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WHAT IS A SHELL-CROSSING SINGULARITY?
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Abstract

A detailed discussion of Newtonian and general relativistic spherically symmetric dust
solutions leads to the following suggested criteria for a singularity to be classified as a
shell-cross: (1) All Jacobi fields have finite limits (in an orthonormal parallel propagated
frame) as they approach the singularity. (2) The boundary region forms an essential C2

singularity which is C1 regular, that is it can be transformed away by a C1 coordinate
transformation.

1. Introduction

Some proposed counterexamples to the cosmic censorship hypothesis [8,12] have
been discounted on the grounds that they are "shell-crossings" [2,5]. While this
is undoubtedly a valid criticism in these particular cases, it does raise the general
question: what exactly is a shell-crossing singularity? More specifically, given a
singularity of a fluid collapse, what criteria should one use to label it a shell-cross
rather than, say, a "central crush"?

We begin our discussion in this paper with a detailed examination of Newtonian
spherically symmetric dust solutions. These solutions are essentially identical in
all details with their general relativistic counterparts (the Tolman-Bondi solutions
[1,11]), a feature which is perhaps not fully appreciated, yet there are none of the
interpretational difficulties which occur in the latter. In Section 2 we show how to
construct the general Newtonian solution by using Lagrangian coordinates. Taking
the zero-energy case as a simple model, the difference between crushing and shell-
crossing singularities is described. It is shown that in the case of a shell-cross the tidal
forces are still infinite, but the integrated effect on a pair of neighbouring particles is
finite, so that they are not compelled either to converge or diverge from each other.
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In Section 3 we perform the analogous discussion for the Tolman-Bondi solutions.
It is shown that the behaviour of the gravitational invariant * 2 at a central crush is
identical to that of a Schwarzschild solution, so that the matter content has essentially
no effect on tidal effects there. The solutions are in this sense "vacuum dominated"
at a central crush. Curiously this behaviour is completely mass-independent, giving
it a kind of universality which is quite different to the behaviour at a shell-cross. The
Jacobi equation and Newtonian tidal force equation derived in Section 2 are shown to
be identical, so that the Newtonian discussion carries over unchanged to the general
relativistic case.

In Section 4 we point out that the kind of tidal behaviour shown to hold at shell-
crosses leads us to expect that the metric is not totally irregular there. We verify that
for spherically symmetry it is possible to find coordinates such that the metric is C but
not C2 at the shell-cross singularity. In the final section we propose this as a general
criterion for a singularity to be classified as a shell-cross and suggest a rewording of
the cosmic censorship hypothesis.

2. Newtonian theory

Consider a spherically symmetric Newtonian pressure-free fluid of density p =
p(r, t) and velocity field v = v(r, t)r in a gravitational potential <p. The Eulerian
equations of motion are

^ + V.(pv) = ^ + 4 ( ' -V = 0, (1)
dt dt r2

dv dv

- = - + U U W , (2)

and

V20 = 0" + -0 ' = 4nGp, (3)

r
where ' = d/dr. The Poisson equation (3) can be integrated to give

where

Mr(t) = I 4npr2dr. (5)
Jo
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To integrate this system it is best to use Lagrangian coordinates, q = the position
which a particle at (r, t) occupies at time t — 0. These coordinates evidently remain
constant along the particle's motion and are the Newtonian analog of "comoving
coordinates" in general relativity. Setting

r = qR(q,

we have from dq/dt

v =
dr
Tt =

t)

= 0

Rq

where

that

and

R(q,

dv
~dt ~

0) =

dv
~~ T t

and q = V<f<l

= Rq

Combining (2) and (4) gives

The expansion parameter 9 is given by

2
e = v.v = -v + v'

r

(6)

(7)

at

where Rq = aR/dq, and the equation of continuity (1) integrates to give

(9)

Hence, from (5) we see, as expected intuitively from conservation of mass, that Mr is
a function of the Lagrangian radius q,

Mr= T
./o

Equation (8) may now be integrated once to give the energy equation

(11)

where W(q) is an arbitrary function. W can be thought of physically as representing
the kinetic energy of the shell q = constant at R = oo. Equation (12) is integrable in
elementary functions, being essentially a Friedmann equation, but by far the easiest
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case is W(q) = 0 (the so-called "zero energy" case). Using the initial condition
R(q,0) = 1, we find for this case

2/3

(13)
'o(<?)

where

y 9GM(q)

As t -> t0 we have R —> 0 and from (10) the density becomes infinite. The first term
on the right hand side of (12) dominates the behaviour of all solutions in this limit,
and there is little loss of generality in specializing to the case W = 0. Using (11) we
obtain

whence from (10)

1

6jrG0b-O(fi-O'
where

- l

There are thus two types of singularity where the density p -> oo:

1. As r ->• to(q), we have R ->• 0 and the radius r = Rq of the sphere
q = constant approaches zero while the velocity v = Rq -> oo. This is
called a central crush.

