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An isolated Leidenfrost droplet levitating over its own vapour above a superheated
flat substrate is considered theoretically, the superheating for water being up to several
hundred degrees above the boiling temperature. The focus is on the limit of small,
practically spherical droplets of several tens of micrometres or less. This may occur
when the liquid is sprayed over a hot substrate, or just be a late life stage of an initially
large Leidenfrost droplet. A rigorous numerically assisted analysis is carried out within
verifiable assumptions such as quasi-stationarities and small Reynolds/Péclet numbers.
It is considered that the droplet is surrounded by its pure vapour. Simple formulae
approximating our numerical data for the forces and evaporation rates are preliminarily
obtained, all respecting the asymptotic behaviours (also investigated) in the limits of small
and large levitation heights. They are subsequently used within a system of ordinary
differential equations to study the droplet dynamics and take-off (drastic height increase as
the droplet vapourises). A previously known quasi-stationary inverse-square-root law for
the droplet height as a function of its radius (at the root of the take-off) is recovered,
although we point out different prefactors in the two limits. Deviations of a dynamic
nature therefrom are uncovered as the droplet radius further decreases due to evaporation,
improving the agreement with experiment. Furthermore, we reveal that, if initially large
enough, the droplets vanish at a universal finite height (just dependent on the superheat
and fluid properties). Scalings in various distinguished cases are obtained along the way.

Key words: boiling, drops, condensation/evaporation

1. Introduction
When a volatile liquid droplet is placed on a hot solid surface, superheated well above the
boiling temperature, it neither touches the substrate nor boils, but rather floats on a thin
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film of its own vapour. This fascinating phenomenon, known as the Leidenfrost effect,
has not ceased to attract attention since its first descriptions approximately 300 years ago
(Boerhaave 1732; Leidenfrost 1756). This is due to not only the myriad of intriguing and
unexpected behaviours a droplet can exhibit in this state, but also its relevance across a
wide range of industrial and technological processes, spanning from the traditional heat
transfer applications to the emerging field of multiphase milli-/micro-fluidics. See, for
example, the review articles of Quéré (2013), Ajaev & Kabov (2021) and Stewart (2022),
dedicated book chapters in Brutin (2015) and Marengo & De Coninck (2022) and the many
references therein.

The vapour film, a key feature of the Leidenfrost state, ensures the droplet levitation
while acting as a thermal insulator, resulting in relatively low evaporation rates and
hence long lifetimes of the droplet. In this state, the droplet’s weight is balanced by the
pressure within such a vapour cushion squeezed by the slowly and steadily evaporating
droplet. With no contact with the substrate, the observable shapes of the droplets are
governed by a balance between capillarity and gravity similarly to a perfectly non-wetting
(superhydrophobic) situation. Denoting the capillary length by �c, droplets with radii R
smaller than �c remain quasi-spherical while puddles larger than �c are flattened by gravity,
whose height is limited by ≈ 2�c (Biance et al. 2003). The profile of the underlying vapour
film is non-trivial. For a large droplet with R � �c, the vapour film exhibits a pocket-
like structure composed of an internal vapour ‘pocket’ surrounded by a thin neck. As
the droplet gets smaller, the vapour film slims down, the droplet getting closer to the
substrate. When the droplet radius is small enough as compared with �c, the vapour pocket
disappears completely, and the droplet becomes quasi-spherical, with a small circular area
slightly flattened at the bottom. Accurate interferometric measurements of the vapour
film thickness profile (Burton et al. 2012) turn out to be in a good agreement with a
refined theoretical model (Sobac et al. 2014, 2021) coupling lubrication vapour flow,
capillarity and hydrostatic pressure effects, which was recently confirmed numerically
by Chakraborty et al. (2022). Note that the main scaling laws featuring the shapes of a
Leidenfrost droplet and its evaporation dynamics can be found in Biance et al. (2003),
Pomeau et al. (2012) and Sobac et al. (2014, 2021).

In practice, this absence of contact between the Leidenfrost droplet and the substrate
leads to very rich dynamics. For large puddle-like droplets, the vapour pocket grows
until it eventually pops up as a central ‘chimney’ due to a Rayleigh–Taylor mechanism
(Biance et al. 2003; Snoeijer et al. 2009). Instability of large droplets can also occur
(either spontaneously or forced) in the form of ‘star-faceted’ shapes when azimuthal
surface oscillations develop along the periphery of the droplets (Brunet & Snoeijer 2011;
Ma et al. 2017; Ma & Burton 2018; Bergen et al. 2019; Bouillant et al. 2021a). Self-
induced spontaneous oscillations can also occur in the vertical plane, yielding the recently
reported bobing, bouncing or trampolining dynamics when Leidenfrost droplets reach
moderate and small sizes with R � �c (Liu & Tran 2020; Graeber et al. 2021). Other
spectacular behaviours related to their high mobility have been observed. These include
Leidenfrost wheels, when a droplet initially at rest spontaneously rolls and moves over
a flat surface like a wheel due to symmetry breaking in the internal flow of the liquid
(Bouillant et al. 2018), and self-propelling of Leidenfrost droplets when interacting with
substrates breaking the axisymmetry, either due to surface topography such as ratchets
or herringbones (Linke et al. 2006; Dupeux et al. 2011; Marín et al. 2012; Baier et al.
2013; Soto et al. 2016; Dodd et al. 2019), or temperature gradients (Sobac et al. 2017;
Dodd et al. 2020; Bouillant et al. 2021b). Thus, droplets move in a direction dictated by
the patterns due to symmetry breaking of the vapour layer. Strategies have emerged to
control the motion and manipulate these droplets. In addition to geometric and thermal
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heterogeneities, chemical patterns of the surface can also be exploited to tailor the vapour
film, enabling the stretching, sloshing, spinning, propelling or trapping of a Leidenfrost
droplet (Li et al. 2023).

As compared with large and moderate size droplets, the dynamics of small, near-
spherical Leidenfrost droplets (R � �c) has not received so much attention. In their
seminal work, Celestini et al. (2012) first explored the final fate of Leidenfrost droplets
as they became very small, just moments before disappearing. By spraying tiny droplets
of water or ethanol in the size range of approximately 1 − 30 µm onto a superheated
substrate, they discovered that when small enough (i.e. with R below a characteristic radius
corresponding to the breakup of the lubrication approximation), Leidenfrost droplets took
off from the heated substrate with an elevation h ∝ R−1/2, as predicted also by Pomeau
et al. (2012). Remarkably, in this regime, droplets become too light to withstand the
upward force generated due to evaporation, and they reach higher and higher elevations
while vapourising. This behaviour drastically contrasts with what is observed for larger
Leidenfrost droplets. More recently, Lyu et al. (2019) observed that a second final fate,
other than lift-off, is possible for Leidenfrost droplets. Namely, if the liquid droplet is not
pure or contaminant-free enough, small Leidenfrost droplets are unable to take off, but
instead disappear by exploding with an audible crack.

Here, we propose to theoretically revisit the dynamics of small spherical Leidenfrost
droplets with the aim of comprehensively and thoroughly analysing the mechanisms
involved in their final fate. Thanks to a model including a realistic description of the
coupling between hydrodynamics, heat transfer and evaporation, this work seems to be
the first to provide exact estimates of the droplet elevation as a function of the physical
parameters and without any fitting parameter. After numerically computing the entirety of
fluxes, evaporation rates and forces, a master curve for droplet elevation as a function of
its size is derived by simply balancing the droplet weight with the upward evaporation-
induced hydrodynamic force. While the scaling law agrees with Celestini et al. (2012)
and Pomeau et al. (2012), there appear subtleties concerning the prefactor. Moreover,
the analysis reveals that such a classical quasi-steady description is not fully sufficient
to describe the take-off phenomenon. Even at these small scales, further dynamical effects
must be taken into account to achieve a good agreement with the original experimental
data of Celestini et al. (2012).

2. Statement of the problem, premises and outlook
Consider a small evaporating spherical droplet of radius R in a Leidenfrost state levitating
at a height h above a superheated substrate at a ‘wall’ temperature Tw, as sketched in
figure 1. The substrate is flat and horizontal. We shall be interested in the take-off of
Leidenfrost droplets (Celestini et al. 2012; Pomeau et al. 2012), which occurs in the realm
of small droplets (R of the order of tens of µm) with a negligible deviation from the
spherical shape. The (immediate) surroundings of the droplet are assumed to be saturated
with vapour (totally displacing the air) and heated through to the substrate temperature.
Thus, Tw is here also an effective overall ambient temperature (i.e. Tamb = Tw). The
droplet is assumed isothermal at saturation (boiling) temperature Tsat . The superheat
is given by �T = Tw − Tsat > 0. The typical values considered here are Tsat = 100 ◦C
(water at atmospheric pressure), Tw = 400 ◦C and �T = 300 ◦C. Such superheat occurs
e.g. in the experiments by Celestini et al. (2012).

