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ABSTRACT. Basal sliding and other processes affecting ice flow are chal-

lenging to constrain due to limited direct observations. Inversion methods,

which typically fit an ice flow model to observed surface velocities, enable the

reconstruction of basal properties from readily available data. We present

a numerical inversion framework for reconstructing the glacier basal sliding

coefficient, applied to both synthetic and real-world alpine glacier scenarios.

The framework employs automatic differentiation to generate adjoint code

and runs in parallel on graphics processing units. We explore two inversion

workflows using the shallow ice approximation (SIA) as the forward model: a

time-independent approach fitting to a single snapshot of annual ice velocity

and a time-dependent inversion accounting for both ice velocity and changes

in geometry. We find that the time-dependent inversion yields more robust

and accurate velocity fields than the snapshot inversion. However, it does not

significantly improve the problematic initial transients often encountered in

forward model runs that employ sliding fields from snapshot inversions. This

is likely due to the limitations of the forward model. This methodology is

transferable to more complex forward models and can be readily implemented
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in languages supporting automatic differentiation.

INTRODUCTION

Variations in bed properties that affect basal sliding, such as the distribution of deformable sediment versus

hard bedrock, significantly impact the dynamics of large ice masses. To account for the impact of these

bed heterogeneities on ice flow, models of ice-sheet and glacier evolution require appropriate boundary

conditions at the ice-bedrock interface. As the glacier bed remains challenging to observe, these basal

boundary conditions can only very rarely be directly specified (e.g. Vincent and Moreau, 2016; Cohen and

others, 2000; Iverson and others, 2007). Instead, inferring basal properties such as basal sliding can be

achieved by assimilating remotely sensed or direct measurements of surface flow with an ice flow model

in an inverse modelling framework. Practically, observed surface flow velocities are commonly used to

constrain basal sliding. The increase in both spatial and temporal resolution in datasets has driven and

will continue to drive developments that deliver more accurate projections of ice flow in a changing climate.

Many previous studies have deduced basal stresses or sliding coefficients under modern ice sheets and

glaciers, pioneered by MacAyeal (1992, 1993) and adapted, for instance, by Vieli and Payne (2003); Joughin

and others (2004). These early studies were applied to limited regional-scale applications using the shallow

shelf approximation equations appropriate for stretching flow and using control, or adjoint, methods to

invert for basal properties. Recent studies using a similar approach have been applied, for example, to the

Pine Island/Thwaites Glacier areas and to continental Antarctica (Vieli and Payne, 2003; Morlighem and

others, 2013). Other examples are Price and others (2011), who applied a simpler inversion method to

Greenland, and Le Brocq and others (2009), who linked a similar method with a basal hydrology model for

West Antarctica. More recently, the initMIP-Greenland and initMIP-Antarctica intercomparison studies

(Goelzer and others, 2018a; Seroussi and others, 2019) showed how data assimilation improves ice sheet

model initialisation by comparing various methods to incorporate observational data. All these studies are

based on fitting modeled ice velocities to observed surface or balance velocities, with ice surface elevations

prescribed based on digital elevation models. A similar approach but fitting ice thickness instead of ice

velocity has been used as well (e.g. Pollard and DeConto, 2012; Le clec’h and others, 2019).

For alpine glaciers, significant research is focused on estimating the ice thickness and surface mass

balance to project volume estimates into the future (Farinotti and others, 2009, 2017, 2021; Zekollari and
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others, 2019). In these studies, basal sliding is usually accounted for by assuming that a fixed fraction

of the surface velocity is attributed to sliding, and the inversion is typically based on a combination of

physics-based and empirical relations (Zekollari and others, 2022). In some cases, 1D flowline models are

employed to reconstruct the bedrock topography using Bayesian inference (Werder and others, 2020), with

the glacier sliding assumed to be constant. Notable exceptions that present inversions for basal sliding

include Gilbert and others (2020) and Schäfer and others (2015), where an adjoint-based method is used

to invert spatially variable basal friction from observed surface velocities using a 3D Stokes model, but

without considering geometry evolution, and Jouvet (2023), where the distribution of the sliding parameter

is reconstructed using a deep-learning ice-flow emulator.

Most inversions of basal properties in glaciology make use of the fact that glaciers and ice sheets behave

as a Stokes flow, i.e., that the flow velocity has no history dependence. This means that, in theory, for

a given ice geometry and boundary conditions the ice flow velocity is fully determined; conversely, given

observations of ice geometry and velocity, the boundary conditions can be inverted. Notably, neither the

surface mass balance nor the evolution of the ice geometry is needed for this type of inversion, which is

called snapshot inversion (Morlighem and Goldberg, 2023). Unlike the velocity, the evolution of the ice

geometry, driven by ice flow, mass balance and mass conservation, is history-dependent. Consequently, if

an inversion aims to use the often available observations of geometry evolution, it will need to be a so-called

time-dependent inversion (Morlighem and Goldberg, 2023).

In general, it is desirable to use as much available data as possible to better constrain the quantity being

inverted. For instance, it has been observed that forward model runs using basal boundary conditions from

snapshot inversions frequently exhibit significant initial changes in geometry, such as unrealistically high

rates of surface elevation change (e.g. Goldberg and Heimbach, 2013; Joughin and others, 2009). Using

the additional information of observed geometry changes in time-dependent inversions may address such

issues (Morlighem and Goldberg, 2023).

The adjoint state method (Giles and Pierce, 2000) is one of the few practical ways to perform high-

resolution inversions and is regularly applied in glaciology both for snapshot and time-dependent inversions

(Morlighem and Goldberg, 2023). The main advantage of this method is that the cost of evaluating the

gradient of the objective function, i.e., the function which needs to be minimised in the inversion, is only one

forward solve and one linear adjoint solve. The main disadvantages are posed by the complex derivation of

the adjoint state equations and the risk of the inversion being trapped in a local minimum. Adjoint-based
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inversions, used to optimize parameters such as ice flow properties, require computing the gradient of an

objective function, which is often complex and high-dimensional. Deriving this gradient manually is both

time-consuming and error-prone. Therefore, automatic differentiation (AD), which can differentiate com-

puter code directly, has become a preferred approach to accurately calculate such gradients (e.g. Heimbach

and others, 2002; Goldberg and Heimbach, 2013; Morlighem and Goldberg, 2023).

As stated above, time-dependent inversions are a way to include more data in inversions with the

potential to achieve higher fidelity. Compared to snapshot inversions, taking time into account adds an

additional dimension, resulting in a more demanding approach in terms of both implementation, e.g.,

using the adjoint state method, and computational resources. These kind of inversions were pioneered in

glaciology over the last two decades (Morlighem and Goldberg, 2023). Early time-dependent inversions used

1D flow-line models to examine the history of accumulation of ice sheets, via internal layer information

(Waddington and others, 2007; Koutnik and others, 2016), or used time-dependent geometry evolution

data for ice thickness estimations of mountain glaciers (Michel and others, 2013). Goldberg and Heimbach

(2013); Larour and others (2014) and Goldberg and others (2015) pioneered time-dependent inversions

on ice-sheet catchment scale using depth-integrated, higher-order ice flow models. They employed above

mentioned adjoint state method combined with AD in order to construct the needed gradients to optimize

the time-dependent cost function. The combination of these two methods made both the code development

and computation tractable. Since then a number of studies have applied variations of this type of approach

(e.g. Koziol and others, 2021; Morlighem and others, 2021; Choi and others, 2023). More recently, methods

based on statistical methods have been employed for time-dependent inversions, such as Kalman filters

(Gillet-Chaulet, 2020) or Bayesian approaches (Brinkerhoff and others, 2024). Whilst above research shows

that time-dependent inversions are becoming more common in glaciology, unlike snapshot inversions, they

are not routinely employed yet and are still in development in the major ice sheet models the community

uses (Morlighem and Goldberg, 2023).

