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Abstract. We study the conditions which force a semiperfect ring to admit a
Nakayama permutation of its basic idempotents. We also give a few necessary and
sufficient conditions for a semiperfect ring R, which cogenerates every 2-generated
right R-module, to be right pseudo-Frobenius.
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0. Introduction. Throughout R is an associative ring with identity and modules
are unitary. The right and left annihilators of subset X of a ring R are denoted by
rRðXÞ and lRðXÞ respectively. We write J ¼ JðRÞ for the Jacobson radical of a ring R
and SocðMÞ for the socle of a module M. Right and left singular ideals of a ring R
will be denoted by ZðRRÞ and ZðRRÞ respectively. By N�jjj M we shall mean that N is
an essential submodule of a module M.

A ring R is called right mininjective (right principally injective) if every R-homo-
morphism from a minimal (principal) right ideal of R into R is given by left multi-
plication by an element of R. Mininjective rings were introduced by Harada [7] who
studied them in Artinian case. Recently Nicholson and Yousif [13] studied arbitrary
mininjective rings. Principally injective rings have been studied in [3, 12, 16, 17]. A
ring R is called right Kasch if R contains a copy of each simple right R-module. An
idempotent e of a ring R is called local if eRe is a local ring; equivalently if eJ is the
unique maximal submodule of eR. Nakayama [10] called a left and right Artinian ring
R with basic set of idempotents e1; :::; en quasi-Frobenius if there exists a permutation
� of f1; :::; ng such that

SocðRe�ðiÞÞ ffi Rei=Jei and SocðeiRÞ ffi e�ðiÞR=e�ðiÞJ:

Let R be a semiperfect ring with basic set of idempotents e1; :::; en. In this paper,
following Nicholson and Yousif [12], we call a permutation � of f1; :::; ng aNakayama
permutation if there exists a set k1; :::; kn of elements of R such that for each i

(1) Rki 	 Re�ðiÞ and kiR 	 eiR;
(2) Rki ffi Rei=Jei and kiR ffi e�ðiÞR=e�ðiÞJ.
In particular, fk1R; :::; knRg and fRk1; :::;Rkng are complete irredundant sets of

representatives of isomorphism classes of simple right and simple left R-modules
respectively and so R is left and right Kasch.

If a ring is right self injective and right cogenerator, it is called right pseudo-
Frobenius (PF). Extending some well known results on PF and quasi-Frobenius
(QF) rings, Nicholson and Yousif proved that a right minfull ring (that is a semi-
perfect right mininjective ring R with SocðeRÞ 6¼ 0 for every local idempotent e [13])
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admits a Nakayama permutation of its basic idempotents and SocðeRÞ is homo-
geneous for every local idempotent e. Moreover, its two socles are equal if every
simple left ideal is a left annihilator [13, Theorem 3.7].

For a semiperfect ring R admitting a Nakayama permutation of its basic idem-
potents, SocðeRÞ 6¼ 0 for every local idempotent e. Moreover, SocðeRÞ is homo-
geneous for every local idempotent e if and only if R satisfies the following
condition:

ð�Þ For every local idempotents e and f of a ring R if eR and fR contain isomorphic
simple submodules then eR ffi fR.

Every right mininjective ring satisfies ð�Þ [13, Lemma 3.4]. A ring R is called
right minsymmetric [13] if kR simple implies that Rk is simple, k 2 R. A right min-
injective ring is right minsymmetric [13, Theorem 1.14].

We prove that the mild condition of right minsymmetry ensures the existence of
a Nakayama permutation of basic idempotents of a semiperfect ring R satisfying ð�Þ

for which SocðeRÞ 6¼ 0 for every local idempotent e. As even a commutative local
ring with non-zero socle may not be minfull, this generalizes Nicholson and Yousif’s
result. For example,

S ¼
q r
0 q

� �
: q 2 Q and r 2 R

� �
;

is a commutative local ring which is not mininjective because SocðSÞ ¼
0 R

0 0

� �
is

not simple (see [13, Remark 1.4]).
In [13, Theorem 4.17] Nicholson and Yousif proved that a semiperfect right

continuous ring with large right socle admits a Nakayama permutation of its basic
idempotents. Also Yousif [18, Theorem 1] proved that a right CS ring R such that
the R-dual of every simple left R-module is simple, semiperfect and admits a
Nakayama permutation of its basic idempotents. Improving upon these results, we
prove that these classes of semiperfect rings are right minsymmetric and satisfy ð�Þ.

