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Abstract. The newly discovered inertial modes in the Sun offer the opportunity to probe the
solar convective zone down to the tachocline. While linear analysis predicts the frequencies and
eigenfunctions of the modes, it gives no information about their excitation or their amplitudes.
We present here a theoretical formalism for the stochastic excitation of the solar inertial modes
by turbulent convection. The amplitudes predicted by our model are in complete agreement
with observations, thus supporting the assumption that they are stochastically excited. Our
work also uncovers a qualitative transition in the shape of the inertial mode spectrum, between
m<∼ 5 where the modes are clearly resolved in frequency, and m>∼ 5 where the modes overlap.
This complicates the interpretation of the high-m data, and suggests that a model for the whole
shape of the power spectrum is necessary to exploit the full seismic potential of solar inertial
modes.
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1. Introduction

Internal rotation in the Sun allows for the development of inertial modes, which prop-
agate through the Coriolis force. While theory has predicted their existence for a long
time (Papaloizou and Pringle 1978), sectoral (l=m) Rossby modes have only recently
been observed in solar data (Löptien et al. 2018; Liang et al. 2019). This was followed
shortly thereafter by the report of additional families of inertial modes, due to the internal
differential rotation (Gizon et al. 2021; Hanson et al. 2022).
These newly observed inertial modes offer the possibility to probe the dynamics and the

structure of the solar convective envelope in a way that complements p-mode seismology.
For example, they are expected to be much more sensitive on the superadiabatic temper-
ature gradient or the turbulent viscosity throughout the convective zone. To exploit this
potential, theoretical modelling of the solar inertial modes is necessary. So far, efforts have
focused on linear analysis to model their eigenfrequencies and eigenfunctions (Gizon et al.
2020; Fournier et al. 2022; Bekki et al. 2022; Triana et al. 2022), which allows for the
identification of the observed modes. However, this approach gives no information about
the amplitude of the modes, that is to say about their excitation mechanism. Most of
them are linearly stable, meaning that they are most likely stochastically excited by tur-
bulent convection, like p-modes. Having a model for the excitation of the solar inertial
modes would allow us not only to predict which modes are expected to be visible and
identifiable, but also to put stronger constraints on the dynamics of the solar convective
zone, rather than only its equilibrium structure.

© The Author(s), 2024. Published by Cambridge University Press on behalf of International Astronomical

Union.

https://doi.org/10.1017/S1743921324000309 Published online by Cambridge University Press

https://doi.org/10.1017/S1743921324000309
https://orcid.org/0000-0002-5166-5040
mailto:jordan.philidet@obspm.fr
https://doi.org/10.1017/S1743921324000309


226 J. Philidet and L. Gizon

We present here such a model, tailored for purely toroidal inertial modes – which
the observed solar inertial modes are –, with the inclusion of latitudinal differential
rotation and turbulent viscosity, and placing ourselves in the equatorial β-plane approx-
imation. The model is similar to the commonly accepted picture for p-modes (e.g.
Samadi and Goupil 2001), where turbulent emission, meaning the non-linear term in
the momentum equation (Lighthill 1967), provides the necessary mechanical work to
excite the modes. This presentation highlights the main characteristics of the model, as
well as the results that we obtained when applying it to the solar case.

2. Synthetic power spectrum

We focus here on quasi-toroidal vorticity modes, for which the horizontal part of the
wave equation can be separated from its radial part. This allows us to adopt a 2D
setting, and study the excitation of vorticity waves in a 2D shear flow representing the
solar differential rotation. We place ourselves in the equatorial β-plane approximation,
that is transforming the latitude λ and longitude φ into Cartesian coordinates x≡Rφ
and y≡R sin λ, where R is the radius of the spherical shell under consideration. The
incompressibility of the flow allows us to describe it by means of a stream function Ψ,
related to the velocity u by

u=∇× (Ψez) , (1)

where ez is the unit vector normal to the surface. After some algebra, we get a linear
wave equation with a source term (Philidet and Gizon 2023)(
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where U ′′ is the second derivative of U(y) (which is the velocity due to differential
rotation), Δ is the Laplacian operator, and νturb the turbulent viscosity. This was written
under the assumption that we could separate the field into an oscillation part Ψosc and
a turbulence part Ψturb. We can then go in Fourier domain in time t and azimuth x, so
that the wave equation becomes a 1D ordinary differential equation (ODE).
Because the oscillation and turbulence parts are decoupled, the latter can be treated

as a source term, which we will consider as an input to the model, and will be taken from
observation of the solar surface. Then Eq. (2) becomes a linear ODE with a known source
term, whose solution can therefore be obtained by convolving the source term with the
Green function G(y1, y2) associated to the linear left-hand side. Eventually, one obtains
the following expression for the expected power spectra in terms of latitudinal velocity,
azimuthal velocity and vorticity respectively (Philidet and Gizon 2023)〈
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where yobs is the latitudinal coordinate at which the power spectrum is evaluated, and
〈 . 〉 denotes an ensemble average. The function I(ys) denotes the source covariance, and
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Figure 1. Equatorial power spectrum in the m-ω plane, in terms of azimuthal velocity (left)
and latitudinal velocity (right). Each vertical slice is normalised separately such that the maxi-
mum is unity. The diamonds show the real part of the eigenfrequencies of the linear homogeneous
problem. The colour code refers to the mode categories: in particular, the red diamonds repre-
sent the sectoral Rossby modes. The solid red line shows the theoretical dispersion relation for
sectoral Rossby modes.