Recent advances in computer hardware, programming languages, and computational tools have led to

significant progress in scientific computing in glaciology. Graphics processing units (GPUs) offer orders of

magnitude speed-up over traditional CPU-based computations (Sandip and others, 2024) and have been

utilised in glaciology since the early days of general-purpose GPU computing (Brædstrup and others,

2014). Today, GPUs have been used for large-scale, three-dimensional, Stokes models (Räss and others,

2020) and climate inversions based on paleo glacier extents (Vinjevi and others, 2018). However, GPUs
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remain underused in glaciology, particularly compared to their adoption in fields such as climate modeling.

To date, none of the widely-used numerical ice-sheet models incorporate GPU capabilities, highlighting the

need for further development in this area.

Recent developments, largely driven by artificial intelligence research, have enhanced tools and program-

ming languages that support AD of CPU and GPU codes, making these approaches more accessible and

efficient. Frameworks such as dolfin-adjoint enable adjoint code generation on CPUs (Mitusch and others,

2019), while GPU-enabled computational frameworks like TensorFlow have enabled deep-learning-based

surrogates (Brinkerhoff and others, 2021; Jouvet and Cordonnier, 2023; Jouvet, 2023) and physics-informed

neural networks for ice flow simulations and inversions (Jouvet and Cordonnier, 2023).

However, these frameworks often have limitations in terms of flexibility and performance. Newer

programming languages, such as Julia (Bezanson and others, 2017), overcome many of these issues by

combining ease of use with state-of-the-art performance across multiple computing platforms, including

GPUs (Räss and others, 2022). Additionally, Julia supports AD for nearly the entire language, further

enhancing its utility in scientific computing. For example, Bolibar and others (2023) utilise Julia to

develop an approach that combines physics-based and machine-learning-based simulations to invert for ice

flow parameters of mountain glaciers.

The main aim of this study is to provide an automated and computationally efficient AD and GPU-based

procedure for time-dependent inversions of the spatial distribution of the basal sliding coefficient. This

inversion procedure is then assessed by (i) studying the differences between snapshot and time-dependent

inversions; (ii) verifying our approach on a synthetic test case; and (iii) applying it to the Aletsch glacier

in the Swiss Alps. First, we present the methods detailing our approach to inverse modelling using the

adjoint state method. Next, we outline the numerical implementation, demonstrating how we leverage AD

on GPUs using Julia. Subsequently, we describe the two different model configurations that we investigate:

the snapshot and time-dependent cases, which are applied to both a synthetic example and Aletsch glacier.

Finally, we present the results, discuss their implications, and provide an outlook on how to extend this

work.

METHODS

By using inverse modelling, we seek a better understanding of the complex motion of glaciers partially

sliding over the bed. To achieve this goal, we solve an optimisation problem to estimate the hidden basal
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state of glaciers by leveraging observations of ice surface velocities from remote sensing or sparse direct

measurements. Additionally, as we continue to develop the method, we incorporate ice surface elevation

changes recorded in digital elevation models taken at different moments in time.

In this study, we consider two inversion approaches: snapshot and time-dependent. In snapshot in-

version, the geometry of the glacier is assumed to be known from observations at a given time, and only

the instantaneous velocity distribution at that point in time is used to reconstruct the sliding parameter.

Snapshot is a commonly used inversion approach since it has the advantage of not requiring any informa-

tion on the surface mass balance. However, when using the results of the snapshot inversion to integrate

the ice flow model forward in time, the predicted velocities and geometry changes might exhibit unrealistic

variations due to the lack of temporal information (Goldberg and Heimbach, 2013; Joughin and others,

2009), discrepancies between different data products, and insufficient spatial coverage of the observations.

These issues can be partially addressed by the time-dependent inversion, which takes into account both

the velocity and geometry change observations, and assimilates them in a transient ice flow model. While

producing potentially more robust reconstructions of the sliding parameter with respect to the observa-

tions, this inversion approach is more computationally demanding, especially for large-scale inversions.

Our framework has the potential to enable inverse modelling on larger problems by leveraging massively

parallel GPU computing both for running the forward model and for the computation of the gradients.

In this study, we are using the depth-averaged Shallow Ice Approximation (SIA) as the forward model

with the assumption that the horizontal scale of the ice extent is much larger than the vertical extent

(Cuffey and Paterson, 2010). The SIA provides a simplification of the Stokes equations at the expense of less

accurate results near the margin and ice divide. Despite the limitations of SIA when modelling mountain

valley glaciers or ice sheets (e.g. only 3 out of the 37 simulations included in ISMIP6 for both Greenland and

Antarctica use SIA (Goelzer and others, 2018b; Seroussi and others, 2019)), the computational efficiency

and simplicity of SIA represent an advantage for large-scale applications and long-term simulations. A

decrease in computational cost renders the SIA model also attractive in providing an efficient way to

initialise more complex ice flow models for specific conditions or to fit observational data (Arthern and

Gudmundsson, 2010). The SIA model is thus sufficient for the present work, the purpose of which lies

mainly in exploring the inversion methods and their efficient numerical implementation.

In both snapshot and time-dependent inversion approaches, our goal is to determine the spatially
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varying sliding parameter As that minimises the following objective functional:

J (As) = Jobs(As) + γJreg(As) . (1)

Here, Jobs is the observational component of the total misfit, Jreg is the Tikhonov regularisation component,

and γ is a tunable parameter designed to prevent overfitting.

In this study, we define J reg as the norm of the gradient of logAs:

Jreg(As) = 1
2
∑
i

(∇ logAsi)
2 , (2)

where i is the grid point index. With this choice of regularisation, larger values of γ result in a smoother

distribution of As. It is important to note that the regularisation term involves the logarithm of As. This

approach is adopted because the inversion is performed in a logarithmic scale, allowing us to better capture

the wide range of values while ensuring the positivity of As.

Snapshot inversion

In the snapshot approach, we fix the surface elevation data from the observations and seek to find the

sliding coefficient distribution that leads to modelled surface velocities matching observations. We define

the observational part of the objective function as a spatially integrated difference between surface velocity

magnitude obtained from the model and the observed surface velocity magnitude:

J s
obs(As) = ωV

2
∑
i

(
Vi(As) − V obs

i

)2
, (3)

where Vi(As) is the surface velocity computed according to the forward model, V obs
i denotes the observed

surface velocity magnitude.

To normalise the first term, we use the parameter ωV as the inverse of the L2-norm of the observed

velocity field:

ωV =
[∑

i

(
V obs
i

)2
]−1

. (4)
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Time-dependent inversion

In the time-dependent approach, we seek to reconstruct the sliding coefficient As distribution by fitting

both the magnitude of the modelled surface velocity and the geometry of the ice over a defined time

period. In this case, the observational part of the objective functional J td
obs(As) measures the total spatially

integrated differences between modelled and observed surface velocity and ice thickness with ωV and ωH

as normalisation weights:

J td
obs(As) = ωV

2
∑
i

(
Vi(As) − V obs

i

)2
+ ωH

2
∑
i

(
Hi(As) −Hobs

i

)2
, (5)

where Hi(As) is the modelled ice thickness corresponding to the parameter As, and Hobs
i is the observed

ice thickness. The modelled ice thickness H in (5) is defined at the same moment in time as the observed

ice thickness Hobs. We approximate the average annual velocity using the velocity distribution V at the

end of the time integration period. Note that (5) does not include summation over time. In this study, we

assimilate only one velocity and ice thickness dataset in the time-dependent inversion, thus, we omit the

summation.

