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Abstract

We give a generalization of Poitou–Tate duality to schemes of finite type over rings of
integers of global fields.

The classical Poitou–Tate theorem considers the cohomology of Galois groups with restricted
ramification of global fields. It states a perfect duality between Shafarevich–Tate groups, and a
9-term exact sequence relating global and local cohomology groups, cf. [NSW08, (8.6.7), (8.6.10)].
We prove the following generalization to higher dimensional schemes (see § 1 for the notation).

Let S be a non-empty set of places of a global field k, and assume that S contains the set
S∞ of archimedean places if k is a number field. Let OS be the ring of S-integers in k and
S = SpecOS . Let X → S be a regular, flat, and separated scheme of finite type of relative
dimension r, m > 1 an integer invertible on S and F a locally constant, constructible sheaf of
Z/mZ-modules on X . We consider the Shafarevich–Tate groups defined by

Xi(X ,S ,F ) = ker

(
H i
ét(X ,F )→

∏
v∈S

Ĥ i
ét(X ⊗OS

kv,F )

)
Xi

c(X ,S ,F ) = ker

(
H i
c(X ,F )→

∏
v∈S

Ĥ i
c(X ⊗OS

kv,F )

)
.

Theorem A (Poitou–Tate duality). Under the assumptions above, the Shafarevich–Tate groups
are finite and there are perfect pairings for i = 0, . . . , 2r + 2:

Xi(X ,S ,F ) × X2r+3−i
c (X ,S ,F∨(r + 1)) −→ Q/Z. (0.1)

Recall that a homomorphism ϕ : A→ B between topological groups is strict if it is continuous
and the isomorphism A/ker(ϕ)

∼
→ im(ϕ)⊂B is a homeomorphism. It is called proper if preimages

of compact sets are compact.

Theorem B (Poitou–Tate exact sequence). For X , S and F as above, we have an exact 6r+9-
term sequence of abelian topological groups and strict homomorphisms

0 //H0
ét(X ,F ) //P 0(X ,F ) //H2r+2

c (X ,F∨(r + 1))∨ //

· · ·
· · · //H i

ét(X ,F )
λi //P i(X ,F ) //H2r+2−i

c (X ,F∨(r + 1))∨ //

· · ·
· · · //H2r+2

ét (X ,F ) //P 2r+2(X ,F ) //H0
c (X ,F∨(r + 1))∨ //0.

(0.2)

Here
P i(X ,F ) :=

∏
v∈S

Ĥ i
ét(X ⊗OS

kv,F ) (0.3)
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Poitou–Tate duality for arithmetic schemes

is the restricted product with respect to the subgroups H i
nr (X ⊗OS

kv,F ) (see Definition 6.6).
The localization map λi is proper and has finite kernel for all i, and for i > 2r + 3,

λi : H i
ét(X ,F )

∼−→ P i(X ,F ) =
∏
v∈S∞

Ĥ i
ét(X ⊗OS

kv,F ) (0.4)

is an isomorphism. The groups in the left column of (0.2) are discrete, those in the middle column
locally compact, and those in the right column compact.

If X is a smooth variety over k (i.e., S = all places), Theorem B was proven by Saito [Sai89].
His proof combines classical Poitou–Tate duality with the fact that Rf !(Z/mZ) ∼= µ⊗dm [2d] for
any smooth, geometrically connected morphism f : X → Y of schemes with m invertible on Y
[SGA4, XVIII Theorem (3.2.5)]. With mild effort, Saito’s argument can be extended to the case
that X → S is smooth. The essential new achievement of this paper is that the assumption
on X can be weakened from smooth to regular. We overcome the technical difficulty with Rf !

by making a detour to algebraic cycle complexes, which have good base change properties by
[Gei10]. Furthermore, we prove a compactly supported version of Theorem B and a version that
applies to singular schemes and non-invertible coefficients as well.

In our context it is technically more convenient to work with henselizations rather than
completions. Therefore we will first prove our results in their henselian versions and will pass to
completions in the final § 10.

1. Notation and conventions

In this paper we use the following notation:

– k a global field, p = char(k);

– kv (respectively k(v)) the completion (respectively henselization) of k at a place v;

– Ov (respectively O(v)) the ring of integers of kv (respectively of k(v)) (if v is non-
archimedean);

– S∞ the set of archimedean places if k is a number field (S∞ = ∅ otherwise);

– SR ⊂ S∞ the set of real places;

– S a set of places of k containing S∞;

– OS the ring of S-integers in k (if S 6= ∅);

– S = SpecOS , if p > 0 and S = ∅, then S is the unique regular, complete curve with
function field k;

– X → S a separated scheme of finite type over S ;

– Xv = X ⊗OS
kv for a place v of k, analogous: X(v) = X ⊗OS

k(v);

– Xv = X ⊗OS
Ov for a non-archimedean place v of k; X(v) = X ⊗OS

O(v);

– A∨ the Pontryagin dual of a locally compact abelian group;

–
∏
i∈I(Ai, Bi) the restricted product of a family (Ai)i∈I of abelian Hausdorff topological

groups with respect to open subgroups Bi ⊂ Ai given for almost all i ∈ I (the Bi are
omitted when clear from the context);

– m a natural number invertible on S ;

– F an étale sheaf of Z/mZ-modules on Xét;

– F∨(r) the rth Tate twist of the dual sheaf Hom(F ,Z/mZ);
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– Xét the small étale site of a scheme X;

– H∗ét(X,−) the étale cohomology X;

– H∗c (X,−) the étale cohomology with compact support of a scheme X, separated and of

finite type over some base scheme B.

If v is non-archimedean and the fibre of X over v is empty, then Xv → Xv is a scheme

isomorphism. However, H∗c (Xv,−) and H∗c (Xv,−) differ because the base scheme is different.

The modification of a cohomology theory H∗ with respect to the real places is denoted by

Ĥ∗, see § 2.

For a scheme X, we denote by Sh(Xét) the category of sheaves of abelian groups on the

small étale site on X. We call a complex F • of sheaves in Sh(Xét) bounded if almost all of

its cohomology sheaves are zero. We call F • locally constant, torsion, constructible, etc., if all

cohomology sheaves have this property.

2. Modified cohomology

In this section we extend the definition of the modified (or ‘compactly supported’) étale

cohomology of an étale sheaf on a number ring defined by Zink [Zin78] to bounded complexes

of sheaves. Our construction involves a cone. As a cone is only well defined for an actual

morphism of complexes (and not for a morphism in the derived category), we work with

Godement resolutions to obtain a functorial model for hypercohomology.

Let G be a finite group and let A be a G-module. We let Atr be the trivial G-module with

underlying abelian group A and A1 := coker(ι : A→ Ind
{1}
G Atr), where Ind

{1}
G Atr is the induced

module
⊕

σ∈GA
tr
σ (on which G acts by interchanging the summands) and ι(a) = (σa)σ. We set

A0 = A and recursively An+1 := (An)1 for n > 0 to obtain a functorial resolution

A −→ C•(A), Cn(A) = Ind
{1}
G Atr

n (2.1)

of A by induced, hence cohomologically trivial G-modules. Hence the hypercohomology H(G,A)

is naturally isomorphic to C•(A)G.

If G = Gal(C|R), we can interpret G-modules as sheaves on (SpecR)ét and (2.1) is nothing

but the Godement resolution

F −→ C•(F ), (2.2)

which is defined by Cn(F ) = i∗i
∗Fn with i : SpecC → SpecR the canonical morphism and

F0 = F , Fn+1 := coker(Fn→ i∗i
∗Fn), cf. [Mil80, III, 1.20].

Returning to the case of a general finite group G, let A−1 = ker(ε : Ind
{1}
G Atr

→ A) with

ε(aσ) =
∑
σ−1aσ. We put A0 = A and recursively An−1 := (An)−1 for n 6 0 to obtain a left

resolution

D•(A)→ A, Dn(A) = Ind
{1}
G Atr

n . (2.3)

We splice these resolutions together to obtain a functorial complete acyclic resolution Ĉ•(A)

of A

Ĉn(A) =

{
Cn(A), n > 0,

Dn+1(A), n < 0,
(2.4)

which calculates Tate cohomology: Ĥn(G,A) = Hn(Ĉ•(A)G), n ∈ Z.
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Definition 2.1. Let G be a finite group and let A• be a bounded complex of G-modules. We
put

Ĥ(G,A•) = Tot(Ĉ•(A•))G, Ĥn(G,A•) = Hn(Ĥ(G,A•)), n ∈ Z.

