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1. Introduction. Let F be an orientable surface with or without boundary and let
M(F) be the mapping class group of F, i.e. the group of isotopy classes of orientation
preserving diffeomorphisms of F. To each essential simple closed curve c on F we can
associate an element C of M(F) called the Dehn twist about c. We refer the reader to [1]
for definitions. It is well known (see [1]) that, at least in the case where F has no more
than one boundary component, Af(F) is generated by Dehn twists. Further, there are
important subgroups of M(F) which are also generated by Dehn twists or simple products
of Dehn twists; for example the Torelli group, the kernel of the homology action map
M(F)-*Aut(//1(F;Z)) = Sp(if1(F;Z)), where S p ^ F j Z ) ) denotes the symplectic
group, is known to be generated by Dehn twists about bounding curves and by "bounding
pairs". See [8] for proofs and definitions. Also Dehn twists crop up as geometric
monodromy maps associated to Picard-Lefschetz vanishing cycles for plane curve
singularities (see [5]).

In this paper we seek to understand the subgroup structure of groups generated by
sets of Dehn twists and in particular we obtain conditions on a set of curves {ct,.. ., cn}
in F which guarantee that the subgroup (Clt.. . , Cn) of M(F) generated by the Dehn
twists Cx,..., Cn is a free product of free abelian groups. First we remark that each
non-trivial Dehn twist has infinite order and so generates a subgroup isomorphic to Z.
This deals with the case n = 1. If n = 2 (with cx and c2 distinct) it is well known that Cx

and C2 generate Z2 if i(clt c2) = 0, B3 or SL2(Z) ifi(cx, c2) - 1 and Z * Z if ifa, c2) > 1.
Here i(clt c2) is the geometric intersection number of cx and c2 and B3 is the braid group
on three strands. This deals with the case n = 2; however even in this case we remark that
just knowing the algebraic intersection numbers of the two curves is not sufficient to
determine the subgroup structure of (Clt C2). If n > 2, then it turns out that just knowing
the geometric intersection numbers i(ch c,) of the curves c 1 } . . . , cn is not sufficient to
completely determine the nature of (Cx,..., Cn); one also needs to know how the
curves are embedded in F. We will give examples of this later on. The type of thing we
prove is indicated in

THEOREM 1.1. Let clt..., cn be distinct essential simple closed curves in F such that
i{ch Cj) > 1 for i ¥=j and no component o/F\(Uc,) is a disc. Then (Cx,. . . , Cn) is a free
group of rank n.

However in some situations, when the geometric intersection numbers i(ch c,-) or
algebraic intersection numbers c,. c, of the curves in question satisfy certain strong
conditions, then it is true that the i(ch c,) or c,. c, completely determine the nature of the
group {Cl,..., Cn). For example we prove, using the homology representation
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mentioned above where each Dehn twist is sent to a symplective transvection:

THEOREM 1.2. If the homology classes in HX(F; Z) of the essential simple closed curves
cx,. . . ,cn are independent and the algebraic intersection numbers c,. c; satisfy either

(a) \q . cfk . Cj\ s 6 \c,:. ck\ for all distinct i, j , k
or

(b) \Ci. CjCk . Cj\ s 2 \c>:. ck\ for all distinct i, j , k and |c,. cy| > 7 for all distinct i, j
then (Ci, . . . , Cn) is isomorphic to a free group of rank n.

We prove a similar result in the case where the i(c,-, cy) satisfy this type of condition
also (see Theorem 2.8).

Recall that if H is a subgroup of a linear group GLn(F) where F is a field of
characteristic zero, then a result of Tits [9] says that either H is soluble by finite or H
contains a rank 2 free subgroup. As far as subgroups H of mapping class groups
generated by Dehn twists are concerned it easily follows that either (i) H is abelian (and
so soluble) or (ii) that (Cf, Cf) is a rank 2 free group for some i =tj and integer A. The
first case is where i(ch cy) = 0 for all i, j and (ii) occurs when i(c,, c,) =£0 for some i # / .
Thus we obtain no information on the (non)-linearity of such subgroups by these
methods.

2. General results. All simple closed curves referred to will be assumed essential
and non-boundary parallel. Further, since the definition of a Dehn twist does not depend
on the orientation of the curve involved (but only on the orientation of the surface—see
[1]) we will not assume that curves are oriented. Let 5 = {cu . . . , cn) be a set of distinct
simple closed curves on F and let Slt. . ., Sk be a partition of 5 such that i(c,, c,) = 0 for
all c,, Cj e 5, and i(c,, cy) > 1 for all c, e Sq, cs e Sp with p =£ q. We call the partition
Su . .., Sk a complete partition of 5 in this case. We first prove a result which will imply
Theorem 1.1 as a special case.

THEOREM 2.1. Let S = {cx, . . . , cn} be a set of distinct simple closed curves on F and
Sr, . . . , Sk a complete partition of S. Let n, be the cardinality of 5, and assume that no
component of F\(Ucf) is a disc. Then (Ci,. . . , Cn) is isomorphic to the free product
Z"> * Z"1 * . . . * Z"k.

