same estimate holds when S is quasi-projective of arbi-
trary dimension (which implies that

∫
S cq(F2V)r < +∞). The case q = r = 1 has been settled
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in [Tay20]. One could hopefully obtain this global estimate by working with the cohomology of
an appropriate compactification of Γ\G/K. This raises more general questions that are beyond
the scope of this paper.

Theorem 1.1 applies to families of algebraic varieties whenever one has a generic local Torelli
theorem. This holds for families of abelian varieties, K3 surfaces, hyperkähler manifolds, and for
projective hypersurfaces by the general result of [Don83], which yields the following examples.

(i) Smooth quintic surfaces in P3 have Hodge numbers

h2,0 = 4, h1,1 = 45.

The moduli space of quintic surfaces has dimension 40 and satisfies a generic Torelli
theorem by [Don83]. Thus, Theorems 1.6 and 1.7 give equidistribution results for the refined
Noether–Lefschetz loci on the moduli space of quintic surfaces up to r = 10.

(ii) Cubic hypersurfaces in P7 have Hodge numbers

h6,0 = h5,1 = 0, h4,2 = 8, h3,3 = 178.

Thus, their cohomology in degree six is a Hodge structure of weight two. The moduli space
of cubic hypersurfaces in P7 has dimension 56 and satisfies the generic Torelli theorem
[Don83]. Thus, again Theorems 1.6 and 1.7 give equidistribution results for refined Hodge
loci on the moduli space of cubic hypersurfaces of P7 up to r = 7.

1.2.2 Hodge loci in Shimura varieties. For g ≥ 2, let Ag be the moduli space of principally
polarized complex abelian varieties of dimension g. It is well-known that the smallest codimension
of a special subvariety is g − 1 and it is realized for example by Ag−1 ×A1. It is then expected,
see [BKU21, Remark 2.16], that the Hodge locus is analytically dense in any Hodge generic
subvariety of dimension at least g − 1.

As a partial answer, we have the following results. Let F1 → Ag be the Hodge bundle and
let (cn(F1))0≤n≤g be its Chern forms with respect to the Hodge metric. For 1 ≤ k ≤ g, define2

sk = det(((−1)j−icg−k+j−i(F1))1≤i,j≤k).

Then sk is a semi-positive form. We prove then the following result.

Theorem 1.14. Let X ⊆ Ag be a smooth subvariety. If the restriction of sk to X is non-zero,
then the locus of elements in X parameterizing abelian varieties containing a sub-abelian variety
of dimension k is analytically dense and equidistributed with respect to sk. In particular, if X
is compact and has dimension at least ((g − 1)(g − 2))/2, then the Hodge locus is analytically
dense in X.

If k = 1, then the theorem yields that the Hodge locus is dense if cg−1 is non-zero by
restriction to X. This prompts the following question.

Question 1.15. Let X be a Hodge generic subvariety of Ag of dimension at least g − 1. Is the
restriction of cg−1 to X always non-zero?

Remark 1.16. The assumption of Hodge genericity is necessary. Indeed, if X = A2 × {pt} ⊆ A4.
Then X has dimension 3 ≥ 4 − 1 = 3 but the restriction of c3 to X vanishes. Indeed, the restric-
tion of the vector bundle F1 to X splits as a direct sum of two vector bundles of rank two, one
of them being trivial. Hence, c3 vanishes on X.

2 This is a particular example of a Schur polynomial.
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Theorem 1.14 admits the following generalization.

Theorem 1.17. Let S be a connected Shimura variety associated to a connected Shimura datum
(G,D). Assume that there exists a Shimura sub-datum (H,DH) such that π∗p∗ωG/H is positive
of type (k, k). Then the Hodge locus is dense in any subvariety of dimension at least k and
equidistributed with respect to π∗p∗ωG/H . In particular, if G is absolutely simple and has a
Shimura curve associated to a Shimura subgroup H, then the Hodge locus is dense in any
hypersurface and equidistributed with respect to π∗p∗ωG/H .

In particular, for unitary Shimura varieties, we obtain the following.

Corollary 1.18. Let S be a Shimura variety of unitary type (n, 1). Then the typical Hodge
locus is dense and equidistributed in any subvariety of S of positive dimension.

Let S be a Shimura variety associated with a connected Shimura datum (G,DH) and let k
be the minimal integer for which there exists a sub-Shimura datum (H,DH) such that π∗p∗ωG/H

is of type (k, k). Then Question 1.15 has the following generalization.

Question 1.19. LetX ⊂ S be a Hodge generic subvariety of dimension at least k. Is the restriction
of π∗p∗ωG/H to X always non-zero?

1.2.3 Equidistribution of families of CM points in Shimura varieties. Another application of
Theorem 1.1 is an equidistribution result for families of CM points in some Shimura varieties.
Several results about the equidistribution of CM points are known (see, for example, [Duk88,
Zha05, Kha19]) and, in general, the following conjecture is widely open (see [Yaf17,
Conjecture 2.6] for more details on this conjecture).

Conjecture 1.20. Let S be a Shimura variety over Q and let (xn)n∈N be a generic sequence
of CM points in S. Then the sequence of Galois orbits Aut(Q/Q) · xn is equidistributed in S(C).

In what follows, we state the result we prove in the simplest case of Siegel Shimura varieties,
referring to Theorem 6.17 for the most general statement.

Let g ≥ 1. A polarized isogeny f : (A1, ω1) → (A2, ω2) of similitude factor N ≥ 1 between two
principally polarized abelian varieties of dimension g is an isogeny which satisfies f∗ω2 = N ω1.
If A1 = A2, we say moreover that f is regular if the centralizer of the homological realization of
f in GSp2g(H1(A,R)) is a torus. This implies that A1 is a CM abelian variety,3 meaning that
End(A)Q is a commutative algebra of degree 2g over Q, i.e. the maximal possible dimension.
Conversely, every CM polarized Abelian variety admits a regular self-isogeny (Lemma 6.16). An
equivalent characterization of CM abelian varieties is that their Mumford–Tate group MT (A)
(which is contained in the centralizer of the isogeny f) is a torus, see Definition 6.12.

Let ω be the first Chern form of the Hodge bundle on Ag. It is well-known that ω is a Kähler
form. If A is a principally polarized abelian variety, we denote by † : End(A)Q → End(A)Q the
Rosati involution. As an application of Theorem 1.1, and of the main result of [COU01] (see
also [EO06a]), we get an equidistribution result for CM abelian varieties admitting self-isogenies
of fixed degree.

Theorem 1.21. There exists a sequence b(N) such that, for every relatively compact open
subset Ω ⊂ Ag with boundary of measure 0, we have

|{(A, f), A ∈ Ω, f ∈ End(A), f † ◦ f = N Id, and f regular}| ∼
N→+∞

b(N)
∫

Ω
ω(g(g+1))/2.

3 Short for ‘abelian variety with complex multiplication’
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This theorem does not answer Conjecture 1.20 because, as N grows, our equidistribut-
ing sets are the union of an increasing number of Galois orbits. It is however sharper
than other more elementary equidistribution results. For comparison, in the case of g = 1,
Conjecture 1.20 is answered positively by Duke’s equidistribution theorem for CM elliptic
curves with fundamental discriminant N [Duk88, Thereom 1] and by Clozel–Ullmo in general
[CU04, Théorème 2.4], whereas an elementary counting argument easily gives the equidistri-
bution of CM curves with discriminant at most N . Our theorem lies in between: it asserts
that the set of CM elliptic curves with discriminant of the form N − 4a2 for all integers
0 ≤ a ≤ √

N is equidistributed when N goes to +∞.

1.2.4 Equidistribution of Hecke translates. We mention two further applications of
Theorem 1.1 that we obtain. The first is related to the dynamics of Hecke translates in Ag.

Let S and D be two subvarieties of Ag of complimentary dimensions such that S has dimen-
sion d ≤ 2. Let ω be as before the first Chern form of the Hodge bundle on Ag. In addition,
if (s, d) ∈ S ×D, with corresponding abelian varieties As and Ad, we denote by IsogN (As, Ad)
the set of isogenies from As to Ad of similitude factor N . An isogeny f : As → Ad is said to be
transverse, if it does not admit first-order deformations in S ×D. Then we prove the following,
see § 6.3 for more details.

Theorem 1.22. There exists a sequence (c(N))N≥1 of positive real numbers such that for every
relatively compact open subsets Ω ⊂ S, Ω′ ⊂ D with boundary of measure zero, we have

|{(s, d, f) | (s, d) ∈ Ω × Ω′, f ∈ IsogN (As, Ad) regular}| ∼
N→∞

c(N)
∫

Ω
ωd

∫
Ω′
ω(g(g+1))/2−d.

In particular, the locus of points in S isogenous to a point in D is analytically dense and
equidistributed in S.

We have the following corollary.

Corollary 1.23. Let S ⊂ A4 be a curve. Then the locus of points in S isogenous to the
Jacobian of a curve is analytically dense and equidistributed in S.

1.2.5 Equidistribution in cohomology. Theorem 1.1 yields that cohomology classes of Γ\G/K
represented by an equidistributing sequence of locally homogeneous submanifolds converge after
normalization to the cohomology class of a locally invariant form. (See Corollary 2.9 for a precise
statement.)

To illustrate this in a specific example, we use the same notation as in § 1.2.1. Then we have
a family of special cycles in Γ\G/K � Γ\D where D is the period domain, defined as follows: for
r ≥ 1, λ0 ∈ V r

Z , H = Stab(λ0), M ∈Mr(Z) semi-positive-definite matrix with rank r(M), and

VM
def= {λ ∈ V r

Z , (B(λi · λj))1≤i,j≤r = M}, let

Z(M) def= Γ\( ⋃
λ∈VM

{x ∈ D,x⊥λi, ∀i = 1, . . . , r}) ↪→ Γ\D.

Let cq(F2V) be as before the top Chern form of the vector bundle F2V.

Proposition 1.24. Let (Mn)n∈N be a sequence of positive-definite matrices primitively repre-
sented by (VZ, B) such that μ1(Mn) → ∞, as n→ ∞. Then

Z(Mn) ∼
n→∞ a(Mn) cq(F2V)r.

8

https://doi.org/10.1112/S0010437X22007795 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X22007795


Equidistribution of Hodge loci II

This result is reminiscent of the work of Kudla–Millson on modularity of special cycles, see
[KM90], see also [Gar18] for a recent approach using superconnections. Indeed, in both these
papers, it is proved that the formal generating series:∑

M≥0

Z(M) ∪ cq(F2V)r−r(M)etr(2iπMτ), τ ∈ Hr

is a Siegel modular form valued in H2qr(Γ\D,R). Here Hr is the Siegel upper half space. Hence,
the knowledge of the structure of the space of Siegel modular forms allows, in principle, an
asymptotic formula of Z(M) to be given in terms of the constant term cq(F2V)r. As r grows,
the structure of the space of Siegel modular forms becomes complicated to analyze and much
work is needed to derive formulas similar to ours through this approach. Our method yields a
straightforward estimate on the asymptotic growth of Z(M) without using these results. One
might even hope that this asymptotic estimate could help understand the cusp structure of Kudla
and Millson’s modular forms.

1.3 Related work
The distribution of the Hodge locus has been investigated independently and concomitantly by
Baldi, Klingler, and Ullmo in [BKU21]. In addition to striking results on the atypical Hodge
locus (see also [KO21] for prior work), they prove several properties about the typical Hodge
locus that echo the present work, namely that the typical Hodge locus is either empty or dense,
and is always empty when the level is at least three.

Several results analogous to Theorem 1.7 for algebraic families parameterized by Shimura
varieties have been settled in arithmetic situations over rings of integers of number fields and
over curves defined over finite fields: indeed Charles proved [Cha18] that there are infinitely
many places where the reduction of two elliptic curves are isogenous; Shankar and Tang [ST20]
proved that an abelian surface over a number field with real multiplication has infinitely many
specializations which are isogenous to the self-product of an elliptic curve and in collaboration
with Maulik in [MST22b] they derived similar results for ordinary abelian surfaces over the
function field of a curve over a finite field. Finally the analogous statement of Theorem 1.7
for K3-type variations of Hodge structures over curves has been proved in the number field
setting in [SSTT22, Tay22] and over curves over finite fields in [MST22a]. It is thus interesting
to further explore other analogous statements of Theorems 1.1, 1.7, and 1.22 over number fields
and function fields situations.

1.4 Organization of the paper
In § 2, we introduce the setting of homogeneous dynamics and explain how to reformulate an
equidistribution theorem in terms of currents. In § 3, we deduce our general theorem for trans-
verse intersections of locally homogeneous subspaces with a fixed analytic subvariety, proving
Theorem 1.1. Section 4 is devoted to the study of the pull–push form. In particular, we explain
how to interpret its cohomology class via compact duality of homogeneous spaces. In § 5, we
discuss the pull–push forms in the case of period domains of variations of Hodge structures and
relate them to Chern classes of Hodge bundles, allowing us to compute these forms explicitly in
the setting of a variation of Hodge structure of weight two and Shimura varieties. Finally, in § 6,
we discuss our applications: the study of refined Noether–Lefschetz loci, the equidistribution of
some families of CM points in Shimura varieties and the equidistribution of intersection points
of Hecke translates of the Torelli locus with a curve and a surface in Ag.
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2. Equidistribution in terms of currents

In this section, we recall some background on convergence of measures, currents, and homoge-
neous spaces. Then we reformulate equidistribution results in homogeneous dynamics in terms
of weak convergence of currents. Finally, we recall some equidistribution results from Ratner’s
work.

2.1 Convergence of measures
Let us start by recalling a few classical facts in measure theory which are used mainly in § 3.

Let S be an analytic subset of dimension d of a manifold M whose smooth locus is oriented,
and let ω be a smooth form of degree d on M . Then the restriction of ω to the smooth locus of
S defines a signed Radon measure on S. This measure is regular in the sense that:

(i) for every open subset U of S and every sequence of compact sets (Cn)n∈N with Cn ⊂ C̊n+1

and
⋃

n∈NCn = U , we have ∫
U
ω = lim

n→+∞

∫
Cn

ω;

(ii) for every compact subset C ⊂ S and every sequence of open sets (Un)n∈N with Ūn+1 ⊂ Un

and
⋂

n∈N Un = C, we have ∫
C
ω = lim

n→+∞

∫
Un

ω.

In the absence of any precision, we say that a set A ⊂ S has measure zero if the intersection
of A with the smooth locus of S has Lebesgue measure zero in any coordinate chart. This implies
that its measure with respect to ω is zero.

Given a sequence of signed Radon measures μn, we have the following equivalent character-
izations of the convergence of μn to ω:

(i) for every continuous function f : S → R with compact support,

μn(f) −→
n→+∞

∫
S
fω;

(ii) for every relatively compact open subset Ω of S with boundary of measure zero,

μn(Ω) −→
n→+∞

∫
Ω
ω.

We then say that μn converges weakly to ω and we write

μn ⇀
n→+∞ ω.

We say that μn converges weakly to ω on an open subset U if the restriction of μn to U converges
weakly to the restriction of ω. Equivalently, μn converges weakly to ω on U if property (i) holds
for any function with compact support inside U .

The following standard facts will be useful in proving weak convergence of measures.

Proposition 2.1. Let (Ui)i∈I be an open covering of S. Then μn converges weakly to ω on S
if and only if converges weakly to ω on Ui for all i ∈ I.

Proposition 2.2. Let Z be a closed subset of S of measure 0. Assume that μn converges weakly
to ω on Zc. Then the following are equivalent:

(i) μn converges weakly to ω on S;
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(ii) for very compact subset C ⊂ Z and every ε > 0, there exists an open neighborhood Uε of
C such that

lim sup
n→+∞

|μn|(Uε) ≤ ε.

Here, |μn| = μ+
n + μ−n denotes the total variation measure of μ.