For a bounded complex A• the spectral sequence of the double complex Ĉ•(A•)G

Est2 = Ĥs(G,Ht(A•))⇒ Ĥs+t(G,A•)

converges. Hence for an exact bounded complex A• also the complex Ĥ(A•) is exact. Moreover,
the assignment A• 7→ Ĥ(G,A•) commutes with the operation of taking the cone of a complex
homomorphism. We therefore obtain a functor ‘Tate cohomology’ on Db(G-Mod), the derived
category of bounded complexes of G-modules. For a single G-module A considered as a complex
concentrated in degree zero this gives back the usual Tate cohomology. Note that the natural
map C•(A)→ Ĉ•(A) induces a map H(G,A•)→ Ĥ(G,A•).

If G = Gal(C|R), we can translate this definition into the language of sheaves and obtain the
modified (hyper) cohomology

Ĥét(SpecR,F •), Ĥn
ét(SpecR,F •) = Hn(Ĥét(SpecR,F •)) (2.5)

for any bounded complex F • of sheaves on (SpecR)ét. We have the hypercohomology spectral
sequence

Est2 = Ĥs
ét(SpecR, Ht(F •)) =⇒ Ĥs+t

ét (SpecR,F •). (2.6)

Definition 2.2. Let f : X → SpecR be a separated scheme of finite type and let F • be a
bounded complex of sheaves on Xét. We define the modified étale hypercohomology by

Ĥét(X,F
•) = Ĥét(SpecR, Rf∗F

•),

and put

Ĥn
ét(X,F

•) = Hn(Ĥét(X,F
•)) = Ĥn

ét(SpecR, Rf∗F
•), n ∈ Z.

If F • is torsion, we define the modified étale hypercohomology with compact support by

Ĥc(X,F
•) = Ĥét(SpecR, Rf!F

•),

and put

Ĥn
c (X,F •) = Hn(Ĥc(X,F

•)) = Ĥn
c (SpecR, Rf!F

•), n ∈ Z.

Note that this makes sense since Rf∗F •, Rf!F
• ∈ Db(Shét(SpecR)).

We will also modify the Ext-groups. Let f : X → SpecR be a separated scheme of finite
type and F •, G • complexes of sheaves on Xét. Recall that

RHomX(F •,G •) = Hét(X,RHom(F •,G •)). (2.7)

Definition 2.3. If RHom(F •,G •) is bounded, we define

R̂HomX(F •,G •) = Ĥét(X,RHom(F •,G •))

and put

Êxt
n

X(F •,G •) = Hn(R̂HomX(F •,G •)), n ∈ Z.
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Remark 2.4. Assume that f : X → SpecR factors through SpecC, i.e., f = ig with g : X →

SpecC and i : SpecC→ SpecR the canonical morphism. Then Rf∗ = i∗◦Rg∗ = Ind
{1}
Gal(C|R) ◦Rg∗

and hence

Ĥn
ét(X,F

•) = Ĥn
ét(Gal(C|R), Rf∗F

•) = Ĥn
ét({1}, Rg∗F •) = 0.

The same argument works for cohomology with compact support and for Ext-groups.

Notational convention. For a scheme X over C, we put

Ĥn
ét(X,F

•) = 0. (2.8)

For a scheme X over a non-archimedean local field, we put

Ĥn
ét(X,F

•) = Hn
ét(X,F

•), (2.9)

i.e., the ˆ is redundant. The same convention applies to cohomology with compact support and
to Ext-groups.

Next we consider the scheme SpecZ. The set {Z→ C, (Z→ F̄p)p prime} of geometric points
is conservative and we consider the associated Godement resolution of a sheaf F on (SpecZ)ét:

F −→ C•(F ). (2.10)

We consider the composite

ϕ : Γ(SpecZ, C•(F ))→ Γ(SpecR, C•(F |SpecR))→ Γ(SpecR, Ĉ•(F |SpecR)). (2.11)

Definition 2.5. We define

Ĥét(SpecZ,F ) = cone(ϕ)[−1].

For a bounded complex F • of sheaves on (SpecZ)ét, we obtain the double complex
Ĥét(SpecZ,F •), which we also consider as a single complex via the total complex functor
and set

Ĥn
ét(SpecZ,F •) = Hn(Ĥét(SpecZ,F •)).

For a bounded complex F • of sheaves the spectral sequence of the double complex
Ĥét(SpecZ,F •) converges. Hence for an exact bounded complex F • the complex
Ĥét(SpecZ,F •) is still exact. Moreover, the assignment F • 7→ Ĥét(SpecZ,F •) commutes
(up to a canonical isomorphism of complexes) with the operation of taking the cone. Therefore
Ĥn
ét(SpecZ,−) is a functor on Db(Shét(SpecZ)) and the following definition makes sense.

Definition 2.6. Let f : X → SpecZ be a separated scheme of finite type and F • a bounded
complex of sheaves on Xét. We define the modified étale cohomology by

Ĥn
ét(X ,F •) = Ĥn

ét(SpecZ, Rf∗F
•), n ∈ Z.

If dim X = 1 or F • is torsion (i.e., if we have a well-defined functor Rf!), we define the modified
étale cohomology with compact support by

Ĥn
c (X ,F •) = Ĥn

ét(SpecZ, Rf!F
•), n ∈ Z.
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For a single sheaf F and n < 0, the groups Ĥn
ét(X ,F ) ∼= Ĥn−1

ét (XR,F ) are 2-torsion groups.
In general, we have a long exact sequence

· · ·→ Ĥn
ét(X ,F •)

ϕn
→ Hn

ét(X ,F •)→ Ĥn
ét(XR,F

•)→ Ĥn+1
ét (X ,F •)→ · · · (2.12)

The maps ϕn are isomorphisms for all n ∈ Z if X → SpecZ factors through SpecFp for a prime
number p, or over SpecOk for a totally imaginary number field k (cf. Remark 2.4). The compact
support variant of (2.12) is the long exact sequence

· · ·→ Ĥn
c (X ,F •)→ Hn

c (X ,F •)→ Ĥn
c (XR,F

•)→ Ĥn+1
c (X ,F •)→ · · · (2.13)

If X = SpecOS for a number field k and a finite set S ⊃ S∞ of places of k, and if F is a single
sheaf on Xét, then our groups Ĥ∗ét(X ,F ) coincide with the modified étale cohomology groups
defined in [Zin78].

Now let k be a global field. For a place v of k, we denote by k(v) the henselization of k at v.
For a set S of places of k we set S = SpecOS . If p = char(k) > 0 we make the following
conventions.

– S∞ = ∅.

– ‘SpecO∅’ is the unique smooth, proper curve with function field k.

– Cohomology with compact support is defined with respect to the structure morphism to
SpecFp.

– The modification symbol ˆ is redundant.

For sets of places S ⊃ T ⊃ S∞ and T = SpecOT , we put

LnT (S,F •) =
⊕
v∈T

Ĥn(k(v),F
•)⊕

⊕
v∈SrT

Hn+1
v (T ,F •). (2.14)

The following lemma compares the modified compact support cohomology with ordinary
cohomology. It is interesting even for S = T .

Lemma 2.7. Let S ⊃ T ⊃ S∞ be sets of places with T finite and F • a bounded complex of
sheaves on Tét. Then we have a long exact sequence

· · ·→ Ĥn
c (T ,F •)→ Hn

ét(S ,F •|S )→ LnT (S,F •)→ Ĥn+1
c (T ,F •)→ · · · .

Proof. We can assume that S is finite since the general case follows by passing to the direct limit
over all finite S′ with S ⊃ S′ ⊃ T . Put B = SpecO∅ and let j : T ↪→B be the open immersion.
Consider the following commutative diagram.

cone(ψ)[−1] //

��

Ĥc(T ,F •)
ψ //

��

H(S ,F •)

HS(B, j!F
•) //

0
��

Hc(T ,F •) //

��

H(S ,F •)

��
Ĥ(BR,F

•) // Ĥ(BR,F
•) // 0

The first and third row, as well as the second and third column are distinguished triangles by
definition. Also the second row is distinguished: it is the excision triangle for S ⊂ B and the
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complex j!F
•. We conclude that the first column is distinguished. The lower left vertical arrow

is zero since it factors through H(S ,F •). Hence

cone(ψ) ∼= HS(B, j!F
•)[1]⊕ Ĥ(BR,F

•). (2.15)

Finally note that

HS(B, j!F
•) ∼=

⊕
v∈SrS∞

Hv(B, j!F
•) (2.16)

and that
Hv(B, j!F

•) ∼= H(k(v),F
•)[−1] (2.17)

for v ∈ T r S∞. 2

3. The dualizing complex

In this section let B be an integral, noetherian and regular scheme of Krull-dimension 6 1.

