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Strongly exceptional Legendrian connected
sum of two Hopf links
Youlin Li and Sinem Onaran
Abstract. In this paper, we give a complete coarse classification of strongly exceptional Legendrian
realizations of the connected sum of two Hopf links in contact 3-spheres. This is the first classification
result about exceptional Legendrian representatives for connected sums of link families.

1 Introduction

A Legendrian link in an overtwisted contact 3-manifold is exceptional (a.k.a. non-
loose) if its complement is tight. There have been several classifications for exceptional
Legendrian knots and links in overtwisted contact 3-spheres, including unknots [6],
[5], torus knots [12], [16], [9], and Hopf links [11]. The connected bindings of open
book decompositions in certain overtwisted contact 3-manifolds have been partially
classified in [7]. While there has been very little progress in the classification of
Legendrian links with two or more components in either tight or overtwisted contact
3-spheres, a few papers, [1], [2], [3], [11], have tackled the problem.

In this paper, we study the classification of Legendrian realizations of the connected
sum of two Hopf links up to coarse equivalence in any contact 3-sphere. This is
one of the first families of the connected sum of links for which a classification is
known. Two Legendrian realizations K0 ∪ K1 ∪ K2 and K′0 ∪ K′1 ∪ K′2 of the connected
sum of two Hopf links in some contact 3-sphere S3 are coarsely equivalent if there
is a contactomorphism of S3 sending K0 ∪ K1 ∪ K2 to K′0 ∪ K′1 ∪ K′2 as an ordered,
oriented link.

Let A3 = K0 ∪ K1 ∪ K2 ⊂ S3 be the oriented connected sum of two Hopf links,
where K0 is the central component. It is shown in Figure 1. The orientations of the
components are also indicated. We think of K1 and K2 as two oriented meridians of
K0.

Figure 1: The link A3 = K0 ∪ K1 ∪ K2 in S3 .

Received by the editors September 1, 2023; revised April 29, 2024; accepted June 24, 2024.

https://doi.org/10.4153/S0008414X24000610 Published online by Cambridge University Press

http://dx.doi.org/10.4153/S0008414X24000610
https://orcid.org/0000-0002-7627-1187
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.4153/S0008414X24000610&domain=pdf
https://doi.org/10.4153/S0008414X24000610


2 Y. Li and S. Onaran

We consider the Legendrian realizations of A3 in all contact 3-spheres. For
i = 0, 1, 2, denote the Thurston-Bennequin invariant of K i by t i , and the rotation

number of K i by r i .
Let (M , ξ) be a contact 3-manifold and [T] an isotopy class of embedded tori in M.

The Giroux torsion of (M , ξ) is the supremum of n ∈ N0 for which there is a contact
embedding of

(T2 × [0, 1], ker(sin(nπz)dx + cos(nπz)d y))

into (M , ξ), with T2 × {z} being in the class [T].
An exceptional Legendrian link in an overtwisted contact 3-manifold is called

strongly exceptional if its complement has zero Giroux torsion. This paper focuses
on the classification of strongly exceptional Legendrian realizations of the A3 link
in contact 3-spheres up to coarse equivalence. We use the notation ξst to refer to
the standard tight contact structure on S3. The countably many overtwisted contact
structures on S3 are determined by their d3-invariants in Z + 1

2 [11, Section 2]. If the
d3-invariant of an overtwisted contact 3-sphere is d, then we denote this contact 3-
sphere by (S3 , ξd). Note that the d3-invariant of ξst is − 1

2 .
We enumerate all the strongly exceptional Legendrian A3 links up to coarse

equivalence.

Theorem 1.1 Suppose t1 < 0 and t2 < 0. Then, the number of strongly exceptional
Legendrian A3 links is

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

2t1 t2 − 2t1 − 2t2 + 2, if t0 ≥ 2,
t1 t2 − 2t1 − 2t2 + 2, if t0 = 1,
−2t1 − 2t2 + 2, if t0 = 0,
−t0 t1 t2 , if t0 ≤ −1.

Moreover, if t0 ≤ −1, then the −t0 t1 t2 Legendrian A3 links are in the standard tight
contact 3-sphere (S3 , ξst).

Theorem 1.2 Suppose t1 = t2 = 1. Then, the number of strongly exceptional Legendrian
A3 links is

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

8, if t0 ≥ 6,
7, if t0 = 5,
6, if t0 = 4,
4 − t0 , if t0 ≤ 3.

Theorem 1.3 Suppose t1 > 1 and t2 = 1. Then, the number of strongly exceptional
Legendrian A3 links is
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

12, if t0 ≥ 5 and t1 = 2,
10, if t0 = 4 and t1 = 2,
8, if t0 = 3 and t1 = 2,
16, if t0 ≥ 5 and t1 ≥ 3,
14, if t0 = 4 and t1 ≥ 3,
12, if t0 = 3 and t1 ≥ 4,
11, if t0 = t1 = 3,
6 − 2t0 , if t0 ≤ 2.

Theorem 1.4 Suppose t1 > 1 and t2 > 1. Then, the number of strongly exceptional
Legendrian A3 links is

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

18, if t0 ≥ 4 and t1 = t2 = 2,
14, if t0 = 3 and t1 = t2 = 2,
10, if t0 = 2 and t1 = t2 = 2,
24, if t0 ≥ 4, t1 ≥ 3 and t2 = 2,
20, if t0 = 3, t1 ≥ 3 and t2 = 2,
16, if t0 = 2, t1 ≥ 3 and t2 = 2,
32, if t0 ≥ 4, t1 ≥ 3 and t2 ≥ 3,
28, if t0 = 3, t1 ≥ 3 and t2 ≥ 3,
24, if t0 = 2, t1 ≥ 3 and t2 ≥ 3,
8 − 4t0 , if t0 ≤ 1.

Theorem 1.5 Suppose t1 < 0 and t2 = 1. Then, the number of strongly exceptional
Legendrian A3 links is

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

4 − 4t1 , if t0 ≥ 4,
4 − 3t1 , if t0 = 3,
4 − 2t1 , if t0 = 2,
t0 t1 − 2t1 , if t0 ≤ 1.

Theorem 1.6 Suppose t1 < 0 and t2 > 1. Then, the number of strongly exceptional
Legendrian A3 links is

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

6 − 6t1 , if t0 ≥ 3, t2 = 2,
6 − 4t1 , if t0 = 2, t2 = 2,
6 − 2t1 , if t0 = 1, t2 = 2,
8 − 8t1 , if t0 ≥ 3, t2 ≥ 3,
8 − 6t1 , if t0 = 2, t2 ≥ 3,
8 − 4t1 , if t0 = 1, t2 ≥ 4,
8 − 3t1 , if t0 = 1, t2 = 3,
2t0 t1 − 2t1 , if t0 ≤ 0.

Theorem 1.7 Suppose t1 = 0. Then, the number of strongly exceptional Legendrian A3
links is

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

2 − 2t2 , if t2 ≤ 0,
4, if t2 = 1,
6, if t2 = 2,
8, if t2 ≥ 3.

https://doi.org/10.4153/S0008414X24000610 Published online by Cambridge University Press

https://doi.org/10.4153/S0008414X24000610


4 Y. Li and S. Onaran

By exchange of the roles of K1 and K2 as necessary, we have covered all cases.
Therefore, we have completely classified strongly exceptional Legendrian A3 links. The
reader can look up the explicit rotation numbers and corresponding d3-invariants in
Lemmas 4.3–4.6, 4.8–4.28, 4.30–4.40, 4.43–4.46 of Section 4. In particular, we have
the following:

Theorem 1.8 The strongly exceptional Legendrian A3 links are determined up to coarse
equivalence by their Thurston-Bennequin invariants and rotation numbers.

Remark 1.9 Strongly exceptional Legendrian A3 links exist only in overtwisted
contact 3-spheres with d3 = − 3

2 ,− 1
2 , 1

2 , 3
2 , 5

2 .

Remark 1.10 Suppose t1 , t2 ≠ 0. If t0 + ⌈− 1
t1
⌉ + ⌈− 1

t2
⌉ ≥ 2, then any strongly excep-

tional Legendrian A3 link can be destabilized at the component K0 to another strongly
exceptional one. If t0 + ⌈− 1

t1
⌉ + ⌈− 1

t2
⌉ < 1, then any strongly exceptional Legendrian A3

link can be destabilized at the component K0 to a strongly exceptional Legendrian link
with t0 + ⌈− 1

t1
⌉ + ⌈− 1

t2
⌉ = 1. In the cases either t1 = 0 or t2 = 0, any strongly exceptional

Legendrian A3 link can be destabilized at the component K0 to another strongly
exceptional one. Furthermore, if t1 = 0, then any strongly exceptional Legendrian A3
link can be destabilized at the component K2 to another strongly exceptional one
unless t2 = 0. However, a positive (or negative) stabilization at the component K0
(and K2 in the case t1 = 0) of a strongly exceptional Legendrian A3 link is strongly
exceptional if and only if the resulted rotation numbers are indeed the rotation
numbers of a strongly exceptional Legendrian A3 link. Therefore, one can read out the
mountain ranges of K0 (and K2 in the case t1 = 0) through the Thurston-Bennequin
invariants, rotation numbers, and d3-invariants shown in Section 4. Section 5 explains
how strongly exceptional Legendrian representatives relate to each other. Detailed
analysis of the (de)stabilizations, as well as detailed analysis of the mountain range
of K2 for the links in Theorem 1.7, will be presented in Section 5.

The following is the structure of this paper. Section 2 presents upper bounds for
appropriate tight contact structures on Σ × S1. In Section 3, we discuss various meth-
ods to realize the strongly exceptional Legendrian A3 links. Section 4 focuses on the
realization of the strongly exceptional Legendrian A3 links, including the calculation
of their rotation numbers and the d3-invariants of their ambient contact S3. In Section
5, we explore the stabilizations among the strongly exceptional Legendrian A3 links.
Finally, the last section provides a detailed computation as a sample, showcasing the
calculation of rotation numbers and d3-invariants.

2 Tight contact structures on Σ × S1

For i = 0, 1, 2, let N(K i) be the standard neighborhood of K i in a contact 3-sphere. The
Seifert longitude and meridian of K i are denoted by λ i and μ i , respectively. The exte-
rior of the link A3 = K0 ∪ K1 ∪ K2, S3/(N(K0) ∪ N(K1) ∪ N(K2)), is diffeomorphic
to Σ × S1, where Σ is a pair of pants. Suppose ∂Σ = c0 ∪ c1 ∪ c2 as shown in Figure 2. Let
h denote the S1 factor – namely, the vertical circle. Then, λ0 = c0, λ1 = λ2 = h, μ0 = h,
μ1 = −c1, μ2 = −c2. Suppose ∂(Σ × S1) = T0 ∪ T1 ∪ T2, where Ti = c i × S1. Then, the
dividing set of T0 has slope t0 (i.e., has the homology [c0] + t0[h]), and the dividing
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Figure 2: A pair of pants Σ.

set of Ti has slope − 1
t i

(i.e., has the homology −t i[c i] + [h], for i = 1, 2). Furthermore,
each boundary torus of the exterior of a Legendrian A3 link is minimal convex.
Namely, its dividing set consists of exactly two parallel simple closed curves.

Following [18], we say that a tight contact structure ξ on Σ × S1 with minimal
convex boundary is appropriate if there is no contact embedding of

(T2 × [0, 1], ker(sin(πz)dx + cos(πz)d y))

into (M , ξ), where T2 × {0} is isotopic to a boundary component of Σ × S1. A
Legendrian representation of the A3 link in an overtwisted contact 3-sphere is strongly
exceptional if and only if its exterior is an appropriate tight contact Σ × S1.

In this section, we study the appropriate tight contact structures on Σ × S1 with
minimal convex boundary. The boundary slopes are s0 = s(T0) = t0, s1 = s(T1) = − 1

t1
,

and s2 = s(T2) = − 1
t2

, where t0 , t1 , t2 are integers.

Lemma 2.1 [13] Let T2 be a convex surface in a contact 3-manifold with #ΓT2 = 2 and
slope s. If a bypass D is attached to T2 from the front (the back, resp.) along a Legendrian
ruling curve of slope r ≠ s, then the resulting convex surface T̃2 will have #ΓT̃2 = 2 and
the slope s′ which is obtained as follows: Take the arc [r, s] ⊂ ∂H2 obtained by starting
from r and moving counterclockwise (clockwise, resp.) until we hit s, where H

2 is the
Poincare disk shown in Figure 3. On this arc, let s′ be the point that is closest to r and has
an edge from s′ to s.

Every vertical circle in a contact Σ × S1 has a canonical framing that arises from
the product structure. Let γ be a Legendrian circle that lies in the vertical direction.
The twisting number t(γ) of γ measures the amount by which the contact framing of
γ deviates from the canonical framing. If t(γ) = 0, then we say that γ is a 0-twisting
vertical Legendrian circle.

Lemma 2.2 Suppose ξ is an appropriate tight contact structure on Σ × S1 with bound-
ary slopes s0 = t0, s i = − 1

t i
for i = 1, 2. If t1 , t2 ≠ 0 and t0 + ⌈− 1

t1
⌉ + ⌈− 1

t2
⌉ ≥ 2, then ξ has

a 0-twisting vertical Legendrian circle.

Proof We assume the Legendrian rulings on T1 and T2 to have infinite slopes.
Consider a convex vertical annulus A such that the boundary consists of a Legendrian
ruling on T1 and a Legendrian ruling on T2. The dividing set of A intersects Ti ,
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Figure 3: Farey graph on the Poincare disk H
2 .

i = 1, 2, in exactly 2∣t i ∣ points. If every dividing curve of A is boundary parallel, then
there exists a 0-twisting vertical Legendrian circle in A. So we assume that there exist
dividing arcs on A, which connect the two boundary components of A. If there is a
boundary parallel dividing curve on A, then we perform a bypass attachment (attached
from the back of Ti ) to eliminate it.

(1) Suppose t1 < 0 and t2 < 0. By Lemma 2.1, we can obtain a submanifold Σ̃ × S1

of Σ × S1 whose boundary is T0 ∪ T̃1 ∪ T̃2, where both T̃1 and T̃2 have slopes − 1
t3

for
some integer t3 ∈ [max{t1 , t2},−1]. Moreover, each dividing curve on Ã = A∩ (Σ̃ ×
S1) connects the two boundary components. Let N be a neighborhood of T̃1 ∪ T̃2 ∪
Ã, and ∂N = T̃1 ∪ T̃2 ∪ T̃ . Then, by edge-rounding, T̃ has slope 1

t3
+ 1

t3
+ 1
−t3

= 1
t3

(as
seen form T0). Therefore, the thickened torus Σ̃ × S1/N has boundary slopes t0 and
1
t3

. Since t0 ≥ 0 > 1
t3

, there must exist a 0-twisting vertical Legendrian circle in this
thickened torus, and hence in Σ × S1.

