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Abstract. We review current observations of binary star populations
with particular attention to what insight these populations can give us
into the problem of how binary stars form. Significant progress has been
made in the past few years, revealing variations as a function of site,
primary star mass, and binary star separations. The variations in the
binary star population with type of star formation site in comparison
with the field, suggests that ~30% of the field binaries formed in loose T
associations and ~70% formed in the dense progenitors of open clusters.
Variations with mass and separation on the whole are well matched by
the predictions of fragmentation followed by competitive accretion. How-
ever, there remains much work to be done on both the observational and
theoretical end before a complete picture of binary star formation can be
developed.

1. Introduction

The wealth of young low mass binary stars identified over the last decade with
the advent of high spatial resolution imaging techniques has presented a number
of challenges to star formation theory. First, since binary stars appear to be
the norm as opposed to the exception, it is clear that the primary products
of star formation are multiple stars and not single stars. This demands that
the simplifying assumption of spherical symmetry be abandoned in models of
the star formation process. Second, the majority of the observed binary star
systems have separations that are smaller than the size typically assumed for a
circumstellar disk (~100 AU) and are, on average, comparable to the distance
between the Sun and Neptune (~ 30 AU). Interactions between companion stars
and the circumstellar disk environment must therefore be considered in models
of planetary formation. Third, in nearby T associations the companion star
fraction appears to be a factor of ~2 greater than that of the solar-type main
sequence stars found in the solar neighborhood (Ghez et al. 1993, 1997; Leinert
et al. 1993; Simon et al. 1995; Ko6hler & Leinert 1998). This unexpected result
raises a number of questions about possible variations between different sites
of star formation as well as the relationship of these T Association regions to
the final field population. This review focuses on the current progress in our
observational picture of binary star formation.
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2. Companion Star Fractions

A number of questions are raised by the factor of two discrepancy in the binary
star frequencies between the pre-main sequence stars in the nearby star forming
regions and the main sequence stars in the solar neighborhood at separation of
tens to hundreds of AU. Is the difference real or simply an artifact of varying
sensitivities to low mass companions? This effect might arise due to the shape
of the evolutionary tracks, which map a given mass ratio into a smaller lumi-
nosity ratio at an age of 2 Myr compared to 4.5 Gyr (e.g., Burrows et al. 1998).
Therefore, it is possible that T Tauri star surveys are detecting brown dwarf
companions that are relatively more luminous when they are young. Initially,
it was quite difficult to address this question, since obtaining secondary masses
from single wavelength measurements can lead to erroneous mass estimates.
Several multi-wavelength studies are now being carried out allowing for robust
mass estimates (see Figure 1; Hartigan et al. 1994; Ghez et al. 1997b; Brandner
& Zinnecker 1997; Prato 1998; White 1999; White & Ghez 2000; Woitas et al.
2000). Of the 79 PMS secondaries with mass estimates, only one, GG Tau Bb, is
a spectroscopically identified brown dwarf (White et al. 1999); this object is now
the lowest mass, spectroscopically confirmed object in Taurus. In addition, 5
other objects are candidate brown dwarfs, requiring spectroscopic follow-up (DI
Tau, HK Tau B, HBC 604 B, CZ Tau, Haro 6-28B; Meyer et al. 1997; Woitas
et al. 2000). In summary, it is not possible to explain the factor of two more
young companions with pre-main-sequence brown dwarfs.

The difference in companion star fraction between low stellar density star
forming regions and the solar neighborhood provided the impetus for a number
of both theoretical and observations studies. The theoretical studies model the
effects of different physical properties, such as age, stellar density, initial cloud
temperature, on the resulting companion star frequencies (e.g., Kroupa 1995;
Kroupa et al. 1999; Durisen & Sterzik 1994), while the observational studies
survey regions with different properties to measure the resulting variation in
companions with site. Observationally, the challenge is to compare similar types
of samples, controlling for properties such as the primary star mass, limiting
secondary star mass, and separation range (see, e.g., Duchene 1999). The results
are varied. Results in the Hyades suggest a trend with age (Patience et al. 1998),
whereas surveys of o Per, Praesepe, Pleiades, Orion show no evolution with time
and a potential dependence on stellar density (e.g., Bouvier et al. 1997; Patience
2000; Duchene 2000; Prosser et al. 1994; Padgett et al. 1997; Petr et al. 1998;
Simon et al. 1999). All these comparisons are made over a limited separation
range. Some of the disagreements between these studies are explained when a
larger range of separations is considered (Patience et al. 2000). As Figure 2
shows, PMS stars in loose associations, PMS stars in Orion, members of young
open clusters, and solar-type stars in the solar neighborhood have significantly
different distribution of separations. With these distributions, it is not surprising
that comparisons of companion star fractions over different limited separation
ranges give rise to different results.