Definition 3.1. For f : X → B integral, separated and of finite type, we put Y = f(X) ⊂ B
and define the (absolute) dimension of X by

dimX = tr.deg(k(X)/k(Y ))− codimB(Y ) + dimKrullB.

The dimension of X coincides with its Krull-dimension if X → B is proper or if dimB = 0
or if dimB = 1 and B has infinitely many closed points. It differs, for example, for X = SpecQp
considered as a scheme over B = SpecZp.

For a scheme X, separated and of finite type over B and an integer n, let ZcX(n) be Bloch’s
cycle complex of relative dimension n considered in [Gei10]. It is the bounded above complex of
sheaves on the small étale site of X such that for any étale W → X we have

ZcX(n)i(W ) = zn(W,−i− 2n). (3.1)

Here zq(W,p) is the free abelian group generated by integral (p+ q)-dimensional subschemes of
∆p
W that intersect all faces properly. We list some properties of ZcX(n).

Lemma 3.2. If dimB = 0, there are natural quasi-isomorphisms

ZcB(0) ∼= Z, ZcB(−1) ∼= Gm[−1].

If dimB = 1, there is a natural quasi-isomorphism ZcB(0) ∼= Gm[1].

Proof. If B is a field, then ZcB(0) ∼= Z follows directly from the definition and ZcB(−1) ∼= Gm[−1]
follows from [Blo86, Corollary 6.4]. If B is a regular curve over a field, then ZcB(0) ∼=Gm[1] follows
again from [Blo86, Corollary 6.4]. For the general one-dimensional case see [Lev99, Lemma 11.2]
or [Sch07, Corollary 3.9]. 2

The definition of ZcX(n) naturally extends to schemes which are filtered inverse limits of étale
X-schemes (e.g., the strict henselization of X at a geometric point). We will call such schemes
étale essentially of finite type. The dimension of W = lim

←−Wi is defined as the common dimension
of the Wi. We have

zq

(
lim
←−
i

Wi, p
)

= lim−→
i

zq(Wi, q), (3.2)

If dimB = 1, K = k(B) and X → B factors through SpecK, then our definition of dimension
implies

ZcX/B(n) = ZcX/K(n− 1)[2]. (3.3)
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Convention 3.3. In the following, we assume that β is a natural number such that k(b) is
imperfect at most for points b ∈ B with char k(b) | β.

If B is the spectrum of the ring of integers of a number field or a p-adic field, we can put
β = 1. If char(k(B)) = p > 0, we can put β = p.

Theorem 3.4 (Localization). Let n 6 0 and i : Z ↪→ X a closed embedding with open
complement j : U → X. Then there is a natural isomorphism

Ri!ZcX(n)⊗Z[ 1
β ] ∼= ZcZ(n)⊗Z[ 1

β ]

in the derived category of sheaves on Zét. In particular, we have a distinguished triangle

i∗Z
c
Z(n)⊗Z[ 1

β ]→ ZcX(n)⊗Z[ 1
β ]→ Rj∗Z

c
U (n)⊗Z[ 1

β ]
[1]
→

in the derived category of sheaves on Xét.

Proof. [Gei10, Corollary 7.2a)] applies with the same proof after tensoring with Z[ 1
β ]. 2

Theorem 3.5 (Duality). Let f :X→ B be separated and of finite type and let F • be a bounded
torsion complex of sheaves on Xét. Then, for n 6 0, we have a natural isomorphism in the derived
category of abelian groups

RHomX(F •,ZcX(n)⊗Z[ 1
β ]) ∼= RHomB(Rf!F

•,ZcB(n)⊗Z[ 1
β ]).

Proof. [Gei10, Corollary 4.7b), Theorem 7.3] shows that

RHomX(F ,ZcX(n)) ∼= RHomB(Rf!F ,ZcB(n)) (3.4)

for a single torsion sheaf F , if B is the spectrum of a perfect field or of a Dedekind domain of
characteristic zero with perfect residue fields. Without the perfectness assumption, the same proof
shows the isomorphism for general B after inverting β. Finally, this extends in a straightforward
manner to the case of a bounded complex F •. 2

Corollary 3.6 (Modified duality). Assume that B = SpecR in Theorem 3.5. Then, for n 6 0,
we have a natural isomorphism in the derived category of abelian groups

R̂HomX(F •,ZcX(n)) ∼= R̂HomSpecR(Rf!F
•,ZcSpecR(n)).

Proof. Let XC = X ×R C. The isomorphism

RHomXC(F •|XC ,Z
c
XC

(n)) ∼= RHomSpecC(Rf!F
•|XC ,Z

c
SpecC(n)) (3.5)

of Theorem 3.5 for n 6 0 is Gal(C|R)-invariant (cf. the proof of [Gei10, Theorem 4.1)]). By
[Gei10, Lemma 4.8] the complexes in (3.5) are bounded. Hence we can apply Ĥ(Gal(C|R),−) to
obtain the result. 2

Working with sheaves of Z/mZ-modules, we obtain a dimension shift by one by the following
lemma.
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Lemma 3.7. Let F • be a bounded complex of sheaves of Z/mZ-modules on Xét. Then we have
a natural isomorphism in the derived category of abelian groups

RHomX,Z/mZ(F •,ZcX(n)/m)[−1] ∼= RHomX(F •,ZcX(n)).

Proof. This is standard homological algebra and has nothing to do with algebraic cycle complexes
in particular. The proof of [Gei10, Lemma 2.4] applies without change. 2

Let X be a regular scheme which is étale essentially of finite type over B and equidimensional
of dimension d. Let m be a natural number invertible on B. Then, for dimB = 0, the étale cycle
class map cX is defined in [GL01]. It is a natural homomorphism

cX : ZcX(n)/m −→ µ⊗d−nm [2d] (3.6)

of complexes of sheaves on Xét. We recall the following.

Theorem 3.8 [GL01, Theorem 1.5]. If dimB = 0 and X is regular, then cX is a quasi-
isomorphism for n 6 d.

The construction of cX extends to the case dimB = 1 as explained in [Lev99, § 12.3]. If
X → B factors through SpecK, K = k(B), then the cycle class maps over B and over K are
compatible, i.e., the diagram

ZcX/B(n)/m
cX→B //

=

��

µ⊗d−nm [2d]

=

��
ZcX/K(n− 1)/m [2]

cX→K [2] // µ⊗d−nm [2d]

(3.7)

commutes (note that X has dimension d− 1 as a scheme over K).

Theorem 3.9. Assume dimB = 1 and that X is étale essentially of finite type over B, regular
connected and of dimension d. Let m be a natural number invertible on X. Then the cycle class
map

cX : ZcX(n)/m −→ µ⊗d−nm [2d]

is a quasi-isomorphism for n 6 0.

Remark 3.10. One expects that cX is a quasi-isomorphism for n 6 d.

Proof of Theorem 3.9. The proof follows [Lev99, Theorem 12.5]. We can assume that B is local
and strictly henselian. Let Y be essentially of finite type over B, i : Z → Y be a regular closed
subscheme and j : W → Y its open complement. We have the following map of distinguished
triangles of complexes of sheaves on Yét.

i∗Z
c
Z(n)/m //

cZ
��

Zc(n)/m //

cY
��

Rj∗Z
c
W (n)/m

cW
��

i∗µ
⊗d−n
n [2d]Z // µ⊗d−nn [2d] // Rj∗µ

⊗d−n
m [2d]W

(3.8)
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Indeed, the upper row is distinguished by Theorem 3.4, the lower row by purity of étale
cohomology [Fuj00], and the commutativity of the diagram follows from the definition of the
cycle class map, see [Lev99, § 12.3].

We see that if the result holds for two of W,Z, Y , then it holds for the third. The special
fibre of Y has a finite stratification by closed subsets Ti such that Ti − Ti+1 is regular. Thus the
result follows by induction on i from Theorem 3.8. 2

The following lemma will be used in § 8.