Mathematically, the goal of the present consideration is obtaining an interrelation
between h, R (in particular, as functions of time t due to the droplet evaporation) and
the parameters of the problem, such as �T , g (gravitational acceleration, 9.81 m s−2)
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Evaporation
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z = 0

Tamb = Tw

Tsat

Pure vapour

Tw

g→

Figure 1. Sketch of the problem.

and the liquid and vapour properties. The latter include ρl (liquid density, defined
at Tsat ) as well as the following vapour properties: ρv (density), μv (dynamic viscosity),
νv =μv/ρv (kinematic viscosity), λv (thermal conductivity), cp,v (heat capacity at
constant pressure), αv = λv/(ρvcp,v) (thermal diffusivity) and L (latent heat of
evaporation). These may vary considerably in the temperature range between Tsat and
Tw. However, for the sake of simplicity, we shall here assume them constant and defined
at the mid-temperature (1/2)(Tw + Tsat ), except for ρl and L defined at Tsat , similarly to
the approach used elsewhere (Sobac et al. 2014, 2015). The relevant property values are
provided in Appendix A.

Other key assumptions include negligible advective/convective effects (small Péclet
and Reynolds numbers), so that the temperature field in the vapour is governed by heat
conduction, while the evaporative flow from the droplet can be considered by means of the
Stokes approximation. Quasi-steadiness of the temperature and velocity fields, in spite of
R and h changing in time due to evaporation, is another key assumption of the analysis. In
other words, these fields and the evaporation fluxes and forces they determine, are merely
functions of the instantaneous values of R and h and do not depend on the history. It is
under this premise that a preliminary calculation of these quantities is carried out in § 3.
The validity of this and other assumptions is verified a posteriori in their due course.

The quasi-steadiness assumption is also applied at first when it comes to the force
balance on the droplet in § 4, permitting to predict the levitation height h and make a
first comparison with experiment. Yet, certain limitations are thereby disclosed, inspiring
consideration of a more general droplet dynamics in §§ 5–7. However, even in such a
situation, the quasi-steadiness of the quantities such as those calculated in § 3 is still
assumed to hold.

An important geometric parameter of the configuration (figure 1), meriting a special
notation, is the ratio of the droplet’s height and radius

δ = h

R
. (2.1)

In the present study, we shall be interested in a full range of this relative-height parameter,
from very small to very large. The large values are expected for small droplets (small R)
upon a take-off (Celestini et al. 2012; Pomeau et al. 2012; Sobac et al. 2021; Chakraborty
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[r, z, s] [S] [T − Tsat ] [ j] [J ] [v] [p] [Fev]
R R2 �T λv�T

LR [ j]R2 = λv�T R
L

[ j]
ρv

= λv�T
ρvLR

μv [v]
R μvR[v] = μvλv�T

ρvL

Table 1. Scales used to render the various quantities dimensionless in § 3: cylindrical coordinates r and
z, arclength s, surface area S, temperature difference T − Tsat , evaporation flux density j (kg m−2s−1),
evaporation rate J (kg s−1), evaporative velocity v and pressure p fields and evaporation/levitation force Fev .
The square brackets denote the scale of the quantity inside.

et al. 2022). In contrast, small δ are attained for larger droplets. In this way, we arrive
at a transition from spherical Leidenfrost droplets to Leidenfrost droplets for which
deformation (at first at the bottom slightly flattened by gravity) becomes essential. Such a
transition is touched upon in § 8.

3. Basic calculations: fields, fluxes and forces
Dimensionless variables are introduced using the scales given in table 1 (definitions to
be given in their due course). For simplicity and expecting no confusion, no notation
distinction is made between the original, dimensional variables and their dimensionless
versions in the present section (the distinction being clear from the context). We just note
that a dimensionless temperature is introduced as

T̄ = T − Tsat

�T
, (3.1)

where recall that �T = Tw − Tsat . Hereafter, in the same spirit, the bars are omitted for
the sake of brevity.

3.1. Temperature field
As stipulated in § 2, the heat transport in the gas phase is conductive and quasi-steady.
Thus, the thermal problem is decoupled from the evaporative velocity field, and the
dimensionless temperature field T is governed by the Laplace equation

∇2T = 0. (3.2)

It is subject to the boundary conditions

T = 1 on the hot substrate, (3.3)

T → 1 far away from the droplet, (3.4)

T = 0 on the droplet surface. (3.5)

Although an exact solution in bipolar coordinates can be found e.g. using the methods by
Lebedev (1972), it is rather cumbersome so that we eventually opt for a numerical solution
using COMSOL Multiphysics.

The results of the simulations are shown in figure 2(a) for three different values of the
separating distance δ: a large droplet very close to the substrate with δ = 0.1; a droplet
at a distance from the substrate comparable to its radius with δ = 1; and a small droplet
beginning to be far away from the substrate with δ = 5. One immediately observes that,
at small δ, the temperature difference is squeezed into a thin film between the droplet and
the substrate. At large δ, the temperature field approaches a spherically symmetric one, as
expected. Other results displayed in figure 2 will be discussed later.
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Figure 2. (a) Dimensionless temperature (right) and velocity (left) fields for various values of δ. Streamlines
are also shown by white lines (left). (b) Corresponding profiles of the dimensionless evaporation flux j along
the droplet surface as a function of the dimensionless arclength s (s = 0 at the droplet apex, s = π at its lowest
point; the plot is formally continued up to s = 2π back to the apex for aesthetic purposes). Insets are simply
zooms of the main plot.

3.2. Evaporation rate
At the droplet surface, the evaporation mass flux j [kg m−2 s−1] is at the expense
of the heat coming from the superheated surroundings through the vapour phase:
j = (λv/L)n · ∇T , where n is the (external) unit normal vector. In dimensionless terms
(cf. table 1), this reads

j = n · ∇T . (3.6)

Using the temperature field computed in § 3.1, the profiles of the evaporation flux j are
calculated from (3.6) and shown in figure 2(b). One can appreciate that, due to the presence
of the hot substrate, j is maximum at the base and decreases towards the apex, where the
minimum is attained. The closer the droplet is to the substrate (the smaller δ is), the more
the profile of j is non-uniform and the values of j are large. At small δ, one obviously
obtains max( j) ∝ 1/δ (heat conduction across a thin vapour layer). When the relative
droplet height δ increases, the non-uniformity of j weakens and the average of j decreases.
Eventually, j tends to a uniform value of 1 for δ� 1 (as for a droplet in an unbounded
medium).

The (global) evaporation rate J can be directly deduced by integrating the evaporation
flux all over the droplet surface

J =
∫∫

j dS. (3.7)

Figure 3 reports the computed values of J as a function of δ. As expected from the
knowledge of the j behaviour, J diverges as δ→ 0 and decreases to saturate at 4π as
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Figure 3. Evaporation rate J (dimensionless) as a function of the relative droplet height δ. Numerical results
(blue open circles) are fairly well approximated by (3.8) (red line). Black dashed lines correspond to the
asymptotic behaviours (Appendix C).

δ→ +∞. Such asymptotic behaviours are investigated in detail in Appendices C1 and C2
and also represented in figure 3. A good simple approximation of the numerical data for
J , respecting the leading-order asymptotic behaviours, is given by

J (δ)= 4π
[

1 + 1
2

ln
(

1 + 1
δ

)]
, (3.8)

where a maximum deviation from the data does not exceed 2.7 %. However, a more precise
fit is also provided for reference in Appendix B1.

3.3. Velocity field
In accordance with the approach followed in the present paper (§ 2), the evaporative
flow field, generated by droplet evaporation, is considered in the Stokes and quasi-steady
approximation. Thus, we proceed from the continuity and Stokes equations

∇ · v = 0, (3.9)

∇2v − ∇ p = 0. (3.10)

The following boundary conditions are used:

v = 0 on the hot substrate, (3.11)

v → 0 far away from the droplet, (3.12)

v · τ = 0 and v · n = j on the droplet surface. (3.13)

Here, v and p are the dimensionless velocity and pressure fields in the vapour (cf. the
scales in table 1), and τ is the unit tangential vector. In the first boundary condition (3.13), a
possible internal flow in the droplet is neglected relative to the velocity scale in the vapour,
hence no slip. The last boundary condition (3.13) contains the driving factor of the flow
field, where the normal velocity at the droplet surface is determined by the evaporation flux
(3.6), which is in turn determined by the temperature field obtained from the formulation
(3.2)–(3.5) in § 3.1. Similarly to § 3.1, this hydrodynamic part of the problem is also solved
numerically using COMSOL Multiphysics.
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Figure 4. Evaporative force Fev (dimensionless, in terms of δ2 Fev) as a function of the relative droplet height δ.
Numerical results (blue open circles) are well approximated by (3.15) (red line). Black dashed lines correspond
to the asymptotic behaviours.