2.2 Currents on manifolds
For more details on this section, we refer to [GH94, Chapter 3, § 1].

Let M be a real manifold of dimension n. For k ≥ 0, let Ωk
c (M) be the vector space of

C∞ differential forms on M of degree k with compact support. It is endowed with its natural
topological space structure making it a Fréchet space.

Definition 2.3. A current of degree k on M is a continuous linear form on Ωn−k
c (M). The

space of currents of degree k on M is denoted by Dk(M).

Example 2.4. If N ↪→M is an oriented properly immersed submanifold of codimension k of M ,
the integration current TN ∈ Dk(M) is defined by

TN (β) =
∫

N
β, β ∈ Ωn−k

c (M).

Example 2.5. A differential k-form α induces a k-dimensional current Tα defined by

Tα(β) =
∫

M
α ∧ β, β ∈ Ωn−k

c (M).

The exterior derivative d on differential forms induces a map

d : Dk(M) → Dk+1(M)

defined by

dT (φ) = (−1)k+1T (dφ), φ ∈ Ωn−k−1
c (M).

A current T is closed if dT = 0.
The exterior derivative defines a cochain complex structure on (D•(M)), and Example 2.5

gives a morphism of cochain complexes

(Ω•(M), d) → (D•(M), d).

The previous morphism is, in fact, a quasi-isomorphism (i.e. it induces isomorphisms at the
level of cohomology groups, see [GH94, p. 382]).

The space Dk(M) is naturally a topological vector space when equipped with the weak
topology: a sequence Tn of degree k currents converges weakly to a current T (which we write
Tn ⇀ T ) if

Tn(β) −→
n→+∞ T (β)

for all β ∈ Ωn−k
c (M).

Assume now that M is a complex manifold of complex dimension n. Then the complex
D•(M) admits a bigrading

Dk(M) =
⊕

p+q=k

Dp,q(M),

where Dp,q(M) is the topological dual of the complex vector space Ωn−p,n−q
c (M).
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In particular, if Z ⊆M is a closed complex analytic subvariety of complex codimension k, we
can similarly define a closed integration current TZ ∈ Dk,k(M) by integrating over (the smooth
locus of) Z.

2.3 Homogeneous spaces, orientations, and volume forms
In this section, we introduce the notation that we use throughout the paper and recall some
facts on volume forms on Lie groups.

Let G denote a real algebraic semi-simple Lie group. Suppose we are given the following
subgroups of G:

(i) a lattice Γ;
(ii) a semi-simple Lie subgroup H without compact factor;
(iii) a compact subgroup K.

Let L be the intersection of K and H. This is a compact subgroup of H. The group H acts
on the right on the quotient Γ\G, and we are interested in the next section in equidistribution
properties of orbits of this action and their projection to Γ\G/K.

Let g, h, k, and l denote the Lie algebras of G, H, K, and L, respectively. Up to taking
subgroups of index two, we can assume that the adjoint actions of G, H, K, and L have deter-
minant one. We then fix once and for all some orientation of g, h, k, and l and orient accordingly
the quotient spaces g/k, g/h, g/l, k/l, and h/l. Those orientations induce orientations on G/K,
G/H, G/L, K/L, and H/L, respectively.

Recall that the Lie algebra g carries a natural symmetric bilinear form called the Killing
form, which is invariant under the adjoint action and non-degenerate because G is semi-simple.
Its restriction to h, k, or l is still non-degenerate. We denote by ωG, ωH , ωK , and ωL the volume
forms associated with the restricted Killing metric and the prescribed orientations on g, h, k, and
l, respectively, as well as the induced bi-invariant volume forms on G, H, K, and L. Finally, we
denote by ωG/K , ωG/H , ωG/L, ωK/L, and ωH/L the invariant volume forms on the corresponding
homogeneous spaces induced by ωG, ωH , ωK , and ωL.

The volume forms ωG and ωG/K factor to volume forms on Γ\G and Γ\G/K, respectively,
and we define

Vol(Γ\G) =
∫

Γ\G
ωG, Vol(K) =

∫
K
ωK , Vol(Γ\G/K) =

∫
Γ\G/K

ωG/K ,

respectively. The compatibility of the volume forms gives the following identity:

Vol(Γ\G) = Vol(Γ\G/K) · Vol(K).

Similarly, if xH is a closed H-orbit in Γ\G, then ωH , ωL, and ωH/L induce volume forms
on xH, L, and xH/L. We denote by Vol(xH), Vol(L), and Vol(xH/L) their total masses,
respectively, and we have the following identity:

Vol(xH) = Vol(xH/L) · Vol(L).

2.4 Equidistribution in terms of currents
In this section, we reformulate equidistribution results of sequences of H-orbits in terms of
convergence of currents. As before, for all n ∈ N, let On be a finite union of closed H-orbits
in Γ\G. The starting point of our work is the remark that the equidistribution of a sequence
{On ⊂ Γ\G,n ∈ N} can be reformulated as an equidistribution of the currents of integration
over On.
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To be more precise, let p denote the projection from G/L to G/H and π the projection from
G/L to G/K.

Lemma 2.6. Assume that the sequence (On)n∈N is equidistributed in Γ\G and let T̂On/L denote
the integration current on On/L ⊂ Γ\G/L. Then

1
Vol(On/L)

T̂On/L ⇀
1

Vol(K/L) Vol(Γ\G/K)
p∗ωG/H .

The form p∗ωG/H can be seen as a transverse volume form to the foliation ofG/L by translates
of H/L. Note that, by applying the lemma to L = {1G}, we obtain the following corollary.

Corollary 2.7. Assume that the sequence (On)n∈N is equidistributed in Γ\G and let TOn

denote the integration current on On. Then

1
Vol(On)

TOn ⇀
1

Vol(Γ\G)
p̂∗ωG/H ,

where p̂ is the projection from G to Γ\G.

Finally, one can push this equidistribution forward by the fibration map from G/L to G/K.
Recall that the map π induces a push-forward map

π∗ : Ω•(G/L) → Ω•−dim(K/L)(G/K)

which is, by definition, Poincaré dual to the pull-back map π∗, i.e.∫
G/K

(π∗α) ∧ β =
∫

G/L
α ∧ (π∗β)

for all β with compact support (for more details, see § 4.1 or [BT82, p. 37]). We still denote by
π and π∗ the factorization of those maps by the left action of Γ.

Theorem 2.8. Assume the sequence (On)n∈N equidistributes in Γ\G and let TOn/L denote the
integration current on On/L ⊂ Γ\G/K. Then

1
Vol(On/L)

TOn/L ⇀
1

Vol(K/L) Vol(Γ\G/K)
π∗p∗ωG/H .

Proof. Let H denote the foliation of Γ\G/L by the left translates of H/L and TH ⊂ T (Γ\G/L)
the tangent distribution to this foliation. The volume form ωH/L on H/L defines a smooth section
ωH of ΛmaxT ∗H.

Let α be a form of degree dim(G) − dim(H) with compact support on Γ\G/L, and let f be
the smooth function with compact support such that α|TH = fωH. The compatibility between
the various volume forms gives

α ∧ p∗ωG/H = fωG/L.

Let p0 denote the projection from Γ\G to Γ\G/L. We have

1
Vol(On/L)

∫
On/L

α =
1

Vol(On/L)

∫
On/L

fωH

=
1

Vol(On)

∫
On

f ◦ p0ωH

−→
n→+∞

1
Vol(Γ\G)

∫
Γ\G

f ◦ p0ωG

13

https://doi.org/10.1112/S0010437X22007795 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X22007795


S. Tayou and N. Tholozan

and
1

Vol(Γ\G)

∫
Γ\G

f ◦ p0ωG =
1

Vol(Γ\G/L)

∫
Γ\G/L

fωG/L

=
1

Vol(Γ\G/L)

∫
Γ\G

α ∧ p∗ωG/H .

This shows that (1/Vol(On/L))T̂On/L converges weakly to (1/Vol(Γ\G/L))ωG/H . �
Proof of Theorem 2.8. We push forward the equidistribution of Lemma 2.6 to Γ\G/K. Note
that we have TOn/L = π∗T̂On/L.

Let α be a form of degree dim(H/L) with compact support on Γ\G/K. We then have
1

Vol(On/L)
〈TOn/L, α〉 =

1
Vol(On/L)

〈T̂On/L, π
∗α〉

→ 1
Vol(Γ\G/L)

∫
Γ\G/L

π∗α ∧ p∗ωG/H

=
1

Vol(Γ\G/L)

∫
Γ\G/K

α ∧ π∗p∗ωG/H (by definition of π∗). �

For n ∈ N, the integration current TOn/L is closed because On/L has empty boundary. It thus
has a well-defined cohomology class [On/L] ∈ HdH (Γ\G/K,R) where dH is the codimension of
H/L in G/K.

Corollary 2.9. Assume that the sequence (On) is equidistributed in Γ\G and let [On/L]
denote the corresponding cohomology class in HdH (Γ\G/K,R). Then

1
Vol(On/L)

[On/L] →
n→∞

1
Vol(K/L) Vol(Γ\G/K)

[π∗p∗ωG/H ].

2.5 Ratner theory and its consequences
In this final section, we recall some equidistribution results à la Ratner of homogeneous
orbits in locally homogeneous spaces. These results will be used when studying the refined
Noether–Lefschetz locus in § 6.1.

We place ourselves in an arithmetic setting. Though this is not a requirement of
Ratner theory, it is the source of its most remarkable consequences and will be sufficient for
our applications.

We thus assume that we are given an inclusion H ⊂ G of semi-simple algebraic groups over
Q such that:

(i) G is a subgroup of GR containing G0
R;

(ii) H = G ∩ HR;
(iii) Γ is commensurable to ρ−1(GL(n,Z)), for some faithful representation φ : G → GL(n)

over Q.4

By a lemma of Chevalley (see [Ben08, Proposition 4.6]), we can find a free Z-module VZ

and an embedding G ↪→ GL(VQ) such that H is the stabilizer in G of a vector v0 ∈ VZ. We
can moreover assume that the G-orbit of v0 is Zariski closed and that Γ preserves VZ. For
every λ ∈ R>0, we can now identify the homogeneous space G/H with the G-orbit of λv0
in VR.

4 The commensurability class of ρ−1(GL(n, Z)) is independent of the representation ρ.
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The following classical result of homogeneous dynamics establishes the equivalence between
closed H-orbits in Γ\G and discrete Γ-orbits in G/H.

Lemma 2.10. Let g be an element in G, let x be its projection to Γ\G and v = gv0 its projection
to Gv0 = G/H. Then the following are equivalent:

(i) the set ΓgH is closed in G;
(ii) the right H-orbit of x is closed in Γ\G;
(iii) the left Γ-orbit of v is discrete in G/H;
(iv) the group Γ ∩ gHg−1 is a lattice in gHg−1;
(v) there exists λ ∈ R>0 such that λv ∈ VZ.

Now let Vn be a finite union of discrete Γ-orbits in G/H and let On be the corresponding
finite union of closed H-orbits in Γ\G. The volume form ωH induces an H-invariant measure νn

on Γ\G, supported by On, whose total mass Vol(On) is finite.

Definition 2.11. We say that the sequence (On)n∈N is equidistributed in Γ\G if the sequence
of probability measures

1
Vol(On)

νn

converges weakly to
1

Vol(Γ\G)
ωG.

We say that the sequence (Vn)n∈N is equidistributed in G/H if the discrete measure
1

Vol(On)

∑
x∈Vn

δx

converges weakly to ωG/H .

Recall the following classical lemma from [EO06b, Proposition 2.2].

Lemma 2.12. The sequence (Vn)n∈N is equidistributed in G/H if and only if the sequence
(On)n∈N is equidistributed in Γ\G.

In [EO06b], Eskin and Oh gave an equidistribution criterion for finite unions of closed
orbits which relies on Ratner’s groundbreaking work on unipotent dynamics as well as further
developments by Mozes and Shah [MS95] and Dani and Margulis [DM93, DM93].

Let On =
⋃ln

i=1 xi,nH be a finite union of closed H-orbits in Γ\G and let Vn =
⋃ln

i=1 Γvi,n be
the corresponding union of discrete Γ-orbits in G/H.

Definition 2.13. We say that the sequence (On)n∈N has no loss of mass if for all compact
subsets C of G/H,

1
Vol(On)

( ∑
i

xi,nH∩C=∅

Vol(xi,nH)

)
−→

n→+∞ 0.

Definition 2.14. The sequence (On) is called focused if there exists g ∈ G and a subgroup H ′

of G containing gHg−1 and defined over Q such that

lim sup
n→+∞

1
Vol(On)

( ∑
i

Γvi,n⊂ΓH′gZ(H)v0

Vol(xi,nH)

)
> 0.

It is called non-focused otherwise.
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Remark 2.15. Eskin and Oh’s original definition of being non-focused combines both
Definitions 2.13 and 2.14. It is more convenient to us to separate them, because we verify
both conditions independently.

Theorem 2.16 [EO06b, Theorem 1.13]. Assume thatH is a semi-simple subgroup of G without
compact factors. Then the sequence (Vn)n∈N is equidistributed in G/H if and only if it is non-
focused and has no loss of mass.

Note that a sequence of closed H-orbits of Γ\G leaving every compact subset can only exist
if H is contained in a proper parabolic subgroup of G. We thus have the following proposition
which results from Propositions 3.2 and 3.4 in [EO06b].

Proposition 2.17. IfH is not contained in a proper parabolic subgroup ofG, then any sequence
of finite unions of closed H-orbits of Γ\G has no loss of mass.

3. Equidistribution of intersection points

We consider as before a sequence (On)n∈N of finite unions of closed H-orbits of Γ\G which is
assumed to be equidistributed. In this section, we want to pass from the equidistribution in terms
of currents to an equidistribution of the intersection points of On with a subvariety of Γ\G/K
of dimension dH . Though this kind of result can be expected to follow from Theorem 2.8, some
work is needed to deal with the locus where this intersection is not transverse. This will require,
in particular, a finiteness result for maps defined in an o-minimal structure.

3.1 Moderate geometry of locally symmetric spaces
We recall in this section notions from o-minimal geometry in the context of locally symmetric
spaces following [BKT20] and the structure of definable maps. For a general introduction to
o-minimal structures, we refer to [vdD98].

A structure S on R expanding the real field R is by definition a collection (Sn)n∈N× where
each Sn is a set of subsets of Rn, called the definable sets, which is a Boolean subalgebra of the
subsets of Rn containing all the algebraic subsets and which satisfy the following properties:

(i) if A ∈ Sn, B ∈ Sm, then A×B ∈ Sn+m;
(ii) if p : Rn+1 → Rn is the projection on the first n-coordinates, A ∈ Sn+1, then p(A) ∈ Sn.

The structure is called o-minimal5 if any element of S1 is a finite union of points and intervals.
Given an o-minimal structure, one can define the following notions:

(i) a map f : A→ B between two definable sets is definable if its graph Γf ⊂ A×B is definable;
(ii) a S-definable manifold is a manifold having a finite atlas of charts (φi : Ui → Rn)i∈I such

that the intersections φi(Ui ∩ Uj) ⊂ Rn are definable and the change of coordinates maps
φi ◦ φ−1

j : φj(Ui ∩ Uj) → φi(Ui ∩ Uj) are S-definable maps.

Intuitively, definable manifolds in an o-minimal structure have reasonable geometry locally
and at infinity, complex algebraic varieties being an example of definable manifolds. The first
example of an o-minimal structure is that given by semi-algebraic subsets denoted by Ralg.
More examples of o-minimal structures have been studied during recent years and the ones
relevant to Hodge theory are:

(i) Ran, the smallest o-minimal structure expanding Ralg and for which restricted analytic
functions are definable (see [Gab68]);

5 Order-minimal.
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(ii) Rexp, the smallest o-minimal structure expanding Ralg and for which the real exponential
map is definable [Wil96];

(iii) Ran,exp, the smallest o-minimal structure expanding the two previous structures [vdDM94,
vdDM96].