(2) Suppose t1 = 1 and t2 = 1. It follows from [14, Lemma 5.1].
(3) Suppose t1 > 1 and t2 = 1. By Lemma 2.1, we can obtain a submanifold Σ̃ × S1

of Σ × S1 whose boundary is T0 ∪ T̃1 ∪ T2, where T̃1 has slope 0. Moreover, each
dividing curve on Ã = A∩ (Σ̃ × S1) connects the two boundary components. Let N
be a neighborhood of T̃1 ∪ T2 ∪ Ã, and ∂N = T̃1 ∪ T2 ∪ T̃ . Then, by edge-rounding,
T̃ has slope 0 + 1 + 1 = 2 (as seen form T0). Therefore, the thickened torus Σ̃ × S1/N
has boundary slopes t0 and 2. Since t0 ≥ 3 > 2, there must exist a 0-twisting vertical
Legendrian circle in this thickened torus, and hence in Σ × S1.

(4) Suppose t1 > 1 and t2 > 1. We divide this case into two subcases:
(i) There exist boundary parallel dividing curves on A. By Lemma 2.1, we can obtain

a submanifold Σ̃ × S1 of Σ × S1 whose boundary is T0 ∪ T̃1 ∪ T̃2, where both T̃1 and T̃2
have slopes 0. Moreover, each dividing curve on Ã = A∩ (Σ̃ × S1) connects the two
boundary components. Let N be a neighborhood of T̃1 ∪ T̃2 ∪ Ã, and ∂N = T̃1 ∪ T̃2 ∪
T̃ . Then, by edge-rounding, T̃ has slope 0 + 0 + 1 = 1 (as seen form T0). Therefore,
the thickened torus Σ̃ × S1/N has boundary slopes t0 and 1. Since t0 ≥ 2 > 1, there
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must exist a 0-twisting vertical Legendrian circle in this thickened torus, and hence
in Σ × S1.

(ii) There exists no boundary parallel dividing curve on A. Then t1 = t2 and all
dividing curves on A connect the two boundary components of A. Let N be a
neighborhood of T1 ∪ T2 ∪ Ã, and ∂N = T1 ∪ T2 ∪ T̃ . Then, by edge-rounding, T̃ has
slope 1

t1
+ 1

t1
+ 1

t1
= 3

t1
(as seen form T0). Therefore, the thickened torus Σ × S1/N has

boundary slopes t0 and 3
t1

. Since t0 ≥ 2 > 3
t1

, there must exist a 0-twisting vertical
Legendrian circle in this thickened torus, and hence in Σ × S1.

(5) Suppose t1 < 0 and t2 = 1. There are boundary parallel dividing curves on A. By
Lemma 2.1, we can obtain a submanifold Σ̃ × S1 of Σ × S1 whose boundary is T0 ∪ T̃1 ∪
T2, where both T̃1 have slopes 1. Moreover, each dividing curve on Ã = A∩ (Σ̃ × S1)
connects the two boundary components. Let N be a neighborhood of T̃1 ∪ T2 ∪ Ã,
and ∂N = T̃1 ∪ T2 ∪ T̃ . Then, by edge-rounding, T̃ has slope 1 + (−1) + 1 = 1 (as seen
form T0). Therefore, the thickened torus Σ̃ × S1/N has boundary slopes t0 and 1. Since
t0 ≥ 2 > 1, there must exist a 0-twisting vertical Legendrian circle in this thickened
torus, and hence in Σ × S1.

(6) Suppose t1 < 0 and t2 > 1. We divide this case into two subcases.
(i) If there exist boundary parallel dividing curves on A whose boundary points

belong to A∩ T2, we can use Lemma 2.1 to obtain a submanifold Σ̃ × S1 of Σ × S1 whose
boundary is T0 ∪ T̃1 ∪ T̃2, where T̃1 has slope 1 and T̃2 has slope 0. Furthermore, each
dividing curve on Ã = A∩ (Σ̃ × S1) connects the two boundary components. Let N be
a neighborhood of T̃1 ∪ T̃2 ∪ Ã, and ∂N = T̃1 ∪ T̃2 ∪ T̃ . By performing edge-rounding,
T̃ will have slope −1 + 0 + 1 = 0 (as seen form T0). Therefore, the thickened torus
Σ̃ × S1/N has boundary slopes t0 and 1. Since t0 ≥ 1 > 0, there must exist a 0-twisting
vertical Legendrian circle in this thickened torus, and hence in Σ × S1.

(ii) If there are no boundary parallel dividing curves on A whose boundary points
belong to A∩ T2, we can use Lemma 2.1 to obtain a submanifold Σ̃ × S1 of Σ × S1 whose
boundary is T0 ∪ T̃1 ∪ T2, where T̃1 has slope 1

t2
. Furthermore, each dividing curve on

Ã = A∩ (Σ̃ × S1) connects the two boundary components. Let N be a neighborhood
of T̃1 ∪ T2 ∪ Ã, and ∂N = T̃1 ∪ T2 ∪ T̃ . By performing edge-rounding, T̃ will have
slope − 1

t2
+ 1

t2
+ 1

t2
= 1

t2
(as seen form T0). Therefore, the thickened torus Σ̃ × S1/N

has boundary slopes t0 and 1. Since t0 ≥ 1 > 1
t2

, there must exist a 0-twisting vertical
Legendrian circle in this thickened torus, and hence in Σ × S1. ∎

Lemma 2.3 If ξ is a tight contact structure on Σ × S1 with boundary slopes s0 = t0,
s i = − 1

t i
for i = 1, 2, has a 0-twisting vertical Legendrian circle, where t1 , t2 ≠ 0. Then, it

admits a factorization Σ × S1 = L′0 ∪ L′1 ∪ L′2 ∪ Σ′ × S1, where L′i are disjoint thickened
tori with minimal twisting and minimal convex boundary ∂L′i = Ti − T ′i , and all the
components of ∂Σ′ × S1 = T ′0 ∪ T ′1 ∪ T ′2 have boundary slopes ∞.

Proof The proof is similar to that of [14, Lemma 5.1, Part 1]. ∎

Let ξ be a contact structure on Σ × S1 with boundary slopes s0 = t0, s i = − 1
t i

for i = 1, 2, where t1 , t2 ≠ 0. Assume it admits a factorization Σ × S1 = L′0 ∪ L′1 ∪ L′2 ∪
Σ′ × S1, where L′i are disjoint thickened tori with minimal twisting and minimal
convex boundary ∂L′i = Ti − T ′i , and all the components of ∂Σ′ × S1 = T ′0 ∪ T ′1 ∪ T ′2
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have boundary slopes ∞. Then, in the thickened torus L′i , i = 1, 2, there exists a basic
slice B′i with one boundary component T ′i and another boundary slope ⌈− 1

t i
⌉. This is

because ⌈− 1
t i
⌉ is counterclockwise of− 1

t i
and clockwise of∞ in the Farey graph shown

in Figure 3. Let C′i , i ∈ {1, 2}, be the continued fraction block in L′i that contains B′i .
The basic slices in C′i can be shuffled. Namely, any basic slice in C′i can be shuffled to
be B′i .

Lemma 2.4 (1) Suppose t0 + ⌈− 1
t1
⌉ + ⌈− 1

t2
⌉ = 3. If the signs of L′0, B′1, and B′2 are the

same, then the restriction of ξ to L′0 ∪ B′1 ∪ B′2 ∪ Σ′ × S1 remains unchanged if we change
the three signs simultaneously.

(2) Suppose t0 + ⌈− 1
t1
⌉ + ⌈− 1

t2
⌉ ≤ 2. If the signs of L′0, B′1, and B′2 are the same, then ξ

is overtwisted.

Proof The restriction of ξ on L′0 ∪ B′1 ∪ B′2 ∪ Σ′ × S1 has boundary slopes t0, ⌈− 1
t1
⌉

and ⌈− 1
t2
⌉. So the lemma follows by applying [14, Lemma 5.1] to L′0 ∪ B′1 ∪ B′2 ∪ Σ′ ×

S1. ∎
Lemma 2.5 [9] There is a unique appropriate tight contact structure on Σ × S1 whose
three boundary slopes are all ∞ up to isotopy (not fixing the boundary point-wise, but
preserving it set-wise).

Lemma 2.6 Let ξ be a contact structure on Σ × S1. Assume that each Ti is minimal
convex with dividing curves of finite slope t0, − 1

t1
and − 1

t2
. If ξ has 0-twisting vertical

Legendrian circles and t0 + ⌈− 1
t1
⌉ + ⌈− 1

t2
⌉ ≤ 1, then ξ is not appropriate tight.

Proof As there is a 0-twisting vertical Legendrian circle, there exists a minimal con-
vex torus T ′i , parallel to Ti , with slope ⌈− 1

t i
⌉, i = 1, 2. Consider a convex annulus Ã with

a boundary consisting of a Legendrian ruling on T ′1 and a Legendrian ruling on T ′2.
Let N be a neighborhood of T ′1 ∪ T ′2 ∪ Ã, and ∂N = T ′1 ∪ T ′2 ∪ T̃ . Then, through edge-
rounding, T̃ has slope −⌈− 1

t1
⌉ − ⌈− 1

t2
⌉ + 1 (as seen form T0). We obtain a thickened

torus with boundary slopes t0 and −⌈− 1
t1
⌉ − ⌈− 1

t2
⌉ + 1, and a boundary parallel convex

torus with slope ∞. Thus, from t0 ≤ −⌈− 1
t1
⌉ − ⌈− 1

t2
⌉ + 1, it follows that the Giroux

torsion of this thickened torus is at least 1. Hence, the Lemma holds. ∎
Lemma 2.7 Let ξ be an appropriate tight contact structure on Σ × S1. Assume that
each Ti is minimal convex with dividing curves of finite slope t0, − 1

t1
and − 1

t2
. Suppose

ξ has no 0-twisting vertical Legendrian circle. Then, there exist collar neighborhoods L′′i
of Ti for i = 1, 2 satisfying that Σ × S1 = Σ′′ × S1 ∪ L′′1 ∪ L′′2 , and the boundary slopes of
Σ′′ × S1 are t0, ⌈− 1

t1
⌉, and ⌈− 1

t2
⌉.

Proof We modify the Legendrian rulings on T0 and Ti to have infinite slopes.
Consider a convex vertical annulus A whose boundary consists of Legendrian rulings
on T0 and Ti . The dividing set of A intersects T0 in exactly 2 points. The dividing
set of A intersects Ti , i = 1, 2, in exactly 2∣t i ∣ points. As ξ has no 0-twisting vertical
Legendrian circle, there exist dividing arcs on A that connect the two boundary
components of A. If there is a boundary parallel dividing curve on A, then its endpoints
must belong to A∩ Ti for some i = 1, 2. We perform a bypass (attached from the back
of Ti ) to eliminate it. Applying Lemma 2.1, we obtain a thickened torus L′′i for i = 1, 2
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that satisfies Σ × S1 = Σ′′ × S1 ∪ L′′1 ∪ L′′2 , and the boundary slopes of Σ′′ × S1 are t0,
⌈− 1

t1
⌉, and ⌈− 1

t2
⌉. ∎

Now we present upper bounds for appropriate tight contact structures on Σ × S1.

2.1 t1 < 0 and t2 < 0.

Lemma 2.8 Suppose t1 < 0 and t2 < 0. Then, there are at most
⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

2t1 t2 − 2t1 − 2t2 + 2, if t0 ≥ 2,
t1 t2 − 2t1 − 2t2 + 2, if t0 = 1,
−2t1 − 2t2 + 2, if t0 = 0,
−t0 t1 t2 , if t0 ≤ −1

appropriate tight contact structures on Σ × S1 with the given boundary slopes.

Proof By Lemma 2.2, if t0 ≥ 0, then the tight contact structures on Σ × S1 always
exist 0-twisting vertical Legendrian circles.

If an appropriate contact structure ξ on Σ × S1 has a 0-twisting vertical Legendrian
circle, then Lemma 2.3 tells us that Σ × S1 can be factored into L′0 ∪ L′1 ∪ L′2 ∪ Σ′ × S1,
where the boundary slopes of Σ′ × S1 are all ∞, the boundary slopes of L′0 are ∞ and
t0, and the boundary slopes of L′i are ∞ and − 1

t i
for i = 1, 2. Moreover, There are 2

minimally twisting tight contact structures on L′0.
If t i < 0, i = 1, 2, we have

[0 −1
1 1 ] [

0
1] = [−1

1 ] , [0 −1
1 1 ] [

−t i
1 ] = [ −1

−t i + 1] .

The thickened torus L i is a continued fraction block with−t i basic slices and therefore
admits −t i + 1 minimally twisting tight contact structures.

By applying Lemma 2.5, we can conclude that there are at most 2t1 t2 − 2t1 − 2t2 + 2
appropriate tight contact structures on Σ × S1 if t0 ≥ 2. If t0 = 1 and there are basic
slices in L′i which have the same signs as that of L′0 for i = 1, 2, then after shuffling,
we can assume that L′0, B′1 and B′2 have the same signs. According to Lemma 2.4, a
tight contact structure that has positive basic slices in L′i for i = 0, 1, 2 are isotopic to
a tight contact structure which is obtained by changing a positive basic slice in L′i
for i = 0, 1, 2 to a negative basic slice. Therefore, there are at most t1 t2 − 2t1 − 2t2 + 2
appropriate tight contact structures on Σ × S1 if t0 = 1. If t0 = 0, then by Lemma 2.4,
a contact structure which has positive basic slices in L′i for i = 0, 1, 2 is overtwisted.
Thus, there are at most −2t1 − 2t2 + 2 appropriate tight contact structures on Σ × S1 if
t0 = 0.

Suppose t0 ≤ −1. By Lemma 2.6, there are no appropriate tight contact structures
having a 0-twisting vertical Legendrian circle. We consider the appropriate tight
contact structures without a 0-twisting vertical Legendrian circle. By Lemma 2.7, we
can factorize Σ × S1 = Σ′′ × S1 ∪ L′′1 ∪ L′′2 , where the boundary slopes of Σ′′ × S1 are
t0, 1 and 1, and the boundary slopes of L′′i are 1 and − 1

t i
for i = 1, 2. Since t0 < 0, by

[14, Lemma 5.1], there are exactly −t0 tight contact structures on Σ′′ × S1 without any
0-twisting vertical Legendrian circle. By [13, Theorem 2.2], there are −t i minimally
twisting tight contact structures on L′′i for i = 1, 2. Therefore, there are at most −t0 t1 t2

https://doi.org/10.4153/S0008414X24000610 Published online by Cambridge University Press

https://doi.org/10.4153/S0008414X24000610


10 Y. Li and S. Onaran

Figure 4: A pair of pants Σ, where t0 = 0, t1 = t2 = −2.

tight contact structures on Σ × S1 without any 0-twisting vertical Legendrian curve
and with boundary slopes s0 = t0, s i = − 1

t i
for i = 1, 2. ∎

To denote the 2t1 t2 − 2t1 − 2t2 + 2 contact structures on Σ × S1 with 0-twisting
vertical Legendrian circle, we use the decorations (±)(± ⋅ ⋅ ⋅ ±

�����������
−t1

)(± ⋅ ⋅ ⋅ ±
�����������
−t2

). See Figure

4 for an example. The sign in the first bracket corresponds to the sign of the basic
slice L′0, while the signs in the second and the third brackets correspond to the
signs of the basic slices in L′1 and L′2, respectively. We order the basic slices in L′1
and L′2 from the innermost boundary to the outmost boundary. As both L′1 and L′2
are continued fraction blocks, the signs in the second and the third brackets can be
shuffled. For example, the decorations (+)(+ − −)(−−) and (+)(− − +)(−−) denote
the same contact structures.