The computation results for the vapour velocity fields are added into figure 2(a),
mirroring the temperature fields and also displaying the streamlines. For large relative
heights δ, the streamlines remain straight near the droplet’s surface, indicating that the
flow is almost spherically symmetric there and only slightly disturbed by the substrate.
Farther from the droplet, the streamlines are significantly bent due to the substrate
presence. Higher velocity field values are attained for smaller δ. This is not only due to a
profound maximum in the evaporation flux due to the substrate proximity at small δ (as in
figure 2b1), but also additionally due to a confinement effect in a thin vapour layer between
the droplet and the substrate, when the longitudinal velocity becomes even higher than the
evaporation-flux-driven normal one at the droplet surface.

3.4. Levitation force
The bending and asymmetry of the evaporative flow due to the substrate give rise to a
hydrodynamic force acting on the evaporating droplet in the sense of its repulsion from
the substrate. We refer to it as an evaporative force Fev . In our configuration (figure 1),
this amounts to a force acting on the droplet vertically upwards (along the z axis), which
is responsible for droplet levitation against gravity. The force balance on the droplet
and its levitation height are considered in § 4 later on. Here we simply calculate Fev
in dimensionless terms (cf. the scales in table 1) as a function of the relative height δ.
Namely, we evaluate

Fev =
⎛
⎝∫∫

S

(−pn + (∇v + ∇vᵀ) · n) dS

⎞
⎠ · ez (3.14)

using the velocity and pressure fields computed in § 3.3, where ez is a unit vector along z.
The result is reported in figure 4 in terms of Fevδ

2. The overall tendency is Fev ∝ δ−2,
as is already known in the literature (Celestini et al. 2012; Pomeau et al. 2012). However, it
is less known that the prefactor is different in the limits δ→ 0 and δ→ +∞. For instance,
Celestini et al. (2012) attempted to fit the experimental data using a single prefactor. We
obtain a prefactor 3π as δ→ 0, which can be deduced from the lubrication approximation
(cf. Pomeau et al. 2012; Sobac et al. 2021, see also Appendix C3), although Pomeau et al.
(2012) obtained 3π/8 here (erroneously, in our opinion). In contrast, the prefactor is 6π
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as δ→ +∞, which is confirmed by an asymptotic analysis described in Appendix C4,
where a number of contributions in terms of the droplet–substrate interaction are followed
through. The following simple expression nicely approximates our numerical result while
respecting the prefactor values in both limits:

Fev(δ)= 3π
δ2

1 + 2δ
1 + δ

, (3.15)

which is also shown in figure 4. It covers the numerical data with a relative error of 1.4 %,
whereas a more precise fit is provided for reference in Appendix B2. In what follows, for
purely presentational reasons, we shall use the simple-form approximations like (3.8) and
(3.15), whose precision is deemed to be already rather satisfactory.

3.5. Validity of assumptions
1. Negligible advection. We start with the estimation of an evaporative Péclet number

Pe = [v]R/αv , where the evaporative velocity scale [v] from table 1 is used. We obtain

Pe = cp,v�T

L , (3.16)

which incidentally turns out to be a version of the Jakob number often used in the
literature. For the typical �T value (cf. § 2) and parameter values (cf. the first row of
table 3 in Appendix A), we obtain Pe ≈ 0.19 � 1, which justifies the approximation
used in § 3.1.

2. Stokes approximation. Likewise, the Reynolds number is Re = ρvR[v]/μv = Pe Pr−1,
where Pr =μv/(ρvαv) is the Prandtl number. As Pr = 0.71 (cf. ibid), we obtain
Re ≈ 0.26 � 1, confirming the approximation used in § 3.3.

3. Negligible natural convection. This is related to small values of the Grashof number at
the droplet scale

Gr = ρvgR3

μvνv
; (3.17)

(written in this form given that the variations of ρv are here of the order of ρv itself).
One typically obtains Gr< 0.01 for our small droplets (R � 50 µm).

4. Gas phase quasi-steadiness. The results of the present section imply the quasi-
steadiness of the temperature and velocity fields in the entire region between the
droplet and the substrate, which may be especially questionable for large levitation
heights h. The appropriate thermal and viscous time scales can be chosen as
τth = max(R, h)2/αv and τvis = ρv max(R, h)2/μv . The quasi-steadiness takes place
when τth � τ and τvis � τ , where τ is the typical time scale of the process. As
Pr = O(1) here, we just limit our attention to the first one of these conditions for the
sake of brevity, and hence

max(R, h)2

αv
� τ. (3.18)

An immediately obvious time scale of the process is here the evaporation time scale of
the droplet τev = ρl R3/[J ] (cf. table 1 for [J ]), i.e.

τev = ρlLR2

λv�T
= ρl

ρv

1
Pe

R2

αv
. (3.19)

Using it as τ = τev in (3.18), we arrive at

max(1, δ2)� ρl

ρv

1
Pe
. (3.20)
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Given that ρl � ρv and Pe � 1 here, the condition (3.20) leaves a considerable margin
for possible large values of the relative height δ= h/R. We shall come back to it later
on, after having considered concrete solutions for h.

4. Levitation and take-off: quasi-steady approach

4.1. Formal application of the quasi-steady approach
A vertical balance of the (evaporative) levitation force (3.15) against the droplet weight
directly yields the equation for the levitation height of the droplet h as a function of its
radius R, which we write in dimensional form:

3π
μvλv�T

ρvL
R2

h2
R + 2h

R + h
= 4π

3
ρl gR3, (4.1)

where we have used the scale from table 1 and the definition (2.1). There exists a single
natural length scale �∗, the non-dimensionalisation with which renders (4.1) parameter-
free:

1

ĥ2

R̂ + 2ĥ

R̂ + ĥ
= 4

9
R̂ , (4.2)

where

[R̂] = [ĥ] =
(
μvλv�T

ρvρl gL
)1/3

≡ �∗, R̂ = R

[R̂] , ĥ = h

[ĥ] . (4.3)

The solution of (4.2) is shown in figure 5(a) and adheres to the following asymptotic
behaviour:

ĥ = 3
2

1

R̂1/2
i.e. δ = 3

2
1

R̂3/2
as R̂ → +∞, (4.4)

ĥ = 3√
2

1

R̂1/2
i.e. δ = 3√

2

1

R̂3/2
as R̂ → 0. (4.5)

The length scale �∗ indicates the characteristic size R ∼ �∗ at which the droplet takes
off at a height of the order of itself, with h ∼ R (i.e. δ ∼ 1). At smaller sizes (R � �∗),
the droplet soars even higher (h � �∗ � R, δ� 1), whereas at larger sizes (R � �∗), the
droplet levitates lower (h � �∗ � R, δ� 1). Typically, �∗ is in the range of a few tens
of micrometres. For our reference case of a water droplet on a superheated substrate with
�T = 300 ◦C, we obtain �∗ = 28.46 µm, which is much smaller than the capillary length
�c = √

γ /(ρl g) (γ being the liquid–air surface tension, �c ∼ 2.5 mm for water). This ‘take-
off scale’ �∗ has earlier been pointed out by Celestini et al. (2012) and Pomeau et al. (2012)
(their notation Rl ) as the scale at which a drastic take-off takes place (although note that
a mere increase of h as R decreases already starts from much larger sizes R, cf. Sobac
et al. 2021, as well as § 8 here). They also interpret it as the droplet size starting from
and below which the lubrication approximation in the vapour film between the droplet and
the substrate becomes invalid (since h � R ceases indeed to hold). Note that h = R for
R = 3/2 �∗.

Similarly to what was commented for Fev in § 3.4, the overall tendency h ∼ R−1/2 (or
h/R ∼ R−3/2) has been well known since Celestini et al. (2012) and Pomeau et al. (2012),
who first pointed out this exponent. However, we here calculate the prefactor and point out
that it is actually not fully constant, as highlighted in the inset of figure 5(a) and further
put into evidence by the two different limiting values in (4.4) and (4.5).
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(Celestini et al. 2012)
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√

2 (𝓁*/R)3/2

h/R = 3/2 (𝓁*/R)3/2

Figure 5. (a) Relative height as a function of the droplet radius as predicted by the quasi-steady model. Full
solution (solid blue line, ‘master curve’) and the asymptotic behaviours for smaller and larger radii (dashed
and dotted purple lines, respectively). The log–log inset highlights the dominant power law and the prefactor
change between the two limits. (b) First comparison with the experimental data of Celestini et al. (2012) for
water (with �T = 300 ◦C).

A first comparison with experiment is undertaken in figure 5(b), where we focus our
attention on just the upper layer of experimental points, while the points lower than that
are deemed to belong to some transients (see also a remark in § 7 later). It is important
to recall that these experiments dealt with small droplets, typically ranging in radius
from 1 to 30 µm, which is of the order of or smaller than �∗ here. For this size range
(R̂ � 1), specific to take-off observations, the full solution of (4.2) already practically
coincides with the asymptotic limit (4.5), cf. figure 5. While this seems to agree well
with experiment for 15 µm � R � 30 µm, an overprediction is nonetheless observed as
the droplet size decreases below R � 15 µm. Astonishingly, we observe that it is rather
the asymptotic behaviour (4.4) that starts to get closer to the experimental points even if
(4.4), with the prefactor it contains, is appropriate in the limit of larger droplets (and not
the smaller ones we are discussing right now). We shall come later to what will be the
right explanation here.