One of the main theorems of [BKT20, Theorem 1.1] asserts that locally symmetric spaces
can be endowed with a semi-algebraic structure which is compatible in Ran with the analytic
structure on the Borel–Serre compactification, see [BKT20] for more details. More precisely, let
G be a real connected semi-simple group which has a Q-structure, Γ a torsion-free arithmetic
subgroup of G and K ⊂ G a compact sub-group.

Theorem 3.1 [BKT20, Theorem 1.1]. The quotients G/K, Γ\G/K have Ralg structures such
that:

(i) G→ G/K is definable in Ralg;
(ii) there exists a definable fundamental domain F ⊂ G/K for the action of Γ such that F →

Γ\G/K is definable in Ralg.

Moreover, this structure is functorial in the triple (G,K,Γ).

One last ingredient we need from o-minimal geometry is the structure of definable maps:
a definable map f : M → N between definable sets has a definable trivialization if there exists
a pair (F, λ) where F is a definable set and λ : M → F is a definable map which induces a
definable homeomorphism M → F ×N compatible with maps to N . The following theorem is
from [vdD98, Chapter 9, Theorem 1.2].

Theorem 3.2. Let f : M → N be a continuous definable map between definable sets in an
o-minimal structure S. Then there exists a finite partition (Ni)i by definable subsets of N such
that f : f−1(Ni) → Ni is definably trivial.

An easy corollary is that the number of connected components of the fibers of a definable
map is finite and uniformly bounded.

3.2 Counting intersection points
In this section, we explain our conventions for counting points of intersection of varieties mapping
to the quotient Γ\G/K with closed H-orbits. We adopt the same notation as in § 2.3 to which
we refer. From now on, S will be a fixed o-minimal structure which extends Ralg.

Let S ⊂ Γ\G/K be a definable real analytic subvariety of dimension dH = dim(G/K) −
dim(H/L), and assume that the smooth locus of S is oriented. Let O be a finite union of closed
H-orbits in Γ\G. Recall that we denote by O/L its projection to Γ\G/L and by π(O/L) its
projection to Γ\G/K.

In general, π|O/L is not an embedding, which is why it is more convenient to count intersection
at the level of Γ\G/L, where O/L is a finite union of closed leaves of the foliation H introduced
in § 2.4.

Let (Γ\G/L)S be the preimage of S by the fibration π : Γ\G/L→ Γ\G/K. By assumption on
S, (Γ\G/L)S and O/L have complementary dimension in Γ\G/L. A point y ∈ (Γ\G/L)S ∩ O/L
is a transverse intersection point if (Γ\G/L)S is smooth at y (equivalently, if S is smooth at
π(y)) and

Ty(Γ\G/L)S ⊕ Ty(O/L) = Ty(Γ\G/L). (3.2.1)
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For y ∈ (Γ\G/L)S ∩ O, we set ε(y) = 0 if y is not a transverse intersection point, and
ε(y) = 1 if y is a transverse intersection point such that the direct sum (3.2.1) is compatible
with orientations, and ε(y) = −1 otherwise.

We have the following distribution on (Γ\G/L)S given by summing over transverse
intersection points:

T̂S
O =

∑
x∈(Γ\G/L)S∩O/L

ε(x)δx. (3.2.2)

Note that, because (Γ\G/L)S ∩ O/L is definable, it has a finite number of connected
components. Moreover, components of dimension at least one consist only of non-transverse
intersections points, for which ε(y) = 0. Hence, T̂S

O is a finite signed measure. We can finally
state the following definition.

Definition 3.3. The transverse intersection measure between S and O/L is the signed measure

TS
O

def= π∗T̂S
O.

Informally, TS
O, counts the transverse intersection points of S and π(O/L), with a multiplicity

corresponding to the (signed) number of branches of π(O/L) meeting S at a smooth point x.
The asymptotic behavior on S of the distributions TS

On
for an equidistributing sequence On is

discussed in the next section. In particular, we prove that they are equidistributed with respect
to the form π∗p∗ωG/H .

Remark 3.4. In general, the intersection S ∩ π(O/L) could have zero-dimensional components
which are not transverse because they are not reduced or are not smooth points of S. We do not
take them into account in TS

O, but we show in the next section that they are negligible from the
equidistribution point of view.

Remark 3.5. Working in the setting of a moderate geometry allows us to avoid topological
pathologies which do not arise in the applications we intend to give and makes it possible at the
same time to make statements in a more general setting.

3.3 Equidistribution of intersection points
We keep the notation from the previous section, namely, G is a semi-simple Q-group, Γ ⊂ G is a
torsion-free arithmetic subgroup, and H ⊂ G is a semi-simple subgroup without compact factor.
Let D = G/K where K ⊂ G is a compact subgroup and L = K ∩H. Let dH be as before the
codimension of H/L in D. Let S be an analytic subvariety of Γ\D of dimension dH and consider
an equidistributing sequence (On)n∈N of finite unions of closed H-orbits in Γ\G. In this section,
we refine Theorem 2.8 into an equidistribution theorem for the measures TS

On
introduced in the

previous paragraph, which will imply Theorem 1.1.

Theorem 3.6. Let S be an analytic subspace of Γ\D of dimension dH and let (On)n∈N be an
equidistributing sequence of finite unions of closed H-orbits in Γ\G. Then

1
Vol(On)

TS
On

⇀
n→+∞ π∗p∗ωG/H .

Proof. Recall that it is enough to prove the weak convergence on every open subset of a covering
of S by Proposition 2.1. We can thus restrict ourselves to an open relatively compact definable
subset Ω ⊂ S that lifts to D. We still denote this lift by Ω. We want to prove the equidistribution
of the transverse intersection of Ω with π(p−1(Vn)), where Vn is the finite union of discrete
Γ-orbits in G/H such that On = Γ\π−1(Vn).
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Denote by (G/L)Ω the preimage of Ω by π, and consider the following open subsets of
(G/L)Ω:

(i) the domain Usmooth where (G/L)Ω is smooth;
(ii) the domain Usub where (G/L)Ω is smooth and p|Ω is a submersion (hence, a local

diffeomorphism by equality of the dimensions).

By definition, the distribution T̂Ω
On

is supported by Usub. We first prove that (1/Vol(On))T̂Ω
On

converges weakly to p∗ωG/H on Usub, then extend the weak convergence successively to Usmooth

and (G/L)Ω using Proposition 2.2. After pushing forward by π, we get the desired result.
To prove the weak convergence on Usub, it is enough to prove it on every open relatively

compact subset U ′ of Usub such that p|U ′ is a diffeomorphism onto its image (because those open
sets cover Usub). Thus, let f be a continuous function with compact support on such U ′. Let
ε(U ′) be 1 if p|U ′ preserves orientation and −1 otherwise. Then

1
Vol(On)

T̂Ω
On

(f) =
ε(U ′)

Vol(On)

∑
x∈Vn∩p(U ′)

f ◦ p−1(x)

−→
n→+∞ ε(U ′)

∫
p(U ′)

f ◦ p−1(x)ωG/H(x) =
∫

U ′
fp∗ωG/H

because Vn is equidistributed in G/H.
This shows the weak convergence of (1/Vol(On))T̂Ω

On
on every U ′, hence on Usub.

Let us now extend the weak convergence to (G/L)Ω. As the projection map p|(G/L)Ω :
(G/L)Ω → G/H is definable in the o-minimal structure Ran,exp, it follows from Theorem 3.2
that the number of connected components of its fibers is uniformly bounded by some number N .

First, let C be a compact subset of Usmooth \ Usub. Then, by Sard’s lemma, p(C) has measure
0. Hence, for every ε > 0, there exists an open neighborhood U ′ of C in Usmooth such that∣∣∣∣∫

p(U ′)
ωG/H

∣∣∣∣ ≤ ε.

As for all x ∈ p(U ′) ∩ Vn the set p−1(x) ∩ U ′ has at most N isolated points, we get that

1
Vol(On)

|T̂Ω
On

|(U ′) ≤ N

Vol(On)
|p(U ′) ∩ Vn|,

hence
1

Vol(On)
|T̂Ω

On
|(U ′) ≤ |

∫
p(U ′)

ωG/H | ≤ Nε.

We conclude that (1/Vol(On))T̂Ω
On

converges weakly on Usmooth by Proposition 2.2.
Finally, the complement of Usmooth in (G/L)Ω is the singular locus, which has dimension

less than dH . As p is definable, its image has measure zero, and one can reproduce the previous
argument to show that (1/Vol(On))T̂Ω

On
converges weakly to p∗ωG/H on (G/L)Ω. �

In the previous theorem, we chose to restrict to dim(S) = dH for simplicity. We indicate
briefly without proof how these statements should be adapted when dim(S) > dH : we define the
transverse intersection current TOn

S as the integration current over the transverse intersection
locus of S ∩ On with the sign normalizations as in § 3.2. Intersecting further with submanifolds of
dimension dH and applying our theorem, one would obtain the convergence of these intersection
currents (after normalization) to the current π∗p∗ωG/H |S . We thus get the following theorem.
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Theorem 3.7. Let S be an analytic subspace of dimension d ≥ dH and let (On)n∈N be an
equidistributing sequence of finite unions of closed H-orbits in Γ\G. Then for every β ∈
Ωd−dH

c (S), we have

1
Vol(On)

TS
On

(β) →
n→+∞ π∗p∗ωG/H ∧ β.

4. The pull–push form

In the equidistribution Theorem 2.8 and Corollary 2.9, we see appearing the pull–push form
π∗p∗ωG/H . This form was already studied by the second author with entirely different moti-
vations [Tho15], whereas the first author proved, in the particular case of G = SO(2, q),
H = SO(2, q − 1), and K = S(O(2) ×O(q)), that this form is the G-invariant Kähler form
on G/K.

Here we introduce some tools to better characterize this form, most of which were already
presented in [Tho15].

4.1 Push-forward of forms
Let us first recall without any proof the construction of the push-forward of a form α under a
smooth fibration π : M → B with compact oriented fibers. This construction can be found for
instance in [BT82, p. 37].

Let r be the dimension of the fibers of π. Let x be a point in B and denote by F the fiber
of π over x. Choose ω a volume form on F compatible with the orientation of the fiber, and let

X ∈ Λr(TF ) ⊂ ΛrTM

be the multivector such that ω(X) = 1.
Now let α be a smooth p-form on M . The contraction ιXα is a (p− r) form with kernel TF ,

which can thus be seen as a section of Λp−r(NF∨), where NF = TM/TF is the normal bundle
to F and NF∨ = {ϕ ∈ T ∗M | ϕ|TF = 0} is its dual.

Finally, the differential of π along the fiber F induces an isomorphism NF � F × TxB and
therefore Λp−r(NF∨) = Λp−r(TxB

∨). With these identifications, we can now state the following
definition.

Definition 4.1. The push-forward of the form α is the (p− r)-form on B given at x by

(π∗α)x =
∫

y∈F
ιX(α)yω.

Let p+ q be the dimension of M . Then we have the following result.

Proposition 4.2. The form π∗α is the unique (p− r) form on B such that for any q-form β on
B with compact support, ∫

B
π∗α ∧ β =

∫
M
α ∧ π∗β.

Moreover, the push-forward operation commutes with the exterior derivative. In particular, the
push-forward of a closed form is closed.

4.2 A formula for the pull–push form
Let us now apply the previous general considerations in order to give a formula for the pull–push
form π∗p∗ωG/H at the Lie algebra level.

20

https://doi.org/10.1112/S0010437X22007795 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X22007795


Equidistribution of Hodge loci II

Let G/H be a G-homogeneous space and o denote the basepoint of G/H (that is, the pro-
jection of the unit element of G). Then the tangent space ToG/H with the induced linear action
of H identifies canonically with g/h endowed with the adjoint action of H. This identification
induces an isomorphism between the differential algebra Ω•(G/H,C)G of smooth G-invariant
forms on G/H with complex coefficients and the differential algebra Λ•((g/h)∨C)H of H-invariant
exterior forms on g/h, with derivative given by

dα(x1, . . . , xk+1) =
∑
i<j

(−1)i+jα([xi, xj ], x1, . . . , x̂i, . . . , x̂j , . . . , xk+1),

for α ∈ Λk((g/h)∨C)H and x1, . . . , xk+1 ∈ g/h.
Let us now come back to the setting of the previous section, where H is a semi-simple

subgroup of G, K a compact subgroup of G, and L = G/H. At the Lie algebra level, the pull-
back homomorphism p∗ (respectively, π∗) identifies exterior forms on g/h (respectively, g/k) to
those exterior forms on g/l having h/l (respectively, k/l) in their kernel.

Reinterpreting Definition 4.1 for G-invariant forms on G/L, we obtain the following result.

Proposition 4.3. Let α be a G-invariant form on G/L. Then the form π∗α on G/K is
G-invariant and corresponds on g/k to the AdK-invariant form∫

k∈K/L
Adk

∗(ιuα)ωK/L,

where u ∈ Λmax(k/l) is such that ωK/L(u) = 1.

Remark 4.4. As k/l and h/l are both AdL-invariant, the form ιuα is L-invariant and its kernel
contains k/l. Therefore, its pull-back by Adk only depends on the class of k in K/L so that the
integral makes sense. Moreover, the resulting form is obviously K-invariant and has k/l in its
kernel, so that is does identify with a K-invariant form on g/k.

Corollary 4.5. Let (α1 . . . , αpr) be an oriented orthonormal basis of {φ ∈ (g/k)∨ | φ|h/l = 0}.
Then there exists a positive constant λ such that

π∗p∗ωG/H = λ

∫
k∈K/L

Ad∗
k(α1 ∧ . . . ∧ αp−r)ωK/L(k).

If, moreover, k/l is orthogonal to h/l in g/l, then λ = 1.

Proof of Proposition 4.3. The G-invariance of π∗α easily follows from Proposition 4.2, so we only
need to compute π∗α at the basepoint of G/K.

Let o denote the basepoint of G/L and v1, . . . , vp−r be p− r vectors in ToG/L = g/l. Let k
be an element of K. At the point k · o, we have

ιuα(k · v1, . . . , k · vp−r) = ιuα(v1, . . . , vp−r)

by left invariance of ιuα.
Now, the differential of π maps a vector k · v ∈ Tk·oG/L to the vector Adk(v) ∈ Tπ(o)G/K =

g/k. Applying Definition 4.1 to π∗α gives the required formula. �

Proof of Corollary 4.5. Complete (α1, . . . , αp−r) into an orthonormal basis (β1, . . . , βr, α1, . . . ,
αp−r) of {φ ∈ (g/l)∗ | φ|h/l = 0}. We then have

p∗ωG/H =
r∧

i=1

βi ∧
p−r∧
i=1

αi,
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hence

ιup
∗ωG/H = λ

p−r∧
i=1

αi,

where λ =
∧r

i=1 βi(u), because all the αi vanish on k/l.
If, furthermore, k/l is orthogonal to h/l, then (β1, . . . , βr) can be chosen as an orthonormal

basis of (k/l)∨, so that λ = 1.
Proposition 4.3 now concludes the proof. �
In practice, using this integral formula to compute the pull–push form quickly leads to

rather involved computations. In [Tho15], the second author used this formula to give a sufficient
vanishing criterion: if there exists k ∈ K such that Adk preserves h/l and reverses its orientation,
then Adk∗(ιuα) = −ιuα, and Proposition 4.3 shows that π∗p∗ωG/H vanishes.

In terms of our equidistribution result, this vanishing means that the positive and negative
part of the intersection measure cancel out asymptotically, because a ‘random’ translate of H/L
in G/K can intersect a submanifold S with two opposite equiprobable orientations.

In contrast, we can prove the following non-vanishing criterion.

Corollary 4.6. If G/K has a G-invariant complex structure such that H/L is a complex
submanifold, then π∗p∗ωG/H does not vanish.