is defined by

I(ys)≡
∫

dY
〈
Ŝ(ys) Ŝ

∗(ys + Y )
〉
, (6)

where Ŝ is the Fourier transform in t and x of the right-hand side of Eq. (2).
The only assumption required to write Eqs. (3) to (5) is that the correlation scale

of the source is much smaller than the typical variation scale of the Green function.
Since most of the turbulent energy comes from the granulation scales at �∼ 120 and
the inertial modes under consideration are low degree modes, this assumption is valid.
Some additional algebra is required to specify the source covariance; we eventually find
(Philidet and Gizon 2023)
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The function EΨ represents the turbulent stream function spectrum, and is defined by

EΨ(ω, k)≡
∫

dτ d2x 〈Ψturb(T,X)Ψturb(T + τ,X+ x)〉 ej(ωτ−k·x) . (8)

The two ingredients needed to apply Eqs. (3) to (5) to the solar case are the turbulent
spectrum EΨ and the Green function G. The former is extracted from observations, and
the latter is computed numerically using spectral methods (see Philidet and Gizon 2023,
for more details). Once the differential rotation profile is set, the turbulent viscosity is
the only adjustable parameter.

3. Results

Figure 1 highlights how the shape of the inertial mode power spectrum predicted by
our model, and as it would be observed at the equator, depends on azimuthal order m.
Naturally, the region of excess power (black regions) align with the linear eigenfrequen-
cies of the left-hand side of the wave equation. A striking feature, however, is that the
spectrum seems to undergo a qualitative transition at around m∼ 5. Below, the regions
of excess power are very thin, with clearly resolved and identifiable modes, especially in
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Figure 2. Prediction for the Rossby mode amplitudes (coloured solid lines) compared to obser-
vations (black line with error bars), as a function of azimuthal order m. The colour code refers
to the value of the turbulent Reynolds number: Returb = 300 (red), 700 (blue), and 1000 (green).

the latitudinal velocity spectrum, which is where the sectoral Rossby modes will be most
visible. Above m∼ 5, the regions of excess power start blending with each other, forming
a continuum of overlapping modes where modes cannot be resolved and identification
proves more delicate.
From these equatorial power spectra for each m, we can predict the amplitude of the

Rossby mode, like so

A=

(∫ ωb

ωa

dω P (ω)

)1/2

, (9)

where the boundaries ωa and ωb enclose the whole peak in the power spectrum. We show
the result in Fig. 2. The solid lines represent our model predictions, with three different
values of the turbulent viscosity νturb, or alternatively of the turbulent Reynolds number
Returb ≡UR/νturb (U = 244 m/s being the velocity due to differential rotation at the
equator, and R the solar radius). Also shown in the plot are the observed solar Rossby
modes amplitudes, in black. There is not only qualitative, but also quantitative agreement
between the two, with Rossby mode amplitudes starting out at a fraction of m/s for very
low order modes, then increasing with m, until they reach a plateau at around m∼ 10,
with modes reaching an amplitude between 1.5 and 2.5 m/s depending on Returb.

4. Discussion and conclusion

The general qualitative and quantitative agreement between the Rossby mode ampli-
tudes predicted by our model and the solar observations is striking, and supports the
hypothesis that the linearly-stable solar inertial modes are indeed stochastically excited
by turbulent convection. The mechanism is similar to the one traditionally invoked
to explain the observed the observed amplitudes of acoustic modes in low-mass stars
(Goldreich and Keeley 1977; Samadi and Goupil 2001), where the small-scale turbulent
motions in the convective zone exert mechanical work on (and therefore inject energy
into) the modes. A key difference is that while p-modes are mainly excited by vertical
turbulent motions, inertial modes are much more sensitive to toroidal turbulent motions.
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The qualitative transition that we find at m∼ 5 between clearly resolved structures for
low orders and overlapping modes for higher orders is an indication that the interpretation
of the data in the latter case may be much more complex than in the former. In particular,
it would suggest that in order to exploit the full probing potential of inertial modes, it
is necessary to model not only their individual, discrete eigenfrequencies (as well as
their respective eigenfunctions), but also to model the whole shape of the power spectral
density, a task for which linear analysis is not sufficient.
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