The droplet radius R decreases over time by evaporation (rather than just being a given
constant parameter), and hence h, related to R by (4.1), is also a function of time. The
steady force balance (4.1) or (4.2) is then assumed to be valid in a quasi-steady sense, and
R(t) and h(t) follow the solid curve of figure 5 as time goes on. The mass of the droplet
(4π/3)ρl R3 decreases in time at an evaporation rate given by (3.8) with the scale from
table 1. This balance gives rise to the following equation for the droplet radius evolution:

ρl R
dR

dt
= −λv�T

L
[

1 + 1
2

ln
(

1 + R

h

)]
. (4.6)

Using the time scale

[t̂] = ρlL�2∗
λv�T

= ρl

ρv

1
Pe
�2∗
αv

≡ τ∗ , (4.7)

alongside the scales (4.3), equation (4.6) is rendered free of any parameters similarly to
(4.2). Namely, we arrive at

R̂
dR̂

dt̂
= −1 − 1

2
ln

(
1 + R̂

ĥ

)
. (4.8)
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Figure 6. Dimensionless evolutions of the radius R̂ and the height ĥ of a spherical Leidenfrost
droplet over time t̂ computed by the quasi-steady model (coupled 4.2 and 4.6) for initial droplet radii
R̂0 = {1/3, 1/2, 1, 2, 3} (from dark to light blue). The corresponding initial quasi-steady heights are
ĥ0 = {3.60, 2.89, 1.93, 1.25, 0.97}. The inset serves to illustrate the extents to which the R2-law holds and
to which the evaporation is accelerated by the superheated substrate, where the time is normalised to the
evaporation time of a freely suspended droplet.

Now the dimensionless evolution problem for R̂(t̂) and ĥ(t̂) is defined by a system
of two coupled equations, (4.2) and (4.8), for which the initial conditions R̂ = R̂0 and
ĥ = ĥ0 at t̂ = 0 are posed with R̂0 and ĥ0 not being independent but rather related by
(4.2). Figure 6 illustrates the (numerically obtained) solution for various initial droplet
radii R̂0 = {1/3, 1/2, 1, 2, 3}. Evidently, the curves demonstrate that R̂ decreases over
time due to evaporation until extinction, with larger droplets exhibiting longer lifespans.
Concurrently, ĥ increases over time as the droplet size decreases, larger droplets being
closer to the substrate at the initial time in accordance with (4.2). It is important to note
that, within the present quasi-steady description, a Leidenfrost droplet takes off reaching
an infinite height ĥ → +∞ at the end of its life (as R̂ → 0), in accordance with (4.5).

In the inset, (R̂/R̂0)
2 is plotted as a function of t̂/t̂∞ev in order to highlight the evaporative

behaviour of a spherical Leidenfrost droplet as compared with the well-known limit case
of a spherical droplet suspended in an unbounded gas medium. Here, t̂∞ev = (R̂0)

2/2 is the
dimensionless evaporation time of such a freely suspended droplet (which can be derived
from (4.8) in the limit δ = ĥ/R̂ → +∞). Owing to the interaction with the superheated
substrate, appearing through the logarithmic term in (4.8), the well-known R2-law is
recovered only for large values of ĥ0. Thus, R̂2 generally does not linearly decrease in
time, while these droplets evaporate faster than their freely suspended counterparts due to
the proximity of the superheated substrate.

Needless to note that, by parametrically plotting ĥ(t̂)/R̂(t̂) or ĥ(t̂) as a function of
R̂(t̂) (t̂ being the parameter), we retrieve the same ‘master’ curve as depicted in figure 5.
Within the present quasi-steady approach, such a master curve is just trivially given by
an algebraic equation like (4.1) or (4.2). However, this may become less trivial in what
follows.

4.2. Validity of assumptions
The quasi-steady result that the droplet soars to an infinite height at the end of its life, cf.
(4.5) and figure 6(b), looks suspicious from the physical point of view. One can wonder
whether the quasi-steadiness criterion (3.20) for the fields in the gas phase is still fulfilled
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in view of δ→ +∞. Furthermore, h → +∞ also implies infinite velocity and acceleration
(dh/dt → +∞ and d2h/dt2 → +∞), and hence one can wonder whether the steady force
balance such as (4.1) is still adequate when neglecting the drag (proportional to dh/dt)
and inertia (proportional to d2h/dt2) forces on the droplet. Below, we make an estimation
of those effects when the only source of unsteadiness is the evaporation of the droplet, i.e.
when the time scale is τ = τev as given by (3.19).

Disregarding numerical prefactors, the inertia, (Stokes) drag and levitation forces can
be estimated as

inertia ∼ ρl R3 h

τ 2
ev
, drag ∼μvR

h

τev
, levitation ∼ μvλv�T

ρvL
R2

h2 , (4.9)

where the estimation of the levitation force is just based on the left-hand side of (4.1).
Using the expression (3.19) for τev , one can immediately see that

inertia
drag

∼ Pr−1Pe. (4.10)

As we have Pr ∼ 1, Pe � 1 here (cf. § 3.5), inertia can be disregarded against the drag in
the present context with τ = τev (which does not exclude that inertia can be essential in
other contexts, cf. § 7 later on). Then, it just remains to compare the drag and levitation
forces. Using (4.9) on account of (3.19), one can obtain

drag
levitation

∼ ρv

ρl

(
h

R

)3

. (4.11)

Thus, the drag can be neglected in favour of a quasi-steady force balance like (4.1) provided
that

δ3 � ρl

ρv
. (4.12)

Given that the liquid density is much greater then the vapour density (ρl/ρv � 1), the
condition (4.12) leaves quite a considerable margin for the present quasi-steady approach
to be valid. It is only for sufficiently small droplets levitating too high (such that
δ ∼ (ρl/ρv)

1/3) that it breaks down and the drag force should be incorporated (but still not
the inertia force, according to the earlier estimations), as intuitively expected. Moreover,
one can clearly see that the condition (4.12) is more restrictive in the realm of large δ than
(3.20), which is further reinforced by the fact that Pe � 1. This means that, even when the
drag force becomes important, the temperature and velocity fields between the droplet and
the substrate can still be regarded as quasi-steady, and hence expressions like (3.8) and
(3.15) are still valid. An analysis aiming at smaller R (and larger h) and incorporating the
drag force is realised in § 5 and § 6 below.

In the opposite limit of larger R (and smaller h), the validity of the quasi-steady
approach as used here is therefore not put into question. However, it is rather the full-
sphericity assumption that becomes more restrictive, when (even still within R � �c and
a practical sphericity of the most of the droplet) a small part of the droplet bottom
gets flattened by gravity (Pomeau et al. 2012), an essential effect from the Leidenfrost
viewpoint. In this regard, the result (4.4) should be understood in an intermediate
asymptotic sense, as valid for R � �∗ but R still much smaller than the bottom-flattening
scale. This will be considered in more detail in § 8.
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[r, z, s] [S] [v] [p] [Fdrag]
R R2 U μvU

R −μvR U

Table 2. Scales used to render the various quantities dimensionless in § 5. The square brackets denote the
scale of the quantity inside.

F d
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Figure 7. Dimensionless drag force as a function of the relative droplet height δ. Numerical results (blue
open circles) agree well with the classical approximation (5.2) (red line). Black dashed lines correspond to the
asymptotic behaviours.

5. Basic calculations (continued): drag force
As stipulated in § 4.2, the drag force, Fdrag , is required for further analysis. The present
section, dedicated to Fdrag , is organised as a continuation of § 3 and mirrors the same style
as far as notations, non-dimensionalisation and scales are concerned. The scales relevant
here are summarised in table 2 (which is the counterpart of table 1 there), where U is the
droplet (translation) velocity in the vertical direction (its only component here).

As the primary need for such a consideration arose in the context of large δ (cf. § 4.2),
a mere use of the (dimensionless) Stokes drag Fdrag = 6π in an unbounded medium
could be quite sufficient here (as well as in § 6), where the rigid-sphere prefactor 6π is
used on account of the liquid dynamic viscosity being much larger than the vapour one.
Nonetheless, for the sake of generality, we shall here proceed implying δ = O(1), all the
more so as it will be particularly relevant later on in the context of § 7. Thus, the goal is to
compute Fdrag(δ).

For this purpose, we once again solve the dimensionless Stokes equations (3.9)–(3.10)
with the boundary conditions (3.11)–(3.12) (although the dimensional scales are now
different and given by table 2). However, the ‘evaporation’ boundary conditions (3.13)
are now replaced with

v = ez (5.1)

reflecting droplet translation along z. Finally, the same expression as on the right-hand
side of (3.14) is used to compute Fdrag .