We define the parameters ωV and ωH as the weighted inverse of the L2-norm of the observed velocity

and ice thickness fields, respectively:

ωV = ωnV

[∑
i

(
V obs
i

)2
]−1

, (6)

ωH = ωnH

[∑
i

(
Hobs
i

)2
]−1

, (7)

√
(ωnV )2 + (ωnH)2 = 1 . (8)

where ωnV and ωnH are normalised weights representing the relative influence of velocity and ice thickness,

respectively.
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Constants Value Units

A0 Ice flow parameter 2.5 · 10−24 Pa−3s−1

As0 Basal sliding parameter 10−22 Pa−3m2s−1

ρ Ice density 910 kg m−3

g Gravitational constant 9.81 m s−2

n Exponent in Glen’s flow law 3 –

Table 1. Forward ice-flow model parameters.

Forward model

In this study, we use the isothermal SIA as the forward model both for the snapshot and time-dependent

inversion approaches. According to the SIA, the surface velocity V is given by:

V = (ρg)n
[ 2
n+ 1

AHn+1 +AsH
n
]

|∇S|n , (9)

where S = B+H is the ice surface elevation, B is the bed elevation, ρ is the ice density, g is the gravitational

acceleration, A is the ice-flow parameter, As is the sliding parameter and n is Glen’s flow law exponent

(Glen, 1958). The first term in brackets of (9) represents the flow due to ice deformation and the second

term due to sliding following a Weertman-like sliding law (Fowler and Frank, 1997) where all constants are

lumped into As.

The constants of the ice flow model are listed in Table 1. To account for the discrepancies introduced

by using the simplified ice flow description, we introduce the correction factor E to define the ice flow

parameter A:

A = EA0 , (10)

where A0 is the reference value of the ice flow parameter. We vary the value of E depending on the

problem setup, but keep it constant in time and space, assuming that most of the variability in the results

can be attributed to the local changes in sliding. We consider the ice to be temperate, and all temperature-

dependent constants listed in Table 1 are computed at T = 0 C◦.

The evolution of the ice thickness H is described by the depth-averaged mass conservation equation:

∂H

∂t
= −∇ · q + ḃ , (11)
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where q is the horizontal ice flux and ḃ is the volumetric surface mass balance rate, i.e. the rate of ice

accumulation and ablation at a point. The horizontal ice flux q is defined as the vertically integrated

velocity field:

q =
∫ S

B
V (z) dz . (12)

We define the surface mass-balance ḃ as:

ḃ = min
{
c(S − zELA), ḃmax

}
, (13)

where c is the mass-balance rate gradient, S is the surface elevation, zELA is the equilibrium line altitude,

and ḃmax is the maximum ice accumulation rate (Meier, 1962). This piecewise linear relation reflects the

observation that the dependence of the mass balance on the elevation is usually stronger in the ablation

area than in the accumulation area (Mayo, 1984).

Following the approach of Hindmarsh and Payne (1996), the ice flow equation (11) can be regarded as

a non-linear diffusion-reaction equation with a non-linear diffusion coefficient D and horizontal diffusion

flux q:

q = −D ∇S , (14)

D = (ρg)n
[ 2
n+ 2

AHn+2 +AsH
n+1

]
|∇S|n−1 , (15)

which we numerically solve using the accelerated pseudo-transient (APT) method (Räss and others, 2022).

At the boundaries of the computational domain, we specify “zero-flux” boundary conditions: q · n = 0,

where n is the normal to the boundary. In practice, the boundary condition is not important as long as

the extent of the ice never touches the domain boundary, which is the case in all model setups considered.

Numerical implementation

In this section, we describe the numerical implementation of the snapshot and time-dependent inversion

approaches, along with the employed algorithms, which are summarised in Tables 2–4. To reconstruct the

distribution of the sliding parameter As, we use a gradient-based optimisation algorithm from the nonlinear

conjugate gradient family, which necessitates efficient computation of the gradients or derivatives of the

objective function with respect to the parameter of interest.
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In the snapshot inversion, the forward model consists of computing the SIA ice velocity V according

to (9) while setting the ice thickness H = Hobs. This algebraic equation is linear in As, which allows

solving the inverse problem analytically in the absence of regularisation, and computing the gradients of

the objective function analytically as well. In this study, we use AD to compute gradients for the snapshot

inversion nevertheless to keep the same implementation structure for both the snapshot and the time-

dependent approaches. Since the forward model is just one function, we compute the gradient of J s in a

single call to the AD tool.

In contrast to the snapshot inversion, the forward model in the time-dependent inversion case is the

time-dependent SIA model. If using an explicit time integration to solve the SIA Equations (11), (14),

and (15), computing the gradient of the objective function J td would require storing all the time steps

in memory or using checkpointing algorithms, trading memory for redundant computations (Heimbach

and Bugnion, 2009). Given the sparsity of glacier observations in time, in this work, we use an implicit

time integration instead, allowing us to advance the state of the simulation in one large time step equal to

the gap between observations. Note that the presented approach would work for schemes taking several

intermediate time steps at the expense of needing a scheme to store or recalculate results of the intermediate

time steps. Using an AD tool, computing the gradient of the objective function J td with implicit time

integration in the forward model can leverage the adjoint state method to avoid the substantial memory

and computational overhead associated with differentiating the solver algorithm directly (Giles and Pierce,

2000). The adjoint state method requires solving one additional linear adjoint problem after solving the

nonlinear forward problem (Reuber and others, 2020).

We accelerate computations by specifically targeting Nvidia GPUs using the CUDA.jl package in

Julia (Besard and others, 2019a,b) together with the AD tool Enzyme.jl (Moses and Churavy, 2020). In

order to allow GPUs to deliver their full parallel performance, specific care needs to be taken regarding

the choice of discretisation and algorithms. We use a conservative finite-difference scheme on a structured

Cartesian grid, as it facilitates regular memory access, and use the APT method (Räss and others, 2022).

The APT method is a matrix-free iterative algorithm which involves only local updates at each point of

the computational grid, trading the increased number of iterations for efficient massive parallelism. In

Sandip and others (2024), solving the shallow shelf approximation by APT method achieves 1.5x times

speedup by leveraging GPU processing power. In our study, we apply the GPU-based APT method to

solve both the forward and adjoint problems required to compute the gradient of the objective function for
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Optimisation

I Compute initial objective value and gradient

II Nonlinear conjugate gradient loop

1. Find the step size α by two-way backtracking

2. Update current solution

3. Compute gradient ∇J (see Table 3 & Table 4)

4. Compute parameter β using the Hager-Zhang rule

5. Update search direction

III Report results

Table 2. Overview of the optimisation procedure which is identical for both the snapshot and the

time-dependent workflow, with the exception of step II.3 to compute the gradient of the objective function.

the time-dependent inversion.