2.2 t1 > 0 and t2 > 0.

Lemma 2.9 Suppose t1 = t2 = 1. Then, there are exactly

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

8, if t0 ≥ 6,
7, if t0 = 5,
6, if t0 = 4,
4 − t0 , if t0 ≤ 3

appropriate tight contact structures on Σ × S1 with the given boundary slopes.

Proof The boundary slopes of Σ × S1 are t0, −1 and −1. If t0 ≤ 3, according to [14,
Lemma 5.1], there are exactly 4 − t0 appropriate tight contact structures on Σ × S1

without a 0-twisting vertical Legendrian circle. By Lemma 2.6, there are no appropriate
tight contact structures on Σ × S1 with a 0-twisting vertical Legendrian circle. If
t0 ≥ 4, then any tight contact structure on Σ × S1 has a 0-twisting vertical Legendrian
circle. By applying [14, Lemma 5.1] again, we can conclude that when t0 = 4, there
are exactly 6 appropriate tight contact structures on Σ × S1. When t0 = 5, there are
exactly 7 appropriate tight contact structures on Σ × S1. When t0 ≥ 6, there are exactly
8 appropriate tight contact structures on Σ × S1. ∎
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We use the decorations (±)(±)(±) to denote the 8 contact structures on Σ × S1

with a 0-twisting vertical Legendrian circle.

Lemma 2.10 Suppose t1 > 1 and t2 = 1. Then, there are at most
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

12, if t0 ≥ 5 and t1 = 2,
10, if t0 = 4 and t1 = 2,
8, if t0 = 3 and t1 = 2,
16, if t0 ≥ 5 and t1 ≥ 3,
14, if t0 = 4 and t1 ≥ 3,
12, if t0 = 3 and t1 ≥ 4,
11, if t0 = t1 = 3,
6 − 2t0 , if t0 ≤ 2

appropriate tight contact structures on Σ × S1 with the given boundary slopes.

Proof The boundary slopes of Σ × S1 are s0 = t0, s1 = − 1
t1

, and s2 = −1. If t0 ≥ 3,
then the tight contact structures on Σ × S1 always exist 0-twisting vertical Legendrian
circles.

If t1 > 1, we have

[ 1 1
−2 −1] [

0
1] = [ 1

−1] , [ 1 1
−2 −1] [

t1
−1] = [ t1 − 1

−2t1 + 1] ,

−2t1 + 1
t1 − 1

= [−3,−2, ⋅ ⋅ ⋅ ,−2
�������������������������������������������

t1−2

].

If t1 = 2, then L′1 is a continued fraction block with two basic slices with slopes − 1
2 , 0,

and ∞, and thus admits exactly 3 tight contact structures. If t1 ≥ 3, then L′1 consists of
two continued fraction blocks, each of which has one basic slice. The slopes are − 1

t1
,

0, and ∞. Therefore, it admits exactly 4 tight contact structures.
If t0 ≥ 5 and t1 = 2, then there are at most 2 × 3 × 2 = 12 tight contact structures.

The number of such contact structures depends on the signs of the basic slices in L′i
for i = 0, 1, 2. If t0 = 4 and t1 = 2, then there are at most 10 tight contact structures
by deleting 2 duplications. If t0 ≤ 3 and t1 = 2, then there are at most 8 tight contact
structures by deleting 4 overtwisted cases.

If t0 ≥ 5 and t1 ≥ 3, then there are at most 2 × 4 × 2 = 16 tight contact structures.
The number of such contact structures depends depend on the signs of the basic slices
in L′i for i = 0, 1, 2. If t0 = 4 and t1 ≥ 3, then there are at most 14 tight contact structures
by deleting 2 duplications. If t0 ≤ 3 and t1 ≥ 3, then there are at most 12 tight contact
structures by deleting 4 overtwisted cases.

Suppose t0 ≤ 2. By Lemma 2.6, there are no appropriate tight contact structures
with a 0-twisting vertical Legendrian circle. We consider the appropriate tight contact
structures without a 0-twisting vertical Legendrian circle. By Lemma 2.7, we can
factorize Σ × S1 = Σ′′ × S1 ∪ L′′1 , where the boundary slopes of Σ′′ × S1 are t0, 0 and−1,
and the boundary slopes of L′′1 are 0 and − 1

t1
. Since t0 < 3, according to [14, Lemma

5.1], there are exactly 3 − t0 tight contact structures on Σ′′ × S1 without a 0-twisting
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vertical Legendrian circle. There are 2 minimally twisting tight contact structures on
L′′1 . Therefore, there are at most 6 − 2t0 appropriate tight contact structures on Σ × S1

without a 0-twisting vertical Legendrian circle and with boundary slopes s0 = t0,
s i = − 1

t i
for i = 1, 2.

If t1 = 2, then we denote the 12 contact structures on Σ × S1 with a 0-twisting
vertical Legendrian circle using the decorations (±)(±±)(±). For t1 ≥ 3, we use the
decorations (±)((±)(±))(±) to denote the 16 contact structures on Σ × S1 with a 0-
twisting vertical Legendrian circle. In the latter case, ((±)(±)) refers to the two signed
basic slices in L′1 that do not form a continued fraction block.

If t0 = t1 = 3 and t2 = 1, we claim the two decorations (+)((−)(+))(+) and
(−)((+)(−))(−) denote the same contact structure on Σ × S1. As before, there is a
convex vertical annulus A such that ∂A consists of a Legendrian ruling on T0 and a
Legendrian ruling on T2, and the dividing set on A run from one boundary component
to the other. If we cut L′0 ∪ L′1 ∪ L′2 ∪ Σ′ × S1 along A, we will obtain a thickened torus
admitting a factorization into two basic slices with slopes− 1

3 , 0 and 0,−1, and opposite
signs. Here, the slope −1 is obtained by −s0 − s2 + 1 = −3 − (−1) + 1. The three slopes
can be transformed into 1

3 , 1
2 , and 1 as follows:

[2 3
1 2] [

3
−1] = [3

1] , [2 3
1 2] [

1
0] = [2

1] , [2 3
1 2] [

−1
1 ] = [1

1] .

So these two basic slices form a continued fraction block and can be interchanged.
Similar to the argument in [14, Page 135], this leads to an exchange between
(+)((−)(+))(+) and (−)((+)(−))(−)while preserving the isotopy classes of contact
structures. ∎

Lemma 2.11 Suppose t1 > 1 and t2 > 1. Then, there are at most

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

18, if t0 ≥ 4 and t1 = t2 = 2,
14, if t0 = 3 and t1 = t2 = 2,
10, if t0 = 2 and t1 = t2 = 2,
24, if t0 ≥ 4 and t1 ≥ 3, t2 = 2,
20, if t0 = 3 and t1 ≥ 3, t2 = 2,
16, if t0 = 2 and t1 ≥ 3, t2 = 2,
32, if t0 ≥ 4 and t1 ≥ 3, t2 ≥ 3,
28, if t0 = 3 and t1 ≥ 3, t2 ≥ 3,
24, if t0 = 2 and t1 ≥ 3, t2 ≥ 3,
8 − 4t0 , if t0 ≤ 1

appropriate tight contact structures on Σ × S1 with the given boundary slopes.

Proof If t0 ≥ 2, then the tight contact structures on Σ × S1 always exist a 0-twisting
vertical Legendrian circles.

If t0 ≥ 4 and t1 = t2 = 2, then there are at most 2 × 3 × 3 = 18 tight contact structures.
If t0 ≥ 4, t1 ≥ 3, and t2 = 2, then there are at most 2 × 4 × 3 = 24 tight contact struc-
tures. If t0 ≥ 4, t1 ≥ 3, and t2 ≥ 3, then there are at most 2 × 4 × 4 = 32 tight contact
structures. The number of such contact structures depends on the signs of the basic
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Figure 5: A pair of pants Σ, where t0 = 0, t1 = t2 = 3.

slices in L′i for i = 0, 1, 2. For the other cases, the upper bound can be obtained by
deleting the duplications or the overtwisted contact structures.

Suppose t0 ≤ 1. By Lemma 2.6, there are no appropriate tight contact structures
with a 0-twisting vertical Legendrian circle. We consider the appropriate tight contact
structures without a 0-twisting vertical Legendrian circle. By Lemma 2.7, we can
factorize Σ × S1 = Σ′′ × S1 ∪ L′′1 ∪ L′′2 , where the boundary slopes of Σ′′ × S1 are t0,
0 and 0, and the boundary slopes of L′′i are 0 and − 1

t i
. Since t0 ≤ 1, according to

[14, Lemma 5.1], there are exactly 2 − t0 tight contact structures on Σ′′ × S1 without
a 0-twisting vertical Legendrian circle. There are 2 minimally twisting tight contact
structures on L′′i . Therefore, there are at most 8 − 4t0 appropriate tight contact
structures on Σ × S1 without a 0-twisting vertical Legendrian circle and with boundary
slopes s0 = t0, s i = − 1

t i
for i = 1, 2. ∎

If t1 = t2 = 2, then the 18 contact structures on Σ × S1 with a 0-twisting vertical
Legendrian circle are denoted using the decorations (±)(±±)(±±). For t1 ≥ 3 and t2 =
2, we use the decorations (±)((±)(±))(±±) to represent the 24 contact structures on
Σ × S1 with a 0-twisting vertical Legendrian circle. When t1 ≥ 3 and t2 ≥ 3, we use the
decorations (±)((±)(±))((±)(±)) to signify the 32 contact structures on Σ × S1 with
a 0-twisting vertical Legendrian circle. See Figure 5 for an example.

2.3 t1 < 0 and t2 > 0.

Lemma 2.12 Suppose t1 < 0 and t2 = 1. Then, there are at most

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

4 − 4t1 , if t0 ≥ 4,
4 − 3t1 , if t0 = 3,
4 − 2t1 , if t0 = 2,
t0 t1 − 2t1 , if t0 ≤ 1

appropriate tight contact structures on Σ × S1 with the given boundary slopes.

Proof The boundary slopes of Σ × S1 are s0 = t0, s1 = − 1
t1
> 0, and s2 = −1.

If t0 ≥ 2, then the tight contact structures on Σ × S1 always contain a 0-twisting
vertical Legendrian circle.

https://doi.org/10.4153/S0008414X24000610 Published online by Cambridge University Press

https://doi.org/10.4153/S0008414X24000610


14 Y. Li and S. Onaran

If t0 ≥ 4, t1 < 0, and t2 = 1, then there are at most 2 × (1 − t1) × 2 = 4(1 − t1) tight
contact structures. They depend on the signs of the basic slices in L′i for i = 0, 1, 2. For
the other cases, the upper bound can be obtained by deleting the duplication or the
overtwisted contact structures.

Suppose t0 ≤ 1. By Lemma 2.6, there are no appropriate tight contact structures
with a 0-twisting vertical Legendrian circle. We consider the appropriate tight contact
structures without a 0-twisting vertical Legendrian circle. By Lemma 2.7, we can
factorize Σ × S1 = Σ′′ × S1 ∪ L′′1 , where the boundary slopes of Σ′′ × S1 are t0, 0 and
1, and the boundary slopes of L′′1 are 0 and − 1

t1
. Since t0 ≤ 1, according to [14, Lemma

5.1], there are exactly 2 − t0 tight contact structures on Σ′′ × S1 without a 0-twisting
vertical Legendrian circle. There are−t1 minimally twisting tight contact structures on
L′′1 . Therefore, there are at most −2t1 + t0 t1 tight contact structures on Σ × S1 without
a 0-twisting vertical Legendrian circle and with boundary slopes s0 = t0, s i = − 1

t i
for

i = 1, 2. ∎
We use the decorations (±)(± ⋅ ⋅ ⋅ ±

�����������
−t1

)(±) to denote the 4 − 4t1 contact structures on

Σ × S1 with a 0-twisting vertical Legendrian circle.

Lemma 2.13 Suppose t1 < 0 and t2 > 1. Then, there are at most
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

6 − 6t1 , if t0 ≥ 3, t2 = 2,
6 − 4t1 , if t0 = 2, t2 = 2,
6 − 2t1 , if t0 = 1, t2 = 2,
8 − 8t1 , if t0 ≥ 3, t2 ≥ 3,
8 − 6t1 , if t0 = 2, t2 ≥ 3,
8 − 4t1 , if t0 = 1, t2 ≥ 4,
8 − 3t1 , if t0 = 1, t2 = 3,
2t0 t1 − 2t1 , if t0 ≤ 0, t2 ≥ 3

appropriate tight contact structures on Σ × S1 with the given boundary slopes.
Proof The boundary slopes of Σ × S1 are s0 = t0, s1 = − 1

t1
> 0, and s2 = − 1

t2
∈ (−1, 0).

If t0 ≥ 1, then the tight contact structures on Σ × S1 always contain a 0-twisting
vertical Legendrian circle.

If t0 ≥ 3, t1 < 0, and t2 = 2, then there are at most 2 × (1 − t1) × 3 = 6(1 − t1) appro-
priate tight contact structures. If t0 ≥ 3, t1 < 0, and t2 ≥ 3, then there are at most
2 × (1 − t1) × 4 = 8(1 − t1) appropriate tight contact structures. The number of such
contact structures depends on the signs of the basic slices in L′i for i = 0, 1, 2. For
the other cases, the upper bound can be obtained by deleting the duplication or the
overtwisted contact structures.

Suppose t0 ≤ 0. By Lemma 2.6, there are no appropriate tight contact structures
with a 0-twisting vertical Legendrian circle. We consider the appropriate tight contact
structures without a 0-twisting vertical Legendrian circle. By Lemma 2.7, we can
factorize Σ × S1 = Σ′′ × S1 ∪ L′′1 ∪ L′′2 , where the boundary slopes of Σ′′ × S1 are t0, 1
and 0, the boundary slopes of L′′1 are 1 and − 1

t1
, and the boundary slopes of L′′2 are

0 and − 1
t2

. Since t0 ≤ 0, according to [14, Lemma 5.1], there are exactly 1 − t0 tight
contact structures on Σ′′ × S1 without a 0-twisting vertical Legendrian circle. There are
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−t1 minimally twisting tight contact structures on L′′1 . There are 2 minimally twisting
tight contact structures on L′′2 . Therefore, there are at most −2t1 + 2t0 t1 appropriate
tight contact structures on Σ × S1 without a 0-twisting vertical Legendrian circle and
with boundary slopes s0 = t0, s i = − 1

t i
for i = 1, 2.