2. As f -> ?i (g) on the other hand, /? -> a finite value, so that r = Rq and u
both approach finite values. This much milder type of singularity is called a
shell-cross. It is essentially independent of gravity, being the place where one
shell of matter overtakes another one.

Consider now the tidal forces at the two types of singularity. The Newtonian tidal
equation is

8X, = -<I>.U8XJ. (17)

Using the Poisson equation (3) it is not difficult to break 4>,y into a matter part and a
trace-free pure gravitational (Weyl) part,

4>,ij=-nGp8u+^u, (18)
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where

. (19)

For the zero-energy case we find, using (4), (13), (14) and (15), that

to-lo.-^-oi**-1?') <20)

and

Hence separations Sx2 and 8x3 which are transverse to the radial direction n are subject
to the equation

which has the solution

8x = 80 (t0 - r)1/3 + <5, Ob - t)2p -*• 0, (80, 8{ = consts)

while radial separations 5JCI are governed by the equation

2 (3*o -2ti-t)

As t -> to(q) this equation becomes approximately

4 5^!
8X1 * 9 0 b - O 2

and has the asymptotic solution

Although the divergent 8t term dominates the radial behaviour a generic volume
8x1 8x2 8x3 a Oo — r)1/3 will still tend to zero, which is another good reason for calling
this a "crushing singularity".

Contrast this with the behaviour as t -> t\ (q),
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Transverse separations satisfy a simple harmonic oscillator equation and remain
bounded and non-zero in general as t -> tu while radial separations behave as

for, * (f, - O'/2 (So 7, (2^0(r, -

where a = 2/(3(f0 — *i)) and 7, and 7] are standard Bessel functions. The series
expression for this solution is

- 0 - |o(r, - /)2 + • • • 1 + S\ \l - *-a\tx - t)2

+ ••• + ln ( / , - / ) (-afr -t)+ X-aHh - 0 2 + •

which also has a finite value as t —• t\. Thus while tidal forces become infinite as
t —> t\ they do so in a rather weak fashion, neighbouring particles in general remaining
separated. Of course this is not true for particles on two neighboring shells, since
the shells do cross at t = tx —such particles presumably correspond to the solution
5'j = 0 of the Sxi equation.

3. Tolman-Bondi collapses

Consider now the well-known solutions in general relativity for a spherically sym-
metric collapsing dust cloud [1,11],

0,2

ds2 = -dt2 + dr2 + S2 {d62 + sin2 Od<p2), (24)
1 + E{r)

where ' = d/dr, • = d/dt and 5 = S(r, t) satisfies a "Friedmann" equation which,
with an appropriate choice of radial coordinate r, can be made to take the form

S2 = E(r) + ^ . (25)

The energy-stress tensor is

1 ~ (26)
onu

where MM = (1,0,0,0) and the density p is given by

r2
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The function E(r) may be arbitrarily specified, subject to the constraint £(r) > —1.
It is a measure of the energy of a shell of radius r. To understand this, note that
any such shell has "physical" radius 5 as given by the area formula A = 4nS2, and
whenever E > 0 we have E & S2 as 5 - • oo. Arguing by analogy, the case E < 0 is
given the same interpretation.

These solutions correspond precisely to the Newtonian solution discussed in Sec-
tion 2 if we regard S as being identified with the Euclidean radial coordinate r. If we
set, in analogy with the previous section,

q = S(r, 0) and 5 = R(q, t) q,

so that R(q, 0) = 1, then (25) and (27) agree exactly with (12) and (10) provided we
make the identifications

2r3 . r,22r
M(q) = —, and p0 =

9G ™ 6nGq2

The only deficiency with this association of the two solutions is that the actual mass
Mr within a sphere of radius r is given in general relativity by

«,W, , 2 r rUr
r ~ Jo V E(r) r 3 G j 0 y/l+ E(r)

which only agrees with the Newtonian Mr for the zero-energy case E(r) = 0.
For the simple zero-energy case E(r) = 0, where each shell just comes to rest at

infinity, (25) integrates to

5 = rOb(r) - t)2l\ (28)

where to(r) is an arbitrary function. From (27) the density in this case is

1
P =

where

ti(r)=to(r) + -rto(r). (30)

Note the slight difference between this and (16), although the two formulae agree
asymptotically in the limit &q «. 1. The density again becomes singular at both
t = to(r) and t = ^(r), the former being interpreted as a "central crush" since from
(28) the area 4nS2 vanishes there, while the latter has finite area in general and is
called a "shell-cross".
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For the general case £(r) ^ 0 the situation is essentially identical. From (27) the
density becomes infinite at S = 0 and 5' = 0. From the Friedmann (25) the behaviour
near 5 = 0 is dominated by the solution for E = 0, so that 5 is asymptotically equal
to the form given in (28). Thus 5 = 0 is a central crush singularity similar to t = to(r)
in the E = 0 case, while 5' = 0 is to be interpreted as a shell cross as in t = h(r).
There is therefore no loss of generality in continuing to discuss the E = 0 case.