Optimisation algorithm

To minimise the objective function defined for the snapshot (3) and the time-dependent (5) cases, we use a

modified version of the nonlinear conjugate gradient method developed by Hager and Zhang (2005). The

optimisation procedure, summarised in Table 2, consists of two steps: (i) updating the solution log As with

the gradient of the objective function ∇J using a suitable step size α, and (ii) using the Hager-Zhang rule

to update the search direction. We perform the updates in the log space to avoid negative values and more

accurately span the expected range of values for As:

log Ak+1
s = log Ak

s + αkpk , (16)

βk = 1
pk

T
yk

(
yk − 2pk

∥yk∥2

pk
T

yk

)T

∇J k+1 , (17)

pk+1 = βkpk − ∇J k+1 , (18)

where k is the iteration index, αk is the step size, pk is the search direction, β is the parameter computed

using the Hager-Zhang rule (Hager and Zhang, 2005), ∇J k+1 is the gradient of the objective function with

respect to log Ak+1
s and yk = ∇J k+1 − ∇J k. Here we use bold symbols as all the quantities are vectors

with components corresponding to grid points of the computational domain.
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To compute the gradient ∇J with respect to log As, we use the chain rule analytically:

∇Ji = dJ
d logAsi

= dJ
dAsi

dAsi
d logAsi

= dJ
dAsi

Asi , (19)

where the products are calculated element-wise, i.e. without summation over the grid point index i. We

compute the first term in equation (19) using AD, and then multiply the result by As before passing the

gradient to the optimisation routine.

We implemented a two-way backtracking line search to compute the step size αk which satisfies the

Armijo-Goldstein condition (Armijo, 1966):

J (Ak+1
s ) ≤ J (Ak

s ) +mαk ∇J kT
pk , (20)

where m ∈ (0; 1) is a parameter which controls the sufficient decrease in the objective function J along

the search direction pk. In this study, we set m = 1/10.

To actually calculate αk, we did not use the line search from Hager and Zhang (2005), as it requires

evaluating the gradient multiple times, which involves solving the adjoint system in the case of time-

dependent inversion, and instead use the simpler two-way backtracking of Nocedal and Wright (1999),

which results in sufficiently fast convergence.

Forward model

We approximate the time derivative ∂H/∂t (11) with an implicit backward Euler scheme and substitute

the expression for q (15), which yields:

H −Hold
∆t

= ∇ · (D∇S) + ḃ , (21)

where Hold is the ice thickness at the beginning of the modelled time period. (21) is a nonlinear diffusion

equation for the surface elevation S, or, equivalently, for the ice thickness H = S − B, since the bedrock

elevation B is fixed in this study.

We solve (21) using the APT method (Räss and others, 2022). We define the residual Rf of the forward

problem upon rearranging terms from (21):

Rf(H) = ∇ · (D∇S) + ḃ− H −Hold
∆t

. (22)
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According to the APT method, we introduce a two-step update procedure:

Gk+1
H = ξAPT GkH + Rf(Hk) , (23)

Hk+1 = Hk + ∆τ Gk+1
H , (24)

where k is the APT iteration index, GH is the update rate of H, ξAPT ∈ [0, 1] is the damping parameter

leading to improved convergence (Räss and others, 2022), and ∆τ is the pseudo-time step size. At the first

iteration, i.e., when k = 0, we set G0
H = Rf(H0) and H0 = Hold.

We compute the pseudo-time step ∆τ by performing the linearised von Neumann stability analysis on

the diffusion equation (21):

∆τ =
[
C
Dmax
h2 + β + 1

∆t

]−1
(25)

where C is the stability parameter, Dmax is the maximum value of the diffusion coefficient D in space,

and h is the spacing of the computational grid. We stop the iterative procedure when the L∞-norm of the

relative error drops below the defined tolerance, i.e. when ∥Hk−Hk−1∥∞/∥Hk∥∞ < ϵtol, where ϵtol = 10−8

is the solver tolerance.

Automatic differentiation

AD provides a general approach to compute derivatives of almost arbitrary code by decomposing the source

into primitive expressions, for which the derivative rules are known, and propagating these derivatives

during the code execution. The benefit of AD compared to calculating derivatives using a finite difference

approximation is the absence of truncation errors, and higher performance since finite differences require

at least two function evaluations. Compared to manual or symbolic differentiation, apart from the obvious

advantage of not having to perform symbolic computations, AD can provide more stable results in certain

cases (Griewank and Walther, 2008).

AD has typically two distinct modes of derivatives propagation: forward mode and reverse mode

(Giering and Kaminski, 1998). Here, we are using the reverse mode, which is to accumulate the derivatives

starting from the end of the function. It is more efficient for functions with more inputs than outputs

(Moses and others, 2021, 2022), which is the case in our study, since the objective functional J maps the

vector with a component for each grid point to a scalar value.

In this study, we use Enzyme (Moses and Churavy, 2020), a high-performance AD compiler plugin for
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Snapshot – 3. Compute gradient ∇J s

3.1 Solve forward model (evaluate surface_velocity!) to get current V

3.2 Analytically evaluate ∂J s/∂As

3.3 Solve adjoint problem

i) Evaluate ∇surface_velocity! (generated using AD)

3.4 Add regularisation term

Table 3. Overview of optimisation step II.3 of Table 2 for the snapshot case. The words typeset in typewriter

font refer to function names in the provided model code, see Acknowledgements.

the LLVM compiler framework (Lattner, 2002) capable of synthesising gradients of programs expressed in

the LLVM intermediate representation. The main benefit of working at the compiler level is the ability

to differentiate the code after optimisation, resulting in substantial speedups compared to working on

the source code level. Enzyme is one of the few existing AD tools that allows differentiating GPU code.

Enzyme’s Julia interface, Enzyme.jl, makes it possible to differentiate GPU code written in a high-level

language.

Adjoint problem

We compute the derivatives of the discrete objective functions reported by (3) and (5), which are needed in

the optimisation procedure (16)–(19), using AD. The gradient, computed according to (19) in the inversion

procedure, can be expanded using the chain rule as:

dJ
dAs

= ∂J
∂S

dS
dAs

+ ∂J
∂As

, (26)

where S = {H,V } is the solution vector including both ice thickness and velocity. Note that the term

dS/dAs is dependent on the full forward model calculation and thus may require the above-mentioned

storage of intermediate results in the reverse-mode AD evaluation.

However, in the snapshot case, the forward model is computed with just the algebraic evaluation of

the surface velocity V from (9). Because the evaluation does not involve an iterative solver, the derivative

calculation of dS/dAs via reverse-mode AD is straightforward and efficient as no intermediate results are

generated.

Conversely, the time-dependent inversion requires solving the differential equation (11) for a given time
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span. The forward model, after discretising the time derivative, is a nonlinear degenerate elliptic equation,

which we solve using an implicit time integration with the iterative APT algorithm described above. Thus,

the reverse-mode AD calculation would require storing all intermediate iteration steps since the result of

an iterative solve formally depends on the initial guess. While feasible for small problems based on 1D

models such as flowline models, for high-resolution 2D and 3D models, the amount of memory required to

store intermediate results becomes prohibitively large.

However, the result of a converged iterative solve only varies for changes in the initial guess in a small

range within the nonlinear solver tolerance, and thus we can remove the dependence on the initial guess

and with it the need to save the intermediate calculations. Using this approach requires modifications to

the AD workflow, which go under the name of adjoint state method. In this method, the gradient given

by (26) is calculated with:
dJ td

dAs
= ψ

∂Rf
∂As

+ ∂J td

∂As
, (27)

where the adjoint state ψ can be calculated with the adjoint equation:

ψ
∂Rf
∂S

= −∂J td

∂S
. (28)

Note that now the gradient can be calculated without employing the solution of the forward model and

thus without needing memory-intensive storage for reverse-mode AD at the cost of a relatively cheap linear

solve of (28). Further note that formally the residual Rf depends only on H according to (22), therefore,

∂Rf/∂V = 0. In the numerical implementation, we do not include the unnecessary degrees of freedom to

save computational resources, but here we keep the extended notation for consistency.