Proof. Without loss, and for notational convenience, we assume that each com-
ponent of F\(U c{) is an annulus. Let T be the graph whose vertices correspond to the
components Ex,..., E, of A(Uc,) and where each unoriented edge from £, to £,
corresponds to a common edge of their closures. We realise T as a subset of F by
identifying each vertex Et with the boundary component 3£, of the annulus £,. Any two
such components (vertices) belonging to the same edge in F are connected in F by a
simple arc running from one boundary component to another which crosses LJc, once.
We call this realisation F also. Let elr.. . , ep denote the edges of F with ordering as
indicated. We use these ordered edges to give coordinates to any curve a(Ci) where
ae(Cu...,Cn): note that for each c, there are edges el(1), . . . , eiW)) such that c, is
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isotopic to e,(1) U. . . U e,W()) and so if y is a simple closed curve, then i{y,c,) =
r(i)
E i(y, «*(/))• Now if c = ar(cj) where or e (C1; . . . , Cn), then c is isotopic to a curve c' in

y=i

T which never doubles back on itself. Now count the number of times c' completely
traverses an edge e, of F (in either direction) and call this the e, coordinate of c. Denote it
by e,(c). Note that since no component of F\[J c, is a disc this coordinate is unique. Let
e{c) = {ex{c),..., ep{c)) be the coordinates of c.

LEMMA 2.2. For c as above we have ej{Cf\c)) = ey(c) if ji=i{k) for all k =
1, . . . , r{i) and otherwise ej(Cf\c)) ^ |e,(c) - i(ch c)\, where i(ch c) = E ep(c)i(ch cp).

p

Proof. Since the only non-trivial coordinates of c, are e,(1), . . . , e,(r(,» we see that
these are the only coordinates which are changed by C,. Further, if c and c, have minimal
intersection (which we can assume by an isotopy), then C, adds in a copy of c, at each
such intersection point. Thus we add in i(ch c) copies of each of e,(1),.. . , e,(r(,)) in this
way and at most ey(c) of these can cancel with ones already there. The Lemma now
follows.

Let Sq(c) = max(min(el(/),y = 1, . . . , r(i))), where the maximum is taken over all i
such that c, e 5,. Then by the above result we have S^Cf1^)) = Sj(c) if c, does not belong
to S} and S,{Cf \c)) s |5y(c) - Up,, c)\ if c,eSj, where i(c,, c) > S Sp(c)i(ch cp). Let

p

S(c) = (5 j (c) , . . . , Sk(c)). We will use the S(c) as (lower bounds for) coordinates in what
follows. Note that S(c) € (Z+)k.

In order to prove that the group {Ct, . . . , Cn) is free we will need the following
freeness criterion (see [6, Chapter 3]):

LEMMA 2.3. Let G be a group generated by subgroups Glt . . . , Gm and acting on a set
Q. Let Qo— {x0}, &i, • •• , Qm be disjoint subsets of Q such that if ae Git a-^id, then
a(£ls) c= Q, for all i¥=s. Then G is the free product G1*G2* . . . *Gm of the subgroups
Gx> . . . , Gm.

We apply this result to the situation G = ( C 1 ( . . . , Cn), G, = (C, | c, e5,), i =
1, . . . , k. Note that by previous remarks each of the subgroups G, is free abelian of rank
card(5,) = n,. We let Qo= {ci}, and for t > 0 we let Q, be the set of all curves c which
satisfy the conditions (i) Sq(c)> 1 for some q = 1,. . . , k and (ii) St{c)^Sq{c) for all
q = 1,..., k. We now prove that the G, and the Q; satisfy the conditions of Lemma 2.3.
Let a = Cp where c, e 5;. Then we have to show that S(a(c)) e Q,. Here we can assume
that c = /5(ci) where )S is a freely reduced product ^p2 with )82 a freely reduced word
whose last letter does not lie in Gj and ^ e G, but does not contain the letters Cf1. By
the above remarks we have Sj(a(c)) ^ |5;(c) - i(ch c)\ if c, e Sjt where i(ch c) ^
E Sp(c)i(Cj, cp). Since we are assuming that i{ch c p )>2 for all cp not in 5, we have
p

i(ch c) > E 2Sp(c) and so S;(a(c)) > E 2Sp(c) - Sj(c). Now since c e Qp where p =£/,
p*i p*i

then the result follows easily from this last statement. If c e Qj, then since c = fix
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Figure 1

with /*! and /32 as above we see from the definition of 5y(c) and the fact that the curves in
Sj are disjoint that Sj(a(c)) a 5y(c). This gives the desired condition in this case and
completes the proof of Theorem 2.1.

EXAMPLE 2.5. We now give two examples of three simple closed curves cu c2, c3

(respectively c'u c2, c3) each intersecting the other twice geometrically but zero times
algebraically whose groups are different, one being free of rank three the other free of
rank two. These curves are shown in Figure 1.