Lemma 3.11. Let F be a locally constant, constructible sheaf of Z/mZ-modules on Xét, where
m is invertible on X. Then, for n > 0, we have natural isomorphisms in the derived category of
abelian groups

RHomX,Z/mZ(F , µ⊗nm ) ∼= RΓ(X,HomX,Z/mZ(F , µ⊗nm )).

Proof. We consider the local-to-global spectral sequence

Eij2 = H i
ét(X, Ext jX,Z/mZ(F , µ⊗nm ))⇒ Exti+jX,Z/mZ(F , µ⊗nm ).

By [Mil80, III, Example 1.39(b)], we have for any x ∈ X the isomorphisms of stalks

Ext jX,Z/mZ(F , µ⊗nm )x ∼= Extj
Z/mZ(Fx, (µ

⊗n
m )x).

Since (µ⊗nm )x ∼= Z/mZ is an injective Z/mZ-module, we obtain

Ext jX,Z/mZ(F , µ⊗nm ) = 0, j > 1.

Hence the spectral sequence degenerates showing the statement of the lemma. 2

4. Arithmetic duality for complexes

Using the results of § 3, we generalize local and global duality theorems for single sheaves to
bounded complexes and higher dimensions. For technical reasons, we also have to work with
henselian local fields in the following sense.

Definition 4.1. In this paper a henselian local field is one of the following:

(non-archimedean): the quotient field of an excellent, henselian, discrete valuation ring with
finite residue field;

(complex): an algebraically closed subfield of C;

(real): a relatively algebraically closed subfield of R.

Remark 4.2. Complete discrete valuation rings are excellent by [EGA4, 7.8.3(iii)]. The local rings
of global fields and their henselizations are excellent by [EGA4, 7.8.3 (ii)] and [EGA4, 18.7.6].

The henselian local fields of Definition 4.1 come with a natural valuation and their
completions are the local fields in the usual sense. For a henselian local field K with completion
K̂, the natural homomorphism of absolute Galois groups Gal

K̂
→ GalK is an isomorphism

by [SGA4, X, 2.2.1]. Hence the known statements about the Galois cohomology of local fields
immediately extend to henselian local fields in the sense of Definition 4.1. Also the statement of
Corollary 3.6 holds for arbitrary real henselian local fields.
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Theorem 4.3 (Duality over henselian local fields). Let K be a henselian local field and let f :
X → SpecK be separated and of finite type. Let F • be a bounded, constructible complex of
sheaves on Xét. If char(K) = p > 0 assume that F • is p-torsion free. Then Tate’s local duality
induces perfect pairings of finite abelian groups

Ĥr
c (X,F •)× Êxt

3−r
X (F •,ZcX(−1)) −→ Q/Z

for all r ∈ Z.

Proof. We start with the case X = SpecK and a single sheaf F . By Tate’s local duality theorem
[NSW08, (7.2.6), (7.2.17)], the cup product followed by the invariant map of local class field
theory induce a perfect pairing of finite abelian groups

Ĥr(K,F )× Ĥ2−r(K,Hom(F ,Gm))
∪−→ H2(K,Gm)

inv−→ Q/Z, (4.1)

for all r ∈ Z. Since HomK(−,Gm) is exact on prime-to-p torsion sheaves, we have ExtiK(F ,Gm)
= 0 for i > 0 and the local to global spectral sequence implies that

Ĥ2−r(K,Hom(F ,Gm)) ∼= Êxt
2−r
K (F ,Gm). (4.2)

By Lemma 3.2, we have ZcK(−1) ∼= Gm[−1]. This shows the perfect pairing of the theorem for a
single sheaf and the result for a bounded complex F • follows from the map of hypercohomology
spectral sequences as shown here.

Hs
ét(K,H

t(F •)) +3

��

Hs+t
ét (K,F •)

��

Êxt
3−s
K (Ht(F •),ZcK(−1))∨ +3 Êxt

3−s−t
K (F •,ZcK(−1))∨

In the general case, we have

Ĥr
c (X,F •) = Ĥr

c (K,Rf!F
•) (4.3)

by definition. Furthermore,

Êxt
3−r
X (F •,ZcX(−1)) ∼= Êxt

3−r
K (Rf!F

•,ZcK(−1)) (4.4)

by Theorem 3.5 and Corollary 3.6. Hence we obtain the asserted natural perfect pairing from
the following diagram.

Ĥr
c (X,F •)

o
��

× Êxt
3−r
X (F •,ZcX(−1))

o
��

Ĥr
c (K,Rf!F

•) × Êxt
3−r
K (Rf!F

•,ZcK(−1))
∪ // H2(K,Gm)]

inv // Q/Z 2

Theorem 4.4 (Henselian local duality). Let K be a non-archimedean henselian local field, B =
SpecOK , b ∈ B the closed point and f : X → B separated and of finite type. Let F • be
a bounded, constructible complex of sheaves on Xét. If char(K) = p > 0 assume that F • is
p-torsion free. Then the local duality on B induces perfect pairings of finite abelian groups

Hr
{b}(B,Rf!F

•)× Ext2−r
X (F •,ZcX (0)) −→ Q/Z

for all r ∈ Z.

2030

https://doi.org/10.1112/S0010437X18007340 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X18007340


Poitou–Tate duality for arithmetic schemes

Remark 4.5. The group Hr
{b}(B,Rf!F

•) is the cohomology of X with compact support in the
closed fibre.

Proof of Theorem 4.4. We start with the case X = B and a single sheaf F . Then the local
duality theorem [Mil86, II, Theorem 1.8(b)] states that

Hr
{b}(B,F )× Ext3−r

B (F ,Gm)
∪−→ H3

{b}(B,Gm)
tr−→ Q/Z (4.5)

is a perfect pairing of finite abelian groups for all r ∈ Z. By Lemma 3.2, we have ZcB
∼= Gm[1].

This shows the perfect pairing of the theorem for a single sheaf and the result for a bounded
complex F • follows from the hypercohomology spectral sequence.

In the general case, we obtain the asserted perfect pairing from the following diagram.

Hr
{b}(B,Rf!F

•)

=

��

× Ext2−r
X (F •,ZcX (0))

o
��

Hr
{b}(B,Rf!F

•) × Ext2−r
B (Rf!F

•,ZcB(0)) // Q/Z 2

Next we recall the construction of the trace isomorphism (cf. [Zin78, 2.5.9], [Maz73, § 2] or
[Mil86, II, 2.6]). For F = Gm and S = (all places), Lemma 2.7 and the fact that Hn+1

v (T ,Gm)
∼= Hn(k(v),Gm) for n > 1 yield an exact sequence

0→ Br(k)→
⊕
all v

Br(k(v))→ Ĥ3
c (T ,Gm)→ H3(k,Gm) = 0. (4.6)

Therefore the classical Hasse principle for the Brauer group [NSW08, (8.1.17)] implies the
existence of a natural trace isomorphism

tr : Ĥ3
c (T ,Gm)

∼−→ Q/Z. (4.7)

Theorem 4.6 (Generalized Artin–Verdier duality). Let k be a global field and B = SpecO∅.
Let f : X → B be a separated scheme of finite type and F • a bounded, constructible complex
of sheaves on Xét. If char(k) = p > 0 assume that F • is p-torsion free. Then Artin–Verdier
duality induces perfect pairings of finite abelian groups

Ĥr
c (X ,F •)× Ext2−r

X (F •,ZcX (0)) −→ Q/Z

for all r ∈ Z.

Proof. If X = B, we have ZcB(0) = Gm[1] by Lemma 3.2. In this case, the result follows by
the hypercohomology spectral sequence from the classical Artin–Verdier duality for a single
constructible sheaf F , see [Zin78, Theorem 3.2.1], [Maz73] and [Mil86, II, Theorem 3.1],
respectively [Mil86, II, Theorem 6.2] if char(k) = p > 0.

The general case then follows from

Ĥr
c (X ,F •) = Ĥr(B, Rf!F

•) (4.8)

by definition, from

Ext2−r
X (F •,ZcX (0)) ∼= Ext2−r

B (Rf!F
•,ZcB(0)) (4.9)

by Theorem 3.5, and from the fact that Rf!F
• is a bounded, constructible complex [SGA41

2 ]. 2
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5. A base change property

Proposition 5.1. Let B be an integral, noetherian and regular scheme of Krull-dimension 6 1,
and let β be a natural number as in Convention 3.3. Let (Bi)i∈I be a filtered inverse system of
étale B-schemes and B∞ = lim

←−Bi. Let f : X → B be separated and of finite type and let F •

be a bounded, constructible complex of sheaves on Xét. Consider the following fibre product
diagram.