Proof. Let α1, . . . , α(p−r)/2 be a complex basis of {φ ∈ (g/k)∨ | φ|h/l = 0}. Then ιup
∗ωG/H is

proportional to
(p−r)/2∧

i=1

αi ∧ ᾱi,

which is non-negative on every complex subspace of dimension (p− r)/2. By invariance of the
complex structure, the same holds for

Adk
∗
(

(p−r)/2∧
i=1

αi ∧ ᾱi

)
.

Finally,
∧(p−r)/2

i=1 αi ∧ ᾱi is positive on a complex complement of h/l, and so is∫
k∈K/L

Adk
∗
(

(p−r)/2∧
i=1

αi ∧ ᾱi

)
ωK/L. �

4.3 Compact duality
In [Tho15], the second author investigated further the pull–push form in the case where G/K
and H/L are symmetric spaces. There, he proved that π∗p∗ωG/H is in some sense ‘Poincaré dual’
to the inclusion H/L ↪→ G/K, a statement which is made precise by passing to the compact dual
of the symmetric space. As cohomology classes of compact symmetric spaces are represented by a
unique invariant form, this argument completely characterizes the pull–push forms and provides
an efficient way to compute it in practice. The goal of this section is to extend these results to
more general compact subgroups K ⊂ G.

Recall that a Cartan involution of G is an involutive automorphism whose fixed subgroup is a
maximal compact subgroup. All the Cartan involutions of G are conjugated, and every compact
subgroup of G is fixed by a Cartan involution.

In this section, we make the assumption (verified in all the examples we consider in this
paper) that there exists a Cartan involution θ of G fixing K and preserving H. We denote by
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Gθ and Hθ the compact subgroups of G and H fixed by θ. The Lie algebras g and h decompose
respectively as

g = gθ ⊕ gθ⊥

and
h = hθ ⊕ hθ⊥.

We now introduce the dual Lie algebras

gU = gθ ⊕ igθ⊥ ⊂ gC

and
hU = hθ ⊕ ihθ⊥ ⊂ hC.

These are the Lie algebras of compact real forms GU and HU of GC and HC, respectively, called
the compact duals of G and H.

From GU and HU , one can define compact duals to the homogeneous spaces G/H, G/L, and
G/K, given by GU/HU , GU/L, and GU/K, respectively. The various inclusions between these
groups give the following commutative diagram.

G/L
p

��
� �

�����������

π

��

G/H
� �

�����������

G/K
� �

�����������
GC/LC

��

�� GC/HC

GC/KC GU/L
� �

�����������
pU ��

πU

��

GU/HU

� �

�����������

GU/K
� �

�����������

Now, the inclusion of G/H into GC/HC induces an isomorphism of differential algebras

Ω•(G/H,C)G = Λ•((g/h)∨)H ⊗R C � Λ•
C((gC/hC)∨)HC = Ω•

C(GC/HC)GC ,

where Λ•
C and Ω•

C denote the complex of C-multilinear forms. The same holds for all the inclu-
sions in the above diagram. In other words, the differential algebra of real invariant forms on
a homogeneous space and its compact dual are two distinct real forms of the same complex
differential algebra.

Proposition 4.7. We have the following commutative diagram of differential complexes.

Ω•(G/L,C)G

π∗
��

��
∼

�������������������
Ω•(G/H,C)G

p∗
		

��
∼

������������������

Ω•−dim(K/L)(G/K,C)G

��
∼

�������������������
Ω•(GU/L,C)GU

πU ∗
��

Ω•(GU/HU ,C)GU

p∗U

		

Ω•−dim(K/L)(GU/K,C)GU
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Proof. The only non-trivial point is that π∗ and πU ∗ are identified as maps from Ω•
C(GC/LC)GC

to Ω•
C(GC/KC)GC . However, this readily follows from Proposition 4.3 because, at the Lie algebra

level, both maps are given by the contraction with u followed by averaging under the adjoint
action of K. �

Now, ωG/H and ωGU/HU
are both generators of Λmax

C (gC/hC), so they are complex multiples
one of the other. More precisely, we can identify

g/h = gθ/hθ ⊕ gθ⊥/hθ⊥

with
gU/hU = gθ/hθ ⊕ igθ⊥/hθ⊥

via the morphism
φ : (u, v) �→ (u, iv)

and normalize ωGU/HU
so that

φ∗ωGU/HU
= ωG/H .

With this normalization, we have the following equality in Λmax
C (gC/hC)

ωG/H = idim(gθ⊥/hθ⊥)ωGU/HU
.

Finally, applying Proposition 4.7, we conclude as follows.

Corollary 4.8. The following equality holds in Λ•
C(GC/KC)KC :

π∗p∗ωG/H = idim(gθ⊥/hθ⊥)πU ∗p∗UωGU/HU
.

What we gained by switching to the compact dual space GU/K is that we can now talk
about the cohomology class of the pull–push form. The following theorem was proven in [Tho15]
under the assumption that K = Gθ, but the proof easily adapts to our more general context.

Lemma 4.9. The de Rham cohomology class of the pull–push form (1/Vol(GU/HU ))
πU ∗p∗UωGU/HU

is Poincaré dual to the homology class of HU/L ⊂ GU/K; that is, for every closed
form β on GU/K of degree dim(HU/L), we have∫

HU/L
β =

1
Vol(GU/HU )

∫
GU/K

πU ∗p∗U (ωGU/HU
) ∧ β.

Proof. This is essentially formal. Denote by ι1 and ι2 the inclusions ofHU/L in GU/L and GU/K,
respectively, so that we have ι2 = πU ◦ ι1 and ι1(HU/L) = p−1

U (o), where o is the basepoint of
GU/HU .

Now, the form (1/Vol(GU/HU ))ωGU/HU
is Poincaré dual to [o] in H•

dR(GU/HU ,R), so its
pull-back under pU is Poincaré dual to [p−1

U (o)] = ι1∗[HU/L]. Finally, let β be a closed form of
degree dim(HU/L) on GU/K. We then have∫

HU/L
ι∗2β =

∫
ι1(HU/L)

π∗Uβ

=
∫

GU/L
p∗UωGU/HU

∧ π∗Uβ

=
∫

GU/K
πU ∗p∗UωGU/HU

∧ β. �
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4.3.1 The symmetric case. When K = Gθ is a maximal compact subgroup of G, a theorem
of Cartan [Cart30] states that all G-invariant forms on G/K are closed. Hence, the exterior
derivative is trivial on Ω•(G/K)G and we have isomorphisms:

Ω•(G/K,C)G � Ω•(GU/K,C)GU � H•
dR(GU/K,C).

In other words, a G-invariant form on G/K is completely characterized by the cohomology class
of the corresponding form on GU/K.

This property does not hold for more general homogeneous spaces. In the next section we
show however that it remains true on Mumford–Tate domains when restricting to a variation of
Hodge structure.

5. Invariant forms on period domains

In this section, we introduce Mumford–Tate domains, Hodge loci, and invariant forms on period
domains. Then we relate pull–push forms to Chern classes of Hodge bundles. Finally, we compute
it in various cases of interest.

5.1 Variations of Hodge structure and their period domains
Let us first recall some definitions of Hodge theory, merely to fix notation.

Let V be a free Z-module of finite rank d ∈ N endowed with a bilinear form B : V × V → Z.
Given a field K, we write VK = V ⊗Z K and still denote by B the natural K-bilinear extension
of B to VK.

A Hodge structure of weight k on V polarized by B is the data of a filtration of complex
vector spaces

0 ⊆ F k ⊆ · · · ⊆ F 0 = VC

such that for all 0 ≤ p ≤ k:

(i) VC = F p ⊕ F
k−p+1;

(ii) B(u, v) = 0 for all (u, v) ∈ F p × F k−p+1;
(iii) ip−qB(v, v̄) > 0 for all v ∈ (F p ∩ F q)\{0} with p+ q = k.

Remark 5.1. The existence of a Hodge structure of weight k implies that B is non-degenerate
and antisymmetric for odd k or symmetric for even k.

For p+ q = k, define V p,q = F p ∩ F q. Then V p,q is a complement of F p+1 in F p. In particular,
we have a decomposition

VC =
⊕

p+q=k

V p,q, with V
p,q = V q,p.

The Hodge numbers of the Hodge structure are the numbers hp,q def= dimC(V p,q).
Let S = ResC/RGm denote the Deligne torus, i.e. the restriction of scalars of the multiplicative

group Gm from C to R. Then S(R) = C× seen as an algebraic group over R. Every Hodge
structure on (VZ, B) induces a representation ϕ : S(R) → GL(VR) given by

z · u = z−pz̄−qu

on u ∈ V p,q.
Let k ∈ Z and h = (hp,q)p+q=k ∈ Nk+1 be such that hp,q = hq,p and

∑k
p=0 h

p,q = d. The period
domain of Hodge structure of weight k and Hodge numbers (hp,q)p+q=k is the set D of all
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filtrations (F p)0≤p≤k which define a Hodge structure of weight k and Hodge numbers hp,q

on (VZ, B). It is a complex manifold homogeneous under the action of the group AutR(B),
and the stabilizer of a point is a compact subgroup of AutR(B).

The period domain D is an open subset of the compactified period domain D̂ of complex
flags 0 ⊆ F k ⊆ · · · ⊆ F 0 = VC such that F k−p = F p⊥ and dimC(F p/F p+1) = hp,k−p for all p. The
compactified period domain is a flag variety of the group AutC(B) (i.e. a quotient of AutC(B)
by a parabolic subgroup).

Let U denote the trivial complex vector bundle D × VC equipped with the action of AutR(B)
given by the tautological linear action in the fibers. By construction, this bundle admits a
AutR(B)-invariant real structure and a complex bilinear pairing B as well as a universal Hodge
decomposition, i.e. a smooth decomposition as a direct sum of GR-equivariant complex vector
bundles Up,q such that, at a point x, the induced decomposition of Ux = V ⊗Z C is the Hodge
decomposition associated with x.

Now let X be a complex analytic variety. A (polarized) variation of Hodge structure of weight
k over X is the data of:

(i) a local system VZ of free Z-modules of finite rank d with a flat bilinear pairing B : VZ ⊗
VZ → ZX ;

(ii) a decreasing filtration F•V on V = VZ ⊗ZX
OX by holomorphic sub-vector bundles 0 ⊆

FkV ⊆ · · · ⊆ F0V = V;

which satisfy the following conditions.

(a) Hodge property: for every x ∈ X, the flag 0 ⊆ FkVx ⊆ · · · ⊆ F0Vx
def= Vx is a Hodge structure

on VZ,x.
(b) Griffiths’ transversality: the flat connection ∇ associated on VZ ⊗OX satisfies

∇(FpV) ⊆ Fp−1V ⊗ Ω1
X for 0 ≤ p ≤ k.

Let {VZ,F•V, B} be a variation of Hodge structure of weight k over X. Its Hodge
decomposition is the (C∞) decomposition

V =
⊕

p+q=k

Vp,q,

where Vp,q = FpV ∩ Fk−pV, and its Hodge numbers are

hp,q = dimC(Vp,q), p+ q = k.

Now let π : X̃ → X be the universal cover of X and x and arbitrary point in X̃. The local system
π∗VZ is trivial, and one obtains a map

f̃ : X̃ → D
such that f̃(y) is the Hodge structure F•Vy on (π∗VZ)y = VZ,x. This map is equivariant with
respect to the monodromy ρ : π1(X) → GZ = Aut(VZ,x) of the local system and thus factors to
a map

f : X → GZ\D
called the period map of the variation of Hodge structure. There are canonical isomorphisms

Vp,q � f∗Up,q.

In terms of the period map, Griffiths’ transversality condition admits the following interpretation.
Let x be a point in D and let ϕ : S → GR be the associated representation of the Deligne torus.
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Then the Lie algebra gC decomposes under the adjoint action as

gC =
⊕

p

gp,−p,

where
gp,−p = {ξ ∈ g, ξ · V r,s ⊂ V r+p,s−p}.

The subalgebra g0,0 is the Lie algebra of the stabilizer of x, and its complement identifies with
the complexified tangent space to D at x. The eigenspace of the complex structure on TxD for i
is the subspace

⊕
p<0 gp,−p.

The subspace g1,−1 ⊕ g−1,1 is the complexification of a well-defined subspace Wx ⊂ TxD. This
defines a holomorphic GR-invariant distribution of TxD called the Griffiths’ distribution. Now,
Griffiths’ transversality condition states precisely that the period map is tangent to the Griffiths’
distribution.

5.2 Hodge loci and transversality
Let (V,B) be a lattice with an integral bilinear pairing. A Hodge structure on V induces a
Hodge structure on T k,lV

def= V ⊗k ⊗ V ∨⊗l for all k, l, whose Hodge decomposition is given by the
diagonalization of the induced representation ϕ : S(R) → End(T k,lV ⊗Z C) of the Deligne torus.
Let U1 ⊂ S(R) denote the unit circle.

Definition 5.2. The Mumford–Tate group MTϕ of (V,B) is the smallest Q-algebraic subgroup
of GL(VR) which contains ϕ(C×). The special Mumford–Tate group is the smallest Q-algebraic
subgroup sMTϕ which contains ϕ(U1).

The algebra of Hodge classes is the bigraded Z-subalgebra Hdg•,•(ϕ) ⊂ T •,•V fixed by ϕ(U1).
Now let v be a vector in T •,•V . The Hodge domain of v is the set of variations of Hodge

structure ϕ on V such that Hdg•,•(ϕ) contains v. The connected components of the Hodge
domain of v are homogeneous under the stabilizer of v in GR. They are called Mumford–Tate
domains, and the stabilizer of such components are Mumford–Tate groups.

Remark 5.3. If Hdg•,•(ϕ) contains a set A, then it contains the subalgebra spanned by A.
Conversely, for every bigraded subalgebra H•,• of T •,•V , there exists v ∈ H•,• such that

v ∈ Hdg•,•(ϕ) ⇐⇒ H•,• ⊆ Hdg•,•(ϕ).

In particular, intersections of Hodge or Mumford–Tate domains are again Hodge and
Mumford–Tate domains.

As Mumford–Tate groups are defined over Q, the projection of a Mumford–Tate domain
HR/LR to GZ\GR/KR factors to a proper immersion of HZ\HR/LR.

Now let X be a connected analytic variety equipped with a variation of Hodge structure
(VZ, B,F•V) of weight k and Hodge numbers (hp,q)p+q=k. We assume that the period map of X
is generically immersive.

Let GR/KR be a Mumford–Tate domain containing X̃. Then the monodromy representation
takes values in GZ and at every point y ∈ X̃ the algebra Hdg•,•(ϕ) of Hodge classes at y contains
the subalgebra H•,• fixed by GR.

The variation of Hodge structure X is called Hodge generic in GR/KR if there is no proper
Hodge subdomain of GR/KR containing X̃. In that case, at a generic point of X, the algebra
of Hodge classes is exactly (T •,•V)GR and the Mumford–Tate group is a rational form of G. We
state the following definition.
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Definition 5.4. Let GR/KR be the smallest Mumford–Tate domain containing X. The Hodge
locus of X̃ is the set of points at which the algebra of Hodge classes contains strictly (T •,•V)GR .
The Hodge locus of X is its projection under the covering map.

The Hodge locus of X is the intersection of X with the countable union of all the projections
modulo GZ of the Mumford–Tate subdomains of GR/KR. To be more precise, let GR/KR be any
Mumford–Tate domain containing X̃ and let H be an algebraic subgroup of G defined over Q.
We state the following definition.

Definition 5.5. The Hodge locus of type H is the set of points in X̃ whose Mumford–Tate
group is conjugated over R to a subgroup of H. The Hodge locus of type H in X is its projection
by the covering map.

The Hodge locus of type H is the intersection of X̃ with the union of Mumford–Tate domains⋃
g∈GR

gHR/LR, for all g ∈ GR such that gHRg
−1 is Q-subgroup. This leads to the following

definition.