Osofsky [15] proved that a ring R is right PF if and only if it is semiperfect right
self-injective with SocðRRÞ �jjj RR. Recently, in their remarkable paper, Gómez Pardo
and Guil Asensio [5, Corollary 2.8] proved that a right CS right cogenerator ring is
right PF. We give some necessary and sufficient conditions for a semiperfect ring R,
which cogenerates every 2-generated right R-module, to be right PF. In particular,
we prove that a semiperfect ring R is right PF if and only if JðRÞ 	 ZðRRÞ and R
cogenerates every 2-generated right R-module. As every left CS right Kasch ring is
semiperfect [6], this extends [14, Theorem 2.8] where it is proved that a left CS ring R
with JðRÞ 	 ZðRRÞ which cogenerates every 2-generated right R-module is right PF.
In section 2 we study some relationships between right mininjective, right minsym-
metric and left minannihilator rings (that is, rings for which every minimal left ideal
is a left annihilator).

1. Nakayama permutations. A module M is called a CS module if every sub-
module of M is essential in a direct summand. A CS module is called continuous if it
satisfies the following condition:

ðC2Þ. Every submodule of M that is isomorphic to a direct summand of M is itself
a direct summand.

A CS module is called quasi-continuous if it satisfies the following condition:
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ðC3Þ. The sum of any two direct summands of M whose intersection is zero is a
direct summand.

Continuous modules are quasi-continuous [8]. A ring R is said to be right CS if
RR is a CS module. Right continuous and right quasi-continuous rings are defined
similarily. For a detailed study of CS, quasi-continuous and continuous modules we
refer the reader to [8].

We begin with the following result which will be used repeatedly in this paper.

Lemma 1.1. Let e be a local idempotent of a ring R. Then
(1) J þ ð1� eÞR is the unique maximal right ideal of R containing ð1� eÞR;
(2) J þ Rð1� eÞ is the unique maximal left ideal of R containing Rð1� eÞ;
(3) If 0 6¼ K 	 Re is an annihilator left ideal then SocðRRÞe 	 K, where e is a

local idempotent.

Proof. (1) Consider the map 1 ! e þ eJ from R ! eR=eJ. This is an epi-
morphism with kernel J þ ð1� eÞR. As e is local, J þ ð1� eÞR is a maximal right
ideal. If ð1� eÞR 	 I, where I is a maximal right ideal, then ð1� eÞRþ J 	 Iþ J ¼ I.
This gives (1).

(2) This is proved similarly to (1).
(3) As ð1� eÞR 	 rRðKÞ 6¼ R, by (1), rRðKÞ 	 J þ ð1� eÞR. Thus

K ¼ lRrRðKÞ � lRðð1� eÞRþ JÞ ¼ lRðð1� eÞRÞ \ lRðJÞ

� Re \ SocðRRÞ ¼ SocðRRÞe:
<

The following result generalizes the analogous result proved for right minfull rings
in [13, Theorem 3.7].

Theorem 1.2. Let R be a semiperfect ring satisfying ð�Þ with SocðeRÞ 6¼ 0 for
every local idempotent e. If R is right minsymmetric, then R admits a Nakayama per-
mutation of its basic idempotents. Moreover, if every simple submodule K 	 Re, where
e is a local idempotent, is a left annihilator, then

(1) fSocðRe1Þ; :::;SocðRenÞg is a complete irredundant set of representatives of
simple left R-modules, where e1; :::; en is a basic set of idempotents of R;

(2) SocðRRÞ ¼ SocðRRÞ;
(3) R is right minfull.

Proof. Let e1; :::; en be a basic set of idempotents of R. As SocðeiRÞ 6¼ 0 and R
satisfies ð�Þ, SocðeiRÞ is homogeneous for each i. Let Ki 	 SocðeiRÞ be simple. By ð�Þ,
i 6¼ j implies Ki 6ffi Kj. Thus there exists a permutation � of f1; :::; ng such that
e�ðiÞR=e�ðiÞJffi

�i

Ki for each i. Let �iðe�ðiÞÞ ¼ ki. Then Ki ¼ kiR and as kie�ðiÞ ¼ ki,
Rki 	 Re�ðiÞ: As eiki ¼ ki 6¼ 0, eiRki 6¼ 0 for each i. Also as R is right minsymmetric
and kiR ¼ Ki is a simple, Rki is simple for each i. So, by [1, Exercise 27.9],
Rki ffi Rei=Jei. Thus � is a Nakayama permutation.

