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HYPERCONVEXITY AND BERGMAN
COMPLETENESS
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Abstract. We show that any bounded hyperconvex domain is Bergman com-
plete.

Let D C C" be a bounded domain. By bp we denote the Bergman
distance on D which is defined as the integrated form of the Bergman
metric

n
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ie. bp(#,2") := ([ Bp)(¢',2"), 2/, 2" € D, where Kp(-,-) is the Bergman
kernel of D (for more details see [9, Chapter IV]).

It is an old problem asked by Kobayashi (cf. [11], see also [12]) which
bounded pseudoconvex domain D C Cm" is Bergman complete. Observe
that pseudoconvexity is necessary. There is a long list of papers treating
this question (cf. [5], [7], [10], [13], [14], [15], [16]). The state of affair
is that the Bergman kernel Kp tends to infinity near the boundary if D
is hyperconvex (cf. [14]). Recall that a bounded domain D is called to
be hyperconvez if there is a continuous negative plurisubharmonic exhaus-
tion function. Observe that D is already hyperconvex if a negative (not
necessarily continuous) plurisubharmonic exhaustion function of D exists
(cf. [17], [3]). Using a result of P. Pflug (cf. [16]) density of H®°(D) in
L%(D) would imply that D is Bergman complete. Following this line Chen
(cf. [5]) proved recently that any bounded pseudoconvex domain with Lip-
schitz boundary is b-complete. Observe that such domain is automatically
hyperconvex (cf. [6]). In his paper, Chen asks the question whether any
bounded hyperconvex domain is Bergman complete. In fact, his paper it-
self contains the key to solve that question in the affirmative. Namely, the
following lemma is there.
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LEMMA. (cf. [5]) Let D be a bounded hyperconvezx domain in C™. Then
there is a positive constant C such that if f € L2(D) and a € D then there
exists F € L(D) such that

F(a) =0 and |F — fllz2(py < Cllfllz(p.)»

where D, := {z € D:gp(a,z) < —1}. Here gp(a,-) denotes the pluricom-
plex Green function of D with pole at a.

Using an old result by Pflug (cf. [16]) we get (see also the paper of
Chen):

PROPOSITION A. Let D be a bounded hyperconver domain in C". As-
sume for any boundary sequence (a,), C D, lima, =: a € 9D, that
vol(D,,) — 0. Then D 1is bp-complete.

Proof. Assume that D is not Bergman complete. Then, according to
[16] we find a boundary sequence (a,) — v C D and real numbers (0,),
such that

( Kp(,a) ei@,,)
VK play,ay) v
is a Cauchy sequence in the Hilbert space L2 (D) that converges to a function

f € Ly(D) with ||fllz2(py = 1.
Hence we get taking scalar product that

£ (av)|

R RS e — 2 =
Kooy Mo =1

On the other side using the above lemma we see that for suitable functions
F, € L}(D) we have

<IE = Fllzzoy < Cllfllzz2(p., )

which contradicts the assumption that vol(D,, ) — 0. 0

So the main point to prove is the following statement.
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PROPOSITION B. Let D be a bounded hyperconver domain in C* and
let (ay), C D be a boundary sequence in D. Then

vol({z € D : gp(a,,z) < =1}) — 0,
if v — 0.
Proof. According to a result from [2] we find a function w € PSH(D)N

C(D) with (dd°u)™ = dA and u|sp = 0. Using an estimate proven in [1] we
obtain

/(_QD(“V"))"dA = lim | (—max{gp(a,,-), —j})"(dd°u)"
D j—o Jp

< nllull=lp, Jim [ (~u)(dd max{gp(a, ), ~))"

—

= nd(2m)"lult oy ),

where the last equality is due to Demailly [6]. Therefore,

lim (—gp(ay,))"dA =0,

V—00 D
from which the assertion immediately follows. O
Combining Propositions A and B we reach the following result

THEOREM. Any bounded hyperconver domain D C C" is Bergman
complete.

In particular, we get (cf. [10] and [5] (see also [6])) the following corol-
lary.

COROLLARY. a) Any bounded complete circular domain of holomorphy
with continuous Minkowsk: functional is Bergman complete.

b) Any bounded pseudoconver domain with Lipschitz boundary is Bergman
complete.

Acknowledgements. This paper was written during the first au-
thor’s stay at the Mid Sweden University in Sundsvall. As pointed out
by Urban Cegrell, Proposition B can be also deduced from [4, Theorem 4.8]
which asserts that lim gp(a,,-) = 0 almost everywhere, and a result of
Hérmander says that in such a case we have in fact gp(ay,-) — 0in LL _ (D)
(see e.g. [8, Theorem 3.2.12]).
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