Definition 5.6. The transverse Hodge locus of typeH is the set of smooth points ofX for which
there exists g ∈ GR such that gHg−1 is a Q-group and X̃ and gHR/LR intersect transversally
at x.

If X is Hodge generic in D, the transverse Hodge locus (of type H) is called the typical Hodge
locus (of type H).

As Hodge loci are intersections of X with locally homogeneous sub-spaces of GZ\D, we can
hope to apply our equidistribution result in this setting. However, in order for it to be effective,
one needs a generic transversality property between X and H/L.

Definition 5.7. We say that X is generically transverse to H-orbits at a smooth point x if
there exists g ∈ GR such that gHR/LR and X̃ intersect transversally at (some lift of) x.

We say that X is generically transverse to H-orbits if there exists a smooth point at which
it is generically transverse.

Remark 5.8. If X is generically transverse to H-orbits, then the set of points x at which it is
generically transverse is an open and dense analytic subset of X.

Proposition 5.9. Let x be a point in X. Then X is generically transverse to H-orbits at x if
and only if the pull–push form π∗p∗ωG/H is non-zero at x.

As the consequence, we get the following density criterion for the transverse Hodge locus of
type H.

Theorem 5.10. The following propositions are equivalent:

(i) the transverse Hodge locus of type H is non-empty;
(ii) the transverse Hodge locus of type H is analytically dense in X;
(iii) X is generically transverse to H-orbits;
(iv) the pull–push form π∗p∗ωG/H is not identically zero on X.

Proof of Proposition 5.9. Let d be half of the degree of the form π∗p∗ωG/H .
Assume that X is generically transverse to H-orbits at x, and let g ∈ G be such that x ∈

gH/L and

TxX + Tx(gH/L) = TxG/K.
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Let u be a multivector as in Proposition 4.3. As Tx(gH/L)C is in the kernel of ιup∗ωG/H , there
exists holomorphic vector fields X1, . . . , Xd on X defined on a neighborhood of x such that

ιup
∗ωG/H(X1, X1 . . . , Xd, Xd) > 0.

For every k ∈ K, we have by Corollary 4.6,

Ad∗k(ιup
∗ωG/H)(X1 ∧X1 . . . ∧Xd ∧Xd) ≥ 0,

and this inequality is strict in an open neighborhood of the basepoint of K/L. Hence, by
integrating over k and using Definition 4.1, we get π∗p∗ωG/H �= 0 at x.

Conversely, assume that X is not generically transverse at x. Then for every g ∈ G, we
have TxX + Tx(gH/L) � TxG/K. Hence, for every d-uple of C-linearly independent vectors
X1, . . . , Xd in TxX, the intersection of the subspaces spanR(X1, X1, . . . , Xd, Xd) and Tx(gH/L)C

is non-empty. Hence, the form ιuωG/H vanishes on the multi-vector X1 ∧X1 . . . Xd ∧Xd. The
same is true for Ad(k)∗(ιup∗ωG/H) for all k ∈ K. By integrating, we get that π∗p∗ωG/H vanishes
at x. Hence, the result. �

Proof of Theorem 5.10. The implication (ii) ⇒ (i) and (i) ⇒ (iii) are obvious, and the equiva-
lence (iii) ⇒ (iv) readily follows from Proposition 5.9. We only have to prove (iii) ⇒ (i).

By Remark 5.8, the set of points where X is transverse to H-orbits is open and dense.
Let x be such a point and g ∈ GR such that X̃ and gHR/LR intersect transversally at x. By
weak approximation, G(Q) is analytically dense in G(R). Thus, there exists a sequence gn ∈
GQ converging to g. For n large enough, by stability of transversality, gnHR/LH intersects X̃
transversally at a point xn such that xn −→

n→+∞ x. As gn ∈ GQ, gnHg
−1
n is a Q-subgroup of G,

hence xn belongs to the transverse Hodge locus of type H. �

Unfortunately, in many situations, variations of Hodge structure are never generically trans-
verse to H/L. Indeed, Griffiths’ transversality constrains their tangent space to be contained in
the Griffith distribution, so that it cannot supplement Tx(H/L) in other directions.

To be more precise, let H/L ⊂ G/K ⊂ D be Mumford–Tate domains. Let ϕ : U1 → H be
the restriction of the representation at a point x ∈ H/L of the Deligne torus to the unit circle.
Then both g and h are invariant under the adjoint action of ϕ. We thus have decompositions

gC =
k⊕

p=−k

gp,−p , hC =
k⊕

p=−k

hp,−p

with hp,−p ⊆ gp,−p. Note that g0,0 = k and h0,0 = l.

Proposition 5.11. The following are equivalent.

(i) There exists a smooth variation of Hodge structure in G/K which is generically transverse
to H/L.

(ii) For all |p| ≥ 2, hp,−p = gp,−p and there exists an abelian subalgebra a ⊂ g−1,1 such that

a + h−1,1 = g−1,1.

Proof. Assume that there exists a smooth variation of Hodge structure X ⊂ G/K which is
generically transverse to H/L. Up to left multiplication by some g ∈ G, we can assume that
x ∈ X and that

T 1,0
x X + T 1,0

x H/L = T 1,0
x G/K. (5.2.1)
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Now, because X is a variation of Hodge structure, T 1,0
x X is an abelian subalgebra of g−1,1,

whereas T 1,0
w H/L =

⊕
p<0 hp,−p. The identity (5.2.1) thus implies that

T 1,0
x X + h−1,1 = g−1,1

and
h−p,p = g−p,p

for all p ≥ 2, and by Hodge symmetry, also for p ≤ −2.
Conversely, assume h−p,p = g−p,p for all p ≥ 2 and a−1,1 + h−1,1 = g−1,1 for some abelian Lie

subalgebra a. Let A denote the complex abelian subgroup of GC spanned by a. Recall that
GC acts on the compactified period domain D̄. If U is a sufficiently small neighborhood of the
identity in A, then

X = {a · x, a ∈ U}
is a smooth holomorphic submanifold contained in D. As a ⊂ g−1,1 and A is abelian, X is tangent
to the Griffith distribution at every point. Hence, X is a smooth variation of Hodge structure
transverse to H/L at x. �
Remark 5.12. Baldi, Klingler, and Ullmo [BKU21, Prop. 6.5] proved that, when g is simple and
has components gk,−k for k ≥ 3, then a Lie subalgebra h can never contain gk,−k, k ≥ 3. It follows
that the transverse Hodge locus is always empty in that case.

5.3 Chern classes of the Hodge bundles
Let {VZ,F•V, B} be a variation of Hodge structure of weight k over a complex analytic variety
X. Let σ be the antilinear automorphism of V given by

σ|Vp,q : v �→ ip−qv̄.

and let h be the Hermitian form
h(v, v) = B(v, σv).

By the definition of Hodge structures, h is positive-definite and the decomposition

V =
⊕

p+q=k

Vp,q

is orthogonal for h.
We have σ2 = (−1)kIdV . Define now a new linear connection ∇h on V by

∇h = ∇ +
(−1)k

2
σ(∇σ).

(The connection ∇h is the part of the connection ∇ that preserves σ.) Then ∇h preserves the
metric h and the orthogonal decomposition

V =
⊕

p+q=k

Vp,q.

Let ∇h
p,q denote the induced Hermitian connection on Vp,q. and Θp,q

h denotes its curvature. One
can show that Θp,q

h is of type (1, 1).

Definition 5.13. The Chern forms of Vp,q are the (�, �) forms c
(Vp,q), 1 ≤ l ≤ hp,q defined by

det
(

IVp,q +
i

2π
Θp,q

h

)
= 1 +

hp,q∑

=1

c
(Vp,q).
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It is well-known that the form c
(Vp,q) represents the �th Chern class of Vp,q in de Rham
cohomology of X.

These Chern forms turn out to be pull-backs of invariant forms under the period map. Indeed,
σ, h, and ∇h can be defined on the universal Hodge decomposition

U =
k⊕

p=0

Up,q

over D. There, these objects are G-equivariant and induce G-invariant Chern forms c
(Up,q).
These factor to the quotient GZ\D and, if f : X → GZ\D denotes the period map, we have

c
(Vp,q) = f∗c
(Up,q).

5.3.1 Expression at the Lie algebra level. Let us now express the Chern forms c
(Up,q) at the
Lie algebra level.

Let us fix a basepoint o in D with stabilizer K. The group K decomposes as

K =
�k/2�∏
p=1

Kp,q,

where Kp,q � U(hp,q) for p > q and Kk′,k′ � O(hk′,k′
) when k = 2k′ is even.

When p ≥ q (respectively, p ≤ q), the bundle Up,q is the bundle associated with the linear
representation of K that factors through the standard representation of Kp,q (respectively, the
dual representation). Let kp,q denote the Lie algebra of Kp,q. Then, for p ≥ q, the curvature of
Up,q at x is the 2-form on g/k with values in kp,q ⊂ End(Up,q) given by

F p,q
h (u, v) = πp,q([u, v]) − [πp,q(u), πp,q(v)],

where πp,q : g → kp,q denotes the orthogonal projection for the Killing metric.

5.3.2 Chern forms on the compact dual. Recall from § 4.3 that we have an isomorphism of
differential algebras

ψ : Ω•(G/K,C)G ∼→ Ω•(GU/K,C)GU

which consists in identifying both spaces with Λ•
C(gC/kC)KC .

We now wish to identify the invariant forms on GU/K corresponding to the Chern forms
on G/K.

Recall that D̂ = GC/P is the space of complex flags

0 ⊆ F k ⊆ . . . ⊆ F 0 = VC

such that

F k−p = F p⊥

(where the orthogonal is intended with respect to the bilinear form B) and

dim(F p/F p+1) = hp,q.

Let Û denote the trivial bundle over D̂ equipped with the action of GC given by the standard
linear action in the fibers. The bundle Û admits a tautological filtration F•Û by GC-equivariant
vector bundles which is given at a point x by the flag defining x.
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By construction, the restriction of F•Û to the open domain D is the filtration F•U of U
given (in C∞) by

FpU =
⊕
p′≥p

Up′,k−p′ .

Let us now prove that the dual space GU/K identifies with D̂.

Proposition 5.14. The group GU is (conjugated to) the subgroup of GC = AutC(B) commut-
ing with the antilinear automorphism σ.

Proof. Let τ : Vo → Vo be the complex conjugation and θ = στ . Conjugation by τ is the anti-
holomorphic involution of GC fixing G and one verifies that the conjugation with στ is a Cartan
involution of G fixing K. With respect to this choice of Cartan involution, the group GU is then
the fixed point set of conjugation by σ. �

Corollary 5.15. The group GU acts transitively on D̂, and the stabilizer of o in GU is K.

Proof. As a maximal compact subgroup of GC, the group GU acts transitively on the flag variety
D̂, and the stabilizer K ′ of o preserves the flag F•Uo. Now, because GU commutes with σ, it
preserves the Hermitian form B(·, σ·). Therefore, K ′ preserves the orthogonal of Fp+1Uo in FpUo

for B(·, σ·), which is precisely Up,q. We conclude that K = K ′. �

The GU -invariant form B(·, σ·) induces a flat GU -invariant Hermitian metric ĥ on Û . Let
Ûp,q denote the ĥ-orthogonal of Fp+1Û in F . Then the bundle Ûp,q is GU -invariant and carries
a GU -invariant Hermitian connection ∇p,q

ĥ
with curvature form Θp,q

ĥ
. The Chern forms of this

connection define GU -invariant forms

c
(Ûp,q)

which represent the Chern classes of Ûp,q � FpÛ/Fp+1Û on D̂.

Proposition 5.16. The isomorphism φ : Ω2l(G/K,C)G → Ω2l(GU/K,C)G maps c
(Up,q) to
c
(Ûp,q) ∈ Ω2l(GU/K,C)G.

Remark 5.17. The isomorphism φ is not induced by the identification

ToD = ToD̂
coming from the inclusion D ⊂ D̂ but rather from the diagram in Proposition 4.7.

Proof. For p ≥ q, the bundle Ûp,q is the vector bundle on GU/K associated with the linear
representation of K factoring through the standard representation of Kp,q. Hence, its curvature
form at o is given by a formula similar to § 5.3.1.

Now let πp,q
C denote the orthogonal projection of gC to k

p,q
C for the complex Killing form.

Then πp,q
C restricts to the orthogonal projection to k on both g and gU .

Therefore, both the curvature forms of Up,q and Ûp,q at o are given by

(u, v) �→ πp,q
C ([u, v]) − [πp,q

C (u), πp,q
C (v)],

hence all the symmetric polynomials in those curvature forms are identified by φ. �

5.3.3 Characteristic cohomology. As mentioned in § 4.3.1, there might be G-invariant forms
on D which are not closed, in which case G-invariant closed forms are not characterized by the
corresponding cohomology class in H•(D̂).
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In the context of variations of Hodge structure, however, we are ultimately interested in the
restriction of G-invariant forms to submanifolds that are tangent to the Griffiths’ distribution.
This motivates the introduction of the characteristic cohomology of a period domain, which,
roughly speaking, restricts the differential algebra of invariant forms to the Griffiths’ distribution
(see [GGK10, III.A]).

We do not define this notion here and only mention the analogous of Cartan’s theorem, which
comforts the idea that the geometry of period domains is similar to that of symmetric spaces ‘in
restriction to the Griffiths’ distribution’.

Proposition 5.18. Let X be a complex manifold and f : X̃ → G/K the period map of a vari-
ation of Hodge structure. Then, for every α ∈ Ω•(G/K,C)G, the pull-back form f∗α is closed of
bidegree (p, p) for some p.

Proof. Let α be a G-invariant form on G/K. Let x be a point in X and ϕ : C× → GR the
representation of the Deligne torus defining the Hodge structure f(x). Then ϕ(U1) is a subgroup
of Stab(x) ⊂ G and acts on W−1,0 by complex multiplication, where W is the tangent space at
f(x). As αf(x) is ϕ(U1)-invariant, it must belong to Λp,p(W ∗

x ) for some p, and we conclude that
f∗α has bidegree (p, p) because f is holomorphic. In particular, f∗α has even degree.

Now, dα is also a G-invariant form and f∗(dα) = d(f∗α) has odd degree. By the previous
argument, it must vanish. �
Corollary 5.19. Let α be a closed invariant form on D. Then the pullback of α by any
variation of Hodge structure is completely determined by the cohomology class [φ(α)] ∈ H•(D̂).

Proof. Let α′ be another closed G-invariant form on G/K such that φ(α− α′) is exact on GU/K.
We can write α− α′ = dβ, where β is G-invariant. Now let f : X → G/K be a variation of Hodge
structure. Then f∗β is closed by the previous proposition, hence

f∗α− f∗α′ = d(f∗β) = 0. �
Remark 5.20. We only mentioned these results for period domains, but one can prove that they
remain true on every Mumford–Tate domain.

5.4 Examples
We now apply the previous considerations to compute the pull–push form in various examples.

5.4.1 Noether–Lefschetz loci in weight two. Assume in this section that D is the period
domain for a polarized variation of Hodge structure of weight two on a quadratic lattice (V,B)
which is assumed to be of signature (p, 2q). Let R be a rational subspace of V ⊗Z Q of rank
r ≤ h1,1 such that B is positive-definite in restriction to R⊗Q R, and let DR ⊂ D be the set of
Hodge structures x ∈ D such that R ⊂ V1,1

x .
Choose a basepoint o in DR. Let K be the stabilizer of o in G, let H be the subgroup of G

fixing R, and L = K ∩H. Then H is a Mumford–Tate group and DR ⊂ D is the Mumford–Tate
domain H/L ⊂ G/K.

Denoting as before by p and π the respective projections from G/L to G/H and G/K, we
can now prove the following.