Now suppose that every minimal left ideal contained in Re, where e2 ¼ e is
local, is a left annihilator. Let K 	 Re be simple. By Lemma 1.1 SocðRRÞe 	 K. As R
is right Kasch, SocðRRÞe 6¼ 0. So K ¼ SocðRRÞe implying that K ¼ SocðReÞ ¼
SocðRRÞe. Thus SocðRRÞ ¼ SocðRRÞ and Rki ¼ SocðRe�ðiÞÞ for each i. This gives (1).
Also as SocðRRÞe is a simple left R-module for every local idempotent e, by [13,
Theorem 3.2], R is right mininjective and thus right minfull. &
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Proposition 1.3. Let R be a semiperfect right CS ring with SocðRRÞ 	 SocðRRÞ.
Then R is right minsymmetric.

Proof. Let kR be a minimal right ideal of R. As R is right CS, there exists an
idempotent e of R such that kR�jjj eR. Clearly eR is uniform and so e is a local idem-
potent. As kR 	 SocðRRÞ 	 SocðRRÞ, Rð1� eÞ þ J 	 lRðkÞ 6¼ R. But Rð1� eÞ þ J is
a maximal left ideal by Lemma 1.1, so Rð1� eÞ þ J ¼ lRðkÞ. Thus Rk ffi R=lRðkÞ is a
minimal left ideal. &

Remark 1.4. Proposition 1.3 also holds for right min-CS rings (that is rings
whose minimal right ideals are essential in direct summands). The proof of Proposition
1.3 shows that if R is any ring with SocðRRÞ 	 SocðRRÞ then for any 0 6¼ k 2 SocðeRÞ,
where e is a local idempotent, Rk is simple. This extends [13, Proposition 3.3(3)] where
this result is proved for semiperfect right mininjective rings.

Lemma 1.5. ([9, Theorem 4]). In a quasi-continuous module closures of isomorphic
submodules are isomorphic. In particular, a semiperfect right quasi-continuous ring
satisfies ð�Þ.

Proposition 1.6. Let R be a semiperfect right CS ring with SocðRRÞ �jjj RR. If
SocðRRÞ 	 SocðRRÞ, then R is a right minsymmetric ring satisfying ð�Þ. In particular,
R admits a Nakayama permutation of its basic idempotents.

Proof. As SocðRRÞ 	 SocðRRÞ and SocðRRÞ �jjj RR, we have SocðRRÞ �jjj RR. Thus
R is left Kasch (see [11, Lemma 3]). By [18, Lemma 1], R satisfies the right C2 con-
dition and so R is right continuous. Now the result follows from Proposition 1.3,
Lemma 1.5 and Theorem 1.2. &

The last sentence of the following result was proved in [13, Theorem 4.17].

Corollary 1.7. A semiperfect right continuous ring R with SocðRRÞ �jjj RR is right
minsymmetric and satisfies ð�Þ. In particular, R admits a Nakayama permutation of its
basic idempotents.

Proof. By [8, Proposition 3.5] J ¼ ZðRRÞ and so SocðRRÞ 	 rRðZðRRÞÞ ¼

rRðJÞ ¼ SocðRRÞ. Now the result follows from Proposition 1.6. &

Recently Gómez Pardo and Yousif [6] proved that a right CS left Kasch ring R
is semiperfect right continuous with SocðRRÞ �jjj RR. Thus from Corollary 1.7 we have

Corollary 1.8. A right CS left Kasch ring R is semiperfect. Moreover, if
SocðRRÞ 	 SocðRRÞ then R is right minsymmetric with ð�Þ such that SocðRRÞ �jjj RR.

Corollary 1.9 ([18, Theorem 1]). A right CS ring R such that the R-dual of
every simple left R-module is simple is semiperfect right minsymmetric with ð�Þ such
that SocðRRÞ �jjj RR.

Proof. By [13, Proposition 2.2] R is left mininjective and so SocðRRÞ 	 SocðRRÞ.
Thus the result follows from Corollary 1.8. &

304 DINESH KHURANA

https://doi.org/10.1017/S0017089502020116 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089502020116


The following result was proved by Nicholson and Yousif in [12, Theorem 2.3] for
right generalized pseudo-Frobenius (GPF) rings (that is semiperfect right principally
injective rings with large right socle). We prove this result more generally for a semi-
perfect right principally injective ring R with SocðeRÞ 6¼ 0 for every local idempotent e.
The author does not know whether such rings are right GPF.