X∞
ιX //

f∞
��

X

f

��
B∞

ι // B

Then, for n 6 0, the natural map

ι∗Rf∗RHomX (F •,ZcX (n)⊗Z[ 1
β ]) −→ Rf∞∗RHomX∞(ι∗X F •,ZcX∞(n)⊗Z[ 1

β ])

is an isomorphism in the derived category of sheaves on (B∞)ét.

Proof. The natural map of the proposition is the composition of the following three maps: the
first is the base change map of the fibre product diagram

ι∗Rf∗RHomX (F •,ZcX (n)⊗Z[ 1
β ])→ Rf∞∗ι

∗
X RHomX (F •,ZcX (n)⊗Z[ 1

β ]).

The second is the map

Rf∞∗ι
∗
X RHomX (F •,ZcX (n)⊗Z[ 1

β ])

→ Rf∞∗RHomX∞(ι∗X F •, ι∗X Z
c
X (n)⊗Z[ 1

β ])

induced by ι∗X RHomX (−,−)→ RHomX∞(ι∗X −, ι∗X −), and the third is the map

Rf∞∗RHomX∞(ι∗X F •, ι∗X Z
c
X (n)⊗Z[ 1

β ])

→ Rf∞∗RHomX∞(ι∗X F •,ZcX∞(n)⊗Z[ 1
β ])

induced by the natural map ι∗X Z
c
X (n)→ ZcX∞

(n). By Theorem 3.5, it suffices to show that the
map

ι∗RHomB(Rf!F
•,ZcB(n)⊗Z[ 1

β ]) −→ RHomB∞(Rf∞!ι
∗
X F •,ZcB∞(n)⊗Z[ 1

β ])

is an isomorphism. By [SGA4, XVII, 5.2.6], Rf! commutes with base change and sends bounded,
constructible complexes to bounded, constructible complexes by [SGA4, XVII, 5.3.6]. Hence we
have Rf∞!ι

∗
X F • ∼= ι∗Rf!F

• and it suffices to show that the map

ι∗RHomB(F •,ZcB(n)⊗Z[ 1
β ]) −→ RHomB∞(ι∗F •,ZcB∞(n)⊗Z[ 1

β ]) (5.1)

is an isomorphism for every bounded, constructible complex F • on B. By the hypercohomology
spectral sequence, we can assume that F • is a single sheaf F .

A geometric point x̄→ B∞ induces a compatible system of geometric points x̄→ Bi → B.
Assume for the moment that F is locally constant. Then by [Mil80, III, Exercise 1.31 b)] and ??,
the map induced by (5.1) on the stalks at x̄ is the identity of

RHomZ(Fx̄,Z
c
B(n)x̄ ⊗Z[ 1

β ]).
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This shows that (5.1) is an isomorphism if F is locally constant. For a general constructible F ,
there is a non-empty open j : U → B such that F |U is locally constant. Let i : Z → B be the
closed complement. Then Z has dimension zero, hence i∗F is locally constant. Using the short
exact sequence 0→ j!j

∗F → F → i∗i
∗F → 0, the results for j∗F and i∗F , the adjunctions

i∗ a i!, j! a j∗, and Theorem 3.4 imply the result for F . 2

Remark 5.2. We will apply Proposition 5.1 in the following situations:

– B∞ = SpecOS , S an infinite set of primes;

– B∞ = SpecO(v), the henselization.

6. Some restricted products

We recall the notion of a restricted product of topological groups. Assume we are given a family
(Ai)i∈I of Hausdorff abelian groups and let an open subgroup Bi ⊂ Ai be given for almost all i.
For consistency of notation, we put Bi = Ai for the remaining indices. The restricted product∏
i∈I(Ai, Bi) is the subgroup of

∏
Ai consisting of all (xi)i∈I such that xi ∈ Bi for almost all i.

It becomes a topological group by defining the products
∏
i∈J Ui ×

∏
i∈IrJ Bi, where J runs

through the finite subsets of I and Ui runs through a basis of neighbourhoods of the identity of
Ai for i ∈ J as a basis of neighbourhoods of the identity. Note that∏

i∈I
(Ai, Bi) ∼= lim−→

J⊂I
finite

(∏
i∈J

Ai ×
∏
i∈IrJ

Bi

)
,

both in the algebraic and the topological sense, i.e., the direct limit topology on the right-hand
side is a group topology and coincides with the given topology on the left-hand side. Also note
that the transition maps in the direct system are injective and open. In particular, for finite
J ⊂ I, the groups

∏
i∈J Ai ×

∏
i∈IrJ Bi are open subgroups of the restricted product.

Let k be a global field, X/k separated and of finite type, m> 1 an integer prime to p= char(k)
and F • a bounded, constructible complex of sheaves of Z/mZ-modules on Xét. We choose a
separated scheme of finite type f : X →B = SpecO∅ extending X, i.e., X = X ×B k. Choosing
X small enough, we can assume that F • is the restriction of a bounded, constructible complex of
sheaves of Z/mZ-modules on Xét to Xét. By abuse of notation, we will denote this complex also
by F •. For non-archimedean v, we define the unramified part

ExtnX(v),nr
(F •,ZcX(v)

(−1)) ⊂ ExtnX(v)
(F •,ZcX(v)

(−1)) (6.1)

as the image of the restriction map

Extn−2
X(v)

(F •,ZcX(v)
(0))

→ Extn−2
X(v)

(F •,ZcX(v)/Bv
(0))

Eq. (3.3)
= ExtnX(v)

(F •,ZcX(v)
(−1)). (6.2)

Definition 6.1. For a set of primes S we let

QnS(X,F •) :=
∏
v∈S

Êxt
n

X(v)
(F •,ZcX(v)

(−1)) (6.3)

be the restricted product with respect to the unramified parts (defined for non-archimedean v).

We equip the factors Êxt
n

X(v)
(F •,ZcX(v)

(−1)) with the discrete topology and QnS(X,F •) with

the restricted product topology.
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Lemma 6.2.

(i) QnS(X,F •) is independent of the choice of X .

(ii) QnS(X,F •) is a locally compact topological group.

Proof. (i) If X1 and X2 are separated schemes of finite type over B with generic fibre X,
then there exists a non-empty open subscheme U ⊂ B and an isomorphism X1|U

∼−→ X2|U
extending the identity of X. Shrinking U once more, we may assume that this isomorphism
identifies the chosen extensions of the constructible complex F •. Hence the subgroups ExtnX(v),nr

(F •,ZcX(v)
(−1)) defined with respect to X1 and X2 coincide for all v ∈ U , i.e., for almost all v,

and the restricted products are the same.
(ii) The factors Êxt

n

X(v)
(F •,ZcX(v)

(−1)) are finite by Theorem 4.4, hence compact with the

discrete topology. Therefore the restricted product is locally compact by [NSW08, (1.1.13)]. 2

We recall the following lemma due to Saito.

Lemma 6.3. Let O be a henselian, discrete valuation ring with quotient field K, m > 1 an
integer prime to the residue characteristic of O and F • a bounded, locally constant, constructible
complex of étale sheaves of Z/mZ-modules on SpecO. Then the natural map

Hn
ét(SpecO,F •)→ Hn

ét(SpecK,F •)

is injective for all n.

Proof. See [Sai89, Lemma 1.3]. 2

Lemma 6.4. For almost all non-archimedean places v, the restriction maps

Hn
ét(X(v),F

•)→ Hn
ét(X(v),F

•), (6.4)

Hn
c (X(v),F

•)→ Hn
c (X(v),F

•), (6.5)

Extn−2
X(v)

(F •,ZcX(v)
(0))→ ExtnX(v)

(F •,ZcX(v)
(−1)) (6.6)

are injective.

Proof. By [SGA41
2 , Theorem 1.1], there is a non-empty open subscheme W ⊂ B such that m

is invertible on W and the restriction of Rf∗F • to W is locally constant, constructible. Let
ιv : SpecO(v)→ B be the natural morphism. Then the assumptions of Lemma 6.3 are satisfied
for ι∗vRf∗F

• showing that

Hn
ét(O(v), Rf∗F

•)→ Hn
ét(k(v), Rf∗F

•) (6.7)

is injective for all v ∈ W . Consider the following fibre product diagram.