Theorem 5.21. Let X be an smooth complex analytic manifold, let V = V2,0 ⊕ V1,1 ⊕ V0,2 be
the C∞ Hodge decomposition of a variation of Hodge structure of weight two and Hodge numbers
(q, p, q) on X and let f̃ : X̃ → D be the corresponding period map. Then

f∗(π∗p∗ωG/H) = Vol(GU/HU ) · cq(V2,0)r.
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Proof. Let σ be the antilinear automorphism defined in the previous section. As we are in even
weight, σ is an involution which fixes a real form Uσ of Uo on which the symmetric form B is
real and positive-definite. As σ coincides with the standard complex conjugation on U1,1

o , the
subspace R is contained in Uσ.

Now, GU is the subgroup of GC = AutC(B) preserving Uσ and HU = GU ∩HC is the sub-
group of GU fixing R. Therefore, HU/L is the domain D̂R ⊂ D̂ where Û1,1 contains R. As R is
σ-invariant and

F1Û ∩ σ(F1Û) = Û1,1,

we also have that
D̂R = {x ∈ D̂ | F1Ûx ⊇ R}.

Let (u1, . . . , ur) be a basis of R. The projection of u
 into F0Û/F1Û defines a holomorphic
section s
 of F0Û/F1Û , and D̂R is the transverse intersection of the vanishing loci of all the s
.
We conclude that D̂R is Poincaré dual to the rth power of the Euler class of F0Û/F1Û , i.e.

cq(Û0,2)r.

By Lemma 4.9, we have

π∗p∗ωGU/HU
= Vol(GU/HU ) · cq(Û0,2)r + dα

for some invariant form α.
By Corollary 4.8 and Proposition 5.16 we have

π∗p∗ωG/H = i2qrπ∗p∗ωGU/HU

= (−1)qrcq(Û0,2)r + (−1)qr dα

= cq(Û2,0)r + (−1)qr dα

= cq(U2,0)r + (−1)qr dα.

Finally, by Proposition 5.18, the pull-back of dα by the period map of a variation of Hodge
structure vanishes, and the conclusion follows. �

5.4.2 Diagonal embedding of Shimura varieties. Let G1 be a semi-simple Lie group of
Hermitian type and let K1 be a maximal compact subgroup, so that D def= G1/K1 is a
Hermitian symmetric space of non-compact type. We apply the results of previous sections to
G = G1 ×G1 and H = Δ(G1), the diagonal embedding of G1. Let Δ : D ↪→ D ×D be the
corresponding diagonal embedding of symmetric spaces.

First, recall that because D and D ×D are Hermitian symmetric, their tangent space is
equal to the Griffiths’ distribution. Hence, by Proposition 5.18, the complex Ω•(D ×D,C)G is
supported in even degrees and is isomorphic to the complex H•

dR(D̂ × D̂,C).
Recall the following classical result. Let X be a closed orientable smooth manifold of dimen-

sion n. For all 0 ≤ k ≤ n, let us fix a basis ([αk,i])i∈Jk
of Hk(X,C) and denote by (α∨

k,i)i∈Jk
the

dual basis of Hn−k(X,C) with respect to Poincaré pairing. Let π1, π2 : X ×X → X denote
the projections onto the first and the second factor, respectively. Then by [BT82, Lemma 1.22],
the cycle class of the diagonal Δ(X) ↪→ X ×X is Poincaré-dual to the de Rham cohomology
class

γX =
n∑

k=0

(−1)n(n−k)
∑
i∈Jk

π∗1[α
∨
k,i] ∧ π∗2[αk,i] ∈ Hn

dR(X ×X,C). (5.4.1)
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We can now state the main theorem of this section. Let (γk,i)i∈Jk
be a basis of Ω2k(D,C)G1

and let (γ∨k,i)i∈Jk
denote the dual basis of Ω2d−2k(D,C)G1 , i.e. such that

γk,i ∧ γ∨k,j =
δi,j

Vol(D̂)
ωD,

where ωD denotes the invariant volume form of D � G/K as in § 2.3.

Theorem 5.22. Set G = G1 ×G1, K = K1 ×K1 where K1 is a maximal compact subgroup of
G and take H the diagonal embedding of G1 into G. Let π1 and π2 denote the projections of
G/K = D ×D on the first and second factor. Then

1
Vol(GU/HU )

π∗p∗ωG/H =
∑

0≤k≤d
i∈Jk

π∗1(γ
∨
k,i) ∧ π∗2(γk,i).

In particular, its pull-back by the diagonal embedding Δ of D is given by

1
Vol(GU/HU )

Δ∗π∗p∗ωG/H =
χ(D̂)

Vol(D̂)
ωD.

where χ(D̂) > 0 is the Euler characteristic of D̂.

Proof. By Corollary 4.8 and Lemma 4.9, it is enough to determine the cohomology class of
the corresponding pull–push form on the compact dual D̂ × D̂. By Lemma 4.9, this coho-
mology class is Poincaré dual to the diagonal embedding of D̂. The conclusion now follows
from (5.4.1). �

5.4.3 Hodge locus in Shimura varieties. In this section, we prove Theorem 1.17 and
Corollary 1.18.

Let G be a semi-simple Lie group of Hermitian type, let D be the associated Hermitian
symmetric space, let Γ ⊂ G be an arithmetic subgroup, and let S = Γ\D. Let (H,DH) be a
Shimura subdatum such that π∗p∗ωG/H is a positive form of type (k, k). In particular, its restric-
tion to any subvariety of S of dimension at least k is non-zero. Hence, by the equivalences from
Proposition 5.9, the Hodge locus in X is analytically dense and equidistributed with respect to
π∗p∗ωG/H .

For the second part of the theorem, the pull–push form associated with G/H is a (1, 1)-form
and since G is absolutely irreducible, there is, up to a scalar, a unique (1, 1)-from on D which is
given as the Chern form of the canonical bundle on D. The latter is known to be Kähler. Hence,
π∗p∗ωG/H is Kähler and we conclude as before.

We now prove Corollary 1.18. Let n ≥ 1 and let G = SU(n, 1). For 1 ≤ r ≤ n, letH = SU(n−
r, 1). Let K = S(U(1) × U(n)) be the maximal compact subgroup of G and let D = Bn � G/K
be the unit ball which is isomorphic to the symmetric space of G. The natural 1-dimensional
representation of U(1) on the determinant of the cotangent bundle of D determines a Hermitian
line bundle on Bn with first Chern form ω. Using a similar method as in Theorem 5.21, one can
easily prove the following.
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Proposition 5.23. We have π∗p∗ωG/H = Vol(GU/HU )ωr.

Let Γ be a neat arithmetic subgroup of G. The quotient S = Γ\Bn is a unitary Shimura
variety and the form ω is Kähler on S. If r = 1, then we are in the situation of Theorem 1.17.
Hence, the Hodge locus is dense and equidistributed in any subvariety of S of positive dimension.

5.4.4 Hodge locus in Ag. In this section, we prove Theorem 1.14.
Let (V,Ψ) be a rational vector space of dimension 2g endowed with a non-degenerate sym-

plectic form Ψ. Let G = Sp2g(R) and let Hg be the Siegel upper-half space which is the Hermitian
space associated with G.

For 1 ≤ k ≤ g/2, let Vk ⊆ V be a non-degenerate rational subspace of rank 2k and let H ⊆ G
be the stabilizer of Vk in G. Then H � Sp2k(R) × Sp2g−2k(R) and its symmetric space is equal
to Hk × Hg−k.

To compute the pull–push form π∗p∗ωG/H , we follow the general method explained in §§ 4
and 5. The compact dual Yg of Hg is equal to the space of Lagrangian subspaces of VC and
the compact dual of Hk × Hg−k is the subspace Yk × Yg−k where Yk and Yg−k are the space
of Lagrangian subspaces of Vk,C and V ⊥

k,C respectively. The inclusion Yk × Yg−k ↪→ Yg is then
given by taking direct sums of Lagrangians in a compatible way with the decomposition VC =
Vk,C ⊕ V ⊥

k,C.
Let V → Yg be the trivial vector bundle of rank 2g determined by V and let F̂1 → Yg be the

Hodge vector bundle whose restriction to Hg will be denoted simply F1. Let Vk be the trivial
vector bundle determined by Vk. Then we have a natural map of vector bundles:

f : Vk → V/F̂1.

The locus where this map has rank at most k corresponds to the locus where the rank of the
kernel is at least k. Since the kernel is Lagrangian in Vk, it is also the locus where the rank is
exactly k and hence it is equal to Yk × Yg−k. By the Giambelli–Porteous–Thom formula [KL74],
the locus Yk × Yg−k is Poincaré dual to the class

det
(
(cg−k+i−j(V/F̂1))1≤i,j≤k

)
By Corollary 4.8 and Proposition 5.16, we have

π∗p∗ωG/H = i2k(g−k)π∗p∗ωGU/HU

= (−1)k(g−k) Vol(GU/HU ) det
(
((−1)g−k+i−jcg−k+i−j(F1))1≤i,j≤k

)
= Vol(GU/HU ) det

(
((−1)i−jcg−k+i−j(F1))1≤i,j≤k

)
= Vol(GU/HU )sk.

Now combining Proposition 5.9, and Theorem 1.1, the first part of Theorem 1.14 follows
easily. For the second part, we use the main theorem of [KS03] which stipulates that s1 = cg−1

is non-zero restricted to any compact subvariety of dimension > ((g − 1)(g − 2))/2.

6. Applications

We discuss in this section various applications of Theorem 1.1. They concern mainly equidistri-
bution of Hodge loci in variations of Hodge structures, in particular in the context of weight-two
Hodge structures and Hodge structures parametrized by Shimura varieties. For an introduction
to these topics, we refer the reader to [Voi02, III,VI] and [GGK12].
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6.1 Refined Noether–Lefschetz loci in Z-PVHS of weight two.
Let {VZ,F•V, B} be a polarized variation of Hodge structure of weight two over a smooth
complex quasi-projective variety X. Assume as before that the local system (VZ, B) has fibers
isomorphic to a quadratic lattice (VZ, B) equipped with a bilinear form

B : VZ × VZ → Z

with associated quadratic form B(y, y)/2 ∈ Z for y ∈ VZ. Let (q, p, q) be the Hodge numbers and
d = p+ 2q the rank of VZ.

For x ∈ X, let ρ(x) be the rank of the Picard group Pic(x) = F1Vx ∩ VZ,x. Assume that the
variation is simple, i.e. ρ(x) = 0 at a very general point. For r ≥ 1, we introduce the refined
Noether–Lefschetz locus6

NL≥r = {x ∈ X, ρ(x) ≥ r}.
It corresponds to a sub-Hodge locus for Vr

Z. It can be written as the union over algebraic
subvarieties in the two following ways.

(i) It is the union, over all integers N ≥ 1, of the sets

{x ∈ X | ∃P ⊆ Pic(x) of rank r, disc(P ) ≤ N}.
(ii) It is the union, over all positive-definite symmetric matrices M ∈Mr(Z), of the sets{

x ∈ X | ∃(λ1, . . . , λr) ∈ Pic(x),
(
B(λi · λj)

)
1≤i,j≤r

= M
}
.

We prove in the next two subsections that both formulations give equidistribution
results and, hence, we prove Theorems 1.6 and 1.7 by using different techniques in each
case.

6.1.1 Equidistribution on average. Let x be a point in X and denote by (VZ, B, F
•) the fiber

at x of V. As in the previous section, we set G = O(VR, B), Γ = O(VZ, B), and let K ⊂ G be
the stabilizer of F •. Finally, let H denote the stabilizer of a positive-definite subspace of VR

of dimension r, so that G/H identifies with the space P of positive-definite real subspaces of
dimension r.

Define the discriminant of a rational subspace W ∈ P as the determinant of the intersection
matrix

I(W ) =
(
B(vi, vj)

)
1≤i,j≤r

,

where (vi) is a basis of W ∩ VZ. We denote by Pn the discrete subset of P consisting of rational
subspaces of discriminant at most n. The set Pn is a finite union of Γ-orbits of G/H, correspond-
ing to a finite union On of closed H-orbits in Γ\G. We prove here that Pn is equidistributed
in G/H.

Theorem 6.1. The sequence (Pn)n∈N is equidistributed in G/H.

The proof we give here is a refinement of the fact that integral vectors of length at most
n equidistribute. Some trick is needed in order to get rid of multiplicities, but the proof is
‘elementary’ in the sense that it does not rely on any involved argument such as the circle
method, automorphic functions or Ratner theory. Of course, by counting all rational subspaces
of length less than n, we avoid all the difficult arithmetic questions that arise when looking at
rational subspaces of a fixed discriminant.

6 Historically, Hodge loci are referred to as Noether–Lefschetz loci in weight two.
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Let Ω denote the open cone of V r
R consisting of tuples of vectors spanning a positive-definite

subspace of dimension r. The function

h : Ω → R>0

v = (v1, . . . , vr) �→ det
(
B(vi, vj)

)
1≤i,j≤r

is homogeneous of degree 2r. We denote by Ω1 the hypersurface {v ∈ Ω | h(v) = 1} and by Ω≤1

the subset {v | h(v) ≤ 1}. We denote by

pr : Ω → Ω1

the projection map
v �→ h(v)−1/2rv.

We endow V r
R with the Lebesgue measure for which V r

Z has covolume one and denote by ω the
push-forward by pr of the Lebesgue measure restricted to Ω≤1, i.e. the volume form such that∫

U
ω = Leb

( ⋃
0<t≤1

tU

)
.

Define
Qn = {v ∈ Ω ∩ V r

Z | h(v) ≤ n}
and let μn be the counting measure of pr(Qn), i.e.

μn =
∑

v∈Qn

δpr(v).

We first prove the following elementary counting result.

Proposition 6.2. The sequence of measures n−d/2μn converges weakly to the smooth mea-
sure ω.

Proof. Let f : Ω1 → R be a continuous function with compact support which we extend on Ω by
setting f(tv) = f(v) for all t ∈ R>0 and all v ∈ Ω1. We have

n−d/2μn(f) = n−d/2
∑

v∈V r
Z
∩Ω|h(v)≤n

f(v)

= n−d/2
∑

v∈n−1/2rV r
Z
∩Ω|h(v)≤1

f(v) by homogeneity of f

−→
n→+∞

∫
Ω≤1

f = ω(f) by Riemann summation. �

The group G× SL(r,R) acts transitively on Ω1 by

(g1, g2) · v = g1 · v · g−1
2

and preserves the measure ω. The restriction of this action to SL(r,R) is proper and the quotient
SL(r,R)\Ω1 is the space P or positive-definite r-subspaces of VR.

Now, the subgroup SL(r,Z) preserves the set Qn and acts properly discontinuously on Ω1 so
that the quotient set Q̄n = SL(r,Z)\Qn still equidistributes in SL(r,Z)\Ω1. Let us consider the
projection

π : SL(r,Z)\Ω1 → SL(r,R)\Ω1 = P.
We still use ω to denote the volume form induced on SL(r,Z)\Ω1. The push-forward measure
π∗ω is G-invariant (because ω is G-invariant and π is G-equivariant), non-zero, and locally
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finite because SL(n,Z)\SL(n,R) has finite volume. We hence deduce the following result from
Proposition 6.2.

Corollary 6.3. Define the measure

νn =
∑

v∈Q̄n

δπ(v).

Then

n−d/2νn ⇀ λωG/H

for some λ �= 0.

Remark 6.4. The multiplicative constant λ could be computed in terms of the volume of
SL(n,R)/SL(n,Z).

The measure νn, however, is not the counting measure of Pn. To be more precise, note that
Q̄n is the set of positive-definite sublattices of VZ of discriminant at most n and π maps Λ ∈ Q̄n

to Λ ⊗ R. Therefore, we have

νn =
∑

W∈Pn

mn(W )δW ,

where
mn(W ) = |{Λ ⊂W ∩ VZ | h(W )[W ∩ VZ : Λ] ≤ n}|.