Theorem 1.10. Let e1; :::; en be a basic set of idempotents in a semiperfect right
principally injective ring with SocðeiRÞ 6¼ 0 for each i. Then there exist elements
k1; :::; kn of R and a permutation � of f1; :::; ng such that the following hold for each i:

(1) Rki ¼ SocðRe�ðiÞÞ ffi Rei=Jei is simple and essential in Re�ðiÞ. In particular, Re
is uniform for every local idempotent e;

(2) SocðeiRÞ is homogeneous with each simple submodule isomorphic to
e�ðiÞR=e�ðiÞJ;

(3) fRk1; :::;Rkng is a complete irredundant set of representatives of isomorphism
classes of simple left R-modules;

(4) fk1R; :::; knRg is a complete irredundant set of representatives of isomorphism
classes of simple right R-modules;

(5) SocðRRÞ ¼ SocðRRÞ ¼ �n
i¼1RkiR is essential in RR and is finitely generated as

a left R-module;
(6) RkiR is the homogeneous component of SocðRRÞ containing kiR and RkiR is

the homogeneous component of SocðRRÞ containing Rki.

Proof. Let k1; :::; kn and � be as in Theorem 1.2. Then (2), (3) and (4) follow
from Theorem 1.2.

(1) Let 0 6¼ b 2 Re�ðiÞ. As ð1� e�ðiÞÞR 	 rRðbÞ, by Lemma 1.1, rRðbÞ 	
ð1� e�ðiÞÞRþ J 	 rRðkiÞ because Rki 	 Re�ðiÞ is simple. Thus, by [12, Lemma 1.1],
Rki 	 Rb.

(6) By [13, Theorem 1.14(3)] the homogeneous component of SocðRRÞ con-
taining kiR is RkiR. Let Si be the homogeneous component of SocðRRÞ containing
Rki. Clearly RkiR 	 Si. Let f1; :::; fm be a complete orthogonal set of primitive
idempotents of R. By (1) above, Si ¼ �fSocðRfjÞ : Rfj ffi Re�ðiÞg. Now if Rfj ffi Re�ðiÞ
then there exists b 2 R such that SocðRfjÞ ¼ SocðRe�ðiÞÞb ¼ Rkib. Thus Si 	 RkiR.

(5) Follows from Theorem 1.2(2), and (1) and (6) above. &

Corollary 1.11. Let R be a semiperfect right principally injective ring with
SocðeRÞ 6¼ 0 for every local idempotent e. If S ¼ SocðRRÞ ¼ SocðRRÞ then

(1) ZðRRÞ ¼ J ¼ ZðRRÞ;
(2) lRðSÞ ¼ J ¼ rRðSÞ;
(3) lRðJÞ ¼ S ¼ rRðJÞ.

Proof. Using Theorem 1.10, the proof follows the same lines as that of [12,
Corollary 2.2]. &

There exists a left and right Artinian ring R such that every left ideal of R is a
left annihilator, but R is not quasi-Frobenius [2, page 70]. Clearly R is right prin-
cipally injective with large right socle. But R is not left mininjective as right Artinian,
left and right mininjective rings are quasi-Frobenius [13, Corollary 4.8].

The next result gives several characterizations of right PF rings. Since left CS
right Kasch rings are semiperfect [6], the implication ‘(4) ) (1)’ extends
[14, Theorem 2.8].
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Theorem 1.12. Let R be a semiperfect ring which cogenerates every 2-generated
right R-module. Then the following are equivalent:

(1) R is right PF;
(2) SocðRRÞ 	 SocðRRÞ;
(3) SocðReÞ 6¼ 0 for every local idempotent e of R;
(4) JðRÞ 	 ZðRRÞ.

Proof. As R cogenerates every cyclic right R-module, every right ideal is a right
annihilator (see for instance [1, Lemma 25.2]) and so R is left principally injective.
By [12, Theorem 1.14] SocðRRÞ 	 SocðRRÞ. Also as R is right Kasch SocðRRÞe 6¼ 0
for every local idempotent e of R.

(1) ) (2) This is well-known.
(2) ) (3) We have SocðRRÞ ¼ SocðRRÞ. Thus SocðReÞ ¼ SocðRRÞe ¼ SocðRRÞe

6¼ 0 for every local idempotent e of R.
(3) ) (4) This follows from Corollary 1.11.
(4) ) (1) As JðRÞ	ZðRRÞ, SocðRRÞ	rRðZðRRÞÞ	rRðJðRÞÞ¼SocðRRÞ and so

SocðRRÞ ¼ SocðRRÞ. For every local idempotent e of R, SocðReÞ ¼ SocðRRÞe ¼
SocðRRÞe 6¼ 0 and so, by the proof of Theorem 1.10(1), eR is uniform. Thus EðeRÞ,
the injective hull of eR, is also uniform for every local idempotent e.