While there are two distinct types of singularity in these solutions, one should note
however that, from (29), the density approaches infinity in identical ways at t = t0

and t = t\. Invariants of the Riemann tensor also become infinite at both types of
singularity (this is obvious for the Ricci scalar which is proportional to p, but is true
of invariants associated with the Weyl tensor as well). Always associated with such a
curvature singularity will be infinite tidal forces.

How then do we distinguish between these two types of singularity? A clue can be
obtained by computing the Weyl tensor. Since spherically symmetric metrics are of
Petrov type D, only the Newman-Penrose invariant * 2 need be computed [3]. For the
zero-energy Tolman-Bondi metric this calculates to

* 2

27«b(r) - »)2(*,(r) - t)'
Thus * 2 approaches infinity both as t -> to(r) and as t ->• t{(r), but the power law
behaviour is different at these two limits, being much more rapid at the central crush
t —> fa(r). The situation for more general Tolman-Bondi metrics (E(r) ^ 0) can be
shown to be quite similar, the invariant * 2 -*• oo both as S(r, t) -> 0 and S'(r, t) —• 0,
but in the former case it behaves as the inverse square of the proper time, while in the
latter (shell-cross) it varies only as the inverse power of the proper time.

It is interesting to compute * 2 for the Schwarzschild solution of mass m, which in
comoving coordinates takes the form [7]

ds2 = -dt2 + ^A2(t0(r) - ty2/1t'0(r) dr2 + A2(t0(r) - t)*/3{d02 + sin2 6<f>2),

(32)

where A = (9m/2)l/3. The relation these coordinates have with standard Schwarz-
schild coordinates r and t is

r = - t)2/\

The reader may readily check that the metric (32) transforms to the usual Schwarz-
schild form

ds2 = -(\-^L] dP + , ff /-N + ? W + sin2 dd<t>2),
\ r ) 1 - (2m/r)
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and the invariant ^ has the value

( 3 3 )

It is remarkable that the * 2 exhibits a kind of universal behaviour, in that it grows at
a rate independent of the mass of the Schwarzschild particle or of the initial velocity
of the observer.

From (30) and (31) we see that the behaviour of W2 in a central crush is identical to
the universal Schwarzschild behaviour, so the singularity can be thought of as being
"vacuum dominated" [9].

To understand the fundamental difference between this vacuum type behaviour and
the shell-cross case (t = tt(r)) we consider the equation of geodesic deviation which
defines a Jacobi field rjM. In an orthonormal frame e^ (i = 1, 2, 3) and e^A) = wM this
equation has the form

fit =-^Rni*r)j, (34)

where

In the zero-energy case

Run = Rrmih - 0 ' ('1 - 0 = ^
-2 2 (3r0 - 2/, - 0

2

and from (17), (22) and (23) we see that

#1414 = 0.11 and #2424 = 0,22-

Hence the Jacobi equation (34) and the Newtonian tidal equation (17) are completely
identical in the zero-energy case. This completes the correspondence between the
Tolman-Bondi metrics and their Newtonian counterparts. The whole of the discussion
in the previous section, making clear the difference between the vacuum dominated f0
singularity and the shell-cross case t\ can therefore be applied to the general relativistic
case as it stands.
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4. Regularization of the metric at a shell-cross.

The behaviour at a central crush (for example, t = to(r) in the zero-energy case)
is asymptotically similar to the universal Schwarzschild behaviour at r = 0, which
is well known to be an irremovable singularity. While the shell-cross singularity at
t = t\ also has infinite curvature invariants, the situation from a tidal or Jacobi field
point of view is much weaker, as we have seen above. We shall now show that in a
sense it is a removable singularity.