To prove that the gradient dJtd/dAs computed using (27) is consistent with (26), we use the fact that

at the solution, the residual of the forward problem vanishes for all As, i.e. Rf(S) = 0. Computing the

derivative with respect to As and using the chain rule yields

dRf
dAs

= ∂Rf
∂S

dS
dAs

+ ∂Rf
∂As

= 0 . (29)

Solving this for ∂Rf/∂As, inserting into (27) and further simplifying with (28) transforms (27) into (26)

and thus completes the proof.

We solve (28) using the same APT procedure as for the forward problem, by employing the two-stage

procedure, updating the rate of change of the variable ψ with the damped residual, and then updating ψ
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Time-dependent – 3. Compute gradient ∇J td

3.1 Solve forward model: SIA solve (evaluate diffusivity!, residual!, update_ice_thickness!) to get

current V

3.2 Analytically evaluate ∂J td/∂S

3.3 Solve adjoint problem:

i) Propagate partial velocity derivatives; evaluate ∇surface_velocity! (generated using AD)

ii) Adjoint solve loop (evaluate ∇residual!, ∇diffusivity!, update_adjoint_state!)

iii) Propagate derivatives with respect to sliding parameter As (eval. ∇residual!, ∇diffusivity!)

3.4 Add regularisation term

Table 4. Overview of optimisation step II.3 of Table 2 for the time-dependent case. The words typeset in

typewriter font refer to function names in the provided model code, see Acknowledgements.

with the pseudo-time step ∆τ :

Gk+1
ψ = ξAPT Gkψ + Ra(ψk) , (30)

ψk+1 = ψk + ∆τ Gk+1
ψ , (31)

where Gψ is the rate of change of ψ. We use the same pseudo-time step ∆τ reported by (25) for the adjoint

problem since the spectral properties of the adjoint operator are the same as those of the linearised forward

operator. We summarise the steps to compute the gradient of the time-dependent objective function ∇J td

in Table 4.

We investigate two different model configurations for which we will perform snapshot and time-dependent

inversions. The first model configuration uses synthetic glacier geometry and surface mass balance (SMB).

The second model configuration uses elevation, velocity, and SMB data from the Aletsch glacier in the

Swiss Alps. Hereafter, we describe the initial conditions and model configurations. The values of the

parameters used in both the synthetic and Aletsch case are listed in Table 5.

In a synthetic model setup, we compare the results using different weights (ωnV , ωnH) in the objective

function of the time-dependent inversion (5). We use the Aletsch glacier configuration over the hydrological

year 2016–2017 to assess how using snapshot versus time-dependent inversion results impact surface velocity

distributions and geometry changes, and perform a mesh convergence test for both the snapshot and time-

dependent cases.
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Synthetic glacier

For the synthetic case, we generate a synthetic bed topography inspired by what Vinjevi and others (2018)

suggested for benchmarking purposes and define the bedrock B as a combination of two Gaussian shapes

(Figure 1a):

B = B0 + BA
2

{
exp

[
−
(
x

W1

)2
−
(
y

W2

)2
]

+ exp
[
−
(
x

W2

)2
−
(
y

W1

)2
]}

, (32)

where B0 is the background elevation, BA is the mountain height, W1 and W2 are characteristic widths,

and x and y are the horizontal coordinates.

With this configuration, using a uniform distribution of the sliding coefficient As = As0 and the simple

altitude-dependent surface mass-balance model (13), we run the forward model to steady state, setting

∆t = ∞ in (21), in order to generate synthetic initial ice thickness H init (Figure 1c) and velocity fields

V init (Figure 1b).

We then define a synthetic perturbation of the sliding parameter Asyn
s :

log10A
syn
s = log10As0 +Asa cos

(
ω
x

Lx

)
sin
(
ω
y

Ly

)
, (33)

where As0 is the background value, Asa is the perturbation amplitude in log-space, and ω is the perturbation

wavelength. Lx and Ly are the model extents in the x and y directions, respectively. Additionally, we

perturb zELA with a step increase of 20%. We then use H init as the initial condition for a forward SIA run

with the perturbed parameters over a time span of 15 years with one time step of equal length to generate

the synthetic thickness Hobs (Figure 1f) and velocity fields V obs (Figure 1e).

Aletsch glacier

As the second configuration, we use the Aletsch glacier, the largest glacier in the Alps (Figure 2). With

this configuration, we show that our inversion framework is capable of inferring a spatially variable sliding

coefficient As by using surface velocity V and changes in the ice geometry H as observational data during

the hydrological year 2016-2017. To generate the input data for the Aletsch glacier, we process elevation

(bedrock and surface), ice surface velocity, and surface mass-balance data.

We extract bedrock and surface elevation from Grab and others (2021) combined with swissALTI3D

(Swiss Federal Office of Topography swisstopo, 2022) in ice-free regions (Figure 2a). Since we do not
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Fig. 1. Synthetic glacier configuration. (a) Bedrock elevation and glacier outline; (b) Initial (steady) state ice

velocity magnitude; (c) Initial (steady) state ice thickness distribution; (d) Perturbed sliding coefficient distribution;

(e) Synthetic ice velocity magnitude after ∆t = 15 yrs; (f) Synthetic ice thickness after ∆t = 15 yrs.
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Fig. 2. Aletsch glacier configuration. (a) Bedrock elevation and glacier outline; (b) Measured ice velocity magni-

tude for the year 2016-2017; (c) Mass balance mask; (d) Reconstructed ice thickness distribution for the year 2016

interpolating data from years 2009 and 2017; (e) Change in ice thickness in the hydrological year 2016-2017; (f)

Surface mass balance model depicting ḃ as a function of altitude z showing data points and fitted piece-wise linear

model.
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have ice surface elevation data for the year 2016, we create it by assuming a linear variation between the

years 2009 and 2017, for which digital elevation models are available. We then compute ice thickness from

bedrock and ice surface elevation (Figure 2d,e).

We extract annual ice surface velocity data V from Rabatel and others (2023) for the hydrological year

2016–2017 (Figure 2b). We replace missing values with zeros to run the numerical codes and resample

the data to match the bedrock extent and resolution using cubic spline interpolation. We also mask the

velocity data with the ice mask, ensuring consistency among velocity and ice thickness datasets.

We extract SMB data for the 2016–2017 hydrological year (Figure 2f) from GLAMOS - Glacier Mon-

itoring Switzerland (2023) to fit our simple altitude-dependent parametrisation (13). One caveat of using

a simple altitude-dependent SMB model is that it does not account for lateral variations in mass balance,

which may result in non-zero ice thickness in regions where the observed surface is ice-free. Here, we use a

distributed correction for the mass balance by introducing a mass balance mask (Figure 2c), which removes

ice accumulation in regions where the observed ice thickness is zero.

RESULTS

Time-dependent inversion on synthetic geometry

We perform a time-dependent inversion to reconstruct the spatial distribution of the basal sliding param-

eter As in a synthetic model setup (Figure 1). We aim at reconstructing the synthetic sliding coefficient

distribution (Figure 3a) using synthetic velocity observations V obs (Figure 3b) and ice geometry observa-

tions Hobs (Figure 3c) which were generated by running the forward SIA model with Asyn
s (33) for one

time step of ∆t = 15 yrs. We achieve this inversion by minimising the objective function (5) using the

optimisation algorithm described above. We stop the optimisation procedure after 1000 iterations of the

algorithm (Equations 16–18), ensuring convergence and achieving a reduction in the objective function by

more than three orders of magnitude.