Fix a local idempotent e in R. We show that eR ¼ EðeRÞ. Suppose, on the con-
trary, a 2 EðeRÞneR. As eR þ aR is uniform with non-zero socle (as SocðeRÞ 6¼ 0), it
is finitely co-generated right R-module [1, Proposition 10.7]. So, by hypothesis, there
exists an embedding eR þ aR ! Rn for some natural number n. As eR þ aR is uni-
form, we have an embedding � : eR þ aR ! fR for some local idempotent f in R
(see for example [14, Lemma 2.6]). As a 62 eR, �ðeRÞ is a proper submodule of fR
and so �ðeRÞ 	 fJ 	 ZðRRÞ. But as rRð�ðeÞÞ ¼ ð1� eÞR, this is a contradiction. Thus
eR ¼ EðeRÞ is injective for every local idempotent e of R and so R is right self-
injective. As R is right Kasch, R is right PF [1, Proposition 18.15]. &

It is not known whether a right perfect right self-injective ring is right PF. For a
detailed account of this problem we refer the reader to [4].

Proposition 1.13. Let R be a semiperfect ring satisfying ð�Þ with SocðeRÞ 6¼ 0 for
every local idempotent e. If SocðRRÞ is finitely generated then for any projective right
R-modules P and Q, SocðPÞ ffi SocðQÞ implies that P ffi Q:

Proof. Let e1; :::; en be a basic set of idempotents of R. By [1, Theorem 27.11] for
each i there exist sets Ii and Ji such that

P ffi �n
i¼1ðeiRÞ

ðIiÞ and Q ffi �n
i¼1ðeiRÞ

ðJiÞ:

Now SocðPÞ ffi SocðQÞ yields �n
i¼1SocðeiRÞ

ðIiÞ ffi �n
i¼1SocðeiRÞ

ðJiÞ. By hypothesis
there exists a set fS1; :::;Sng of mutually non-isomorphic simple right R-modules
such that SocðeiRÞ ffi Ski

i for some natural number ki (1 � i � nÞ. Let jSj denote
the cardinality of set S. Then �n

i¼1SocðeiRÞ
ðIiÞ ffi �n

i¼1SocðeiRÞ
ðJiÞ implies that

�n
i¼1 ðSki

i Þ
ðIiÞ ffi �n

i¼1ðS
ki

i Þ
ðJiÞ which, in turn, gives ðSki

i Þ
ðIiÞ ffi ðSki

i Þ
ðJiÞ for each i.

Thus, jki � Iij ¼ jki � Jij and so jIij ¼ jJij, proving that P ffi Q: &

Remark 1.14. Let R be a semiperfect ring with basic set of idempotents
fe1; :::; eng. Let there exist a set fS1; :::;Sng of mutually non-isomorphic simple right
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R-modules, such that SocðeiRÞ ffi Ski

i for some natural number ki (1 � i � nÞ. Then
the proof of Proposition 1.13 shows that for any projective right R-modules P and
Q, SocðPÞ ffi SocðQÞ implies that P ffi Q:

The following result slightly strengthens [13, Theorem 3.16].

Corollary 1.15. Let R be a left minfull ring with rRlRðKÞ ¼ K for every simple
right ideal K 	 eR, where e2 ¼ e is local. Then for any projective right R-modules P
and Q, SocðPÞ ffi SocðQÞ implies that P ffi Q:

Proof. Let e1; :::; en be a basic set of idempotents of R. By the proof of Theorem
1.2(1) fSocðe1RÞ; :::;SocðenRÞg is a complete irredundant set of representatives of
simple right R-modules. Thus the result follows from Remark 1.14. &

As every principal right ideal of a left principally injective ring is a right anni-
hilator, the following is a consequence of Corollary 1.15.

Corollary 1.16. Let R be a semiperfect left principally injective ring with
SocðReÞ 6¼ 0 for every local idempotent e of R. Then for any projective right R-modules
P and Q, SocðPÞ ffi SocðQÞ implies that P ffi Q:

2. Mininjective rings. As mentioned above every right mininjective ring is right
minsymmetric. Also a left minannihilator ring is right mininjective if SocðRRÞ 	

SocðRRÞ [13, Proposition 2.4] or SocðRRÞ �jjj
RR [13, Corollary 2.5]. Thus right min-

injective rings are closely related to right minsymmetric and left minannihilator
rings. In this section we study relationships between these conditions.