When t2 = 2, the 6 − 6t1 contact structures on Σ × S1 with a 0-twisting vertical
Legendrian circle are denoted using the decorations (±)(± ⋅ ⋅ ⋅ ±

�����������
−t1

)(±±). For t2 ≥ 3, we

use the decorations (±)(± ⋅ ⋅ ⋅ ±
�����������
−t1

)((±)(±)) to represent the 8 − 8t1 contact structures

on Σ × S1 with a 0-twisting vertical Legendrian circle.
If t0 = 1, t1 < 0, and t2 = 3, we claim the two decorations

(+)(+ ⋅ ⋅ ⋅ +
�����������

l

− ⋅ ⋅ ⋅ −
�����������

k

)((−)(+)) and (−)(− ⋅ ⋅ ⋅ −
�����������

k+1

+ ⋅ ⋅ ⋅ +
�����������

l−1

)((+)(−)),

where l ≥ 1, k ≥ 0, k + l = −t1, denote the same contact structure on Σ × S1. We con-
sider L′0 ∪ B′1 ∪ L′2 ∪ Σ′ × S1 in Σ × S1 with the first decoration, where B′1 is the inner
most basic slice in L′1 with two boundary slopes ∞ and 1. We can assume the sign of
B′1 is positive since L′1 is a continued fraction block containing at least one positive
basic slice. As before, there is a convex vertical annulus A such that ∂A consists of a
Legendrian ruling on T0 and a Legendrian ruling on the boundary component of B′1
with slope 1, and the dividing set on A run from one boundary component to the other.
If we cut L′0 ∪ B′1 ∪ L′2 ∪ Σ′ × S1 along A, we will obtain a thickened torus admitting
a factorization into two basic slices with slopes − 1

3 , 0 and 0, −1, and opposite signs.
Here, the slope −1 is obtained by −1 − 1 + 1. Using the same reasoning as in the proof
of Lemma 2.10, we have an exchange from the first decoration to the second without
altering the isotopy classes of contact structures. ∎

2.4 t1 = 0.

Lemma 2.14 Suppose t1 = 0. Then, there are at most

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

8, if t2 ≥ 3,
6, if t2 = 2,
4, if t2 = 1,
2 − 2t2 , if t2 ≤ 0

appropriate tight contact structures on Σ × S1 with the given boundary slopes. All of them
have 0-twisting vertical Legendrian circles.

Proof Since s1 = ∞, the appropriate tight contact structures on Σ × S1 always contain
0-twisting vertical Legendrian circles.

The boundary slopes of Σ × S1 are t0, ∞ and − 1
t2

. We can factorize Σ × S1 = L′0 ∪
L′2 ∪ Σ′ × S1, where the boundary slopes of Σ′ × S1 are all ∞, the boundary slopes of
L′0 are ∞ and t0, and the boundary slopes of L′2 are ∞ and − 1

t2
. There are exactly 2

minimally twisting tight contact structures on L′0. If t2 ≤ 0, = 1, = 2, or ≥ 3, then there
are 1 − t2, 2, 3, or 4 minimally twisting tight contact structures on L′2, respectively.
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Therefore, if t2 ≤ 0, = 1, = 2, or ≥ 3, then there are 2 − 2t2, 4, 6, or 8 appropriate tight
contact structures on Σ × S1, respectively. ∎

If t2 ≥ 3, the 8 contact structures on Σ × S1 are denoted using the decorations
(±)((±)(±)). For t2 = 2, we use the decorations (±)(±±) to represent the 6 contact
structures on Σ × S1. When t2 = 1, we use the decorations (±)(±) to denote the 4
contact structures on Σ × S1. If t2 ≤ 0, we use the decorations (±)(± ⋅ ⋅ ⋅ ±

�����������
−t2

) to denote

the 2 − 2t2 contact structures on Σ × S1.

2.5 Some tight contact structures

We use the notation (T2 × [0, 1], s0 , s1) to represent a basic slice with boundary slopes
s0 and s1 on T2 × {i}, where i = 0, 1. There is a geodesic in the Farey graph connecting
s0 and s1. Moreover, any boundary parallel convex torus of this slice has a dividing
slope within the range of [s0 , s1] corresponding to the clockwise arc on the boundary
of the Poincare disk shown in Figure 3.

Lemma 2.15 There are 6 tight contact structures on Σ × S1 with boundary slopes t0,
− 1

t1
, and − 1

t2
, where t1 , t2 ≠ 0, and satisfying that

• Σ × S1 can be decomposed as L′0 ∪ L′1 ∪ L′2 ∪ Σ′ × S1, where Σ′ × S1 have boundary
slopes ∞,

• L′0 is a basic slice,
• L′i , i = 1, 2, is a thickened torus, all of whose basic slices have the same signs,
• the signs of L′0, L′1, and L′2 are ± ∓ ∓, ± ∓ ± or ± ± ∓.

Proof Suppose they have 0-twisting vertical Legendrian circles. By Lemma 2.3, each
of them can be decomposed as L′0 ∪ L′1 ∪ L′2 ∪ Σ′ × S1, where the boundary slopes of
Σ′ × S1 are all ∞, L′0 is a basic slice (T2 × [0, 1];∞, t0), and the innermost basic slice
B′i of L′i is (T2 × [0, 1];∞, ⌈− 1

t i
⌉) for i = 1, 2. Using Part 2 of [14, Lemma 5.1], we know

that there are 6 universally tight contact structures on L′0 ∪ B′1 ∪ B′2 ∪ Σ′ × S1 which are
determined by the signs of L′0, B′1, and B′2. Note that the three signs are not the same.
Each of them can be extended to a universally tight Σ̃ × S1 whose boundary slopes are
all ∞. The contact structure on L′0 ∪ L′1 ∪ L′2 ∪ Σ′ × S1 can be embedded into Σ̃ × S1.
Hence, the given contact Σ × S1 is tight. ∎

Lemma 2.16 There are 4 tight contact structures on Σ × S1 with boundary slopes t0,
∞, and − 1

t2
, where t2 ≠ 0, and satisfying that

• Σ × S1 can be decomposed as L′0 ∪ L′2 ∪ Σ′ × S1, where Σ′ × S1 have boundary slopes
∞,

• L′0 is a basic slice,
• L′2 is a thickened torus, all of whose basic slices have the same signs,
• the signs of L′0 and L′2 are ±± or ±∓.

Proof Using [14, Lemma 5.2], the proof is similar to that of Lemma 2.15. ∎

https://doi.org/10.4153/S0008414X24000610 Published online by Cambridge University Press

https://doi.org/10.4153/S0008414X24000610


Strongly exceptional Legendrian connected sum of two Hopf links 17

3 Methods of construction of strongly exceptional Legendrian A3
links

In practice, contact surgery diagrams are a common tool for representing strongly
exceptional Legendrian links. Several works, such as [10], [11], [12], [16], and [9],
employ this technique. In this paper, we utilize contact surgery diagrams to construct
strongly exceptional Legendrian A3 links. It is worth noting that if an exceptional
Legendrian A3 link can be constructed by this technique, then it must be strongly
exceptional. This is because conducting contact surgery along such a Legendrian A3
link results in a tight contact 3-manifold, whereas a Giroux torsion domain in Σ × S1

gives rise to an overtwisted disk after the surgery. Given a contact surgery diagram for
an exceptional Legendrian A3 link, the Thurston-Bennequin invariants and rotation
numbers can be calculated using [15, Lemma 6.6]. Furthermore, the d3-invariant of
the ambient contact 3-sphere can be obtained according to [4].

Additionally, we introduce three other methods. The first method involves per-
forming Legendrian connected sums of two Legendrian knots. The concept of Legen-
drian connected sums of Legendrian knots was defined in [8, Section 3].

Lemma 3.1 Let K′0 ∪ K1 be a strongly exceptional Legendrian Hopf link in a contact
(S3 , ξ 1

2
) with (t′0 , r′0) = (t1 , r1) = (1, 0) or (t′0 , r′0) = (0,±1), t1 ≥ 2, r1 = ±(t1 − 1). Let

K′′0 ∪ K2 be a strongly exceptional Legendrian Hopf link in a contact S3. Then, the
Legendrian connected sum (K′0#K′′0 ) ∪ K1 ∪ K2 is a strongly exceptional Legendrian A3
link in a contact S3.

Proof Suppose t′0 = 0, t1 ≥ 1. Let t′′0 be the Thurston-Bennequin invariant of K′′0 . If
the pair (t′′0 , t2) is not (2, 1) or (1, 2), then any strongly exceptional Legendrian Hopf
link K′′0 ∪ K2 has a contact surgery diagram [11]. As a result, (K′0#K′′0 ) ∪ K1 ∪ K2 has
a contact surgery diagram as shown in the middle and right of Figure 6. We then
perform contact (−1)-surgery along K1 and cancel the contact (+1)-surgery along
the Legendrian unknots. By ignoring the Legendrian unknots with contact (−1)-
surgeries, we obtain a contact surgery diagram for the Legendrian link K′′0 ∪ K2. As
per [11], some contact surgeries along K′′0 ∪ K2 will result in closed tight contact 3-
manifolds. Since contact (−1)-surgery on closed contact 3-manifold preserves tight-
ness [17], some contact surgery along (K′0#K′′0 ) ∪ K1 ∪ K2 will yield a tight contact
3-manifold. Therefore, (K′0#K′′0 ) ∪ K1 ∪ K2 is strongly exceptional.

In the case where (t′′0 , t2) is either (2, 1) or (1, 2), [11] tells us that its exterior is a
universally tight thickened torus and can therefore be contact embedded into a tight
contact T3. The contact (−1)-surgery along links in a tight contact T3 results in a tight
3-manifold. As such, the contact (−1)-surgery along links in the exterior of K′′0 ∪ K2
will also yield a tight 3-manifold. Therefore, the contact (−1)-surgery along K1 will
result in a tight contact 3-manifold. This means that (K′0#K′′0 ) ∪ K1 ∪ K2 is strongly
exceptional.

Assuming t′0 = t1 = 1. If the pair (t′′0 , t2) is not (2, 1) or (1, 2), then (K′0#K′′0 ) ∪ K1 ∪
K2 will have a contact surgery diagram as shown in the left of Figure 6. We then
perform contact (− 1

2 )-surgery along K1 and cancel the contact (+1)-surgery along
the two Legendrian unknots. By doing so, we obtain a contact surgery diagram for
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Figure 6: In the middle and right picture, for t1 even, K′0 and K1 bear the same orientation, and
for t1 odd, the opposite one.

the strongly exceptional Legendrian link K′′0 ∪ K2. This means that the exterior of
(K′0#K′′0 ) ∪ K1 ∪ K2 is appropriate tight.

If the pair (t′′0 , t2) is either (2, 1) or (1, 2), we can apply the same argument as in
the previous case. ∎

We recall that the d3-invariant of the contact connected sum of two con-
tact 3-spheres (S3 , ξ) and (S3 , ξ′) is given by d3(ξ) + d3(ξ′) + 1

2 . Suppose K′′0
has Thurston-Bennequin invariant t′′0 and rotation number r′′0 . Then, K′0#K′′0 has
Thurston-Bennequin invariant t′0 + t′′0 + 1 and rotation number r′0 + r′′0 .

The second method involves adding local Legendrian meridians. In a contact
3-sphere, consider a Legendrian knot intersecting a Darboux ball in a simple arc.
A Legendrian unknot within the Darboux ball, which serves as a meridian of the
given Legendrian knot, is called a local Legendrian meridian. The following lemma
is straightforward.

Lemma 3.2 Suppose K0 ∪ K2 is a strongly exceptional Legendrian Hopf link. Let K1
be a local Legendrian meridian of K0. Then, K0 ∪ K1 ∪ K2 is a strongly exceptional
Legendrian A3 link with t1 < 0 and r1 ∈ {t1 + 1, t1 + 3, ⋅ ⋅ ⋅ ,−t1 − 1}.

The third method involves extending an (appropriate) tight contact Σ × S1 admit-
ting a 0-twisting vertical Legendrian circle to an overtwisted contact S3.

Suppose an (appropriate) tight contact structure ξ on Σ × S1 has a 0-twisting
vertical Legendrian circle γ. We attach three contact solid tori D2

i × S1, i = 0, 1, 2,
to (Σ × S1 , ξ) such that ∂D2

0 is identified to h, ∂D2
1 is identified to c1, and ∂D2

2 is
identified to c2. Then, the resulting manifold Σ × S1 ∪ D2

0 × S1 ∪ D2
1 × S1 ∪ D2

2 × S1 is
diffeomorphic to S3.

If the contact structure on D2
i × S1 has a minimal convex boundary with slope

given by a longitude (i.e., the dividing set of the convex boundary intersects the
meridional circle in exactly two points), then it admits a unique tight contact structure.
Additionally, the core of such a contact solid torus is Legendrian.

Since the dividing set of Ti intersects the meridional disk of D2
i × S1 in exactly two

points, the contact structure ξ on Σ × S1 uniquely extends to a contact structure on
S3. However, since ∂D2

0 is identified to h, the Legendrian vertical circle γ bounds an
overtwisted disk in S3. Therefore, the resulting contact structure on S3 is overtwisted.
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Lemma 3.3 Let ξ be an (appropriate) tight contact structure on Σ × S1 that admits a 0-
twisting vertical Legendrian circle. Extending ξ to a contact 3-sphere as above by adding
three tight contact solid tori. Let Ki , i = 0, 1, 2, be the core of three attached contact solid
tori. Then, K0 ∪ K1 ∪ K2 is a (strongly) exceptional Legendrian A3 link in an overtwisted
contact 3-sphere.

Moreover, we have the following observations.

Lemma 3.4 Let ξ1 and ξ2 be two tight contact structures on Σ × S1 with 0-twisting
vertical Legendrian circles. Suppose they both have minimal convex boundaries with
slopes t0,− 1

t1
, and− 1

t2
. Suppose their factorizations L′0 ∪ L′1 ∪ L′2 ∪ Σ′ × S1 (or L′0 ∪ L′2 ∪

Σ′ × S1 when t1 = 0) differ only in the signs of basic slices in L′0 ∪ L′1 ∪ L′2 (or L′0 ∪ L′2
when t1 = 0). If ξ1 is appropriate tight, then so is ξ2.

Proof This is because the computation of Giroux torsion of an embedded torus T in
a contact 3-manifold only depends on the slopes of the convex tori parallel to T. ∎

Lemma 3.5 Suppose L is an exceptional Legendrian A3 link whose exterior contains a
0-twisting Legendrian vertical circle. Then, the components K0 and K i with t i ≠ 0, where
i = 1, 2, of L can always be destabilized.

Proof There is a basic slice L′0 in the exterior of L which is (T2 × [0, 1],∞, t0).
We can find a basic slice (T2 × [0, 1], t0 + 1, t0) in L′0. So the component K0 can be
destabilized. For i = 1, 2, since there is a basic slice (T2 × [0, 1],− 1

t i+1 ,− 1
t i
) in the

thickened torus L′i , the component K i can be destabilized. ∎

4 Realizations of strongly exceptional Legendrian A3 links

In this section, we construct strongly exceptional Legendrian A3 links.
Throughout this paper, in the contact surgery diagrams representing a Legendrian

A3 link, if a component is a Legendrian push-off of some K i , i = 0, 1, 2, then its contact
surgery coefficient is +1; otherwise, its contact surgery coefficient is −1.