We have performed systematic numerical experiments to determine the values of regularisation param-

eter γ and normalised weights ωnV and ωnH . Since we do not include any artificial noise in the synthetic

observations and parameters, and the synthetic distribution of sliding parameter Asynth
s is sufficiently

smooth, the value of γ does not affect the inversion results below a certain threshold γ ≈ 10−6, since there

is an exact solution for As. However, selecting γ values significantly smaller than 10−6 results in slower

convergence of the implicit SIA solver due to the highly irregular intermediate distributions of As.
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Synthetic Aletsch

Asini Sliding parameter initial guess 10−22 10−22 Pa−3m2s−1

As0 Background sliding parameter value 10−22 – Pa−3m2s−1

Asa Sliding parameter perturbation amplitude 2 – –

ω Sliding parameter perturbation wavelength 3π – –

Lx Domain extent in x dimension 2 · 104 – m

Ly Domain extent in y dimension 2 · 104 – m

B0 Background topography elevation 103 – m

BA Maximum topography elevation 4 · 103 – m

W1 Characteristic width in x dimension 104 – m

W2 Characteristic width in y dimension 3 · 103 – m

zELA Equilibrium line altitude 1800 3265 m

c Mass-balance gradient 0.01 0.0112 a−1

ḃmax Maximum accumulation rate 2.5 1.14 ma−1

E Correction factor 1.0 0.25 –

h Spatial resolution 25 25, 50, 100, 200 m

∆t Time step 15 1 a

γ Regularisation parameter 10−6 10−6 (shapshot), 3 · 10−8 (time-dependent) –

ωn
V Normalised velocity weight 0,

√
2/2, 1 1 (shapshot), 0.01 (time-dependent) –

ωn
H Normalised thickness weight 1,

√
2/2, 0 1 –

Table 5. Parameters for the synthetic and Aletsch configurations. Parameters not applicable for the Aletsch

configuration are marked with “–”.
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Fig. 3. Time-dependent inversion of As on synthetic setup. (a) Synthetic basal sliding parameter distribution

(ground truth to be reconstructed); (b) Ice surface velocity distribution after ∆t = 15 yrs (the observed ice velocity

to be used in the objective function during reconstruction); (c) Ice thickness and geometry after ∆t = 15 yrs

(the observed ice thickness to be used in the objective function during reconstruction); (d – f) Time-dependent

inversion of As using both V obs and Hobs in the objective function setting ωn
V = ωn

H (Equations 6,7); (g – i)

Time-dependent inversion of As using only V obs in the objective function setting ωn
H = 0; (j – l) Time-dependent

inversion of As using only Hobs in the objective function setting ωn
V = 0. For the three inversion scenarios, we

report comparison of reconstructed versus synthetic sliding parameter: As err =
∣∣As −Asynth

s
∣∣ /Asynth

s ; (d, g, i) a

comparison of reconstructed versus observed velocity Verr =
∣∣V − V obs

∣∣ /V obs; (e, h, k) and geometry (thickness)

Herr =
∣∣H −Hobs

∣∣ /Hobs.
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Using any combination of weights for the velocity and ice thickness data accurately reconstructs the

synthetic As field in regions far from the ice margin, with the largest discrepancies occurring near the glacier

boundaries. Inversion relying solely on synthetic velocity data, as shown in Figure 3g–i, achieves the best fit

for the sliding parameter As within the glacier interior. However, near the boundaries, the reconstruction

error increases to over 100%. Conversely, inversion using only synthetic ice thickness data, illustrated

in Figure 3j–l, provides the most accurate fit near the ice margin but yields the poorest reconstruction

quality within the glacier interior.

Finally, incorporating both ice thickness and velocity data with ωnV = ωnH in the time-dependent

inversion offers a balanced approach between these two extremes. As demonstrated in Figure 3d–f, this

hybrid time-dependent inversion reproduces the synthetic As field more effectively than the velocity-only

inversion near the boundaries and outperforms the thickness-only inversion in the interior.

A possible explanation for this phenomenon is that, near the ice margin, the ice thickness H decreases

rapidly, while the gradient ∇S increases in magnitude, as described by (9). Consequently, the sensitivity

of velocity V to changes in As diminishes towards the ice margin. In contrast, the ice thickness remains

sensitive to variations in As near the glacier boundary. These results suggest that time-dependent inver-

sions incorporating both velocity and thickness data in the objective function provide the most accurate

reconstruction.

Time-dependent versus snapshot inversions for Aletsch glacier

In the following numerical experiments, we aim to assess the quality of the modelled surface velocity and

ice thickness fields on Aletsch glacier for basal sliding distributions reconstructed using the snapshot and

the time-dependent inversion strategies. We also investigate the impact of refining the spatial resolution in

a mesh convergence experiment. In the time-dependent inversion, we run the forward model for ∆t = 1 yr

(2016–2017). We stop both the snapshot and time-dependent optimisation procedures after 1000 iterations

of the algorithm (Equations 16–18). In all cases, the objective function stopped decreasing further before

reaching 1000 iterations.

L-curve analysis

We use the L-curve method to empirically select the regularisation parameter γ in the inversion. We

systematically perform multiple inversions with different values of γ within the range [5 ·10−9; 5 ·10−7] and
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Fig. 4. L-curve for the time-dependent Aletsch inversion. The point corresponding to the optimal regularisation

parameter γ ≈ 3.5 · 10−8 is highlighted in red.

plot the corresponding values of the observational part Jobs of the objective functional against the values of

the regularisation component Jreg. These points geometrically form an L-shaped curve, where large values

of Jreg indicate overfitted solutions, and large values of Jobs indicate excessively smoothed solutions. The

corner of this L-curve identifies the optimal balance between fitting the data and applying regularisation.

Fig. 4 shows an example of an L-curve, where each point represents the result of a time-dependent inversion

for the Aletsch glacier with a different value of γ. We have performed a similar analysis to determine the

optimal range of the normalised weights of the contributions of the velocity and the ice thickness ωnV and

ωnH , respectively. The values of the parameters selected by the L-curve method are listed in Table 5.

Mesh convergence

In this section, we investigate mesh convergence by systematically running inversions to find the coarsest

resolution at which the solution does not exhibit mesh dependence. The impact of refining the computa-

tional mesh on reconstructed As for the Aletsch glacier configuration is assessed for both the time-dependent

(Figure 5a–d) and snapshot (Figure 5e–f) inversions. The coarse grid with grid cell sizes of 200 m (Figure

5a, e) does not capture finer structures that may impact the ice flow velocity field. The finest grid, with

grid cell sizes of 25 m (Figure 5d, h), accurately captures variations in As. The fact that the features

and patterns do not significantly change for resolutions of 50 m and 25 m suggests that we achieved mesh

convergence for discretisation using grid cell sizes of 25 m and motivates our numerical resolution choice
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Fig. 5. Mesh convergence for the Aletsch glacier configuration for time-dependent (a – d) and snapshot (e – h)

inversions showing the As field. Spatial grid resolution refinement reducing from 200 m (a, e), 100 m (b, f), 50 m

(c, g), and to 25 m for the highest resolution (d, h).

throughout the paper.

Reconstructed velocity field

We report the surface velocity distribution on the Aletsch glacier for the hydrological year 2016–2017 using

a spatial resolution of 25 m. We compare three inverted surface velocity distributions, shown in Figure

6b–d, to the observed surface velocity data taken from Rabatel and others (2023), shown in Figure 6a.