Consider the following condition on a ring R:

ð��Þ Every minimal right ideal of R is isomorphic to eR=eJ for some local idem-
potent e of R.

Clearly every semiperfect ring satisfies ð��Þ. A ring R satisfies ð��Þ if and only if
for every minimal right ideal K of R there exists a local idempotent e of R such that
Ke 6¼ 0 (see [1, Exercise 27.9]).

Lemma 2.1. ([13, Lemma 3.1]). Let R be a ring satisfying ð��Þ. Then R is right min-
injective if and only if for every local idempotent e of R either SocðRRÞe is simple or zero.

Proposition 2.2. Let R be a ring satisfying ð��Þ. Then
(1) If for every local idempotent e of R there exists a minimal left ideal in

SocðReÞ which is a left annihilator then R is right mininjective;
(2) If for every local idempotent e either SocðReÞ ¼ 0 or every minimal left ideal

contained in Re is a left annihilator, then the following are equivalent:
(a) R is right mininjective;
(b) R is right minsymmetric;
(c) SocðRRÞ 	 SocðRRÞ.

Proof. (1) Let e be a local idempotent of R and K be a minimal left ideal in Re
such that lRrRðKÞ ¼ K. By Lemma 1.1 SocðRRÞe 	 K. So either SocðRRÞe ¼ 0 or
SocðRRÞe ¼ K is simple. Thus, by Lemma 2.1, R is right mininjective.
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(2) (a) ) (b) follows from [13, Theorem 1.14] and (b) ) (c) is clear.
(c) ) (a) Let e be a local idempotent ofR. In view of Lemma 2.1 we have to show

that SocðRRÞe is either zero or simple. If SocðReÞ ¼ 0 then SocðRRÞe 	 SocðRRÞe ¼
SocðReÞ ¼ 0. Now suppose that SocðReÞ 6¼ 0 and let K 	 Re be simple. By Lemma 1.1
SocðRRÞe 	 K. Thus either SocðRRÞe ¼ 0 or SocðRRÞe ¼ K is simple. &

Lemma 2.3. Let R be a right Kasch ring with every minimal left ideal K 	 Re a
left annihilator, where e is a local idempotent. Then either SocðReÞ ¼ 0 or
SocðReÞ ¼ SocðRRÞe is a simple left R-module.

Proof. Let SocðReÞ 6¼ 0 and K 	 Re be simple. By Lemma 1.1 SocðRRÞe 	 K. As
R is right Kasch, SocðRRÞe 6¼ 0 and so K ¼ SocðRRÞe. As K is an arbitrary simple
submodule of Re, SocðReÞ ¼ SocðRRÞe is a simple left R-module. &

The equivalence of following conditions was observed by Nicholson and Yousif
in [13, Proposition 3.3 (4)] for semiperfect right mininjective right Kasch rings. We
prove that these equivalences also hold for non-semiperfect rings.

Proposition 2.4. Let e be a local idempotent in a right mininjective right Kasch
ring R. Then the following are equivalent:

(1) lRrRðKÞ ¼ K for every minimal left ideal K 	 Re;
(2) SocðReÞ ¼ SocðRRÞe;
(3) SocðReÞ is simple.

Proof. As R is right Kasch, SocðRRÞe 6¼ 0. Also by [13, Theorem 1.14]
SocðRRÞ 	 SocðRRÞ.

(1) ) (2) As 0 6¼ SocðRRÞe 	 SocðRRÞe ¼ SocðReÞ, by Lemma 2.3 we find
SocðReÞ ¼ SocðRRÞe.

(2) ) (3) As R is right mininjective, by [13, Lemma 3.1], SocðRRÞe is zero or
simple. But as SocðRRÞe 6¼ 0, SocðReÞ ¼ SocðRRÞe is simple.

(3) ) (1) Let K 	 Re be simple. Then 0 6¼ SocðRRÞe 	 SocðRRÞe ¼
SocðReÞ ¼ K. This gives K ¼ SocðRRÞe 	 lRðJÞe ffi HomðeReJ ;RÞ. As R is right min-
injective, the R-dual of every simple right R-module is either zero or a simple left
R-module [13, Proposition 2.2]. ThusK ¼ lRðJÞe ¼ lRðJÞ \ Re ¼ lRðJÞ \ lRðð1� eÞRÞ ¼

lRðJ þ ð1� eÞRÞ. &
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