Insight into the origin of the solar neighborhood stars can be obtained from
the companion star frequency distributions, if the field G-dwarf distribution is
assumed to be a superposition of distributions from the populations that con-
tributed to it (e.g., Brandner & Kohler 1998). In the analysis presented by
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Figure 1.  Secondary star mass vs. primary star mass for systems
observed at multiple wavelengths (Hartigan 1994; Ghez et al. 1997;
Brandner & Zinnecker 1997; Prato 1998; White 1999; Woitas & Leinert
2000). The majority of secondary stars in known T Tauri binaries have
masses above the brown dwarf limit in spite of the relative ease of
detecting such low mass companions at this early stage of evolution.

Patience et al. (2000), the G-dwarf distribution is scaled by a factor of 0.84
to account for the different mass ratio (q = My/M;) sensitivities; where the T
associations and young open clusters reach q = 0.25 and the corrected distribu-
tion of field G-dwarfs encompass g = 0.1. A fit of the combined T association
and cluster distributions to the scaled field G-dwarfs suggests that 30+15% of
the field binaries formed in dark clouds like the nearest T Tauri stars and the
remaining 70+15% formed in the dense progenitors open clusters (Patience et
al. 2000). This analysis suggests that a much lower fraction of the field is formed
in a clustered environment than was previously suggested by star count studies,
which obtained values as high as 96% (e.g., Lada et al. 1991). Consistent with
the open cluster result, another recent study using wide proper motion systems
in Orion as a probe of the populations that contributed to the field also sug-
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gests a lower percentage, ~80%, of systems formed in the clustered environment
(Scally et al. 1999).

Analysis of the relationship between binary star formation in clustered vs.
loose associations would be greatly assisted by surveys that reach separations of
tens of AU in giant molecular clouds. Orion, the nearest giant molecular cloud,
is ~3 times the distance to the nearest dark cloud complexes and therefore no
published measurements have probed the separation range that shows an excess
of companion stars. To reach this separation range, higher angular resolution is
necessary; diffraction-limited imaging with the 10-m class telescopes affords the
opportunity to probe binary star separations as small as 9 AU at the distance
of Orion. Such surveys, with angular resolution of 0.”05 are just beginning (see
Figure 3).

3. Constraints on Star Formation Theories

Binary star formation mechanisms fall into two broad categories, capture and
fragmentation (see, e.g., review of Clarke 1996 or Clarke 2000). Several, although
not all, of these theories have testable predictions for the observable properties of
young binary stars. Of particular importance is how the companion star fraction
and mass ratio (q=M,/M,) distributions depend upon stellar mass and binary
star separation. Observations that probe these properties have just begun to
make some progress. Below, I review some of the predictions and observations
supporting and contradicting them (sometimes simultaneously!).

Capture is one of the oldest mechanisms proposed for binary star formation.
Capture scenarios within a large cluster are generally ruled out as a dominant
formation mechanism due to the rarity of capture encounters (Boss 1988). More-
over, the relative ages of binary star components formed in this manner are not
necessarily coeval, which is inconsistent with the observation that the pre-main
sequence binary star pairs are more co-eval than randomly paired members of
Taurus (White 1999; White & Ghez 2000). Capture or dynamical decay within
small N clusters (N<~10) is a much more efficient process in which binary pairs
become gravitationally bound soon after the cluster formation (e.g., McDonald
& Clarke 1993, 1995; Sterzik & Durisen 1998). In contrast to large cluster cap-
ture scenarios, this rapid capture mechanism yields binary pairs that are coeval.
Another outcome of the small-N capture scenarios is that the companion star
fraction is expected to increase with the primary star’s mass. On the observa-
tional end, different trends are seen in different studies. Supporting evidence is
found by Bouvier (2000), who reports an increase in companion star fraction for
wide binaries with mass; the Herbig Ae/Be stars appear to have at least twice
as many companions as the field G-dwarfs. Whereas, a new survey of M-dwarf
T Tauri stars in Taurus finds no dependence with mass, with a companion star
fraction between 3 and 250 AU of 0.37 + 0.09 compared to 0.46 £0.04 for the
solar-like T Tauri stars (Ghez et al. 2000; see Figure 4). In more extreme con-
trast, the companion star fraction between 26 - 581 AU appears to decrease with
mass in a study of young open clusters (Patience 1999). It is therefore difficult
to conclude what the true mass dependence for the companion star fraction is.
More work needs to be done to establish what other factors may be responsible
for the apparent contradictory results.
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Fortunately, small-N capture also has predications for the mass ratio dis-
tributions. In the first model of this class, small-N capture without disks (Mc-
Donald & Clarke 1993), predicts that the mass ratio should rise towards unity.
The mass ratio results are fortunately less contradictory between studies. None
of the studies with measured mass ratios have mass ratios rising towards unity.
For the young open clusters, the mass ratio distribution appears to be declining
towards more equal mass systems (Patience 2000). The results for the younger
stars in Taurus are somewhat flatter (Woitas & Leinert 2000, White 1999), how-
ever the 2.2 um flux ratios suggest that there may be more equal mass systems in
Taurus than in other regions (Ghez et al. 1997a; Duchene 1999). Adding disks
to this model randomizes the companions and creates more small-q binaries,
consistent with the observed distributions. However, the encounters that create
the binary star pairs also preclude the formation of a circumbinary disk (Hall,
Clarke & Pringle 1996). Several circumbinary disk systems have already been
directly or indirectly identified (e.g., Dutrey et al. 1994; Roddier et al. 1996;
McCabe& Ghez 2000; Jensen & Mathieu 1997). Dynamical decay of few-body
systems predicts a mass dependence for the mass-ratio distribution, with a high
fraction of small-q systems occurring in systems with massive primary stars.
This is supported by the young open clusters and has not been cleanly tested
for the younger populations of stars. This leaves dynamical decay as the most
attractive candidate from this class of models.