X(v)
ιX //

fv
��

X

f

��
SpecO(v)

ιv // B
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Since étale cohomology commutes with inverse limits of quasi-compact, quasi-separated schemes

and affine transition maps [SGA4, VII, 5.8], we obtain an isomorphism

ι∗vRf∗F
• ∼= Rfv∗ι

∗
X F •. (6.8)

Hence the injectivity of (6.7) implies the injectivity of (6.4) for v ∈ W .

The injectivity of (6.5) follows by choosing a compactification j : X(v) ↪→X(v) and applying

(6.4) to j!F
•.

To show the injectivity of (6.6), we first show that Rf∗RHomX (F •,ZcX (0)) is bounded and
constructible on a non-empty open subscheme W ⊂B. Using Theorem 3.5, Lemma 3.7 and 3.2,
we obtain

Rf∗RHomX (F •,ZcX (0)) ∼= RHomB(Rf!F
•,ZcB(0))

∼= RHomB,Z/mZ(Rf!F
•,ZcB(0)/m[−1])

∼= RHomB,Z/mZ(Rf!F
•, µm).

By [SGA4, XVII, Theorem 5.3.6], Rf!F
• is bounded and constructible on B. By [SGA41

2 ,
Corollary 1.6], it follows that RHomB,Z/mZ(Rf!F

•, µm) is bounded and constructible on
B[1/m]. We conclude that Rf∗RHomX (F •,ZcX (0)) is locally constant, constructible on a
non-empty open subscheme W ⊂B[1/m]. Applying Lemma 6.3 to ι∗vRf∗RHomX (F •,ZcX (0)),
we see that

Hn−2
ét (SpecO(v), ι

∗
vRf∗RHomX (F •,ZcX (0)))

→ Hn−2
ét (Spec k(v), ι

∗
vRf∗RHomX (F •,ZcX (0))) (6.9)

is injective for all v ∈ W . By Proposition 5.1, we obtain an isomorphism

ι∗vRf∗RHomX (F •,ZcX (0)) ∼= Rfv∗RHomX(v)
(ι∗X F •,ZcX(v)

(0)). (6.10)

Hence for v ∈ W , (6.9) can be written as the injection

Extn−2
X(v)

(F •,ZcX(v)
(0)) ↪→ Extn−2

X(v)
(F •,ZcX(v)

(−1)) = ExtnX(v)
(F •,ZcX(v)

(−1)). (6.11)

This finishes the proof. 2

For a set of places S and a finite subset T ⊂ S we set

Mn
T (X,S,F •) =

∏
v∈T

Êxt
n

X(v)
(F •,ZcX(v)

(−1))×
∏

v∈SrT
Extn−2

X(v)
(F •,ZcX(v)

(0)). (6.12)

Corollary 6.5. If we endow Mn
T (X,S,F •) with the (compact) product topology, then there

is a natural topological isomorphism

QnS(X,F •) ∼= lim−→
T⊂S
T finite

Mn
T (X,S,F •). (6.13)

Proof. This follows directly from Lemma 6.4 and the definition of the topology of the restricted

product. 2
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Definition 6.6. For non-archimedean v we define the unramified part

Hn
nr (X(v),F

•) ⊂ Hn
ét(X(v),F

•) (6.14)

as the image of the restriction map Hn
ét(X(v),F

•)→ Hn
ét(X(v),F

•) and define

PnS (X,F •) :=
∏
v∈S

Ĥn
ét(X(v),F

•) (6.15)

as the restricted product with respect to the unramified subgroup (defined for non-archimedean v).
We define PnS,c(X,F

•) in exactly the same way but using modified cohomology with compact
support everywhere.

Again PnS (X,F •) and PnS,c(X,F
•) only depend on X and not of the choice of X . They are

locally compact abelian groups and Lemma 6.4 shows the following.

Corollary 6.7. There are natural topological isomorphisms

PnS (X,F •) ∼= lim−→
T⊂S
T finite

∏
v∈T

Hn
ét(X(v),F

•)×
∏

v∈SrT
Hn
ét(X(v),F

•), (6.16)

PnS,c(X,F
•) ∼= lim−→

T⊂S
T finite

∏
v∈T

Ĥn
c (X(v),F

•)×
∏

v∈SrT
Hn
c (X(v),F

•). (6.17)

Finally, we observe

Proposition 6.8. The groups PnS,c(X,F
•) and Q3−n

S (X,F •) are Pontryagin dual to each other.

Proof. By Theorem 4.3, we have for all v ∈ S a perfect pairing of finite groups

Ĥn
c (X(v),F

•)× Êxt
3−n
X(v)

(F •,ZcX(v)
(−1)) −→ Br(k(v))

inv−→ Q/Z. (6.18)

It therefore suffices to show that for almost all v ∈ S the respective unramified subgroups are
their exact annihilators in (6.18). First of all, they annihilate each other because the pairing
(6.18) restricted to the subgroups Hn

c (X(v),F
•) and Ext1−n

X(v)
(F •,ZcX(v)

(0)) factors through

Br(O(v)) = 0.
On the other hand, Rf!F

• is bounded and constructible on B by [SGA4, XVII,
Theorem 5.3.6]. Hence for almost all v ∈ S the assumptions of Lemma 6.3 are satisfied and
the long exact sequence with support for Spec k(v) ⊂ SpecO(v) and Rf!F

• splits into short exact
sequences

0 −→ Hn
ét(O(v), Rf!F

•) −→ Hn
ét(k(v), Rf!F

•) −→ Hn+1
v (O(v), Rf!F

•)→ 0.

Now we observe that
Hn
c (X(v),F

•) = Hn
ét(O(v), Rf!F

•),

Hn
c (X(v),F

•) = Hn
ét(k(v), Rf!F

•),

and that Hn+1
v (O(v), Rf!F

•) ∼= Ext1−n
X(v)

(F •,ZcX(v)
(0))∨ by Theorem 4.4. We obtain

#Hn
c (X(v),F

•) = #Hn
c (X(v),F

•) ·# Ext1−n
X(v)

(F •,ZcX(v)
(0)),

and this equality of orders shows that the groups are their exact annihilators. 2
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7. The main results

Theorem 7.1. Let S ⊃ S∞ be a (not necessarily finite) set of places of the global field k and
let XS → S = SpecOS be a separated scheme of finite type. Let m > 1 be an integer prime
to p = char k and let F • be a bounded complex of constructible sheaves of Z/mZ-modules on
(XS )ét.

Then there is a natural long exact sequence of topological groups and strict homomorphisms

· · ·→ Extn+1
XS

(F •,ZcXS
(0))

λn
→ Qn+3

S (Xk,F
•)→ H−nc (XS ,F

•)∨→ · · · .

The groups Extn+1
XS

(F •,ZcXS
(0)) are discrete, the groups Qn+3

S (Xk,F
•) are locally compact,

and the groups H−nc (XS ,F
•)∨ are compact for all n ∈ Z. Furthermore, the maps λn are proper

and have finite kernel for all n ∈ Z.

Proof. We choose a separated scheme of finite type f : X → B = SpecO∅ extending XS , i.e.,
such that XS = X ×B S . Choosing X small enough, we can assume that F • is the restriction
of a bounded constructible complex of sheaves of Z/mZ-modules on Xét to (XS )ét. We will
denote this complex also by F •. We denote the common generic fibre of X and XS by Xk.

In the following, the letter T will always denote a finite subset T ⊂ S containing all
archimedean places and all places v for which the assertion of Lemma 6.4 fails. By j : T → B
we denote the open immersion.