In the snapshot case, the reported velocity field, shown in Figure 6b, is obtained by computing the SIA

velocity from (9) for the reconstructed distribution of the sliding parameter As (Figure 5h), while keeping

the glacier geometry set to the ice thickness distribution from Grab and others (2021). Discrepancies

such as high-velocity patches and other artifacts are clearly visible when comparing the modelled velocity

(Figure 6b) to the observed velocity (Figure 6a).
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Fig. 6. Observed and predicted ice surface velocity distribution for different inversion scenarios. (a) Observed

distribution on the Aletsch glacier for the hydrological year 2016–2017 (same as panel Figure 2b); (b) Predicted

distribution retrieved upon convergence of the snapshot inversion; (c) Predicted distribution running the ice flow

solver for one time step of ∆t = 1 yr using As reconstructed by the snapshot inversion; (d) Predicted distribution

from the time-dependent inversion.

On the other side of the spectrum, performing time-dependent inversion for the 2016–2017 period

(Figure 6d) provides a much better fit between modelled velocity and data (Figure 6a) (see next subsection

for the quantitative analysis). The corresponding reconstructed basal sliding distribution (Figure 5d) for

the time-dependent case features less high-frequency detail compared to the distribution of As in the

snapshot case (Figure 5h).

As an additional case, we consider a scenario, which we call “Snapshot+”, where the distribution of the

sliding parameter As is taken from the snapshot inversion, but the velocity field is computed by running

the forward SIA model for the time period 2016–2017 with the same parameters as for the time-dependent

inversion. This scenario is inspired by previously used combinations of inversion and spin-up to avoid

transient shocks at the beginning of prognostic model runs (e.g. Gillet-Chaulet and others, 2012; Lipscomb

and others, 2021). We observe that the Snapshot+ model run delivers a slightly improved surface velocity

field, as shown in Figure 6c, although being outperformed by the results from the time-dependent inversion.

Errors of velocity and ice thickness after inversion

Using the results of the snapshot and time-dependent inversion, we evaluate the difference between the

observed surface velocity for the hydrological year 2016–2017 and the modelled one, as well as the difference
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Fig. 7. Inversion errors for Aletsch glacier reported as percent error relative to the locally observed quantity. Error

in velocity (top row, a, b); and in geometry (ice thickness) (bottom row, c, d); errors for Snapshot+, i.e. snapshot

inversion results advanced forward in time by one year (left column, a, c); and time-dependent inversions (right

column, b, d). Note that (a) corresponds to the relative difference of panel c and a of Figure 6, and (b) of panel d

and a.
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between observed surface elevation at the end of that hydrological year and the modelled one. The error

is evaluated as the percent relative local difference between modelled and observed quantities V̂err =

(Vs − V obs)/V obs × 100%, and equivalently for the ice thickness H. Note that this is different from the

synthetic case where we computed fractions and not percent (Figure 3).

We report better quality velocity fields, thus lower V̂err, for the time-dependent case (Figure 7a),

compared to the snapshot case (Figure 7b). Averaged over the whole glacier, V̂err is −26% and −13% for

the snapshot and time-dependent inversion, respectively. This contrasts with the thickness error, Ĥerr,

which is slightly lower for the snapshot than for the time-dependent inversion (Figure 7c, d). However, the

glacier-averaged thickness errors, which are between −3 and −4%, are significantly lower for both types of

inversions than either of the velocity errors.

In both Snapshot+ and time-dependent cases, the relative error in velocity is larger closer to the glacier

margins than closer to the central flow-line. The main reason for that is the magnitude of velocity is small

near margins, and small mismatches result in large relative errors. For time-dependent case, these relative

errors are larger than for the Snapshot+ case. One possible explanation is the inconsistency between the

ice surface and velocity datasets, which leads to locally contradicting optimisation objectives, especially

near the margins where the ice thickness changes abruptly.

Performance

We evaluate the performance improvements achieved by enabling GPU acceleration in our code by bench-

marking the forward SIA solver of Glaide.jl against a parallel CPU code PISM (Winkelmann and others,

2011). The benchmark involves a 100-years forward simulation of our synthetic glacier case without sliding,

tested at spatial resolutions (grid cell sizes) of 25, 50, 100, and 125 m. PISM is chosen for comparison due

to its reliance on finite-differences, inclusion of a SIA ice flow solver, and support for distributed memory

parallelisation on CPUs using MPI, which maximises CPU compute capabilities. Wall-time is used as the

primary performance metric, as it reflects practical concerns regarding time-to-solution. More complex

metrics would neither aid the reader nor enhance the comparison of fundamentally different computing

processors. Benchmark runs were conducted on HPC hardware, specifically a single Nvidia A100 GPU (40

GB) and an AMD EPYC 7282 16-Core CPU, with peak memory bandwidths (data transfer speed between

memory and processor) of approximately 1555 GB/s and 85 GB/s, respectively. Note that the CPU’s

monetary value is about an order of magnitude smaller than the GPU’s.
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Resolution [m] Grid size Wall-time [sec] Speedup [-]

Glaide.jl PISM

125 160 × 160 0.38 26.80 71

100 200 × 200 0.92 59.63 65

50 400 × 400 2.54 893.89 352

25 800 × 800 15.44 14274.07 924

Table 6. Solver performance comparison. We use wall-time as a metric to compare the time it takes to solve the

forward problem without sliding on our synthetic geometry. The Glaide.jl code runs on a single Nvidia A100 GPU,

while the PISM code runs on 16 MPI ranks (16 cores) on a single data-center AMD EPYC 7282 16-Core CPU.

The PISM SIA solver employs an explicit time-stepping scheme with step sizes adjusted to satisfy the

CFL condition. In contrast, Glaide.jl uses implicit time steps ∆t = 2yr. Simulations were conducted

for the four resolutions, and wall-times were recorded. GPU-accelerated Glaide.jl runs completed within

seconds, while MPI-parallel PISM simulations required hours for the finest tested grid resolution of 25 m

(array size 800 × 800). The GPU implementation achieved speedups of up to three orders of magnitude in

the 25 m case (Table 6). To assess accuracy, the L2 error norm of the scaled difference ∆H = |HGlaide.jl −

HPISM|/| max(HGlaide.jl)| was calculated at a 50 m resolution, yielding ||∆H||2 = 2.66 × 10−5.

DISCUSSION

The comparison between snapshot and time-dependent inversions for the Aletsch case highlights differences

in the recovered surface velocities (Figure 6) and associated basal sliding coefficient fields (Figure 5d,h).

The snapshot inversion tends to produce unrealistic distributions of As, particularly concerning lateral

distribution and patchiness, resulting in significant errors in the modelled velocity field (Figure 6c and

Figure 7a). Conversely, the time-dependent inversion incorporates changes in ice geometry and velocities

over time, allowing, in a sense, limited non-local influences on ice velocity through evolving geometry. This

yields less patchy results that better conform to the observed data. Nonetheless, the bed likely remains too

slippery along the lateral margins. We identify two main factors affecting results of inversions, stemming

from limitations of the forward model and the quality of datasets.

The first factor that could probably explain these unrealistic distributions of As and the mismatches

between the modelled and observed velocities is the absence of membrane stresses in the SIA framework,

resulting in the velocity being only a function of local geometry (this is why V can be calculated with an
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algebraic relation according to (9)). Even the non-local nature of the time-dependent forward SIA model

is not enough to compensate for the lack of membrane stresses, suggesting the need for a more complex ice

flow model. This includes governing equations, rheology, and other parametrisations, such as the sliding

law and the SMB model.

The second factor involves uncertainties in the observational datasets. Errors in measured surface

velocities or ice surface elevation can propagate through the inversion process, leading to deviations in the

reconstructed basal properties. Additionally, mismatches between the velocity and ice surface datasets,

which arise from these products being derived from different source data, could further affect the quality

of the inversion.