The computation results are illustrated in figure 7 together with the following
approximate expression (Guyon et al. 2012):
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Fdrag(δ)= 6π
(

1 + 1
δ

)
. (5.2)

While strictly valid in the limits δ→ 0 and δ→ +∞, the result (5.2) can be seen to deviate
from the numerical results by up to 7 % for intermediate values of δ ∼ 1. A more precise
fit of the numerical data is proposed in Appendix B3. Nonetheless, we shall stick in the
present study to a simpler and more elegant expression (5.2), as we earlier did with (3.8)
and (3.15), which will be sufficient for our purposes.

6. Levitation and take-off: (indispensable) dynamic approach for smaller droplets
We now turn to the case of smaller droplets (levitating higher), for which the quasi-steady
approach followed through in § 4.1 breaks down. As pointed out in § 4.2, the drag force,
depending on the droplet translation velocity as it soars higher while vapourising, becomes
essential (although not the inertia force). Supplementing the quasi-steady force balance
(4.1) with the drag force, we obtain

− 6πμvR

(
1 + R

h

)
dh

dt
+ 3π

μvλv�T

ρvL
R2

h2
R + 2h

R + h
= 4π

3
ρl gR3. (6.1)

Here, the dimensionless expression (5.2) multiplied by the scale from table 2 has been
used with U = dh/dt . (Strictly speaking, the velocity of the centre of mass is rather given
by (dh/dt)+ (dR/dt), but we shall disregard such nuances here.)

The natural distinguished scales are such that all terms in (6.1) and in (4.6) are of the
same order of magnitude:

[R̃] =
(
ρv

ρl

)2/9

�∗, [h̃] =
(
ρv

ρl

)−1/9

�∗, [t̃] =
(
ρv

ρl

)4/9

τ∗, (6.2)

R̃ = R

[R̃] , h̃ = h

[h̃] , t̃ = t

[t̃] , ε ≡ [R̃]
[h̃] =

(
ρv

ρl

)1/3

, (6.3)

and the dynamical system becomes

−
(

1 + ε
R̃

h̃

)
dh̃

dt̃
+ R̃

h̃2

h̃ + 1
2ε R̃

h̃ + ε R̃
= 2

9
R̃2, (6.4)

R̃
dR̃

dt̃
= −1 − 1

2
ln

(
1 + ε

R̃

h̃

)
. (6.5)

The distinction between the present scales (6.2) and the previously considered ones (4.3)
and (4.7) is eventually owing to a small parameter given by the vapour-to-liquid density
ratio ρv/ρl � 1. We note that the scales [R̃] and [h̃] are different here, and the typical
relative height of the droplet levitation is now δ ∼ (ρl/ρv)

1/3 � 1. It is exactly at such
values of δ that criterion (4.12) of the quasi-steady force balance breaks down, as expected,
which confirms the coherence of the present dynamic approach. At the same time, criterion
(3.20) of the quasi-steadiness of the temperature and velocity fields between the droplet
and the substrate is still satisfied, as already discussed in § 4.2.

The phase portrait of the dynamical system (6.4)–(6.5) is represented in figure 8(a)
(generated using the StreamPlot command in Mathematica). Notably, while a Leidenfrost
droplet is theoretically expected to ascend indefinitely within the quasi-steady approach,
the presence of the drag force results in a saturation of h̃ towards a finite take-off value.

1010 A47-15

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

20
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2025.208


B. Sobac, A. Rednikov and P. Colinet

(a) (b)

0

0.5

0

2

1.0

4

1.5

6

2.0

8

2.5

10

3.0

5

0 5 10 15 20 25 30 35

10

15

20

25

30

R (µm)R

h

Experimental data (Celestini et al. 2012)

Quasi-steady master curve

Dynamic master curve (drag-moderated)

˜

˜

δ 
=

 h
/
R=

ε–
1

 h/
R˜˜

Figure 8. (a) Phase portrait of the dynamical system for R̃(t̃) and h̃(t̃) appropriate in the limit of a smaller
droplet levitating higher (incorporating the drag force in the quasi-steady force balance) and in the scaling
appropriate to that limit (tilded variables). Parameter values used: ε = 0.076, corresponding to water droplet
experiments by Celestini et al. (2012) at �T = 300 ◦C (cf. Appendix A). The blue solid line shows the earlier
obtained quasi-steady ‘master curve’, which coincides with the separatrix (black solid line, ‘dynamic master
curve’) for larger R̃ but diverges (h̃ → +∞) for smaller R̃. (b) Comparison with the mentioned experiment
using the quasi-steady and dynamic master curves.

In other words, the Leidenfrost droplets always vanish (R̃ → 0) at a finite height.
Physically, the drag force, represented by the first term on the left-hand side of (6.1),
becomes so significant towards the end of life of the droplet that it blocks the soaring
tendency dictated by the levitation force (the second term ibid). In principle, the droplet
can end up at whatever height, depending on the initial conditions (figure 8a). However,
there is a distinguished value of the final levitation height valid for most of the droplets, at
least for those starting off from a sufficiently large size. In such a case, the phase trajectory
is seen to reach the separatrix fast (figure 8a), along which the droplet evolution ensues
until the droplet vanishes at the distinguished final height corresponding to the separatrix

h̃ f in = 1.69(1 − 0.35 ε), (6.6)

which was computed numerically assuming a linear dependence on the small parameter ε.
Using the scales (6.2) on account of (4.3), this can be rewritten in dimensional terms

h f in = 1.69
(
ρl

ρv

)1/9 (
μvλv�T

ρvρl gL
)1/3

(
1 − 0.35

(
ρv

ρl

)1/3
)
. (6.7)

For instance, under the conditions of the experiments by Celestini et al. (2012)
with water droplets (cf. Appendix A for the parameters), we obtain h̃ f in = 1.64 and
h f in = 110.36 µm. The separatrix now becomes our new, dynamic ‘master curve’. It
replaces the quasi-steady one, soaring to infinity (h̃ → +∞) as R̃ → 0 and corresponding
to

1

h̃2

h̃ + 1
2ε R̃

h̃ + ε R̃
= 2

9
R̃ (6.8)

in terms of the tilded variables, which is also depicted in figure 8 (solid blue line) for
comparison. The dynamic master curve is different for smaller droplets (R̃ � 3), whereas
for larger droplets the quasi-steady result is recovered, as expected.

Figure 8(b) undertakes a direct comparison with the experiments by Celestini et al.
(2012) for water droplets at �T = 300 ◦C. We see that the dynamic model, considered in
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the present section, shows a noticeable improvement over the previously considered quasi-
steady approach. The improvement is just manifest for smaller droplets (R � 15 µm).

7. Dynamic approach in general
The dynamic approach considered in § 6 came as indispensable and, in this sense, forced
in the domain of smaller droplets, where the consideration of § 4 based on the quasi-
steady force balance could no longer be valid. At the same time, this made it limited to
that domain, where, in particular, only the drag force was essential while inertia could
be disregarded. In the present section, we take up a full dynamic approach, which would
presumably be valid in the entire range of droplet sizes considered in the present paper. In
§ 4, we considered just the (quasi-)equilibrium positions (heights) of the droplet. Here, we
inquire what the droplet behaviour will be if initially out of that equilibrium.

Complementing the force balance (6.1) with inertia, we arrive at

4π
3
ρl R3 d2h

dt2 = −6πμvR

(
1 + R

h

)
dh

dt
+ 3π

μvλv�T

ρvL
R2

h2
R + 2h

R + h
− 4π

3
ρl gR3. (7.1)

Thus, we end up with a third-order system of ordinary differential equations given by (7.1)
and (4.6). It can in principle be (numerically) solved starting from any initial condition
R = R0, h = h0, dh/dt = h′

0 at t = 0 to obtain R(t) and h(t), where R0 > 0, h0 > 0 and h′
0

are some initial values.
The solution is illustrated in figure 9 for a water Leidenfrost droplet of an initial

radius R0 = 30 µm starting from various initial heights h0 and velocities h′
0. As earlier,

the parameters of the experiment by Celestini et al. (2012) are used (i.e. �T = 300 ◦C
and 1 atm, cf. Appendix A). We note that the chosen value of the initial radius is large
enough for the quasi-steady approach to work well (cf. Figure 8b) and the corresponding
quasi-steady height, obtained from (4.1) at R = R0, is hQS = 50.24 µm. The several initial
heights tested are then conveniently expressed in the units of hQS . The previously obtained
quasi-steady (§ 4) and dynamic (§ 6) master curves are also shown in figure 9 for reference.