4.1 t1 < 0 and t2 < 0.

The boundary slopes of Σ × S1 are s0 = t0, s1 = − 1
t1
∈ (0, 1], and s2 = − 1

t2
∈ (0, 1].

Lemma 4.1 For any t0 ∈ Z, there are 6 exceptional Legendrian A3 links whose exteriors
have 0-twisting vertical Legendrian circles and have decorations±(+)(− ⋅ ⋅ ⋅ −

�����������
−t1

)(− ⋅ ⋅ ⋅ −
�����������
−t2

),

±(+)(− ⋅ ⋅ ⋅ −
�����������
−t1

)(+ ⋅ ⋅ ⋅ +
�����������
−t2

) and ±(+)(+ ⋅ ⋅ ⋅ +
�����������
−t1

)(− ⋅ ⋅ ⋅ −
�����������
−t2

). Their rotation numbers are

r0 = ±(t0 − 1), r1 = ±(1 − t1), r2 = ±(1 − t2);
r0 = ±(t0 − 1), r1 = ±(1 − t1), r2 = ±(t2 + 1);

r0 = ±(t0 − 1), r1 = ±(t1 + 1), r2 = ±(1 − t2).

The corresponding d3-invariants are independent of t0 if t1 and t2 are fixed.
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Proof The first statement follows from Lemma 2.15 and Lemma 3.3. The rotation
number of a Legendrian knot in a contact 3-sphere is the evaluation of the relative
Euler class on a Seifert surface of the knot. We compute the rotation numbers in a
similar way as that in [9, Section 2.5]. The Seifert surface of K0 can be obtained by
capping the pair of pants Σ by two disks along the boundary components c1 and c2.
The Seifert surface of K i , i = 1, 2, is a union of a meridian disk of K0 and an annulus.
For instance, if the signs of L′0, L′1, and L′2 are + − − (see Figure 4 for an example),
then the rotation numbers can be computed using relative Euler class as follows. We
denote a

b ⊖ c
d to be a−c

b−d , and a
b ● c

d to be ad − bc [9, Section 2.5]. The denominators
are assumed to be nonnegative. The rotation number of K0 is

r0 = −( −1
−t1

⊖ −1
−t1 − 1

) ● 0
1
− ( −1

−t1 − 1
⊖ −1

−t1 − 2
) ● 0

1
− ⋅ ⋅ ⋅ − (−1

1
⊖ −1

0
) ● 0

1

− ( −1
−t2

⊖ −1
−t2 − 1

) ● 0
1
− ( −1

−t2 − 1
⊖ −1

−t2 − 2
) ● 0

1
− ⋅ ⋅ ⋅ − (−1

1
⊖ −1

0
) ● 0

1

+ ( 1
0
⊖ t0

1
) ● 0

1
= 1 − t0 .

The rotation number of K1 is

r1 = (−t0

1
⊖ −1

0
) ● 1

0
− ( 1

0
⊖ 1

1
) ● 1

0
− ( 1

1
⊖ 1

2
) ● 1

0
− ⋅ ⋅ ⋅ − ( 1

−t1 − 1
⊖ 1

−t1
) ● 1

0
= t1 − 1.

The rotation number of K2 is

r2 = (−t0

1
⊖ −1

0
) ● 1

0
− ( 1

0
⊖ 1

1
) ● 1

0
− ( 1

1
⊖ 1

2
) ● 1

0
− ⋅ ⋅ ⋅ − ( 1

−t2 − 1
⊖ 1

−t2
) ● 1

0
= t2 − 1.

In the computation above, when calculating r0, it is necessary to reverse the signs of
the dividing slopes in the thickened tori L′1 and L′2. Similarly, when calculating r1 and
r2, the signs of the dividing slopes in the thickened torus L′0 should be reversed.

The last statement follows directly from Lemma 3.5. ∎

In a similar way, we can use relative Euler classes and the given decorations to
compute the rotation numbers of any other Legendrian A3 links whose exteriors
contain a 0-twisting vertical Legendrian circle.

Proof of Theorem 1.1 Recall that the numbers of strongly exceptional Legendrian A3
links have upper bounds listed in Lemma 2.8. We will show that these upper bounds
can be attained.

Lemma 4.2 The oriented link K0 ∪ K1 ∪ K2 in the surgery diagram in Figure 7 is a
topological A3 link in S3.

Proof The proof is similar to that of [11, Lemma 5.1, part (i)]. ∎
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Figure 7: For n even, K0 and K i , i = 1, 2, bear the same orientation, and for n odd, the opposite
one.

Figure 8: t0 ≥ 2, t1 ≤ 0, t2 ≤ 0. For i = 1, 2, k i + l i = −t i . For t0 even, K0 and K i , i = 1, 2, bear
the same orientation, and for t0 odd, the opposite one.

(1) Suppose t0 ≥ 2.

Lemma 4.3 If t0 ≥ 2, t1 < 0, t2 < 0, there exist 2t1 t2 − 2t1 − 2t2 + 2 strongly excep-
tional Legendrian A3 links in (S3 , ξ 1

2
) whose rotation numbers are

r0 = ±(t0 − 1), r i ∈ ±{t i + 1, t i + 3, ⋅ ⋅ ⋅ ,−t i + 1}, i = 1, 2.

Proof There are 2t1 t2 − 2t1 − 2t2 + 2 strongly exceptional Legendrian A3 links as
illustrated in Figure 8. According to Lemma 4.2, K0 ∪ K1 ∪ K2 forms a topological
A3 link. By performing the same calculations as in the proof of Theorem 1.2 (b1) in
[11], we can determine that their rotation numbers are as listed. The corresponding
d3-invariant is 1

2 . The strong exceptionality property arises from carrying out contact
(−1)-surgery along K0 which cancels the contact (+1)-surgery. ∎

(2) Suppose t0 = 1.

Lemma 4.4 If t0 = 1, t1 < 0, t2 < 0, then there exist t1 t2 − 2t1 − 2t2 + 2 strongly excep-
tional Legendrian A3 links in (S3 , ξ 1

2
) whose rotation numbers are

r0 = 0, r i ∈ {t i + 1, t i + 3, ⋅ ⋅ ⋅ ,−t i + 1}, i = 1, 2;
r0 = 0, r1 = t1 − 1, r2 ∈ {t2 − 1, t2 + 1, ⋅ ⋅ ⋅ ,−t2 − 1};
r0 = 0, r1 ∈ {t1 + 1, t1 + 3, ⋅ ⋅ ⋅ ,−t1 − 1}, r2 = t2 − 1.

Proof There are t1 t2 − 2t1 − 2t2 + 2 strongly exceptional Legendrian A3 links as
shown in Figure 9. The linking number of the components K1 and K2 in Figure 9
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Figure 9: t0 = 1, t1 < 0, t2 < 0. For i = 1, 2, k i + l i = −t i + 1. In the left diagram, l1 , l2 ≥ 1, while
in the right diagram, k1 , k2 ≥ 1.

is −2. Using similar Kirby diagrams as in [11, Lemma 5.1, part (iii), Figure 3], we can
show that it is a topological A3 link. By performing the same calculations as in the
proof of Theorem 1.2 (b2) in [11], we can determine that their rotation numbers are as
listed. In the left diagram of Figure 9,

r0 = 0, r i ∈ {t i + 1, t i + 3, ⋅ ⋅ ⋅ ,−t i + 1} for i = 1, 2,

while in the right diagram,

r0 = 0, r i ∈ {t i − 1, t i + 1, ⋅ ⋅ ⋅ ,−t i − 1} for i = 1, 2.

There are exactly t1 t2 Legendrian A3 links represented by both the left and the right
diagrams. Moreover, the corresponding d3-invariant is 1

2 . ∎

(3) Suppose t0 = 0.

Lemma 4.5 If t0 = 0, t1 < 0, t2 < 0, then there exist −2t1 − 2t2 + 2 strongly exceptional
Legendrian A3 links in (S3 , ξ 1

2
) whose rotation numbers are

r0 = ±1, r1 = ±(t1 − 1), r2 ∈ {t2 + 1, t2 + 3, ⋅ ⋅ ⋅ ,−t2 − 1};
r0 = ±1, r1 ∈ {t1 + 1, t1 + 3, ⋅ ⋅ ⋅ ,−t1 − 1}, r2 = ±(t2 − 1);
r0 = ±1, r1 = ±(t1 − 1), r2 = ±(t2 − 1).

Proof By [11, Theorem 1.2], there are two strongly exceptional Legendrian Hopf links
K0 ∪ K1 in (S3 , ξ 1

2
) with (t0 , r0) = (0,±1), t1 < 0 and r1 = ±(t1 − 1). Let K2 be a local

Legendrian meridian of K0. Then by Lemma 3.2, there are −2t2 strongly exceptional
Legendrian A3 links in (S3 , ξ 1

2
) whose rotation numbers are

r0 = ±1, r1 = ±(t1 − 1), r2 ∈ {t2 + 1, t2 + 3, ⋅ ⋅ ⋅ ,−t2 − 1}.

Similarly, there are−2t1 strongly exceptional Legendrian A3 links in (S3 , ξ 1
2
)whose

rotation numbers are

r0 = ±1, r1 ∈ {t1 + 1, t1 + 3, ⋅ ⋅ ⋅ ,−t1 − 1}, r2 = ±(t2 − 1).

Moreover, by Lemma 4.1 and Lemma 3.4, there are 2 strongly exceptional Leg-
endrian A3 links in (S3 , ξ 1

2
) whose rotation numbers (r0 , r1 , r2) are (±1,±(t1 − 1),

±(t2 − 1)). ∎
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Figure 10: A Legendrian A3 link in (S3 , ξst).

(4) Suppose t0 < 0.

Lemma 4.6 If t i < 0 for i = 0, 1, 2, then there exist −t0 t1 t2 strongly exceptional Legen-
drian A3 links in (S3 , ξst) whose rotation numbers are

r i ∈ {t i + 1, t i + 3, ⋅ ⋅ ⋅ ,−t i − 1}, for i = 0, 1, 2.

Proof By stabilizations of the Legendrian A3 link shown in Figure 10, we obtain
−t0 t1 t2 strongly exceptional Legendrian A3 links in (S3 , ξst). Their rotation numbers
are as listed. ∎

So there are exactly −t0 t1 t2 Legendrian A3 links in contact 3-spheres whose
complements are appropriate tight if t i < 0 for i = 0, 1, 2.

The proof of Theorem 1.1 is completed.

4.2 t1 > 0 and t2 > 0.

The boundary slopes of Σ × S1 are s0 = t0, s1 = − 1
t1
∈ [−1, 0), and s2 = − 1

t2
∈ [−1, 0).

Lemma 4.7 For any t0 ∈ Z, there are 6 exceptional Legendrian A3 links whose exteriors
have 0-twisting vertical Legendrian circles, and the signs of basic slices in L′0 , L′1 , L′2 are
±(+ − −),±(+ + −), and ±(+ − +), respectively. Their rotation numbers are

r0 = ±(t0 + 3), r1 = ±(t1 + 1), r2 = ±(t2 + 1);
r0 = ±(t0 − 1), r1 = ±(1 − t1), r2 = ±(t2 + 1);
r0 = ±(t0 − 1), r1 = ±(t1 + 1), r2 = ±(1 − t2).

The corresponding d3-invariants are independent of t0 if t1 and t2 are fixed.

Proof The first statement can be inferred from Lemma 2.15 and Lemma 3.3. For
example, when the signs of L′0, L′1, and L′2 are + − −, the rotation numbers can be
computed using the relative Euler class as follows. See Figure 5 for the decoration. The
rotation number of K0 is

r0 = −( 1
t1
⊖ 0

1
) ● 0

1
− (0

1
⊖ −1

0
) ● 0

1
− ( 1

t2
⊖ 0

1
) ● 0

1
− (0

1
⊖ −1

0
) ● 0

1

+ ( 1
0
⊖ t0

1
) ● 0

1
= −t0 − 3.

The rotation number of K1 is

r1 = (−t0

1
⊖ −1

0
) ● 1

0
− ( 1

0
⊖ 0

1
) ● 1

0
− (0

1
⊖ −1

t1
) ● 1

0
= −t1 − 1.
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The rotation number of K2 is

r2 = (−t0

1
⊖ −1

0
) ● 1

0
− ( 1

0
⊖ 0

1
) ● 1

0
− (0

1
⊖ −1

t2
) ● 1

0
= −t2 − 1.

∎

4.2.1 t1 = t2 = 1.

Proof of Theorem 1.2 The upper bound of strongly exceptional Legendrian A3 links
is given by Lemma 2.9. We will show that these upper bounds can be attained.

(1) Suppose t0 ≥ 6.

Lemma 4.8 If t0 ≥ 6, t1 = t2 = 1, then there exist 8 strongly exceptional Legendrian A3
links whose rotation numbers and corresponding d3 invariants (r0 , r1 , r2; d3) are

(±(t0 + 3),±2,±2;−3
2
) , (±(t0 − 1),±2, 0; 1

2
) , (±(t0 − 1), 0,±2; 1

2
) ,

(±(t0 − 5), 0, 0; 5
2
) .

Proof There exist 8 strongly exceptional Legendrian A3 links shown in Figure 11.
Using the trick of Lemma 4.2, the upper branch in each of the surgery diagrams can
be topologically reduced to a single unknot, and the lower two branches in each of the
surgery diagrams can be split. Furthermore, using the trick in the proof of [11, Lemma
5.1, part (ii), Figure 5], we can show that K0 ∪ K1 ∪ K2 is a topological A3 link. Their
rotation numbers are

r0 = ±(t0 + 3), r1 = ±2, r2 = ±2; r0 = ±(t0 − 1), r1 = ±2, r2 = 0;

r0 = ±(t0 − 1), r1 = 0, r2 = ±2; r0 = ±(t0 − 5), r1 = r2 = 0.

The corresponding d3-invariants are − 3
2 , 1

2 , 1
2 , 5

2 . These d3-invariants are calculated
using the algorithm described in [4]. ∎

Figure 11: t0 ≥ 6, t1 = t2 = 1. For t0 even, K0 and K i , i = 1, 2, bear the same orientation, and for
t0 odd, the opposite one.
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(2) Suppose t0 = 5.

Lemma 4.9 If t0 = 5, t1 = t2 = 1, then there exist 7 strongly exceptional Legendrian A3
links whose rotation numbers and corresponding d3 invariants (r0 , r1 , r2; d3) are

(±4, 0,±2; 1
2
) , (0, 0, 0; 5

2
) , (±4,±2, 0; 1

2
) , (±8,±2,±2;−3

2
) .