In other words, νn counts a rational subspace W with a weight equal to the number of sublattices
of W ∩ VZ with discriminant ≤ n.

Let ν ′n be the counting measure of Pn. To relate νn and ν ′n, let us introduce

bk = |{Λ ⊂ Zr | [Zr : Λ] = k}|.
We have the following estimate on bk:

Proposition 6.5.

bk � kr.

Proof. We prove a sharper estimate. Consider the zeta function which converges for large s:

ζZr(s) =
∑
k≥1

bk
ks

=
∑

g

|det(g)|−s,

where g runs through GLr(Z)\(Mr(Z) ∩ GLr(Q)). By [LS03, Equation (15.10)], we have the
equality

ζZr(s) =
r−1∏
i=0

ζ(s− i).

Hence, by identifying the coefficients, we obtain

bk =
∑

(k0,...,kr−1)
k0···kr−1=k

k0 · · · kr−1
r−1

≤ kr−1|{(k0, . . . , kr−1), k0 · · · kr−1 = k}|
�ε k

r−1+ε

for every ε > 0. Hence, the result. �
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We now have

νn =
∑

P∈Pn

( ∑
k≤
√

n
h(P )

bk

)
δP

=
∑

k≤√
n

∑
h(P )≤n/k2

bkδP

and we conclude that
νn =

∑
k≤√

n

bkν
′
�n/k2�. (6.1.1)

Set

α =
∑

k

bk
kd
.

Proposition 6.6. The measure ν ′n converges weakly to

λ

α
ωG/H .

Proof. Remark first that, under the hypothesis 1 ≤ r ≤ p = d− 2q ≤ d− 2, we have
bk
kd

� 1
k2
,

hence
α ≤ ζ(2) < 2.

Let f be a continuous function with compact support on G/H. Set

sn = n−d/2 νn(f)
λ
∫
G/H fωG/H

and

s′n = n−d/2 ν ′n(f)
λ
∫
G/H fωG/H

.

By (6.1.1), we have

sn =
∑
k≥1

n−d/2

⌊
n

k2

⌋d/2

bks
′
�n/k2�. (6.1.2)

By Proposition 6.2, we have
sn −→

n→+∞ 1.

In particular, (sn) is bounded by a constant c. Since s′n ≤ sn the sequence s′n is also bounded
and, by convergence of the series ∑

k

bk
kd
.

we can find for all ε > 0 some k0 such that∑
k≥k0

n−d/2

⌊
n

k2

⌋d/2

bks
′
�n/k2� ≤ ε

for all n.
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Set m = lim inf s′n and M = lim sup s′n, and let ni be a subsequence such that s′ni
−→

n→+∞ m.

For all 2 ≤ k ≤ k0 we have

lim sup
i→+∞

n
−d/2
i

⌊
ni

k2

⌋d/2

s′�ni/k2� =≤ bk
kd
M.

Hence, taking the limsup of (6.1.2) along ni, we get

1 ≤ m+
k0∑

k=2

bk
krd

M + ε = m+ (α− 1)M + ε.

Similarly taking the liminf along a subsequence ni such that s′ni
−→

n→+∞→M , we obtain

1 ≥M + (α− 1)m.

Combining the two, we obtain

M + (α− 1)m ≤ m+ (α− 1)M + ε,

hence
M −m ≤ ε

2 − α

because α < 2.
As this is true for all ε > 0, we conclude that M = m. Hence, s′n converges to m = M . Taking

the limit in (6.1.2) gives 1 = αm, and we conclude that

s′n −→
n→+∞

1
α
.

Going back to the definition of s′n we have proved that

n−d/2ν ′n(f) −→
n→+∞

λ

α

∫
G/H

fωG/H . �

6.1.2 Equidistribution along intersection matrices. To prove the second version of the
equidistribution theorem which yields Theorem 1.7, we can restrict to matrices M which are
primitively represented by (VZ, B), i.e. for which there exists (λ1, . . . , λr) ∈ V r

Z generating a
primitive sublattice of VZ and with intersection matrix M . For simplicity, if λ ∈ V r

R , we denote
by I(λ) the intersection matrix (B(λi · λj))1≤i,j≤r. Let

V r
R,Ir = {λ = (λi)1≤i≤r, I(λ) = Ir}.

Then V r
R,Ir

is an affine homogeneous variety under the action of the group G = O(VR, B) �
O(p, 2q) and letting H � O(p− r, 2q) be the stabilizer of a point λ0 ∈ V r

R,Ir
, then V r

R,Ir
� G/H.

When r < p and q ≥ 1 the group H is simple without compact factors, so that Ratner theory
can be applied as explained in Theorem 2.16. Finally, H is not contained in any proper parabolic
subgroup of G, so that sequences of closed H-orbits of Γ\G do not have loss of mass.

There is a right action of an r × r matrix A = (ai,j) on a vector u = (u1, . . . , ur) ∈ V r
R given

by the matrix product

u ·A =
( r∑

j=1

a1,ju1, . . . ,
r∑

j=1

ar,juj

)
.

Note that this action commutes with the diagonal action of GL(VR) and that the components of
u ·A span a subspace of the vector space spanned by components of u in VR, and they are equal
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if A is invertible. Their intersection matrices are related by

I(u) = tAI(u)A.

Let M be a positive-definite integral matrix of size r and let

WM = {λ = (λi)1≤i≤r ∈ V r
Z , I(λ) = M}.

In order to study equidistribution of WM , it is natural to first project it to V r
R,Ir

. We have thus
a G-equivariant projection map

pr : WM → V r
R,Ir

λ �→ λ ·
√
M

−1
,

where
√
M is the unique positive-definite matrix such that

√
M

2
= M .

By a theorem of Borel and Harish-Chandra [BH62, Theorem 6.9], the projection pr(WM )
is a finite union of discrete Γ-orbits of G/H, which thus corresponds to a finite union of closed
H-orbits OM ⊂ Γ\G. The volume of OM is finite by Borel and Harish-Chandra’s theorem [BH62,
theorem 9.4] because H is semi-simple, and the following lemma gives an estimate for its volume.

Lemma 6.7.

(i) Let M be a positive-definite matrix of rank r ≤ p represented by the lattice (VZ, B). Then
there exists c > 0 depending only on (VZ, B) and r such that

a(M) def= Vol(OM ) = cdet(M)(p+2q−r−1)/2
∏

a prime

βa(M),

where for a prime number a, the local density at a is expressed as

βa(M) def= lim
s→∞ a−s(r(p+2q−(r+1)/2))|{λ ∈ V r

Z /a
sV r

Z , I(λ) = M}|.

(ii) If (Mn)n∈N is a sequence of positive-definite matrices primitively represented by (VZ, B),
then

a(Mn) ≥
n→∞

det(Mn)(p+2q−r−1)/2−ε

for any ε > 0. In particular, a(Mn) goes to +∞, as det(Mn) goes to +∞.
(iii) If, moreover, r ≤ (p+ 2q − 3)/2, then

a(Mn) �
n→∞ det(Mn)(p+2q−r−1)/2.

Proof. The first assertion is simply the Siegel–Weil formula, which is valid in this setting by
[Wei62]. To prove the second statement, we need to find a lower bound on the growth of the
product of the local densities βa(Mn) assuming that Mn is primitively represented by (V r

Z , B).
Let n ∈ N and let P (n) be the set of odd primes a which are coprime to det(Mn) · det(VZ). By
[Kit93, Proposition 5.6.2(ii)], there exists two positive numbers c1, c2 depending only on VZ such
that

c1 <
∏

a∈P (n)

βa(Mn) < c2.

If r ≤ (p+ 2q − 3)/2, then by Corollary 5.6.2 [Kit93], the above estimate on the product is true
for a ranging over all primes, proving the third statement.
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Otherwise, because we assumed that Mn is represented by a sublattice of VZ which is prim-
itive,7 then [Kit93, Theorem 5.6.5,(a)] yields that there exists a constant c3 < 1 such that for
any prime a dividing det(VZ) · det(Mn) we have

βa(Mn) ≥ c3.

As the number of prime divisors of det(Mn) is O(log(det(Mn))/log log(det(Mn))), we obtain
that

Vol(OMn) ≥ cc1 det(Mn)(p+2q−r−1)/2c
c4 log(det(Mn))/log log(det(Mn))
3 = det(Mn)(p+2q−r−1)/2+o(1).

�
For a positive-definite integral matrix M , let μ1(M) be the square root of the smallest

non-zero integer represented by M .

Theorem 6.8. Let (Mn)n∈N be a sequence of positive-definite matrices primitively represented
by (VZ, B) and such that μ1(Mn) → ∞ as n→ ∞. Then the sequence of subsets {pr(WMn), n ∈
N} is equidistributed in V r

R,Ir
in the sense of Theorem 2.16.

Proof. Note first that, because M is positive definite, we have det(M) ≥ cμ1(M)2 where c
depends only on the rank of M , see [EK95, Equation (5)]. Hence, det(M) goes to ∞ and so
does Vol(OMn) by Lemma 6.7.

To prove the equidistribution, we apply Theorem 2.16. As H is not contained in a proper
parabolic subgroup, the sequence OMn has no loss of mass, and we need to prove that it is
non-focused see (Definition 2.14). We are in the easy situation where any sequence of Γ-orbits
Γ · λn ⊂ pr(WMn) is non-focused.

To prove this, assume by contradiction that, up to taking a subsequence, there exists a proper
subgroup H ′ of G defined over Q, an element g ∈ G such that gH0g−1 ⊂ H ′ and a sequence
λn ∈ EMn such that pr(λn) ∈ H ′gZ(H0) · pr(λ0)λ0.

Set Vn = SpanR(λn) and let Hn ⊂ G be the subgroup fixing Vn. Then Hn is conjugate to H
and contained in H ′ for all n by assumption on λn. In particular, by Lemma 6.9, H ′ preserves
a rational subspace W contained in V0. Hence, every Hn preserves W . As the action of HN on
V ⊥

n is irreducible, we deduce that W ⊂ Vn for all n.
As W is rational, it intersects VZ in a lattice which is contained in SpanZ(λn) for all n since

SpanZ(λn) is primitive. This contradicts the assumption that μ1(Mn) → +∞. �
Lemma 6.9. Let V0 be a positive-definite rational subspace of VQ, let H0 be the subgroup of G
fixing V0, and let H be a proper connected subgroup of G defined over Q and containing H0.
Then H leaves invariant a rational subspace of V0.

Proof. As a representation of H0, the Lie algebra g decomposes orthogonally with respect to the
Killing form as

g = h0 ⊕ so(V0) ⊕ p,

where p = {u ∈ g | u(V0) ⊂ V ⊥
0 } is isomorphic to Hom(V0, V

⊥
0 ). Note that the repre-

sentation of H0 on V ⊥
0 is irreducible and H0 acts trivially on V0, hence also on

so(V0).
As H contains H0, its Lie algebra h is a subrepresentation of g and, thus, decomposes as

h0 ⊕ k ⊕ p′,

7 Even weaker assumption such as locally bounded imprimitivity is enough, see [Kit93, Theorem 5.6.5].
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where k is a Lie subalgebra of so(V0) and p′ is a subrepresentation of p � Hom(V0, V
⊥
0 ). By

elementary representation theory, there exists a subspace W ⊂ V0 such that

p′ = {u ∈ p | u|W = 0}.
We have

W = {x ∈ V0 | u(x) ∈ V0 for all u ∈ h},

in particular, W is a rational subspace because h and V0 are defined over Q.
We claim that k preserves W . Indeed, assume by contradiction that there exists u ∈ k and

x ∈W such that u(x) ∈ V0 \W . Then there is v ∈ p′ such that vu(x) /∈ V0. As v(x) = 0, we
obtain that

[u, v](x) = uv(x) /∈ V0,

contradicting x ∈W .
In conclusion, the Lie algebra h preserves W ⊂ V0. If W were trivial, then we would have

h ⊃ p ⊕ h0, hence h = g because [p, p] ⊃ so(V0). As H is a proper subgroup, W is non-trivial. �

6.1.3 Proof of Theorems 1.6 and 1.7. Gathering together the results of the previous sections,
we can finally prove our equidistribution theorems for refined Noether–Lefschetz loci in weight
two. Let us first state them more precisely.

Let {VZ,F•V, B} be a Z-PVHS of weight two over a complex manifold S of dimension rq as
in Theorem 1.6. Let s ∈ S and let P ⊆ Hdg(s) be a subspace of rank r. Then the pair (s, P ) is a
transverse intersection point of S with a H-orbit, where H is the stabilizer of a positive-definite
subspace of VR as in § 6.1.1, if s does not admit first-order deformations such that P still embeds
in the group of Hodge classes. Similarly, if (λ1, . . . , λr) ∈ Hdg(s)r have intersection matrix M ,
then the tuple (s, λ1, . . . , λr) is a transverse intersection point with a H-orbit, H being now the
stabilizer of an orthonormal r-tuple as in § 6.1.2, if s does not admit first-order deformations
such that λ1, . . . , λr all remain Hodge classes.

We can now prove the main theorems in § 1.2.1. Notation and hypothesis are as in
Theorem 1.6.

Theorem 6.10. There exists a constant λ > 0 such that, for every relatively compact open
subset Ω ⊂ S with boundary of measure 0, we have

n−(p+2q)/2|{(s, P ) | s ∈ Ω, P ⊆ Hdg(s), rank(P ) = r, (s, P ) regular,disc(P ) ≤ n}|

−→
n→+∞ λ

∫
Ω
cq(F2V)r,

where cq denotes the qth Chern form of the bundle F2V endowed with the Hodge metric.

Proof. We use the notation from § 6.1.1. By Theorem 6.1, the sequence (Pn)n∈N is equidistributed
in G/H. We are now in the setting of Theorem 3.6. By Theorem 5.21, the pull–push form
π∗p∗ωG/H is equal to Vol(GU/HU ) · cq(F2V)r, where cq(F2V) is the qth Chern form of F2V. We
can hence apply Theorem 3.6 to deduce Theorem 1.7. �

Notation and hypothesis are now as in Theorem 1.7.
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Theorem 6.11. For every relatively compact open subset Ω ⊂ S with boundary of measure
zero, we have

1
a(Mn)

|{(s, λ1, . . . , λr)) ∈ Ω × Vr
Z,s regular tuple, (B(λi · λj))1≤i,j≤r = Mn, λi ∈ Hdg(s)}|

−→
n→∞ Vol(GU/HU )

∫
Ω
cq(F2V)r.

Proof. We use the notation from § 6.1.2. By Theorem 6.8, the sequence (pr(WMn))n∈N is
equidistributed in G/H. We are now again in the setting of Theorem 3.6. Here H is the
stabilizer of an orthonormal r-tuple of vectors, and if we denote by H ′ the stabilizer of the
rank r subspace they generate in VR, then H ′/H is compact and one easily checks then that
π∗p∗ωG/H = Vol(H ′/H)π∗p∗ωG/H′ .

By Theorem 5.21, the pull–push form π∗p∗ = ωG/H′ is equal to Vol(GU/H
′
U ) · cq(F2V)r,

where cq(F2V) is the qth-Chern form of F2V. Moreover,

Vol(GU/H
′
U ) =

Vol(GU/HU )
Vol(H ′

U/HU )
=

Vol(GU/HU )
Vol(H ′/H)

.

Hence, π∗p∗ωG/H = Vol(GU/HU )cq(F2V)r. We can hence apply Theorem 3.6 to deduce
Theorem 1.7. Indeed, one can easily see again that regular points in our definition above
correspond to transverse intersection points defined there. �

Finally, we mention briefly how to prove Proposition 1.24.

Proof of Proposition 1.24. Combining Corollary 2.9, Lemma 2.12, and Theorem 6.8, we obtain
Proposition 1.24. �

6.2 Equidistribution of families of CM points in Shimura varieties
In this section, we use Theorem 1.1 to study the equidistribution of transverse intersection
loci of Hecke correspondences on Shimura varieties and deduce the equidistribution of some
families of CM points in average. We recall first the definition of a CM Hodge structure, see
[GGK12, V].