The fragmentation of either cloud cores during gravitational collapse (e.g.,
Bodenheimer 2000) or of a circumstellar disk (e.g., Bonnell 2000) constitutes the
second class of mechanisms for forming binary stars. In general, fragmentation
has the advantage that it naturally produces circumbinary disks (Bate & Bon-
nell 1997; Bate 2000a). Disk instabilities that can lead to fragmentation have
not yet lent themselves to any more clear testable predictions. However, only
close binary stars can form in this scenario. Therefore one might expect to see
a change in binary star properties at the scale of ~100 AU, the typical size of
a circumstellar disk. Without clear predictions, comparisons are not attempted
here. For the specific case of scale-free core fragmentation, Clarke (1997) derived
the following observable prediction: a mass ratio distribution that is indepen-
dent or only weakly dependent upon the primary star mass. As described above,
the observational results vary, but in many of the studies mass dependencies are
observed. Numerical models of core fragmentation cannot currently simulate
the full evolution from molecular cloud core to observable binary properties,
however recent simulations of accretion onto protobinary fragments have gen-
erated several testable predictions (Bate 2000a). In an isolated star formation
environment, closer and more massive binary stars are expected to have a higher
fraction of more equal mass components. In Taurus, samples split at ~ 160-180
AU appear to show the predicted trend (Koéhler & Leinert 1998; White 1999).
In contrast the young open cluster surveys show no such trends (Patience 1999).
This, however, may be explained by the difference in competitive accretion in
the isolated vs. clustered star formation environment (Bate 2000b). Further
support for the isolated competitive accretion models is derived from the pre-
dicted circumstellar disk properties: if only one circumstellar disk exists, it is
associated with the more massive component (a circumprimary disk). A corol-
lary of this prediction is that the presence of a circumsecondary disk implies the
existence of a circumprimary disk. This is strongly supported by observations
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in Taurus and Ophiuchus (Prato & Simon 1997; Monin et al. 1998; White &
Ghez 1998; Duchene et al. 1999; White 2000; Prato & Monin 2000). Therefore
fragmentation appears to be a tenable mechanism and is in fact today the fa-
vored mechanism. It is important to note that capture and fragmentation may
not be separate processes, as fragmentation may produce the small clusters that
are the initial conditions of the capture scenarios (e.g., Boss 1998). However,
there remains much work to be done on both the observational and theoretical
end before a complete picture of binary star formation can be developed.
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Figure2.  Companion star fraction (CSF) distributions spanning 0.02
- 581 AU are constructed for (a; top left) PMS stars in loose associations
(g>0.25), (b; top right) members of young open clusters (q>0.25), (c;
middle left) nearby solar-type stars (g>0.1), and (d; middle right) PMS
stars in Orion. Significant differences in the populations’ mean binary
star separations exist. On the bottom row, the Gaussian fits to the first
three distributions, with the G-dwarf distribution scaled by a factor of
0.84 to account for difference in mass ratio distributions. Combining
the top two distribution suggests that 1/3 of the field stars formed
in loose associations and 2/3 formed in the dense progenitors of open
clusters. This figure is taken from Patience et al. (2000).
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Figure 3. High angular resolution images in the Trapezium taken
with Keck, which can probe scales as small as 9 AU (Patience, Mac-
intosh, Ghez 2000). (a; left) A 0.15 binary stars (field of view 0”.37 x
0”.37) and (b; right) a newly detected extended object with a nearby
point source (field of view 2”.19 x 1”.58)

projected power

spatial frequency

Figure 4.  Power spectrum of one of the newly discovered M-dwarf T
Tauri star in Taurus in (a; left) two-dimensions and (b; right) projected
into one-dimension. The binary star separation is 0.”702 = 3 AU and
the position angle has changed by 14 degrees in 1 year (Ghez et al.
2000).
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