Consider a metric of the form

ds2 = -dt2 + (r(r) - t)2F2(r, t)dr2 + G2(r, t) (d62 + sin2 Od<t>2), (35)

where F and G are functions which are regular at t = r (r). The zero-energy Tolman-
Bondi metric

ds2 = -dt2 + (t0 - O~2/3('i - tfdr2 + r2(t0 - t)4/3 (d62 + sin2 9d(f>2), (36)

where

*i(/0 = t0(r)+^rt0(r), (37)

is clearly of this form at f = tx(r) wherever to(r) ^ 0, on setting x(r) = tt(r),
F(r, t) = (to(r) - r)~1/3 and G(r, t) = r(to(r) - t)2'\

The hint that such metrics might be regular is found from the 2-dimensional Rindler
space

ds2 = -dt2 + t2dr2

which reduces to Minkowski space ds2 = —dT2 + dR2 if we put r = arctanh (T/R)
and t = -s/T2 — R2. Adopting a recent proposal of Szekeres and Iyer [10] we try a
transformation to coordinates (u, x) of the form

t = z(u)-a2(u)x-a3(u)x3/2, (38)

r = u + b{(u)xi/2 + b2(u)x + b3(u)xV2. (39)

It is clear that x = 0 corresponds to the singularity t = x(r) of the metric (35), and
that we may expand the function r (r) in terms of u and x,

x(r) = x(u) + bix'(u)xl/2 + (-b2x"(u) + b2x'(u) J x + O(x3/2), (40)

where ' = d/du. Expanding the function F as a series in u andxl/2

F = < / > o ( " ) + <t>\(u)xx'2 + fc(u)x + ••• (41)
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we find that the metric components in (u, X) coordinates have the expansion

guu = -(r1)2 + r'(2a2 + b2r'4>2
0)x + O (x3'2) ,

g» = a2r' + | (3a3 + b\x'<t>l)x1'2 + O(x) + O {x"2) ,

+ (-3a2a} + ^b3r'(j)Q(6r'(j>ob2 + 2 6 , T ' 0 , + b2(p0r" + 2c/>oa2)\ x
l/2

+ O(x) + O (xV2) .

It is possible that all coefficients of x1/2 in these series vanish if we set

= </>o"'/2, (42)

= l-r', (43)

= " ^ > o / 2 . (44)

\ ^ - ( 4 5 )

The terms bx and a2 can be defined arbitrarily, but the above choices have been adopted
for reasons of simplicity. The metric components guu, gM and gxx are all Cl functions
of JC, but #22 = G(r, t) will still have xl/2 terms in its expansion in general. In the
case of a shell-cross singularity however this will not be so, for if we expand to(r) — r
in terms of u and x we find, on using

2
r(u) = ttiu) = to(u) + -uto(u),

that

- t = ~ut'0{u) + M«K(«)*I/2 + O(x)

9 \ 2 / 3

whence

/ 9 \

G(r, t) = r(to(r) - r)2/3 = u \--ut^u)J (1 + O(x) + O(x3'2))

and

Fir, t) =
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where

= ( - - H 1 O ( H ) J
-1/3 , , , ,1/2

, </>•(«) = - £ p / > o ( « ) = ^-. (46)

Since G(u,x) is clearly a C1 function of u and x, the whole metric is C1. The
coordinate transformation which has achieved this regulanzation of the shell-cross is

t = *,(«) - \t[{u)x + l-t[{u)4>l'2x312,

where 0O and </>i are given by (46). In the language of the abstract boundary [6], the
singularity at t = t0 is Cl essential while the shell-cross at t = tx is C removable
(can be covered by set of C1 regular boundary points) but is C2 essential. Similar
conclusions were drawn quite a few years ago by Papapetrou and Hamoui, but only
for a very specific Tolman-Bondi metric [4].

5. Conclusions

Two criteria present themselves as possible candidates for deciding whether a
singularity in general relativity is a shell-cross:

1. If AĴ  is a Jacobi field along any timelike geodesic which approaches the
singularity with proper time parameter t -» tx, then its components in a
parallel propagated orthonormal basis have finite non-zero limit as / -> ty.

2. A singularity of a collapsing matter solution in general relativity is a shell
cross if it can be covered by a 3-surface of C regular boundary points (see
[6] for all relevant definitions). That is, if it is a C2 essential singularity which
is removable by a C1 coordinate transformation.

It is not clear whether these two definitions are completely equivalent, but the
discussion in this paper would indicate that there is a close link between the two
criterion. While our preference is to regard Condition 2 as the most general criterion,
there are practical difficulties in seeking coordinate transformations such as those
discussed in Section 4. Hence it may be generally best to use Condition 1 as a
calculational guide since it is usually much easier to apply.

Finally, it may be useful to formulate a statement of the cosmic censorship hypoth-
esis, which excludes the case of shell-crossings, as these are often timelike and locally
naked, but are not to be regarded as serious contenders for violating the hypothesis.
We suggest the following statement of the strong cosmic censorship hypothesis:
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Given well-posed regular initial data on a space-like partial Cauchy surface
S, the future Cauchy development ofS has no C1 essentially singular abstract
boundary point which is in the past of any regular point p e I+(S).

What exactly constitutes "well-posed regular initial data" is deliberately left unspeci-
fied here. It would appear that inequalities such as those given by the dominant energy
condition are not in themselves restrictive enough to ensure that the hypothesis is valid
[10].
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