We apply Lemma 2.7 to the complex Rf!F
•|T = j∗Rf!F

• on Tét and obtain a long exact
sequence

· · ·→ Ĥn
c (T , Rf!F

•|T )→ Hn
ét(S , Rf!F

•|S )→ LnT (S,Rf!F
•|T )→ · · · . (7.1)

We consider the terms in (7.1). We have

Ĥn
c (T , Rf!F

•|T ) ∼= Ĥn
c (XT ,F

•) ∼= Ext2−n
XT

(F •,ZcXT
(0))∨ (7.2)

by Theorem 4.6. We have

LnT (S, j∗Rf!F
•) =

⊕
v∈T

Ĥn(k(v), Rf!F
•)⊕

⊕
v∈SrT

Hn+1
v (T , Rf!F

•) (7.3)

∼=
⊕
v∈T

Êxt
3−n
X(v)

(F •,ZcX(v)
(−1))∨ ⊕

⊕
v∈SrT

Ext1−n
X(v)

(F •,ZcX(v)
(0))∨

= M3−n
T (Xk, S,F

•)∨ (7.4)

by Theorems 4.3 and 4.4. Finally, by [SGA4, XVII, 5.2.6] we have

Hn
ét(S , Rf!F

•|S ) ∼= Hn
c (XS ,F

•), (7.5)

where the cohomology group on the right-hand side is étale cohomology with compact support
of XS as a scheme of finite type over S . Hence we can write the dual sequence to (7.1) in the
form

→ Extn+1
XT

(F •,ZcXT
(0))→Mn+3

T (S,Xk,F
•)→ H−nc (XS ,F

•)∨→ · · · (7.6)

(we changed the index n 7→ −n in order to have a cohomological complex). This is a long exact
sequence of compact abelian groups with continuous maps and the Ext-groups are finite. Passing
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to the direct limit over all finite T ⊂ S, we obtain using Proposition 5.1 and Corollary 6.5 the
long exact sequence

· · ·→ Extn+1
XS

(F •,ZcXS
(0))

λn
→ Qn+3

S (Xk,F
•)→ H−nc (XS ,F

•)∨→ · · · . (7.7)

The groups Extn+1
XS

(F •,ZcXS
(0)) are discrete, the groups Qn+3

S (Xk,F
•) are locally compact,

and the groups H−nc (XS ,F
•)∨ are compact. Since all homomorphism in (7.6) are continuous,

the same is true for the homomorphisms in (7.7).
Next we prove that all morphisms are strict. For this we have to show that for any two

consecutive maps φ, ψ in the long exact sequence, the continuous bijection im(φ)
∼
→ ker(ψ)

is a homeomorphism. Here im(φ) is equipped with the quotient topology and ker(ψ) with the
subspace topology. The obvious case is

H−n−1
c (XS ,F

•)∨
φ
→ Extn+1

XS
(F •,ZcX (0))

ψ
→ Qn+3

S (Xk,F
•).

Indeed, the group ker(ψ) is discrete, hence im(φ)
∼
→ ker(ψ) must be homeomorphic. Since

H−n−1
c (XS ,F

•)∨ is compact, we also obtain the assertion that ker(ψ) = ker(λn) is finite for all
n. Next we consider

Qn+3
S (Xk,F

•)
φ
→ H−nc (XS ,F

•)∨
ψ
→ Extn+2

XS
(F •,ZcX (0)).

The image of φ is the union of the images of the maps

φT : Mn+3
T (Xk, S,F

•)→ H−nc (XS ,F
•)∨.

By (7.6) and the finiteness of Extn+2
XT

(F •,ZcX (0)), each im(φT ) has finite index in H−nc
(XS ,F

•)∨. Hence the images stabilize, i.e., im(φT ) = im(φ) for T large enough. This shows
that im(φ) is compact and thus homeomorphic to ker(ψ). Finally, we consider

Extn+1
XS

(F •,ZcX (0))
φ
→ Qn+3

S (Xk,F
•)

ψ
→ H−nc (XS ,F

•)∨.

Here we have to show that the subgroup ker(ψ) is discrete. For this it suffices to show that there
is an open subgroup of Qn+3

S (Xk,F
•) having finite intersection with ker(ψ). For sufficiently large

finite T ⊂ S, MT (Xk, S,F
•) is a subgroup of Qn+3

S (Xk,F
•). Since Extn+1

XT
(F •,ZcX (0)) is finite,

any such MT (Xk, S,F
•) has the required property.

Finally, the properness of λn follows formally from what we already know: since ker(λn) is
finite, it suffices to show that every compact subset of Qn+3

S (Xk,F
•) has finite intersection with

im(λn). But this is obvious since im(λn) is a discrete subgroup of Qn+3
S (Xk,F

•) by the strictness
of λn. 2

Dualizing Theorem 7.1, we obtain the following result.

Theorem 7.2. Let S ⊃ S∞ be a (not necessarily finite) set of places of the global field k and
let XS → S = SpecOS be a separated scheme of finite type. Let m > 1 be an integer prime to
p = char(k) > 0 and let F • be a bounded complex of constructible sheaves of Z/mZ-modules
on (XS )ét.

Then there is a natural long exact sequence of topological groups and strict homomorphisms

· · ·→ Hn
c (XS ,F

•)
λn,c
→ PnS,c(Xk,F

•)→ Ext1−n
XS

(F •,ZcX (0))∨→ · · · .

The groups Hn
c (XS ,F

•) are discrete, the groups PnS,c(Xk,F
•) are locally compact, and the

groups Ext1−n
XS

(F •,ZcX (0))∨ are compact for all n ∈ Z. Furthermore, the maps λn,c are proper
and have finite kernel for all n ∈ Z.
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8. Proofs of Theorems A and B

Proof of Theorem B. Now we assume that XS is regular and that F is a locally constant,
constructible sheaf of Z/mZ-modules where m is invertible on S . We will deduce Theorem B
from Theorem 7.1. The scheme X in Theorem B is XS of Theorem 7.1 and the relative
dimension r occurring in Theorem B is d− 1, where d = dim XS according to Definition 3.1. As
before, we extend the situation to a scheme X of finite type over B = SpecO∅.

Step 1. We have
Extn+1

XS
(F ,ZcX (0)) ∼= H2d+n

ét (XS ,F
∨(d)),

and for any non-archimedean v,

Extn+1
X(v)

(F ,ZcX(v)
(0)) ∼= H2d+n

ét (X(v),F
∨(d)).

Proof of Step 1. We have

Extn+1
XS

(F ,ZcX (0)) ∼= ExtnXS ,Z/mZ(F ,ZcX (0)/m) (Lemma 3.7)
∼= Ext2d+n

XS ,Z/mZ(F , µ⊗dm ) (Theorem 3.9)
∼= H2d+n

ét (XS ,F
∨(d)) (Lemma 3.11).

The proof of the second statement is similar.
Step 2. For v ∈ S we have

Extn+3
X(v)

(F •,ZcX(v)
(−1)) ∼= H2d+n

ét (X(v),F
∨(d)).

Proof of Step 2. We have

Extn+3
X(v)

(F ,ZcX(v)
(−1)) ∼= Extn+2

X(v),Z/mZ
(F ,ZcX(v)

(−1)/m) (Lemma 3.7)

∼= Extn+2d
X(v),Z/mZ

(F , µ⊗dm ) (Theorem 3.8)

∼= H2d+n
ét (X(v),F

∨(d)) (Lemma 3.11).

From Steps 1 and 2, we immediately obtain

Qn+3
S (Xk,F ) = P 2d+n

S (Xk,F
∨(d)).

Applying Theorem 7.1 to F∨(d), we obtain the exact sequence of Theorem B except at the
boundaries.

Step 3.
λ0 : H0

ét(XS ,F )→ P 0
S(Xk,F )

is injective and
P 2d
S (Xk,F ) −→ H0

c (XS ,F
∨(d))∨

is surjective.
Proof of Step 3. The injectivity of λ0 follows from our assumption that S contains at least

one non-archimedean prime. The second map is dual to the injective map

λ0,c : H0
c (XS ,F

∨(d))→ P 2d
S (Xk,F )∨ ∼= Q3

S(Xk,F
∨(d))∨ ∼= P 0

S,c(Xk,F
∨(d)),

hence surjective. This shows Theorem B (in the variant with henselizations instead of
completions). For further use, we mention that for i < 0, our long exact sequence consists
of isomorphisms

P iS(Xk,F )
∼−→ H2r+2+i

c (XS ,F
∨(r + 1))∨. (8.1)

2
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Dualizing, one obtains a version with compact supports as follows.

Theorem C (Poitou–Tate exact sequence with compact support). For X , S and F as in
Theorem A, we have an exact 6r + 9-term sequence of abelian topological groups and strict
homomorphisms

0 //H0
c (X ,F ) //P 0

c (X ,F ) //H2r+2
ét (X ,F∨(r + 1))∨ //

· · ·
· · · //H i

c(X ,F )
λi,c //P ic(X ,F ) //H2r+2−i

ét (X ,F∨(r + 1))∨ //

· · ·
· · · //H2r+2

c (X ,F ) //P 2r+2
c (X ,F ) //H0

ét(X ,F∨(r + 1))∨ //0.