Proof By [11, Theorem 1.2, (c1), (c2)], there is a Legendrian Hopf link K′0 ∪ K1
in (S3 , ξ 1

2
) with (t′0 , r′0) = (t1 , r1) = (1, 0), two Legendrian Hopf links K′′0 ∪ K2 in

(S3 , ξ− 1
2
)with (t′′0 , r′′0 ) = (3,±4), (t2 , r2) = (1,±2), and a Legendrian Hopf links K′′0 ∪

K2 in (S3 , ξ 3
2
) with (t′′0 , r′′0 ) = (3, 0), (t2 , r2) = (1, 0). Connected summing K′0 and

K′′0 , by Lemma 3.1, we obtain 3 strongly exceptional Legendrian A3 links with t0 =
5, t1 = t2 = 1. Their rotation numbers and corresponding d3-invariants (r0 , r1 , r2; d3)
are (±4, 0,±2; 1

2 ) and (0, 0, 0; 5
2 ).

By exchanging the roles of K1 and K2, we obtain 2 strongly exceptional Legendrian
A3 links in (S3 , ξ 1

2
) whose rotation numbers (r0 , r1 , r2) are (±4,±2, 0).

By Lemma 4.7 and Lemma 3.4, there are 2 strongly exceptional Legendrian A3 links
in (S3 , ξ− 3

2
) whose rotation numbers (r0 , r1 , r2) are (±8,±2,±2). Their exteriors have

decorations ±(+)(−)(−). ∎

(3) Suppose t0 = 4.

Lemma 4.10 If t0 = 4, t1 = t2 = 1, then there exist 6 strongly exceptional Legendrian
A3 links whose rotation numbers and corresponding d3 invariants (r0 , r1 , r2; d3) are

(±3, 0,±2; 1
2
) , (±3,±2, 0; 1

2
) , (±7,±2,±2;−3

2
) .

Proof Suppose t0 = 4. By [11, Theorem 1.2], there is a Legendrian Hopf link K′0 ∪ K1
in (S3 , ξ 1

2
) with (t′0 , r′0) = (t1 , r1) = (1, 0), and two Legendrian Hopf links K′′0 ∪ K2 in

(S3 , ξ− 1
2
) with (t′′0 , r′′0 ) = (2,±3), (t2 , r2) = (1,±2). Connected summing K′0 and K′′0 ,

by Lemma 3.1, we obtain 2 strongly exceptional Legendrian A3 link with t0 = 4, t1 =
t2 = 1 in (S3 , ξ 1

2
). Their rotation numbers (r0 , r1 , r2) are (±3, 0,±2).

By exchanging the roles of K1 and K2, we obtain 2 strongly exceptional Legendrian
A3 links in (S3 , ξ 1

2
) whose rotation numbers (r0 , r1 , r2) are (±3,±2, 0).

By Lemma 4.7 and Lemma 3.4, there are 2 strongly exceptional Legendrian A3 links
in (S3 , ξ− 3

2
) whose rotation numbers (r0 , r1 , r2) are (±7,±2,±2). Their exteriors have

decorations ±(+)(−)(−). ∎

(4) Suppose t0 ≤ 3.

Lemma 4.11 If t0 ≤ 3, t1 = t2 = 1, then there exist 4 − t0 strongly exceptional Legen-
drian A3 links in (S3 , ξ 3

2
) whose rotation numbers are

r0 ∈ {t0 − 3, t0 − 1, ⋅ ⋅ ⋅ , 3 − t0}, r1 = r2 = 0.

Proof Suppose t0 ≤ 3. By [11, Theorem 1.2, (c1), (b2)], there is a Legendrian Hopf
link K′0 ∪ K1 in (S3 , ξ 1

2
) with (t′0 , r′0) = (t1 , r1) = (1, 0), and a Legendrian Hopf link

K′′0 ∪ K2 in (S3 , ξ 1
2
) with t′′0 ≤ 1, r′′0 ∈ {t′′0 − 1, t′′0 + 1, ⋅ ⋅ ⋅ ,−t′′0 + 1}, (t2 , r2) = (1, 0).
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By Lemma 3.1, we can construct 4 − t0 strongly exceptional Legendrian A3 links in
(S3 , ξ 3

2
) with t0 ≤ 3, t1 = t2 = 1. Their rotation numbers are as listed. ∎

These 4 − t0 strongly exceptional Legendrian A3 links are obtained by stabilizations
along K0 of the Legendrian A3 link with t0 = 3, t1 = t2 = 1.

The proof of Theorem 1.2 is completed.

4.2.2 t1 ≥ 2 and t2 = 1.

The boundary slopes of Σ × S1 are s0 = t0, s1 = − 1
t1

, and s2 = −1.

Proof of Theorem 1.3 The upper bound of strongly exceptional Legendrian A3 links
is given by Lemma 2.10. We will show that these upper bounds can be attained.

(1) Suppose t0 ≥ 5 and t1 = 2.

Lemma 4.12 If t0 ≥ 5, t1 = 2, and t2 = 1, then there exist 12 strongly exceptional Legen-
drian A3 links whose rotation numbers and corresponding d3 invariants (r0 , r1 , r2; d3)
are

(±(t0 − 5),∓1, 0; 5
2
) , (±(t0 − 3),±1, 0; 5

2
) , (±(t0 − 1),±3, 0; 1

2
) ,

(±(t0 − 1),∓1,±2; 1
2
) , (±(t0 + 1),±1,±2; 1

2
) , (±(t0 + 3),±3,±2;−3

2
) .

Proof There exist 12 strongly exceptional Legendrian A3 links shown in Figure 12.
Using the trick of Lemma 4.2 and the proof of [11, Theorem 1.2, (c3)], we can show
that K0 ∪ K1 ∪ K2 is a topological A3 link. Their rotation numbers and corresponding
d3-invariants are as listed. ∎

(2) Suppose t0 = 4 and t1 = 2.

Lemma 4.13 If t0 = 4, t1 = 2, and t2 = 1, then there exist 10 strongly exceptional Legen-
drian A3 links whose rotation numbers and corresponding d3-invariants (r0 , r1 , r2; d3)
are

(±5,±1,±2; 1
2
) , (±3,∓1,±2; 1

2
) , (±1,±1, 0; 5

2
) , (±3,±3, 0; 1

2
) , (±7,±3,±2;−3

2
) .

Proof By [11, Theorem 1.2, (c2), (d)], there are two Legendrian Hopf links K′0 ∪ K1 in
(S3 , ξ 1

2
) with (t′0 , r′0) = (0,±1), (t1 , r1) = (2,±1), two Legendrian Hopf links K′′0 ∪ K2

in (S3 , ξ− 1
2
) with (t′′0 , r′′0 ) = (3,±4), (t2 , r2) = (1,±2), and a Legendrian Hopf link

K′′0 ∪ K2 in (S3 , ξ 3
2
) with (t′′0 , r′′0 ) = (3, 0), (t2 , r2) = (1, 0). By Lemma 3.1, we can

obtain 6 strongly exceptional Legendrian A3 links whose rotation numbers and d3-
invariants (r0 , r1 , r2; d3) are (±5,±1,±2; 1

2 ), (±3,∓1,±2; 1
2 ), and (±1,±1, 0; 5

2 ).
By [11, Theorem 1.2, (c1), (c2)], there is a Legendrian Hopf link K′0 ∪ K2 in

(S3 , ξ 1
2
)with (t′0 , r′0) = (t2 , r2) = (1, 0), and four Legendrian Hopf links K′′0 ∪ K1 with

(t′′0 , r′′0 ) = (t1 , r1) = (2,±3) in (S3 , ξ− 1
2
) or (2,±1) in (S3 , ξ 3

2
). By Lemma 3.1, we can

obtain 2 more strongly exceptional Legendrian A3 links whose rotation numbers and
d3-invariants (r0 , r1 , r2; d3) are (±3,±3, 0; 1

2 ).
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Figure 12: t0 ≥ 5, t1 = 2, t2 = 1. For t0 odd, K0 and K2 bear the same orientation, while K0 and
K1 bear the opposite orientation. For t0 even, K0 and K1 bear the same orientation, while K0
and K2 bear the opposite orientation.

By Lemma 4.7 and Lemma 3.4, there exist 2 strongly exceptional Legendrian A3
links in (S3 , ξ− 3

2
) whose rotation numbers (r0 , r1 , r2) are (±7,±3,±2). Their exteriors

have decorations ±(+)(−−)(−). ∎

So there exist 10 strongly exceptional Legendrian A3 links with t0 = 4, t1 = 2, t2 = 1.
As a corollary, the 10 contact structures on Σ × S1 with boundary slopes s0 = 4, s1 =
− 1

2 , s2 = −1 listed in Lemma 2.10 are all appropriate tight.
(3) Suppose t0 = 3 and t1 = 2.

Lemma 4.14 If t0 = 3, t1 = 2, and t2 = 1, then there exist 8 strongly exceptional Legen-
drian A3 links whose rotation numbers and corresponding d3 invariants (r0 , r1 , r2; d3)
are

(±2,±3, 0; 1
2
) , (±2,∓1,±2; 1

2
) , (±4,±1,±2; 1

2
) , (±6,±3,±2;−3

2
) .

Proof By [11, Theorem 1.2, (c2), (c1)], there are two Legendrian Hopf links K′0 ∪ K1
in (S3 , ξ− 1

2
) with (t′0 , r′0) = (1,±2), (t1 , r1) = (2,±3), and one Legendrian Hopf link
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K′′0 ∪ K2 in (S3 , ξ 1
2
) with (t′′0 , r′′0 ) = (t2 , r2) = (1, 0). By Lemma 3.1, we can obtain 2

strongly exceptional Legendrian A3 links whose rotation numbers and d3-invariants
(r0 , r1 , r2; d3) are (±2,±3, 0; 1

2 ).
By [11, Theorem 1.2, (d), (c2)], there are two Legendrian Hopf links K′0 ∪ K1

in (S3 , ξ 1
2
) with (t′0 , r′0) = (0,±1), (t1 , r1) = (2,±1), and two Legendrian Hopf links

K′′0 ∪ K2 in (S3 , ξ− 1
2
) with (t′′0 , r′′0 ) = (2,±3), (t2 , r2) = (1,±2). By Lemma 3.1, we can

obtain 4 strongly exceptional Legendrian A3 links whose rotation numbers and d3-
invariants (r0 , r1 , r2; d3) are (±2,∓1,±2; 1

2 ) and (±4,±1,±2; 1
2 ).

By Lemma 4.7 and Lemma 3.4, there are 2 strongly exceptional Legendrian A3 links
in (S3 , ξ− 3

2
) whose rotation numbers (r0 , r1 , r2) are (±6,±3,±2). Their exteriors have

decorations ±(+)(−−)(−). ∎
So there are 8 strongly exceptional Legendrian A3 links with t0 = 3, t1 = 2, t2 = 1.

As a corollary, the 8 contact structures on Σ × S1 with boundary slopes s0 = 3, s1 =
− 1

2 , s2 = −1 listed in Lemma 2.10 are all appropriate tight.
(4) Suppose t0 ≥ 5 and t1 ≥ 3.

Lemma 4.15 If t0 ≥ 5, t1 ≥ 3, and t2 = 1, then there exist 16 strongly exceptional Legen-
drian A3 links whose rotation numbers and corresponding d3 invariants (r0 , r1 , r2; d3)
are

(±(t0 + 1),±(t1 − 1),±2; 1
2
) , (±(t0 + 3),±(t1 + 1),±2;−3

2
) ,

(±(t0 − 1),±(1 − t1),±2; 1
2
) , (±(t0 + 1),±(3 − t1),±2; 1

2
) ,

(±(t0 − 3),±(t1 − 1), 0; 5
2
) , (±(t0 − 1),±(t1 + 1), 0; 1

2
) ,

(±(t0 − 5),±(1 − t1), 0; 5
2
) , (±(t0 − 3),±(3 − t1), 0; 5

2
) .

Proof There exist 16 strongly exceptional Legendrian A3 links shown in Figure 13.
Using the trick of Lemma 4.2 and the proof of [11, Theorem 1.2, (c3), (c4)], we can show
that K0 ∪ K1 ∪ K2 is a topological A3 link. Their rotation numbers and corresponding
d3-invariants are as listed. ∎

(5) Suppose t0 = 4 and t1 ≥ 3.

Lemma 4.16 If t0 = 4, t1 ≥ 3, and t2 = 1, then there exist 14 strongly exceptional Legen-
drian A3 links whose rotation numbers and corresponding d3 invariants (r0 , r1 , r2; d3)
are

(±3,±(t1 + 1), 0; 1
2
) , (∓1,±(1 − t1), 0; 5

2
) , (±1,±(3 − t1), 0; 5

2
) ,

(±5,±(t1 − 1),±2; 1
2
) , (±3,±(1 − t1),±2; 1

2
) ,

(±7,±(t1 + 1),±2;−3
2
) , (±5,±(3 − t1),±2; 1

2
) .

Proof By [11, Theorem 1.2, (c3), (c1)], there are two Legendrian Hopf links K′0 ∪
K1 in (S3 , ξ− 1

2
) with (t′0 , r′0) = (2,±3), t1 ≥ 3, r1 = ±(t1 + 1), two Legendrian Hopf
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Figure 13: t0 ≥ 5, t1 ≥ 3, t2 = 1. For t0 + t1 even, K0 and K1 bear the same orientation, and for
t0 + t1 odd, the opposite one. For t0 odd, K0 and K2 bear the same orientation, and for t0 even,
the opposite one.

links K′0 ∪ K1 in (S3 , ξ 3
2
) with (t′0 , r′0) = (2,±1), t1 ≥ 3, r1 = ±(t1 − 1), two Legendrian

Hopf links K′0 ∪ K1 in (S3 , ξ 3
2
) with (t′0 , r′0) = (2,∓1), t1 ≥ 3, r1 = ±(t1 − 3), and one

Legendrian Hopf link K′′0 ∪ K2 in (S3 , ξ 1
2
) with (t′′0 , r′′0 ) = (t2 , r2) = (1, 0). By Lemma

3.1, we can obtain 6 strongly exceptional Legendrian A3 links whose rotation numbers
and corresponding d3-invariants (r0 , r1 , r2; d3) are (±3,±(t1 + 1), 0; 1

2 ), (∓1,±(1 −
t1), 0; 5

2 ), and (±1,±(3 − t1), 0; 5
2 ).

By [11, Theorem 1.2, (d), (c2)], there are two Legendrian Hopf links K′0 ∪ K1 in
(S3 , ξ 1

2
) with (t′0 , r′0) = (0,±1), t1 ≥ 3, r1 = ±(t1 − 1), and two Legendrian Hopf links

K′′0 ∪ K2 in (S3 , ξ− 1
2
) with (t′′0 , r′′0 ) = (3,±4), (t2 , r2) = (1,±2). By Lemma 3.1, we can

obtain 4 more strongly exceptional Legendrian A3 links whose rotation numbers and
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corresponding d3-invariants (r0 , r1 , r2; d3) are (±5,±(t1 − 1),±2; 1
2 ) and (±3,±(1 −

t1),±2; 1
2 ).