A CM field is a totally imaginary number field which is a quadratic extension of a totally
real number field. A CM algebra is a finite product of CM number fields.

Definition 6.12. Let (V,B, F •) be a pure polarized integral Hodge structure and let d =
rankZ V . We say that (V,B, F •) has complex multiplication (‘CM’ for short) if one of the following
equivalent conditions hold:

(i) its algebraic Mumford–Tate group MTϕ is a torus;
(ii) the ring EndQ(V, F •) contains an étale CM subalgebra of dimension 2d.

We refer to [GGK10, (IV.B.1)] for the equivalence in the definition.

Example 6.13. (i) Let (A, λ) be a polarized complex abelian variety and let End(A)Q = End(A) ⊗
Q. Recall that A has complex multiplication if EndQ(A) contains an étale subalgebra of degree
2 dim(A) over Q. This is equivalent to the polarized Hodge structure (H1(X,Z), ψ) being CM
in the sense of Definition 6.12.

(ii) Let (X, �) be a complex polarized K3 surface and let T (X) be the transcendental lattice
of X, i.e. the orthogonal complement of Pic(X) inside H2(X,Z) with respect to the Poincaré
form. Then X has CM if E def= End(T (X))Q is a CM field and T (X)Q is of dimension one
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over E. If PH2(X,Z) is the primitive cohomology of X, then this is equivalent to PH2(X,Z)
being CM in the sense of Definition 6.12.

Let (G̃,D) be a Shimura datum, see [Del71, Del79], and let D+ be a connected component
of D ; D+ is a G̃ad(R)+-conjugacy class of a morphisms had : S → G̃ad

R and it is a Hermitian
symmetric domain. Let K∞ be the stabilizer of had(i) in G̃ad(R)+. If K∞,+ is its preimage by the
adjoint map, then we have an isomorphism D+ = G̃(R)+/K∞,+ � G̃ad(R)+/K∞. Let Γ ⊂ G̃(Q)
be an arithmetic subgroup and let X = Γ\D+. Then X is a (connected) Shimura variety.

Definition 6.14. Let g ∈ G̃ad(Q) and Γg = g−1Γg ∩ Γ. The Hecke correspondence Cg ↪→ X ×X
is the image of Γg\D by the embedding

Γg\D ↪→ X ×X

[x] �→ ([x], [gx]).

If g = 1 is the identity of G̃(Q), then C1 is simply the diagonal embedding of X in X ×X.

Proposition 6.15. For f ∈ G̃(R), the following properties are equivalent:

(i) f has a unique fixed point in D;
(ii) the centralizer of f is compact in G̃ad(R);
(iii) the intersection of the graph of f and the diagonal in D ×D is transversal and non-empty.

If f satisfies those properties, we say that f is regular.

Proof. (i)⇒(ii). Let x be the unique fixed point of f , then f is contained in the stabilizer of x
in G̃ad(R) which is a compact subgroup. Moreover, for any g ∈ Z(f), g · x is also a fixed point
for f , hence equal to x and thus Z(f) ⊆ K.

(ii)⇒(iii). As Z(f) is compact, it is contained in a maximal compact subgroup K of G̃ad(R).
Hence, f fixes a point x and the differential dfx on TxD identifies to the action of Ad(f) on p,
the orthogonal complement of p in g̃ad with respect to the Killing form. Then Ad(f) does not
have 1 as eigenvalue in p, as Z(f) ⊆ K. This will hold true at any fixed point f in D. Let (x, x)
be an intersection point of the graph Cf of f and the diagonal Δ in D ×D, then the tangent
spaces of Cf and Δ at (x, x) = (x, f · x) inside T(x,x)(D ×D) are given by {(X,X) | X ∈ p} and
{(X,Ad(f) ·X) | X ∈ p}, respectively. Their sum is equal to p ⊕ p if and only if their intersection
is zero, which is true as 1 is not an eigenvalue of Ad(f) in p.

(iii)⇒(i). If the intersection is transverse, then by the previous computation, for any fixed x
point of f , the eigenvalues of dfx in p are different from 1. If f fixes another point y ∈ D, then
it fixes the geodesic line γ : R → D linking γ(0) = x to y and, hence, acts trivially on this line.
Hence, dfx(γ̇(0)) = γ̇(0) which is a contradiction. Thus, f has a unique fixed point. �
Lemma 6.16. A point [x] ∈ X is CM if and only if there exists g ∈ G̃(Q) such that C1 and Cg

intersect transversally at x.

Proof. The transverse intersection locus of Cg and C1 inside X ×X is necessarily of dimension
zero by dimension count. Let [x] be a point in this intersection and hx : S → G̃(R) a lift to D. Then
there exists y ∈ D, γ1, γ2 ∈ Γ such that x = γ1 · y and x = γ2g · y. Hence, x = γ2gγ

−1
1 · x which

implies that MT (x) ⊆ Z(γ2gγ
−1
1 ). As the intersection is transverse at x, then by the previous

lemma, γ2gγ
−1
1 is regular and contained in K by regularity. Hence, by [GGK10, IV.B.1], x is a

CM point.
Conversely, let x ∈ D be a CM point. Then L

def= Z(MT (x))◦, the connected component of
the Mumford–Tate group in its centralizer, is defined over Q. Then L(R) ⊂ K and the function
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u : f �→ det(Ad(f)|p − Idp) is well defined and does not vanish as u(hx(i)) �= 0. By [Bor91, § 18,
Corollary 18.3], L(Q) is Zariski dense in L(R), hence there exists an element f ∈ L(Q) which is
regular and MT (x) ⊆ Z(f). Hence, x is a transverse intersection point of Cf and C1. �

For g ∈ G̃ad(Q), let deg(g) = [Γ : Γg]. More generally, if V ⊂ G̃ad(Q) is a Γ-double class with
finitely many left Γ-orbits, we let deg(V ) be the number of distinct left Γ-orbits, in particular
deg(g) = deg(ΓgΓ). If we set G def= G̃ad(R)+ × G̃ad(R)+ and H = G̃ad(R)+ embedded diagonally
in G, then G/H � G̃ad(R) and we are in the situation of § 2.5. Then we denote by O ⊂ (Γ × Γ)\G
the corresponding finite union of closed H-orbits and by CO ↪→ X ×X the associated Hecke
correspondence.

Theorem 6.17. Let X be a Shimura variety associated with a Shimura datum (G̃,D) such that
G̃ad is connected and Q-simple. Let (Vn)n∈N be a sequence of Γ-double classes in G̃(Q) such
that deg(Vn) → ∞. Then for every Ω ⊂ X open relatively compact subset with zero measure
boundary

|{(x, f) | x ∈ Ω, f ∈ Vn,MT (x) ⊂ Z(f), f regular}| ∼
n→∞

deg(Vn) · χ(D̂)

Vol(D̂)

∫
Ω
ωD.

Proof. Let H = G̃ad ↪→ G
def= G̃ad × G̃ad and, by assumption, G̃ad is simple. Then the quotient

G/H is isomorphic to H via the map p : (x, y) �→ yx−1. The preimage by p of an element a ∈ G
is equal to (1, a) ·H ↪→ G.

Then the sequence of Γ-double class (Vn)nN are equidistributed in G/H. This result has been
proved by [COU01] in the following cases: G̃ is connected, almost simple simply connected and
rankQ(G̃) ≥ 1 [COU01, Theorem 1.6]) and for G = GSp2g [COU01, Remark (3), p. 332]. More
generally, Eskin and Oh [EO06a] proved this result for any G̃ connected and simple over Q.8

Hence, we are in the setting of Theorem 1.1.
By Theorem 5.22, the restriction of the form π∗p∗ωG/H to D is equal to χ(D̂)/Vol(D̂) ·

ωD. Hence, by Proposition 5.9, Γ\D is generically transverse to H-orbits and by Theorem 1.1,
the transverse intersection locus of CVn with X = C1 is equidistributed in X with respect to
χ(D̂)/Vol(D̂) · ωD as n→ ∞. By Lemma 6.16, this transverse locus is formed by elements x
where x is a CM point with Mumford–Tate group MT (x) ⊂ Z(f) where f is regular and f ∈ Vn.
Hence, the result. �

In this next section, we give examples in situations where the Shimura variety X receives an
immersive dense map from a moduli space of algebraic varieties, namely principally polarized
abelian varieties and polarized K3 surfaces.

6.2.1 Equidistribution in average of CM abelian varieties. We now apply Theorem 6.17 to
study equidistribution of CM principally polarized abelian varieties. Let g ≥ 1, G̃ = GSp2g the
standard symplectic group over Q and Hg the Siegel upper half-space. Then (G̃,Hg) is a Shimura

datum and for Γ = Sp(2g,Z), the quotient Ag
def= Γ\Hg is in bijection with the set of isomorphism

classes of principally polarized abelian varieties over C.
For every N ≥ 1, we have a double class VN = {f ∈ GL2g(Z) ∩ G̃(Q), f † ◦ f = N · Id} where

f † is the adjoint with respect to the symplectic form. The Hecke correspondence CN given
by this double class has the following modular interpretation: CN ↪→ Ag ×Ag is the moduli of
pairs (A1, A2, f) where (A1, A2) are principally polarized abelian varieties of dimension g ≥ 1 and

8 The simplification comes at a cost of not having an error term.
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f : A1 → A2 is an isogeny satisfying f † ◦ f = N · IdA1 where f † : B → A is the dual isogeny. Note
that C1 is the diagonal embedding of Ag in Ag ×Ag. In this context, the transverse intersection
locus of CN with C1 corresponds to principally polarized CM abelian varieties A endowed with
an isogeny f : A→ A whose homology class is a regular element of G̃(R) and lies in VN . Then
the Mumford–Tate group of A is a subgroup of Z(f).

Lemma 6.18. The transverse intersection loci of CN and C1 is set-theoretically formed by triples
(A, λ, f) where (A, λ) is a principally polarized abelian variety, f : A→ A is an isogeny whose
homological realization is regular and lies in VN and MT (A) ⊆ Z(f). In particular, A is a CM
abelian variety.

By applying Theorem 6.17, we obtain Theorem 1.21 from the introduction.

6.2.2 Equidistribution in average of CM K3 surfaces. We now discuss the second example
which is the equidistribution of CM points in the moduli space of polarized K3 surfaces. Let
d ≥ 1 and let F2d be the moduli space of complex polarized K3 surfaces of degree 2d. Then F2d

can be embedded into an orthogonal Shimura variety which is given as follows. Let VK3 be the
K3 lattice, VK3 = U3 ⊕ E8(−1)2, �2d ∈ VK3 a primitive class of self-intersection 2d (it is unique
up to the action of O(VK3)) and let V2d = �⊥2d. Let G̃ = GO(V2d) and D = {x ∈ P(V2d,C, (x, x) =
0, (x, x) = 0)}. Then (G,D) is a Shimura datum and for Γ = Ker(O(V2d) → O(V ∨

2d/V2d)), we
have a period map F2d → Γ\D which is a local embedding by Torelli theorem [Huy16] and the
complement of the image is a finite union of Cartier divisors. Under this map, K3 surfaces with
CM, in the sense of [Huy16, Remark 3.10] correspond to CM points of the orthogonal Shimura
variety Γ\D. Let ωD be the volume form on D as in § 2.3, and for N ≥ 1, let VN be the double
class of integral elements f ∈ G̃(Q) which scale the bilinear form by N .

Theorem 6.19. Let N ≥ 1 and let CM(N) be the set of pairs (X, �2d, f) where (X, �2d) is
a CM polarized K3 surface of degree 2d, f ∈ End(PH2(X,Z)) is an isogeny with f † ◦ f = N ,
and f ∈ GO(Q) is regular. Then for every open relatively compact subset with zero measure
boundary Ω ⊂ F2d, we have

|{(X, �2d, f) ∈ CM(N), (X, �2d) ∈ Ω}| ∼
N→∞

χ(D̂) · deg(VN )

Vol(D̂)

∫
Ω
ωD.

6.3 Equidistribution of Hecke translates of the Torelli locus
We prove in this section Theorem 1.22 and Corollary 1.23. As the reader will notice, this is a
statement about the dynamics of Hecke operators rather than the varieties themselves.

Let S and D be two subvarieties of Ag of complimentary dimensions and let d be the dimen-
sion of S. Let ωG/H be the pull–push form on Ag ×Ag as constructed in Theorem 5.22 with
respect to the groups G = PGSp2g × PGSp2g and H = PGSp2g embedded diagonally. We have
an inclusion ι : S ×D ↪→ Ag ×Ag.

Let, as before, F1 → Ag be the Hodge bundle of the universal abelian scheme Ag and let ω
be its first Chern form with respect to the Hodge metric. Finally, let ωS and ωD be its restriction
to S and D, respectively.

Lemma 6.20. We have ι∗ωG/H = (1/Vol(Ĥg))ωd
S ∧ ωg(g+1)/2−d

D .

Proof. This is a consequence of Theorem 5.22 as the only non-vanishing differential forms are
the product of a form of degree 2d and a form of degree g(g + 1) − 2d, as the others vanish
on S ×D, combined with the fact that H2d(Ag,R) is generated by ωd for d ≤ 2, see [vdG99,
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Proposition 2.2], and whose dual form (in the sense preceding Theorem 5.22) is simply
(1/Vol(Ĥg))ωg(g+1)/2−d because the volume form on Ag is ωg(g+1)/2, hence the result. �

It is well-known that ω is Kähler form on Ag and, hence, the integration of ωd
S and ωg(g+1)/2−1

D

define Lebesgue measures on S and D, respectively, which are in fact finite by [Mum77, Main
Theorem 3.1]. Finally, for (s, d) ∈ S ×D, an isogeny f : AS,s → AD,d is said to be regular if it
does not admit first-order deformation or, equivalently, S ×D intersects Cf transversely at (s, d).

Theorem 6.21. For every open relatively compact subsets with zero measure boundary Ω ⊂ S
and Ω′ ⊂ D, we have

|{(s, d, f) | (s, d) ∈ Ω × Ω′, f ∈ IsogN (AS,s,AD,d), f is regular}|

∼
N→∞

deg(VN ) · χ(Ĥg)

Vol(Ĥg)

∫
Ω
ωd

S

∫
Ω′
ω

g(g+1)/2−d
D .

In particular, the locus of points in S isogenous to a point in D is analytically dense in S.

Proof of Theorem 1.22. For every N ≥ 1, we have defined the Hecke correspondence CN ↪→ Ag ×
Ag which parameterizes pairs of principally polarized abelian varieties together with a polarized
isogeny with similitude factor equal to N . By the previous lemma, the restriction of the pull–push
form ωG/H is Kähler, hence the generic transversality assumption in Proposition 5.9 is satisfied
and we are in the setting of Theorem 1.1: the transverse intersection locus of S ×D and CN is
equidistributed with respect to (χ(Ĥg)/Vol(Ĥg))ωd

S ∧ ωg(g+1)/2−d
D as N → ∞. By the discussion

preceding the theorem, the transverse locus is exactly given by regular isogenies. Hence, by
choosing subsets of the form Ω × Ω′, we obtain the desired equidistribution result. One has also
similar equidistribution results on D. �

Let g ≥ 2 and let Mg be the coarse moduli space parameterizing smooth projective genus g
curves over C. Recall that for any such curve C, one can associate its Jacobian J(C), which is
a principally polarized abelian variety of dimension g over C. This construction can be done in
families so that we get a map, the Torelli map, ιg : Mg ↪→ Ag between coarse moduli spaces. This
map is injective by [OS80] and its image is called the Torelli locus. For g = 4, the Torelli locus
is a divisor in A4. Hence, Corollary 1.23 follows by applying the previous theorem to D = M4.
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