For h0 = hQS with h′
0 = 0, we see that the solution adheres to the dynamic master curve,

which coincides with the quasi-steady one for larger R and is drag-force-moderated for
smaller R, and where the incorporation of inertia into the force balance has practically no
effect, as expected. For an initial height h0 out of the position hQS (still with h′

0 = 0), the
droplet approaches the dynamic master curve relatively fast in an oscillatory way (like
a damped oscillator), and then the evolution continues along that curve. The droplets
initially located too close to the substrate can rebound to considerable heights as propelled
by the levitation force. The droplets starting from or propelled to considerable heights
rejoin the dynamic master curve at a later time and smaller size. In this case, the
rejoining already happens in a monotonic way, quite in accordance with the scenario for
smaller droplets described in § 6, where inertia could be disregarded. Furthermore, the
droplets finding themselves at a certain moment excessively high vapourise at some finite
height before reaching the dynamic master curve, which also forms part of that scenario.
Under the conditions explored in figure 9(a,b), the latter scenario occurs whenever
h0 � (1/300)hQS(R0)= 0.18 µm and h0 � 72hQS(R0)= 3.83 mm.

Exploring considerable initial downward velocities can be relevant in the context of
spraying. This is accomplished in figure 9(c,d) for two values of the initial height
(h0 = 5hQS and h0 = 75hQS). For h0 = 5hQS , finite positive values of −h′

0 delay
stabilisation at the master curve. Furthermore, if the initial downward velocity is
sufficiently large, the droplet rebounds so high that it eventually vapourises before reaching
the master curve. In contrast, from a much larger initial height h0 = 75hQS when the
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General dynamic solution (with drag and inertia)

Quasi-steady master curve

Dynamic master curve (drag-moderated)
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Figure 9. Leidenfrost water droplet trajectories in the plane h versus R computed by means of the general
dynamic approach (including drag and inertia) using the parameters of Celestini et al. (2012) (cf. Appendix A).
Initial radius R0 = 30 µm. Various initial heights h0 are tested in (a) and (b) for h′

0 = 0, which are here
represented relative to the equilibrium quasi-steady height hQS = 50.24 µm. Mimicking spraying, the role
of an initial downward velocity −h′

0 comparable to or greater than the droplet fall velocity 2ρl gR2
0/(9μv)≈

0.1 m s−1 is explored in (c) for h0 = 5hQS and in (d) for h0 = 75hQS . The quasi-steady and dynamic master
curves (blue and red dashed lines) are also shown for reference.

droplet vapourises before reaching the master curve with h′
0 = 0, a finite initial downward

velocity can help propel the droplet to its stabilisation at the master curve. Once again, this
is unless the velocity is excessively large so that the droplet rebounds too high.

Small rebounds around the master curve can actually reproduce certain oscillatory
trends observed in the experimental points by Celestini et al. (2012), as illustrated in
figure 10. However, the nature of the experimental points located too close to the substrate
remains unclear, the understanding of which may require staging further experiments and
thinking of physical factors not included in the present model. The present modelling
indicates that there may be a certain dependence on the manner in which the Leidenfrost
droplets are deposited in experiment as the initial conditions can be such that the droplet
fully evaporates before reaching the master curve.

The consistency of the approach in regard of the oscillatory relaxation obtained here
can be assessed as follows. Focusing just on larger droplets with h ∼ R, the oscillation
time scale τoscil = √

R/g can be compared with the viscous and thermal time scales
τvis ∼ ρvR2/μv and τth ∼ R2/αv (the latter two are of the same order on account of Pr ∼ 1
and can thus be used interchangeably in estimations). As τvisτth/τ

2
oscil = Gr, cf. (3.17),

while it was estimated Gr � 1 in § 3.5, we see that τvis, τth � τoscil . Thus, the implied
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Experimental data (Celestini et al. 2012)

15 205 100
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=

 h
/
R
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General dynamic solution (with drag and inertia)

Quasi-steady master curve

Dynamic master curve (drag-moderated)

3025 35

R (µm)

Figure 10. Relative height δ = h/R of a water Leidenfrost droplet as a function of its radius R.
The experimental data from Celestini et al. (2012) are compared with the quasi-steady and dynamic
(drag-moderated) master curves, as well as with the trajectories computed from the general dynamic approach
(including both drag and inertia) using the initial conditions h0/hQS(R0)= 3/2, R0 = {20.8; 23.8; 28.8} µm
and h′

0 = 0.

quasi-steadiness of the temperature and velocity fields does hold during the oscillation
cycle, hence the sought consistency. Similarly, the ratio of the inertia and drag forces
in (7.1) can be estimated at ∼ (ρl/ρv)Gr1/2 taking τoscil as the time scale. Even if
Gr � 1, this can be superseded by (ρl/ρv)� 1 for larger droplets so that inertia
dominates, hence the observed oscillatory relaxation. For smaller droplets, however, as
Gr decreases drastically with R, it is the drag that comes to dominate, hence a monotonic
relaxation and the scenario of § 6.

8. Link to a more global picture
The larger the droplet is, the narrower the gap between the spherical droplet and the
substrate becomes, as put into evidence by (4.4). As mentioned at the end of § 4.2, a
key limitation to the present analysis from the side of larger droplets is expected to be
caused by a deviation from sphericity within such a narrow gap, even if the droplet as a
whole might still remain largely spherical. As this region is crucial for vapour generation
and heat transfer, in spite of its smallness, any morphological change therein can have
a significant impact on the Leidenfrost phenomenon. On the other hand, it is through
such a morphological change at the bottom of the droplet that a transition from the small
spherical to larger non-spherical Leidenfrost droplets is bridged, which is touched upon in
the present section.

As established by Pomeau et al. (2012), cf. their (26), a significant deviation from
sphericity at the bottom of the droplet in the aforementioned sense occurs for R starting
from R ∼ �i , where the length scale �i is given by

�i =
(
�3∗�4

c

)1/7
(8.1)

(all rewritten in our present notations). For R � �i , the droplet can be considered
fully spherical (even at the bottom) and the analysis of the present paper holds. As
�∗ � �c, (8.1) implies that �∗ � �i � �c. For our reference case of a water droplet on
a superheated substrate with �T = 300 ◦C (Celestini et al. 2012, cf. Appendix A), we
obtain �i = 367 µm.
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 Dynamic master curve

(drag-moderated)

 Experimental data

(Celestini et al. 2012)

10–3
100

104

103

102

101

10–2 10–1

–1/2

100𝓁* 𝓁i 𝓁c

R (mm)

h 
(µ

m
)

h

hcentre

hneck

101

Theory

(Sobac et al. 2014)

Experimental data

(Burton et al. 2012)

Figure 11. Vapour film thickness h under a water Leidenfrost droplet as a function of its radius R. Theoretical
predictions reproduced from Sobac et al. (2014, 2021) for large deformed droplets (R � �i ), and by the present
model for small spherical droplets (R � �i ) are compared with experimental data from Burton et al. (2012)
and Celestini et al. (2012), respectively. Unlike the previous examples, the computations are here done with
�T = 270 ◦C to follow Burton et al. (2012) (cf. also Appendix A), whereas the data by Celestini et al. (2012)
still correspond to �T = 300 ◦C (hence a slight misplacement relative to the theoretical curve as compared
with previous figures). For large droplets, the h curve splits into two branches hneck and hcentre at the point
where the vapour layer between the droplet and the substrate adopts a ‘pocket-like’ structure edged by a narrow
annular neck, such that the minimum thickness no longer corresponds to the centre and switches to the neck.

Figure 11 illustrates the Leidenfrost effect at large, over four decades of the droplet size.
It combines the present results for the (small) spherical Leidenfrost droplets to the left of
the figure (the dynamic master curve) with the results for the usual (large and deformed)
droplets reproduced from Sobac et al. (2014, 2021) to the right. We note that for the non-
spherical droplets the radius R is here defined as the radius of the vertical projection on
the substrate (i.e. as the maximum horizontal radius). Two sets of experimental results,
corresponding to the two drastically different size domains, are plotted alongside the
theoretical curves: the ones by Celestini et al. (2012) and by Burton et al. (2012). The
overlapping occurs at R ∼ �i , quite as expected. Nevertheless, it does not appear to happen
smoothly, which is most definitely due to some accuracy loss towards the limit of small
near-spherical droplets within the model employed by Sobac et al. (2014, 2021). Notably,
it is in this intermediate (overlapping) region that an absolute minimum of the vapour layer
thicknesses is attained: from there, h increases both towards the small spherical droplets
as a take-off precursor and towards the large deformed droplets.

9. Conclusions
The dynamics of small spherical Leidenfrost droplets has been investigated theoretically,
yielding valuable new insights into their final stages of existence.

After numerically calculating the fluxes, evaporation rate and forces for a spherical
Leidenfrost droplet interacting with a superheated flat substrate (under the verifiable
assumptions of quasi-stationarity and low Reynolds and Péclet numbers) and coming
up with simple formulae approximating these data as a function of the reduced height
δ = h/R (all respecting the asymptotic behaviours as δ→ 0 and δ→ +∞, also studied

1010 A47-20

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

20
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2025.208


Journal of Fluid Mechanics

here), a theoretical model has been developed which allows an accurate prediction of the
droplet height h as a function of the physical parameters without any fitting parameters.