(8.2)

Here
P ic(X ,F ) :=

∏
v∈S

Ĥ i
c(X ⊗OS

kv,F ) (8.3)

is the restricted product with respect to the subgroups H i
c,nr (X ⊗OS

kv,F ). The localization
maps λi are proper and have finite kernel for all i, and for i > 2r + 3,

λi,c : H i
c(X ,F )

∼−→ P ic(X ,F ) =
∏
v∈S∞

Ĥ i
c(X ⊗OS

kv,F ) (8.4)

is an isomorphism. The groups in the left column of (8.2) are discrete, those in the middle column
locally compact, and those in the right column compact.

Proof of Theorems A and C. Applying Pontryagin duality to Theorem B, we obtain the sequence
of Theorem C in view of

Pn(X ,F )∨ ∼= Qn+1−2r
S (Xk,F

∨(r + 1))∨ ∼= P 2r+2−n
c (X ,F∨(r + 1))

by Proposition 6.8. It remains to show the statement about λi,c. The isomorphism for i > 2r+ 3
follows by dualizing from the last observation (8.1) in the proof of Theorem B. Furthermore, the
topological exactness of the sequence shows

ker(λi,c(F )) ∼= ker(λ2r+3−i(F
∨(r + 1)))∨. (8.5)

Hence the finiteness of ker(λi) for all i shows the finiteness of ker(λi,c) for all i. Furthermore,
(8.5) shows Theorem A since

Xi(F ) = ker(λi(F )), X2r+3−i
c (F∨(r + 1)) = ker(λ2r+3−i,c(F

∨(r + 1))).
2

9. Euler–Poincaré characteristic

To complete the picture, we calculate the Euler–Poincaré characteristic. We assume that the base
field k has no real embeddings so that X has finite cohomological dimension. We also assume
that S is finite, hence the cohomology with values in constructible coefficients is finite. Let F
be a constructible sheaf on Xét. Then we call

χ(X ,F ) =
∏
i

#H i
ét(X ,F )(−1)i (9.1)
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the Euler–Poincaré characteristic of F . Let ks be a separable closure of k. Then we call

χgeo(X ,F ) := χ(Xks ,F |Xks
) =

∏
i

#H i
ét(Xks ,F |Xks

)(−1)i (9.2)

the geometric Euler–Poincaré characteristic of F . We let r2 be the number of complex places of

k, hence by our assumptions

r2 =

{
[k : Q]/2, char k = 0,

0, char k > 0.
(9.3)

Theorem 9.1. Under the above assumptions assume that m > 1 is an integer invertible on S
and F a locally constant, constructible sheaf of Z/mZ-modules on X . Then we have

χ(X ,F ) = χgeo(X ,F )−r2 .

In particular, χ(X ,F ) = 1 if char k > 0.

Proof. For a sheaf G of Z/mZ-modules on S , we have by [Mil86, II, Theorem 2.13]

χ(S ,G ) = (#G (ks))−r2 . (9.4)

For a bounded, constructible complex G • of Z/mZ-modules on S , we put

χ(S ,G •) =
∏
i

#H i
ét(S ,G •)(−1)i . (9.5)

Counting orders in the hypercohomology spectral sequence Est2 = Hs
ét(S , Ht(G •)) ⇒

Hs+t
ét (S ,G •), we obtain

χ(S ,G •) =
∏
s,t

#Hs+t
ét (S ,G •)(−1)s+t

=
∏
s,t

(#Es,t∞ )(−1)s+t
. (9.6)

Any differential of the spectral sequence goes from a group with s + t = i to a group with

s+ t = i+ 1. We therefore can replace the E∞-terms in (9.6) by the E2-terms and obtain

χ(S ,G •) =
∏
s,t

(#Es,t2 )(−1)s+t
=
∏
t

(∏
s

(#Es,t2 )(−1)s
)(−1)t

(9.1)
=
∏
t

χ(S , Ht(G •))
(9.4)
=
∏
i

(#H i(G •)(ks))(−1)i+1r2 .

Applying this to G • = Rf∗F , we obtain the result in view of H i(Rf∗F )(ks) = H i(Xks ,F |Xks
).

2

10. Henselization versus completion

The results of this section allow us to replace henselization by completion in Theorems 7.1

and 7.2. In particular, this shows Theorems A, B and C in the way they are formulated.
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Proposition 10.1. Let K be a henselian local field, f : X → K separated and of finite type
and F • a bounded, constructible complex of sheaves on Xét. If char(K) = p > 0 assume that
F • is p-torsion free.

Let K̂ be the completion of K and πX the base change πX : X
K̂

= X ×K K̂ → X. Then the
natural morphisms

RHomX(F •,ZcX(n)) −→ RHomX
K̂

(π∗XF •,ZcXK̂
(n)), n 6 0,

RΓ(X,F •) −→ RΓ(X
K̂
, π∗XF •)

RΓc(X,F •) −→ RΓc(XK̂
, π∗XF •)

are isomorphisms in the derived category of abelian groups.

Proof. We start by proving the statements on RΓ and Γc. By [SGA4, X, 2.2.1], K → K̂ induces
an isomorphism on absolute Galois groups. Hence we may replace K and K̂ by their separable
closures and then the statement on RΓ is a well known consequence of the smooth base change
theorem, cf. [Mil80, VI, 4.3]. Similarly, the statement on RΓc follows since Rf! commutes with
base change by [SGA4, XVII, 5.2.6].

Next we prove the assertion on RHom. Using the hyperext spectral sequence, we can assume
that F • is a single constructible sheaf F . If i : Z → X is a closed embedding with open
complement j : U ⊂ X, then we see by comparing the localization triangles associated with the
short exact sequence j!j

∗F → F → i∗i
∗F ,

RHomZ(i∗F ,ZcZ(n))→ RHomX(F ,ZcX(n))→ RHomU (j∗F ,ZcU (n))

that the statements for two of Z,U and X imply it for the third.
By induction on d = dimX, we may therefore assume that X is regular and connected, and

F is locally constant, constructible. Let m > 1 be an integer invertible in K such that F is a
sheaf of Z/mZ-modules. Then we have

RHomX(F ,ZcX(n)) ∼= RHomX,Z/mZ(F ,ZcX(n)/m)[−1]
∼= RHomX,Z/mZ(F , µ

⊗(d−n)
m )[2d− 1]

∼= RΓ(X,HomX,Z/mZ(F , µ⊗d−nm ))[2d− 1]

by Lemma 3.7, Theorem 3.8, and Lemma 3.11. The same holds for X
K̂

and π∗XF . Hence, by the
first part of the proof, it suffices to show that

π∗XHomX,Z/mZ(F , µ⊗d−nm ) −→ HomX
K̂
,Z/mZ(π∗XF , µ⊗d−nm ) (10.1)

is an isomorphism, which is clear since F is locally constant. 2

Proposition 10.2. Let K be a non-archimedean henselian local field, B = SpecOK and f :
X → B separated and of finite type. Let F • be a bounded, constructible complex of sheaves on
Xét. If char(K) = p > 0 assume that F • is p-torsion free.

Let K̂ be the completion of K, B̂ = SpecO
K̂

, π : B̂ → B the projection and πX the base

change πX : X
B̂

= X ×B B̂→ X. Then the natural morphisms

RHomX(F •,ZcX(n)) −→ RHomX
B̂

(π∗XF •,ZcXB̂
(n)), n 6 0,

RΓc(X,F •) −→ RΓc(XB̂
, π∗XF •)

are isomorphisms in the derived category of abelian groups.
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Assume in addition that F • is p′-torsion free, where p′ is the residue characteristic of OK .
Then also

RΓ(X,F •) −→ RΓ(X
B̂
, π∗XF •)

is an isomorphism in the derived category of abelian groups.

Proof. As in the proof of Proposition 10.1, the statement for cohomology with compact support
follows since Rf! commutes with base change by [SGA4, XVII, 5.2.6]. Since OK is excellent by
assumption, the ring homomorphism OK → OK̂ is regular. Hence, by Popescu’s theorem [Sta17,
Tag 07GB], O

K̂
, is the limit of smooth OK-algebras. Therefore the statement on cohomology

follows from the smooth base change theorem.
Finally, we consider RHom. Considering U ⊂ X open and Z = XrU , we see as in the proof

of Proposition 10.1 that the statements for two of Z,U and X imply it for the third. As the
closed fibres of X and XB̂ coincide, it suffices to prove the statement for the generic fibre. Since
ZcX/B(n)|XK

∼= ZcX/K(n− 1)[2], this follows from Proposition 10.1. 2
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