Since no component of F\{cu c2, c3} is a disc it follows from Theorem 2.1 that
(Cu C2, C3) is a free group of rank three. As for the group (CJ, C2, C3) we note that Fis
a three punctured disc and it follows that M (F) is the quotient group of the braid group
B3 by its centre (the Dehn twist about the outside curve). It follows that {C[, C2, C3) is a
subgroup of the group B3/centre. It so happens that B3 is generated by C[, C2, and C3

(see [7, pages 173-174]) and that the centre is generated by C[C2C3. Thus (C[, C2, C3) =
(CJ, C2) is a free group of rank two.

Next we consider the homology representation q>F :M(F)—*Sp(H1(F;R)). It cer-
tainly follows that if <pF(Ci)>..., <pF{Cn) generate a free subgroup of Sp(#!(F; Rj) of
rank n, then Cx, • • •, Cn generate a free subgroup of M(F) of rank n. We use this idea to
give further conditions guaranteeing the freeness of the group ( C 1 ( . . . , Cn). First note
that is c is a simple closed curve and C the associated Dehn twist, then the action of a
(pP(C) on Hx(F; R) is given by the following simple rule:

where [d] denotes the homology class of d in Hx(F;R). Thus <pF(C) is a symplectic
transvection, i.e. an element of S p ^ ^ F ; R)) representable in matrix form as / + A where
/ denotes the identity matrix and A has rank 1. We prove:

THEOREM 2.6. For simple closed curves cx,... ,cn we define kijk =
|(c,. Cj)(ck. ct)\/\Ci. ck\ for all distinct i, j , k. Then the group {Cu ..., Cn) is free of rank
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n if the homology classes [d]> [c2], . • • , [cn] are linearly independent in H^F; R) and
either

(i) Xijk s 6 for all distinct i, j , k\
or

(ii) n = 3, kijk ^ 2 for all distinct i, j , k and |c,. cy| > 7 for all distinct i, j ;
or

(iii) n = 3, A132>33, A123a3-6, A213>4-2, | d . c 2 | 2 >15 , | c t . c3|
2 ̂  200, |c2 .c3 |2>

240;
or

(iv) n = 3, |d . c2/c|, |c2 . c3/c|, | d . c3/c| >200, where c = |(d . c2)(d . c3)|;
or

(v) n = 3, A,yfc s 2 /or a// i, ;, k, |c,. c,| s 60 /or all i ̂ j with the possible exception of
| d . c 2 |<12 .

Proof. Choose a basis for Hx(F, R) whose first n elements are [d], [c2], . . . , [cn].
Then with respect to this basis the matrix of qv(C,) differs from the identity matrix only
in the Ith row, whose (i, /) entry is c,. c, if i # / and 1 if i =/. The theorem now follows
from results of [3,4], which give conditions guaranteeing that a set of transvections
generates a free group. The idea of the proof of these results (in [3,4]) is to show that for
any freely reduced word a in the letters <pF(Ci),. .., <pF(Cn), there is a vector e such that
the length of the vector a(e) is greater than the length of the vector /J(e) where /3 is any
proper initial subword of a.

From [2, Expose1 4] we obtain

LEMMA 2.7. If c, d, e are simple closed curves on the surface F, then

i(C(d),e)>\i(c,d)i(c,e)-i(d,e)\.

We use this inequality to give conditions on the numbers i(cit c,) which guarantee
freeness much the same as we did in the last result. Again we use cx,..., cn as a "basis"
in the following sense: if c is a simple closed curve on F, then its "coordinates" will be the
numbers i(cu c), . . . , i(cn, c). The above lemma shows that the action of a Dehn twist C
on these coordinates is much the same as the action of a Dehn twist on the homology
coordinates considered above. In fact if T( is the transvection whose zth row is

all other entries being the same as the corresponding entries of the identity matrix, then
we have

; = i(Q(c), Cj) > |i(c,, C)|(C,, Cj)\ - |i(c, C,)\

where c» denotes the coordinates of c and the ; subscript indicates the yth coordinate of
c». Thus for any freely reduced word a in the letters Cu . . ., Cn the coordinates of a(c)
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are bounded above by the coordinates of a#(c*) where ar# is the corresponding product
of 77s. The following result now follows from this observation and Theorem 2.6.

THEOREM 2.8. For simple closed curves cx,...,cn we define Xijk =
\i(ch Cj)i(ck, Cj)\/\i(ch ck)\ for all distinct i, j , k. Then the group (Cu . . . , Cn) is free of
rank n if either

(i) Xijk s 6 for all distinct i, j , k;
or

(ii) n = 3, kiik s 2 for all distinct i, j , k and \i(ch Cj)\ =: 7 for all distinct i, j ;
or

(iii)n = 3, A132>33, A123>3-6, A213>4-2, \i(Cl, c2)|2> 15, |i(c,, c3)|2>200,

or
(iv) n = 3, |i(ci, c2)/c|, \i(c2, c3)/c|, |i(ci» c3)/c| >200, »v/ierc c = \i(cu c2)i(cu c3)|;

or
(v) n = 3, A,yA: > 2 /or a//1, j , k, \i(ch c,-)| s 60 /or a//1 =̂y with the possible exception

of \i(cuc2)\< 12.
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