First, by balancing the droplet’s weight against the upward hydrodynamic force induced
by evaporation, a ‘quasi-steady master curve’ relating droplet height h to droplet radius R
was derived. This curve follow the h ∝ R−1/2 scaling law formulated by Celestini et al.
(2012) and Pomeau et al. (2012). However, the prefactor is not constant and rather varies
from 3/2 when R → +∞ to 3/

√
2 as R → 0.

Furthermore, our analysis reveals that the aforementioned classical quasi-steady
description, while capturing the general trend of the ‘take-off’ phenomenon, is unable
to accurately reproduce the experimental data of Celestini et al. (2012). Dynamic effects,
especially those related to frictional forces, are crucial to accurately describe the take-off at
small scales. Therefore, a ‘dynamic master curve’, drag-moderated, has been also derived
and well reproduces the experimental data of Celestini et al. (2012). As a consequence
of the friction effect, the Leidenfrost droplets disappear at a finite height, the value of
which turns out to be universal for sufficiently large initial droplets. This is in contrast
to the prediction of the quasi-stationary model, which suggests an infinite final height. A
formula that predicts this universal final height has been established.

In addition, a general dynamic model including both drag and inertia effects has been
used to investigate the influence of initial conditions on droplet dynamics. For an initial
height h0 out of the equilibrium position hQS , a sufficiently large droplet approaches the
‘dynamic master curve’ relatively quickly and in an oscillatory manner (like a damped
oscillator), and then continues to evolve along this curve. Such small rebounds can indeed
reproduce certain oscillatory trends observed in the experimental points of Celestini et al.
(2012). This scenario holds for initial conditions not too far from equilibrium; otherwise,
the droplets that find themselves too high at a given moment evaporate at a finite height
before reaching the dynamic master curve. However, even for droplets initially situated
that high, an appreciable initial downward velocity (e.g. due to spraying) can help them
reach the master curve. All this highlights a certain dependence of the Leidenfrost droplet
deposition manner on the result.

Combining the present model (valid when R < �i ) with the one of Sobac et al. (2014,
2021) for larger deformed droplets (valid when R > �i ), we offer a comprehensive picture
of the shape and elevation of Leidenfrost droplets across a the full range of stable
axisymmetric shapes, spanning four decades of droplet sizes. These studies also align
with the hierarchy of length scales �∗ < �i < �c pointed out by Pomeau et al. (2012),
emphasising the dominant physical mechanisms and associated scalings.

We hope this research will stimulate further theoretical investigations, particularly
in the intermediate region (R ≈ �i ) where the vapour layer is thinnest, and encourage
further experimental studies on Leidenfrost droplets with R � �i , an area that remains
underexplored.

Funding. B.S. gratefully acknowledges the support from Centre National de la Recherche Scientifique –
CNRS, A.R. from BELSPO and ESA PRODEX Evaporation, and P.C. from the Fonds de la Recherche
Scientifique – FNRS.
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Appendix A. Properties
The properties used in this work are provided in table 3 (Sobac et al. 2015, 2017).

To facilitate continuity with some previous studies of the usual (larger non-spherical)
Leidenfrost droplets (Sobac et al. 2014, 2021; Chantelot & Lohse 2021), apart from the
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Tsat ρl L γ �c �T λv μv ρv �∗ �i ε E × 106

Liquid (◦C)
(

kg
m3

) (
kJ
kg

) (
mN
m

)
(mm) (◦C)

(
mW
m K

)
(µPa s)

(
kg
m3

)
(µm) (µm) (–) (–)

Water 100 960 2555 59 2.50 300 36.9 18.6 0.42 28.5 367 0.076 1.47
Water 100 960 2555 59 2.50 270 35.8 18.0 0.43 26.7 357 0.077 1.21
Ethanol 79 728 840 17 1.56 321 25.4 15.6 1.10 26.9 274 0.115 5.12
Ethanol 79 728 840 17 1.56 217 22.7 14.0 1.22 21.1 247 0.119 2.48

Table 3. Parameter values at 1 atm (where relevant). Liquid density ρl , latent heat L, surface tension γ and
capillary length �c = √

γ /ρl g (g gravitational acceleration) at the boiling temperature Tsat ; superheat �T ≡
Tw − Tsat , with Tw the substrate temperature; vapour thermal conductivity λv , viscosity μv , density ρv at the
mid-temperature 1/2(Tsat + Tw); take-off scale �∗, cf. (4.3); non-sphericity scale �i , cf. (8.1); ε ≡ (ρv/ρl)

1/3;
evaporation number E , cf. (A1). The first and third cases (rows) correspond to Celestini et al. (2012), while the
second corresponds to Burton et al. (2012) and the fourth corresponds to Lyu et al. (2019).

parameters defined in the main text, we here also follow the (dimensionless) evaporation
number

E = μvλv�T

γLρv�c
. (A1)

We note the formula �∗ = E1/3�c and �i = E1/7�c resulting from (4.3), (8.1) and (A1).

Appendix B. Some more precise fits of numerical data
In addition to the simplified fits (approximations) outlined in the main text, more precise
fits are proposed herein. These fits are presented alongside and compared with the
numerically computed data in figure 12. The asymptotic behaviours derived in Appendix C
are also depicted.

B.1. Fit for J (δ)

The expression (3.8) can further be improved as follows:

J (δ)= 4π
[

1 + 1
2

ln
(

1 + 1
δ

)
−
(

1 − 1
2

ln 2 − γ

)
1

1 + 50.8δ2

]
, (B1)

where γ = 0.577216 is the Euler constant, while the coefficient 50.8 results from
fitting to the numerically computed data. The expression (B1) respects the two-term
asymptotic expansions both as δ→ 0 and as δ→ +∞ obtained in Appendices C1
and C2, respectively.

B.2. Fit for Fev(δ)

A more precise expression than (3.15) is given by

Fev(δ)= 3π
δ2

(
1 + δ

0.924 + δ

)
, (B2)

where the coefficient 0.924 is obtained by fitting to the numerically computed data. As
earlier (3.15), the expression (B2) respects the leading-order asymptotic behaviour in the
limits δ→ 0 and δ→ +∞ considered in Appendices C3 and C4, respectively.
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Figure 12. (a) Evaporation rate of and forces acting on a spherical Leidenfrost droplet as a function of
its reduced height δ. Numerically computed data are presented alongside their asymptotic behaviours and
compared with fits of two different levels of precision. (b) Corresponding ratio of the numerical data to the
proposed fits as a function of δ.

B.3. Fit for Fdrag(δ)

A better approximation than (5.2) is provided by the formula

Fdrag(δ)= 6π
(

1 + 1
δ

+ 1.161
1 + 26.01δ

1 + 62.447δ + 187.12δ2 + 2.514δ3

)
, (B3)

where the coefficients in the last term result from fitting the expression to the numerically
computed data. The leading-order asymptotic behaviour as δ→ 0 and the two-term
asymptotic expansion as δ→ +∞ are for (B3) the same as for (5.2).
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Appendix C. Asymptotic behaviours

C.1. Case of J as δ→ 0
We now consider the case when the sphere (dimensionless radius unity) is close to
the substrate (δ� 1). Its profile z = h(r) (z = 0 at the substrate) in a small vicinity
of the downmost point is well approximated by a parabola h = δ + (1/2)r2 matching
with the outer circular droplet shape. The evaporation flux is given by heat conduction
across this thin vapour layer, viz. j = 1/h in dimensionless form. Integrating over such
a small vicinity up to a reference point r = r1 � 1, one obtains J1 = 2π

∫ r1
0 r j dr =

2π ln(δ + (1/2)r2
1 )− 2π ln δ for the first contribution into the evaporation rate J . One

can observe a logarithmic divergence and assume the sought asymptotic behaviour in the
form J ∼ 2π(− ln δ + const) as δ→ 0. However, to fully determine const, one needs to
consider the contribution J2 from the rest of the sphere, such that eventually J = J1 + J2.
For this purpose, it suffices to solve the problem (3.2)–(3.5) for a unit sphere lying on
the substrate (with formally δ = 0). This can be done numerically with J2 determined by
integrating (3.6) over the rest of the sphere up to the point r = r1 on the lower surface.
The result diverges in the limit r1 → 0: as J2 = −4π ln r1 + const1, where const1 is
determined numerically by choosing sufficiently small r1. In this way, we finally arrive
at J ∼ 2π(− ln δ + 1.85) as δ→ 0 (the terms with r1 cancelling out in J1 + J2). Within
the computation precision and with γ being the Euler constant, this can be rewritten as
J ∼ 2π(− ln δ + ln 2 + 2γ ) as δ→ 0, which is taken into account when constructing the
fit (B1). This (exact) value of the constant can in principle be obtained from the exact
solution of the present heat conduction problem in curvilinear coordinates (similarly to e.g.
Lebedev 1972; Popov 2005), although we here limit ourselves to corresponding numerical
solutions. The approximation (3.8) respects exactly the logarithmic divergence, but just
approximately the constant.