One of the premises for this study, highlighted in the Introduction (e.g. Goldberg and Heimbach, 2013;

Joughin and others, 2009), is that time-dependent inversions should minimise unrealistically large initial

changes in surface elevation or velocity when the inverted sliding coefficient distribution is then used in a

forward model run. To assess this, we ran the model forward with inverted As for both the snapshot and

the time-dependent inversion for one year. The results in Figure 8 show that for our case this premise is

not true; in particular, the velocity change during the modelled year (Figure 8a,b) is much larger for the

simulation based on the time-dependent inversion, with the exception of a few narrow patches that show

extreme velocity variations in the snapshot case. We believe that this is probably due to: (i) limitations

of using SIA in such a setting, which warrants future investigations with other forward models and in

different contexts, such as ice sheet simulations; and (ii) incompatibility of our forward model with the

used bed geometry (Grab and others, 2021) which itself is derived from an inversion procedure using a

different forward model. The discrepancy is more subtle for ice thickness change during the modelled year

(Figure 8c,d), where the simulation based on the time-dependent inversion predicts, for instance, slightly

less change on the glacier’s tongue.

Our study lays out a broadly applicable inversion method that can be adapted to more sophisticated

ice-flow models with ease; the forward model could be replaced with a different physical ice flow model or

even a machine learning model, such as a neural net. This flexibility is possible as the employed AD tool

(Enzyme used within Julia) can differentiate through almost arbitrary Julia code, including physical and

statistical models. Recent advances in machine learning have resulted in the development of promising

data-driven parametrisations for surface processes, which capture spatiotemporal variations in climate and

weather forcing (Anilkumar and others, 2023; van der Meer and others, 2024). Using AD would enable
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Fig. 8. Time evolution simulation of the Aletsch glacier over two years (hydrological years 2016–2018) using the

sliding coefficient from the snapshot (left column) or time-dependent (right column) inversion. Panels depict the

change in velocity (top row) and in thickness (bottom row) for the two simulations over the second year (2017).
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efficient fine-tuning of these data-driven parametrisations to be used in combination with physics-based ice

flow models, resulting in better predictions. The versatility of our approach also extends to which fields are

inverted for and could be readily adapted to target bed topography and/or surface mass balance instead

of only reconstructing the basal sliding coefficient. This versatility is made possible by the use of AD and

GPU acceleration, allowing for efficient and robust optimisation procedures.

We aim to enable predictive modelling at regional and global scales, utilising the ever growing spatial

and temporal resolution of observational data. Physics-based forward models capture a broad range of

physical processes, but demand substantial computational resources at target resolution. Overcoming this

challenge necessitates the use of modern supercomputers, which are predominantly powered by GPUs.

It is thus essential to develop models with GPU optimisation in mind. The Julia programming language

uniquely combines high-level functionality with native support for GPUs and AD. This study demonstrates

the integration of high-performance GPU computing and AD-powered adjoint sensitivity analysis within a

high-level programming environment. Implemented entirely in Julia, the codebase enhances reproducibility

and accessibility, making it both efficient and educationally valuable. Unlike traditional implementations in

low-level languages, this approach streamlines development and reduces complexity, enabling faster, more

accessible model refinement.

The performance benchmark for the forward SIA solver demonstrates that GPU acceleration dramat-

ically reduces time-to-solution for the forward model. With speedups beyond two orders of magnitude

compared to a CPU code, the GPU-accelerated code significantly shortens the runtime of the forward

solver, making larger-scale inversions feasible. Such inversion workflows often require the forward solver

to be executed numerous times, underscoring the importance of this performance gain. The substantial

bandwidth provided by GPUs, when effectively utilised, accelerates computations in such memory-bound

computations.

In this study, we included only two time points in the time-dependent inversion, made possible by

employing implicit time integration of the forward model. This approach eliminates the need to store in-

termediate results for reverse-mode AD evaluation. In contrast, the often-used explicit time integration in

glaciological forward models requires numerous time steps and, thus, would require complicated checkpoint-

ing schemes for practical inversions to limit memory requirements during reverse-mode AD (see Numerical

implementation). Given the typical temporal sparsity of many glaciological datasets and the efficiency of

implicit time stepping for ice flow simulations (Bueler, 2023), our approach – using implicit time integration
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with larger time steps combined with the adjoint state method, reduces the need for slow and complex

checkpointing algorithms, which trade storage for redundant forward model computations and thus can be

a significant computational bottleneck (Stumm and Walther, 2010).

Previous studies have demonstrated that AD-based inversions, including both snapshot and, more re-

cently, time-dependent approaches, are feasible and yield useful results (e.g. Goldberg and Heimbach, 2013;

Larour and others, 2014; Goldberg and others, 2015). However, the computational demands associated

with these methods remain a significant challenge (Choi and others, 2023).

This study demonstrates that such inversions can be effectively performed on GPUs with good perfor-

mance, suggesting that this approach could enable broader adoption of these methods in the future. An

alternative approach to achieve potentially even higher performance involves the use of statistical emulators

(e.g. Jouvet, 2023; Brinkerhoff and others, 2021). However, this comes at the cost of reduced fidelity or

the risk of failure when applied outside the domain spanned by the training data.

The method employed in this study is similar to other adjoint-based, time-dependent inversions. How-

ever, the solver usedthe APT methodis a matrix-free approach particularly well-suited to GPUs, as it

requires very few global operations, which are typically the primary bottlenecks in GPU computations.

Replacing the SIA forward model with a depth-integrated higher-order model, such as DIVA or L1L2

(Goldberg, 2011; Schoof and Hindmarsh, 2010; Robinson and others, 2022), should improve the accuracy of

parameter reconstructions and enable inversions in regions where membrane stresses are significant, such as

dynamic areas of ice sheets or faster-flowing alpine glaciers. Adapting the code to support these higher-order

models is feasible, as the current design already solves nonlinear elliptic equations and their corresponding

linear adjoint state equations, which are required for such models. Although this modification will increase

the computational cost of the model evaluations, it remains feasible due to the GPU-based implementation.

For context, one of the presented Aletsch inversions takes a few minutes on a single Nvidia A100 GPU,

demonstrating that even more computationally expensive model runs could be handled.

Our study supports the findings of, e.g., Choi and others (2023); Goldberg and Heimbach (2013); Larour

and others (2014); Goldberg and others (2015) that time-dependent approaches can accurately reconstruct

basal properties of glaciers. This type of inversion is particularly valuable for studying systems that are

inherently time-dependent, such as the ice geometry evolution investigated in this study, or subglacial

hydrology and its relationship to ice dynamics. In alpine environments, these advanced inversion methods

could provide insights into the evolution of glacier sliding, for instance, improving our understanding of
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hazards linked to sliding instabilities of steep glacier tongues (Faillettaz and others, 2010).

CONCLUSION

The main contribution of this work is the development of a method and numerical implementation to

reconstruct a spatially variable glacier basal sliding coefficient using automatic generation of adjoint code

via AD on GPUs. Our main findings highlight that (i) combining both geometry change and velocity

in the objective function provides a more accurate reconstruction of the sliding parameter; (ii) time-

dependent inversion provides a better quality fit of the basal sliding parameter improving surface velocity

reconstruction compared to the snapshot inversion; and (iii) working with higher spatial resolution improves

the inversion quality on the Aletsch glacier, with converging results for spatial resolutions between 50 and 25

m, close to that of the observational dataset. Given the computational expense of running time-dependent

inversions on high-resolution data, leveraging new tools such as GPU processing and automatic generation

of adjoint code using automatic differentiation (AD) is essential. These advancements are crucial for

advancing time-dependent inversions to a new level, both in spatial and temporal resolution.
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