By Lemma 4.7 and Lemma 3.4, there are 2 strongly exceptional Legendrian A3 links
in (S3 , ξ− 3

2
) whose rotation numbers are (±7,±(t1 + 1),±2). The decorations of their

exteriors are ±(+)((−)(−))(−).
There are 2 strongly exceptional Legendrian A3 links in (S3 , ξ 1

2
) whose rotation

numbers (r0 , r1 , r2) are (±5,±(3 − t1),±2). The decorations of their exteriors are
±(+)((−)(+))(−). These exteriors can be embedded into an appropriate tight contact
Σ × S1 with boundary slopes 4,− 1

2 ,−1 and decorations ±(+)(−+)(−). This can be
achieved by adding basic slices (T2 × [0, 1],− 1

t1
,− 1

t1−1 ), ⋅ ⋅ ⋅ , (T2 × [0, 1],− 1
3 ,− 1

2 ) to
the boundary T1, as per the Gluing Theorem [14, Theorem 1.3]. So these exteriors are
appropriate tight. ∎

(6) Suppose t0 = 3 and t1 ≥ 3.

Lemma 4.17 If t0 = 3, t1 ≥ 3, and t2 = 1, then there exist 12 (11 if t1 = 3) strongly excep-
tional Legendrian A3 links whose rotation numbers and corresponding d3-invariants
(r0 , r1 , r2; d3) are

(±2,±(t1 + 1), 0; 1
2
) , (0,±(3 − t1), 0; 5

2
) , (±4,±(t1 − 1),±2; 1

2
) ,

(±2,±(1 − t1),±2; 1
2
) , (±6,±(t1 + 1),±2;−3

2
) , (±4,±(3 − t1),±2; 1

2
) .

Proof By [11, Theorem 1.2, (c3), (c2), (c1)], there are two Legendrian Hopf links
K′0 ∪ K1 in (S3 , ξ− 1

2
) with (t′0 , r′0) = (1,±2), t1 ≥ 3, r1 = ±(t1 + 1), two (one if t1 = 3)

Legendrian Hopf links K′0 ∪ K1 in (S3 , ξ 3
2
) with (t′0 , r′0) = (1, 0), t1 ≥ 3, r1 = ±(t1 − 3),

and one Legendrian Hopf link K′′0 ∪ K2 in (S3 , ξ 1
2
) with (t′′0 , r′′0 ) = (t2 , r2) = (1, 0).

By Lemma 3.1, we can obtain 4 (3 if t1 = 3) strongly exceptional Legendrian A3
links whose rotation numbers and corresponding d3-invariants (r0 , r1 , r2; d3) are
(±2,±(t1 + 1), 0; 1

2 ) and (0,±(3 − t1), 0; 5
2 ).

By [11, Theorem 1.2, (d), (c2)], there are two Legendrian Hopf links K′0 ∪ K1 in
(S3 , ξ 1

2
) with (t′0 , r′0) = (0,±1), t1 ≥ 3, r1 = ±(t1 − 1), and two Legendrian Hopf links

K′′0 ∪ K2 in (S3 , ξ− 1
2
) with (t′′0 , r′′0 ) = (2,±3), (t2 , r2) = (1,±2). By Lemma 3.1, we can

obtain strongly exceptional Legendrian A3 links with t0 = 3, t1 ≥ 3, t2 = 1. So there are
4 strongly exceptional Legendrian A3 links whose rotation numbers and correspond-
ing d3-invariants (r0 , r1 , r2; d3) are (±4,±(t1 − 1),±2; 1

2 ) and (±2,±(1 − t1),±2; 1
2 ).

By Lemma 4.7 and Lemma 3.4, there are 2 strongly exceptional Legendrian A3
links in (S3 , ξ− 3

2
) whose rotation numbers (r0 , r1 , r2) are (±6,±(t1 + 1),±2). The

decorations of their exteriors are ±(+)((−)(−))(−).
There are 2 strongly exceptional Legendrian A3 links in (S3 , ξ 1

2
) whose rotation

numbers (r0 , r1 , r2) are (±4,±(3 − t1),±2). The decorations of their exteriors are
±(+)((−)(+))(−). These exteriors are appropriate tight since they can be embed-
ded into an appropriate tight contact Σ × S1 with boundary slopes 3,− 1

2 ,−1 and
decorations ±(+)(−+)(−) by adding basic slices (T2 × [0, 1],− 1

t1
,− 1

t1−1 ), ⋅ ⋅ ⋅ , (T2 ×
[0, 1],− 1

3 ,− 1
2 ) to the boundary T1. ∎
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So there are exactly 12 (resp. 11) strongly exceptional Legendrian A3 links with
t0 = 3, t1 ≥ 4 (resp. t1 = 3), t2 = 1. If t0 = t1 = 3 and t2 = 1, then the decorations
(+)((−)(+))(+) and (−)((+)(−))(−) correspond to the same Legendrian A3 links
with rotation numbers r0 = r1 = r2 = 0.

(7) Suppose t0 ≤ 2.

Lemma 4.18 If t0 ≤ 2, t1 > 1, and t2 = 1, then there exist 6 − 2t0 strongly exceptional
Legendrian A3 links in (S3 , ξ 3

2
) whose rotation numbers are

r0 ∈ ±{t0 − 1, t0 + 1, ⋅ ⋅ ⋅ ,−t0 + 1,−t0 + 3}, r1 = ±(t1 − 1), r2 = 0.

Proof By [11, Theorem 1.2, (b1), (c1)], there is a Legendrian Hopf link K′0 ∪ K1
in (S3 , ξ 1

2
) with t′0 ≤ 1, r′0 ∈ ±{t′0 + 1, t′0 + 3, ⋅ ⋅ ⋅ ,−t′0 − 1,−t′0 + 1}, t1 ≥ 2, r1 = ±(t1 − 1),

and a Legendrian Hopf link K′′0 ∪ K2 in (S3 , ξ 1
2
) with (t′′0 , r′′0 ) = (t2 , r2) = (1, 0). By

Lemma 3.1, we can construct 6 − 2t0 strongly exceptional Legendrian A3 links in
(S3 , ξ 3

2
) with t0 ≤ 2, t1 > 1, t2 = 1. Their rotation numbers are as listed. ∎

These 6 − 2t0 strongly exceptional Legendrian A3 links are stabilizations of the
Legendrian A3 links with t0 = 2, t1 > 1, t2 = 1.

The proof of Theorem 1.3 is completed.

4.2.3 t1 ≥ 2 and t2 ≥ 2.

Proof of Theorem 1.4 The upper bound of strongly exceptional Legendrian A3 links
is given by Lemma 2.11. We will show that these upper bounds can be attained.

(1) Suppose t0 ≥ 4 and t1 = t2 = 2.

Lemma 4.19 If t0 ≥ 4 and t1 = t2 = 2, then there exist 18 strongly exceptional Legen-
drian A3 links whose rotation numbers and corresponding d3-invariants (r0 , r1 , r2; d3)
are

(±(t0 − 1),±3,∓1; 1
2
) , (±(t0 + 1),±3,±1; 1

2
) , (±(t0 + 3),±3,±3;−3

2
) ,

(±(t0 − 3),±1,∓1; 5
2
) , (±(t0 − 1),±1,±1; 5

2
) , (±(t0 + 1),±1,±3; 1

2
) ,

(±(t0 − 5),∓1,∓1; 5
2
) , (±(t0 − 3),∓1,±1; 5

2
) , (±(t0 − 1),∓1,±3; 1

2
) .

Proof If t0 ≥ 4 and t1 = t2 = 2, then there exist 18 strongly exceptional Legendrian
A3 links shown in Figure 14. Using the trick of Lemma 4.2 and the proof of [11,
Theorem 1.2, (c3)], we can show that K0 ∪ K1 ∪ K2 is a topological A3 link. Their
rotation numbers and corresponding d3-invariants are as listed. ∎

(2) Suppose t0 = 3 and t1 = t2 = 2.

Lemma 4.20 If t0 = 3 and t1 = t2 = 2, then there exist 14 strongly exceptional Legen-
drian A3 links whose rotation numbers and corresponding d3-invariants (r0 , r1 , r2; d3)
are
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Figure 14: t0 ≥ 4, t1 = t2 = 2. For t0 odd, K0 and K i are given the same orientation, and for t0
even, the opposite one, where i = 1, 2.

(±4,±3,±1; 1
2
) , (±4,±1,±3; 1

2
) , (±2,±3,∓1; 1

2
) , (±2,∓1,±3; 1

2
) ,

(∓2,∓1,∓1; 5
2
) , (0,∓1,±1; 5

2
) , (±6,±3,±3;−3

2
) .

Proof By [11, Theorem 1.2, (c2), (d)], there are two Legendrian Hopf links K′0 ∪ K1
in (S3 , ξ− 1

2
) with (t′0 , r′0) = (t1 , r1) = (2,±3), two Legendrian Hopf links K′0 ∪ K1 in

(S3 , ξ 3
2
) with (t′0 , r′0) = (t1 , r1) = (2,±1), and two Legendrian Hopf links K′′0 ∪ K2

in (S3 , ξ 1
2
) with (t′′0 , r′′0 ) = (0,±1), (t2 , r2) = (2,±1). By Lemma 3.1, we can obtain

strongly exceptional Legendrian A3 links with t0 = 3, t1 = t2 = 2. So by exchanging
the roles of K1 and K2, there are 12 strongly exceptional Legendrian A3 links whose
rotation numbers and corresponding d3-invariants (r0 , r1 , r2; d3) are (±4,±3,±1; 1

2 ),
(±4,±1,±3; 1

2 ), (±2,±3,∓1; 1
2 ), (±2,∓1,±3; 1

2 ), (∓2,∓1,∓1; 5
2 ), and (0,∓1,±1; 5

2 ).
By Lemma 4.7 and Lemma 3.4, there are 2 strongly exceptional Legendrian A3 links

in (S3 , ξ− 3
2
) whose rotation numbers (r0 , r1 , r2) are (±6,±3,±3). The decorations of

their exteriors are ±(+)(−−)(−−). ∎
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So there are exactly 14 strongly exceptional Legendrian A3 links with t0 = 3, t1 =
2, t2 = 2. As a corollary, the 14 contact structures on Σ × S1 with boundary slopes s0 =
3, s1 = − 1

2 , s2 = − 1
2 listed in Lemma 2.11 are all appropriate tight.

(3) Suppose t0 = t1 = t2 = 2.

Lemma 4.21 If t0 = t1 = t2 = 2, then there exist 10 strongly exceptional Legendrian A3
links whose rotation numbers and corresponding d3-invariants (r0 , r1 , r2; d3) are

(±3,±3,±1; 1
2
) , (±3,±1,±3; 1

2
) , (±1,±3,∓1; 1

2
) , (±1,∓1,±3; 1

2
) , (±5,±3,±3;−3

2
) .

Proof By [11, Theorem 1.2, (c2), (d)], there are two Legendrian Hopf links K′0 ∪
K1 in (S3 , ξ− 1

2
) with (t′0 , r′0) = (1,±2), (t1 , r1) = (2,±3), and two Legendrian Hopf

links K′′0 ∪ K2 in (S3 , ξ 1
2
) with (t′′0 , r′′0 ) = (0,±1), (t2 , r2) = (2,±1). By Lemma 3.1,

we can obtain strongly exceptional Legendrian A3 links with t0 = t1 = t2 = 2. So by
exchanging the roles of K1 and K2, there are 8 strongly exceptional Legendrian A3
links whose rotation numbers and corresponding d3-invariants (r0 , r1 , r2; d3) are are
(±3,±3,±1; 1

2 ), (±3,±1,±3; 1
2 ), (±1,±3,∓1; 1

2 ), and (±1,∓1,±3; 1
2 ).

By Lemma 4.7 and Lemma 3.4, there are 2 strongly exceptional Legendrian A3 links
in (S3 , ξ− 3

2
) whose rotation numbers (r0 , r1 , r2) are (±5,±3,±3). The decorations of

their exteriors are ±(+)(−−)(−−). ∎

So there are exactly 10 strongly exceptional Legendrian A3 links with t0 = 2, t1 =
2, t2 = 2. As a corollary, the 10 contact structures on Σ × S1 with boundary slopes s0 =
2, s1 = − 1

2 , s2 = − 1
2 listed in Lemma 2.11 are all appropriate tight.

(4) Suppose t0 ≥ 4, t1 ≥ 3, and t2 = 2.

Lemma 4.22 If t0 ≥ 4, t1 ≥ 3, and t2 = 2, then there exist 24 strongly exceptional Legen-
drian A3 links whose rotation numbers and corresponding d3 invariants (r0 , r1 , r2; d3)
are

(±(t0 − 3),±(3 − t1),∓1; 5
2
) , (±(t0 − 1),±(3 − t1),±1; 5

2
) ,

(±(t0 + 1),±(3 − t1),±3; 1
2
) , (±(t0 − 5),±(1 − t1),∓1; 5

2
) ,

(±(t0 − 3),±(1 − t1),±1; 5
2
) , (±(t0 − 1),±(1 − t1),±3; 1

2
) ,

(±(t0 + 1),±(t1 − 1),±3; 1
2
) , (±(t0 − 1),±(t1 − 1),±1; 5

2
) ,

(±(t0 − 3),±(t1 − 1),∓1; 5
2
) , (±(t0 + 3),±(t1 + 1),±3;−3

2
) ,

(±(t0 + 1),±(t1 + 1),±1; 1
2
) , (±(t0 − 1),±(t1 + 1),∓1; 1

2
) .

Proof If t0 ≥ 4, t1 ≥ 3, and t2 = 2, then there are exactly 24 strongly exceptional
Legendrian A3 links shown in Figure 15. Using the trick of Lemma 4.2 and the proof
of [11, Theorem 1.2, (c3), (c4)], we can show that K0 ∪ K1 ∪ K2 is a topological A3 link.
Their rotation numbers and corresponding d3-invariants are as listed. ∎
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Figure 15: t0 ≥ 4, t1 ≥ 3, t2 = 2. If t0 + t1 is odd, then K0 and K1 bear the same orientation. If
t0 + t1 is even, then the opposite one. If t0 is odd, then K0 and K2 bear the same orientation. If
t0 is even, then the opposite one.

(5) Suppose t0 = 3, t1 ≥ 3, and t2 = 2.

Lemma 4.23 If t0 = 3, t1 ≥ 3, t2 = 2, then there exist 20 strongly exceptional Legen-
drian A3 links whose rotation numbers and corresponding d3-invariants (r0 , r1 , r2; d3)
are

(±4,±(t1 − 1),±3; 1
2
) , (±2,±(1 − t1),±3; 1

2
) , (∓2,±(1 − t1),∓1; 5

2
) ,

(0,±(1 − t1),±1; 5
2
) , (±4,±(t1 + 1),±1; 1

2
) , (±2,±(t1 + 1),∓1; 1

2
) ,
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(0,±(3 − t1),∓1; 5
2
) , (±2,±(3 − t1),±1; 5

2
) ,

(±6,±(t1 + 1),±3;−3
2
) , (±4,±(3 − t1),±3; 1

2
) .