C.2. Case of J as δ→ +∞
When the sphere is far away from the substrate, the leading-order result is as for the sphere
in an unbounded medium

T = 1 − 1/rsph, (C1)

where rsph =√
r2 + (z − δ − 1)2 is the spherical radial coordinate from the centre of

the sphere (the difference with the cylindrical radial coordinate r is marked by the
subscript). Therefore, j = ∂rsph T |rsph=1 = 1 and hence J = 4π . The first correction comes
from the sphere reflection in the substrate. The image sphere adds the following primary
contribution into the temperature field in the original domain (above the substrate, z > 0)

Tim = 1/rsph,im, (C2)

where rsph,im =√
r2 + (z + δ + 1)2 and the (additional) subscript ‘im’ is associated with

the image. The primary effect of (C2) is to increase the local ambient temperature around
the original sphere from T = 1 to T = 1 + 1/(2δ). As T = 0 at the sphere surface, cf.
(3.5), the values of j and J are then increased in the same proportion. Thus, we arrive at
J ∼ 4π(1 + 1/(2δ)) as δ→ +∞, which is respected by both the fit (3.8) and (B1).

C.3. Case of Fev as δ→ 0
In dimensionless terms (scales provided in table 1), the lubrication equation in
the thin vapour layer between the substrate and the sphere can be written as
(1/12)r−1∂r (rh3∂r Pv)+ 1/h = 0 (cf. also Sobac et al. 2021), where Pv is the
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vapour pressure excess over the ambient one (hence Pv → 0 far away). Integrating
with h = δ + (1/2)r2 and on account of symmetry ∂r Pv|r=0 = 0, one obtains
∂r Pv = −12h−3r−1 ln(h/δ). The leading-order contribution into Fev is given by
Fev = 2π

∫ +∞
0 r Pvdr = πr2 Pv|r→+∞ − π

∫ +∞
0 r2∂r Pvdr = 3π/δ2, which is the sought

behaviour as δ→ 0 and is respected in (B2).

C.4. Case of Fev as δ→ +∞
Assuming δ� 1, we shall distinguish three contributions into the sought asymptotic
behaviour: Fev = Fev1 + Fev2 + Fev3, which are all of the same order.

First, the leading-order (spherically symmetric) flow field

v = rsph

r3
sph

(C3)

from our evaporating sphere (rsph being the position vector from the sphere’s centre) is
supplemented by the one from the image sphere

vim = rsph,im

r3
sph,im

(C4)

(in the original domain z > 0). At the location of the original sphere (r = 0, z = δ + 1), in
the limit δ� 1, the velocity field (C4) gives rise to a (quasi-)uniform streaming velocity
v0 = 1/(4(δ + 1)2)∼ 1/(4δ2) directed vertically upwards. This in turn gives rise to the
Stokes drag 6πμvR v0 upon the original sphere (in dimensional terms). In our present
dimensionless terms (cf. table 1), this amounts to Fev1 = 6πv0 = 3π/(2δ2).

Second, the superposition of the velocity fields (C3) and (C4) does satisfy the
impermeability condition at the substrate: vz = 0 at z = 0 (hereafter vr and vz are the
r - and z-components of the velocity field). However, the no-slip condition vr = 0 at z = 0
is not satisfied. To remedy this, we consider another contribution into the velocity field,
the addition of which permits to observe the no-slip condition. We proceed in terms of the
streamfunction ψ

vr = 1
r
∂zψ, vz = −1

r
∂rψ. (C5)

The Stokes equation can be written as (cf. e.g. Happel & Brenner 1965)

E2 E2ψ = 0, E2 = ∂rr − 1
r
∂r + ∂zz, (C6)

which is solved in the domain z > 0 with the boundary conditions

ψ = 0, ∂zψ = − 2r2

[(δ + 1)2 + r2]3/2 at z = 0, ψ/r2
sph → 0 at infinity. (C7)

The slip velocity in the second condition (C7) is directed towards the axis and is such as to
offset the corresponding contribution from the sum of (C3) and (C4). One can verify that

ψ = − 2r2z

[(δ + 1 + z)2 + r2]3/2 (C8)

is an exact solution of the problem (C6), (C7). Eventually, we are just interested in the
velocity field value v0 at the location of the original sphere (r = 0, z = δ + 1). Using
(C5) and (C8), one obtains v0 = 1/(2(δ + 1)2)∼ 1/(2δ2) directed vertically upwards. As
with the first contribution, the Stokes drag considerations lead to the result Fev2 = 6πv0 =
3π/δ2.
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Third, the temperature field (C2) from the image sphere gives rise not only to
an effective uniform temperature increase in the original sphere surrounding, already
taken into account in Appendix C2, but also to a (dimensionless) temperature gradient
∂zT ∼ −1/(4δ2). This breaks down the spherical symmetry of the evaporation flux
( j no longer constant along the sphere surface) and of the evaporative flow (a correction
upon (C3)). Hydrodynamically, this can engender an additional force contribution Fev3.
We proceed with the analysis using the spherical coordinates {rsph, θ} related to the
original sphere, such that r = rsph sin θ and z = δ + 1 + rsph cos θ . Then the problem for
the mentioned (gradient-related) part of the temperature field around the original sphere
can be formulated as

∇2T = 0, ∇2 = ∂rsphrsph + 2
rsph

∂rsph + 1
r2

sph sin θ
∂θ sin θ ∂θ , (C9)

T = 0 at rsph = 1, T ∼ − 1
4δ2 rsph cos θ as rsph → +∞ , (C10)

to be solved in the domain rsph > 1. The infinity in (C10) formally corresponds to
1 � rsph � δ. The solution of (C9) with (C10) is

T = − 1
4δ2

(
rsph − 1

r2
sph

)
cos θ. (C11)

Therefore,

j = ∂rsph T |rsph=1 = − 3
4δ2 cos θ, (C12)

which shows that the present contribution corresponds to evaporation reduction at the
upper part of the sphere ( j < 0 for 0 ≤ θ < π/2) and intensification at the lower part of the
sphere ( j > 0 for π/2< θ ≤ π), closer to the substrate, as expected. To calculate the flow
induced by (C12), we work once again in terms of the streamfunction, now in the spherical
coordinates:

vr = 1
r2

sph sin θ
∂θψ, vθ = − 1

rsph sin θ
∂rsphψ (C13)

for the rsph- and θ -components of the velocity field. The problem is formulated in the
domain rsph > 1. The Stokes equation (cf. e.g. Happel & Brenner 1965) and the boundary
conditions can be written as

E2 E2ψ = 0, E2 = ∂rsphrsph + sin θ
r2

sph

∂θ
1

sin θ
∂θ , (C14)

ψ = − 3
8δ2 sin2 θ, ∂rsphψ = 0 at rsph = 1, ψ/r2

sph → 0 as rsph → +∞. (C15)

The first condition (C15) corresponds to vr = j (in our dimensionless terms) on account
of (C12) and (C13), while the second condition (C15) to no slip (vθ = 0). The solution of
(C14) with (C15) is

ψ = − 3
8δ2

(
rsph + 1

rsph

)
sin2 θ

2
. (C16)

The force acting on the sphere in the z-direction is determined by (−4π) times the
‘Stokeslet’ prefactor, i.e. the one at the term rsphsin2 θ/2 (cf. Happel & Brenner 1965).
Thus, from (C16), one obtains Fev3 = 3π/(2δ2).
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Figure 13. Relative height δ = h/R of ethanol droplets as a function of R. The dynamic and quasi-steady
master curves are here compared with the experimental data by Celestini et al. (2012) in (a) and Lyu et al.
(2019) in (b), cf. table 3 for the parameter values.

Summing up the three contributions, one finally obtains Fev = 6π/δ2 (as δ→ +∞). It
is noteworthy that the asymptotic behaviour remains O(δ−2) in both limits: as δ→ +∞
and as δ→ 0 (cf. Appendix C3). Yet, the prefactors are twice different.

Appendix D. Case of ethanol
Since Celestini et al. (2012) and Lyu et al. (2019) have conducted experiments with
ethanol droplets, it is worthwhile to compare the present theoretical predictions with those
experimental results. Although the predictions match the form and order of magnitude
of the experimental results, the agreement is less satisfactory than in the case of water.
Specifically, we overestimate the data from Celestini et al. (2012) and underestimate the
data from Lyu et al. (2019), cf. figure 13. Such multidirectional discrepancies make it
challenging to propose a hypothesis that could explain the differences, which might be
attributed to experimental errors or some physical ingredient missing in the model that is
important for ethanol, but not for water. Further investigation (including experimental) is
needed to address this issue.
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