Proof By [11, Theorem 1.2, (d), (c2)], there are two Legendrian Hopf links K′0 ∪ K1 in
(S3 , ξ 1

2
) with (t′0 , r′0) = (0,±1), t1 ≥ 3, r1 = ±(t1 − 1), two Legendrian Hopf links K′′0 ∪

K2 in (S3 , ξ− 1
2
) with (t′′0 , r′′0 ) = (t2 , r2) = (2,±3), and two Legendrian Hopf links

K′′0 ∪ K2 in (S3 , ξ 3
2
) with (t′′0 , r′′0 ) = (t1 , r2) = (2,±1). By Lemma 3.1, we can obtain 8

strongly exceptional Legendrian A3 links whose rotation numbers and d3-invariants
(r0 , r1 , r2; d3) are (±4,±(t1 − 1),±3; 1

2 ), (±2,±(1 − t1),±3; 1
2 ), (∓2,±(1 − t1),∓1; 5

2 ),
and (0,±(1 − t1),±1; 5

2 ).
By [11, Theorem 1.2, (c3), (d)], there are two Legendrian Hopf links K′0 ∪ K1

in (S3 , ξ− 1
2
) with (t′0 , r′0) = (2,±3), t1 ≥ 3, r1 = ±(t1 + 1), two Legendrian Hopf links

K′0 ∪ K1 in (S3 , ξ 3
2
) with (t′0 , r′0) = (2,∓1), t1 ≥ 3, r1 = ±(t1 − 3), and two Legendrian

Hopf links K′′0 ∪ K2 in (S3 , ξ 1
2
) with (t′′0 , r′′0 ) = (0,±1), (t2 , r2) = (2,±1). By Lemma

3.1, we can obtain strongly exceptional Legendrian A3 links with t0 = 3, t1 ≥ 3, t2 = 2.
Then, there are 8 strongly exceptional Legendrian A3 links whose rotation numbers
and d3-invariants are (±4,±(t1 + 1),±1; 1

2 ), (±2,±(t1 + 1),∓1; 1
2 ), (0,±(3 − t1),∓1; 5

2 ),
and (±2,±(3 − t1),±1; 5

2 ).
By Lemma 4.7 and Lemma 3.4, there are 2 strongly exceptional Legendrian A3

links in (S3 , ξ− 3
2
) whose rotation numbers (r0 , r1 , r2) are (±6,±(t1 + 1),±3). The

decorations of their exteriors are ±(+)((−)(−))(−−).
There are 2 strongly exceptional Legendrian A3 links in (S3 , ξ 1

2
) whose rotation

numbers (r0 , r1 , r2) are (±4,±(3 − t1),±3). The decorations of their exteriors are
±(+)((−)(+))(−−). These exteriors are appropriate tight since they can be embedded
into an appropriate tight contact Σ × S1 with boundary slopes 3,− 1

2 ,− 1
2 and dec-

orations ±(+)(−+)(−−) by adding basic slices (T2 × [0, 1],− 1
t1

,− 1
t1−1 ), ⋅ ⋅ ⋅ , (T2 ×

[0, 1],− 1
3 ,− 1

2 ) to the boundary T1. ∎

So there are exactly 20 strongly exceptional Legendrian A3 links with t0 = 3, t1 ≥
3, t2 = 2. As a corollary, the 20 contact structures on Σ × S1 with boundary slopes s0 =
3, s1 = − 1

t1
, s2 = − 1

2 listed in Lemma 2.11 are all appropriate tight.
(6) Suppose t0 = 2, t1 ≥ 3, and t2 = 2.

Lemma 4.24 If t0 = 2, t1 ≥ 3, and t2 = 2, then there exist 16 strongly exceptional Legen-
drian A3 links whose rotation numbers and corresponding d3-invariants (r0 , r1 , r2; d3)
are

(±3,±(t1 + 1),±1; 1
2
) , (±1,±(t1 + 1),∓1; 1

2
) , (∓1,±(3 − t1),∓1; 5

2
) ,

(±1,±(3 − t1),±1; 5
2
) , (±1,±(1 − t1),±3; 1

2
) ,

(±3,±(t1 − 1),±3; 1
2
) , (±5,±(t1 + 1),±3;−3

2
) , (±3,±(3 − t1),±3; 1

2
) .
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Proof By [11, Theorem 1.2, (c2), (c3), (d)], there are two Legendrian Hopf links
K′0 ∪ K1 in (S3 , ξ− 1

2
) with (t′0 , r′0) = (1,±2), t1 ≥ 3, r1 = ±(t1 + 1), two (one if t1 = 3)

Legendrian Hopf links K′0 ∪ K1 in (S3 , ξ 3
2
) with (t′0 , r′0) = (1, 0), t1 ≥ 3, r1 = ±(t1 − 3),

and two Legendrian Hopf links K′′0 ∪ K2 in (S3 , ξ 1
2
) with (t′′0 , r′′0 ) = (0,±1), (t2 , r2) =

(2,±1). By Lemma 3.1, we can obtain strongly exceptional Legendrian A3 links with
t0 = 2, t1 ≥ 3, t2 = 2. Then, there are 8 strongly exceptional Legendrian A3 links whose
rotation numbers and corresponding d3-invariants (r0 , r1 , r2; d3) are (±3,±(t1 +
1),±1; 1

2 ), (±1,±(t1 + 1),∓1; 1
2 ), (∓1,±(3 − t1),∓1; 5

2 ), and (±1,±(3 − t1),±1; 5
2 ).

By [11, Theorem 1.2, (d), (c2)], there are two Legendrian Hopf links K′0 ∪ K1 in
(S3 , ξ 1

2
) with (t′0 , r′0) = (0,±1), t1 ≥ 3, r1 = ±(t1 − 1), and two Legendrian Hopf links

K′′0 ∪ K2 in (S3 , ξ− 1
2
) with (t′′0 , r′′0 ) = (1,±2), (t2 , r2) = (2,±3). By Lemma 3.1, we

can obtain strongly exceptional Legendrian A3 links with t0 = 2, t1 ≥ 3, t2 = 2. Then,
there are 4 strongly exceptional Legendrian A3 links whose rotation numbers and
corresponding d3-invariants (r0 , r1 , r2; d3) are (±1,±(1 − t1),±3; 1

2 ) and (±3,±(t1 −
1),±3; 1

2 ).
By Lemma 4.7 and Lemma 3.4, there are 2 strongly exceptional Legendrian A3

links in (S3 , ξ− 3
2
) whose rotation numbers (r0 , r1 , r2) are (±5,±(t1 + 1),±3). The

decorations of their exteriors are ±(+)((−)(−))(−−).
There are 2 strongly exceptional Legendrian A3 links in (S3 , ξ 1

2
) whose rotation

numbers (r0 , r1 , r2) are (±3,±(3 − t1),±3). The decorations of their exteriors are
±(+)((−)(+))(−−). These exteriors are appropriate tight since they can be embedded
into an appropriate tight contact Σ × S1 with boundary slopes 2,− 1

2 ,− 1
2 and dec-

orations ±(+)(−+)(−−) by adding basic slices (T2 × [0, 1],− 1
t1

,− 1
t1−1 ), ⋅ ⋅ ⋅ , (T2 ×

[0, 1],− 1
3 ,− 1

2 ) to the boundary T1. ∎

So there are exactly 16 strongly exceptional Legendrian A3 links with t0 = 2, t1 ≥
3, t2 = 2. As a corollary, the 16 contact structures on Σ × S1 with boundary slopes s0 =
3, s1 = − 1

t1
, s2 = − 1

2 listed in Lemma 2.11 are all appropriate tight.
(7) Suppose t0 ≥ 4, t1 ≥ 3, and t2 ≥ 3.

Lemma 4.25 If t0 ≥ 4, t1 ≥ 3, and t2 ≥ 3, then there exist 32 strongly exceptional Legen-
drian A3 links whose rotation numbers and corresponding d3-invariants (r0 , r1 , r2; d3)
are

(±(t0 + 1),±(t1 − 1),±(t2 + 1); 1
2
) , (±(t0 − 1),±(1 − t1),±(t2 + 1); 1

2
) ,

(±(t0 + 3),±(t1 + 1),±(t2 + 1);−3
2
) , (±(t0 + 1),±(3 − t1),±(t2 + 1); 1

2
) ,

(±(t0 − 1),±(t1 − 1),±(3 − t2); 5
2
) , (±(t0 − 3),±(1 − t1),±(3 − t2); 5

2
) ,

(±(t0 + 1),±(t1 + 1),±(3 − t2); 1
2
) , (±(t0 − 1),±(3 − t1),±(3 − t2); 5

2
) ,

(±(t0 − 1),±(t1 − 1),±(t2 − 1); 5
2
) , (±(t0 − 3),±(1 − t1),±(t2 − 1); 5

2
) ,
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Figure 16: t0 ≥ 4, t1 ≥ 3, t2 ≥ 3. If t0 + t i is odd, then K0 and K i bear the same orientation,
i = 1, 2. If t0 + t i is even, then the opposite one.

(±(t0 + 1),±(t1 + 1),±(t2 − 1); 1
2
) , (±(t0 − 1),±(3 − t1),±(t2 − 1); 5

2
) ,

(±(t0 − 3),±(t1 − 1),±(1 − t2); 5
2
) , (±(t0 − 5),±(1 − t1),±(1 − t2); 5

2
) ,

(±(t0 − 1),±(t1 + 1),±(1 − t2); 1
2
) , (±(t0 − 3),±(3 − t1),±(1 − t2); 5

2
) .

Proof If t0 ≥ 4, t1 ≥ 3, and t2 ≥ 3, then there are exactly 32 strongly exceptional
Legendrian A3 links shown in Figure 16. Using the trick of Lemma 4.2 and the proof
of [11, Theorem 1.2, (c4)], we can show that K0 ∪ K1 ∪ K2 is a topological A3 link. Their
rotation numbers and corresponding d3-invariants are as listed. ∎

(8) Suppose t0 = 3, t1 ≥ 3, and t2 ≥ 3.

Lemma 4.26 If t0 = 3, t1 ≥ 3, and t2 ≥ 3, then there exist 28 strongly exceptional Legen-
drian A3 links whose rotation numbers and corresponding d3-invariants (r0 , r1 , r2; d3)
are

(±4,±(t1 + 1),±(t2 − 1); 1
2
) , (±4,±(t1 − 1),±(t2 + 1); 1

2
) ,

(±2,±(t1 + 1),±(1 − t2); 1
2
) , (±2,±(1 − t1),±(t2 + 1); 1

2
) ,
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(∓2,±(1 − t1),±(1 − t2); 5
2
) , (0,±(t1 − 1),±(1 − t2); 5

2
) ,

(0,±(3 − t1),±(1 − t2); 5
2
) , (0,±(1 − t1),±(3 − t2); 5

2
) ,

(±2,±(3 − t1),±(t2 − 1); 5
2
) , (±2,±(t1 − 1),±(3 − t2); 5

2
) ,

(±6,±(t1 + 1),±(t2 + 1);−3
2
) , (±2,±(3 − t1),±(3 − t2); 5

2
) ,

(±4,±(t1 + 1),±(3 − t2); 1
2
) , (±4,±(3 − t1),±(t2 + 1); 1

2
) .

Proof By [11, Theorem 1.2, (c3), (d)], there are two Legendrian Hopf links K′0 ∪ K1
in (S3 , ξ− 1

2
) with (t′0 , r′0) = (2,±3), t1 ≥ 3, r1 = ±(t1 + 1), two Legendrian Hopf links

K′0 ∪ K1 in (S3 , ξ 3
2
) with (t′0 , r′0) = (2,±1), t1 ≥ 3, r1 = ±(t1 − 1), two Legendrian Hopf

links K′0 ∪ K1 in (S3 , ξ 3
2
) with (t′0 , r′0) = (2,∓1), t1 ≥ 3, r1 = ±(t1 − 3), and two Leg-

endrian Hopf links K′′0 ∪ K2 in (S3 , ξ 1
2
) with (t′′0 , r′′0 ) = (0,±1), t2 ≥ 3, r2 = ±(t2 − 1).

By Lemma 3.1, we can obtain strongly exceptional Legendrian A3 links with t0 =
3, t1 ≥ 3, t2 ≥ 3. Then, after exchanging the roles of K1 and K2, there are 20 strongly
exceptional Legendrian A3 links whose rotation numbers and corresponding d3-
invariants (r0 , r1 , r2; d3) are

(±4,±(t1 + 1),±(t2 − 1); 1
2
) , (±4,±(t1 − 1),±(t2 + 1); 1

2
) ,

(±2,±(t1 + 1),±(1 − t2); 1
2
) , (±2,±(1 − t1),±(t2 + 1); 1

2
) ,

(∓2,±(1 − t1),±(1 − t2); 5
2
) , (0,±(t1 − 1),±(1 − t2); 5

2
) ,

(0,±(3 − t1),±(1 − t2); 5
2
) , (0,±(1 − t1),±(3 − t2); 5

2
) ,

(±2,±(3 − t1),±(t2 − 1); 5
2
) , (±2,±(t1 − 1),±(3 − t2); 5

2
) .

By Lemma 4.7 and Lemma 3.4, there are 2 strongly exceptional Legendrian A3
links in (S3 , ξ− 3

2
) whose rotation numbers (r0 , r1 , r2) are (±6,±(t1 + 1),±(t2 + 1)).

The decorations of their exteriors are ±(+)((−)(−))((−)(−)).
There are other 6 more strongly exceptional Legendrian A3 links whose rotation

numbers and corresponding d3-invariants (r0 , r1 , r2; d3) are (±2,±(3 − t1),±(3 −
t2); 5

2 ), (±4,±(t1 + 1),±(3 − t2); 1
2 ), and (±4,±(3 − t1),±(t2 + 1); 1

2 ). The decora-
tions of their exteriors are

±(+)((−)(+))((−)(+)),±(+)((−)(−))((−)(+)), and ± (+)((−)(+))((−)(−)),
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respectively. These exteriors are tight since they can be embedded into a tight contact
Σ × S1 with boundary slopes 3,− 1

t1
,− 1

2 and decorations

±(+)((−)(+))(−+),±(+)((−)(−))(−+) and ± (+)((−)(+))(−−)

by adding basic slices (T2 × [0, 1],− 1
t2

,− 1
t2−1 ), ⋅ ⋅ ⋅ , (T2 × [0, 1],− 1

3 ,− 1
2 ) to the

boundary T2, respectively. ∎

(9) Suppose t0 = 2, t1 ≥ 3, and t2 ≥ 3.

Lemma 4.27 If t0 = 2, t1 ≥ 3, and t2 ≥ 3, then there exist 24 strongly exceptional Legen-
drian A3 links whose rotation numbers and corresponding d3-invariants (r0 , r1 , r2; d3)
are

(±3,±(t1 + 1),±(t2 − 1); 1
2
) , (±3,±(t1 − 1),±(t2 + 1); 1

2
) ,

(±1,±(t1 + 1),±(1 − t2); 1
2
) , (±1,±(1 − t1),±(t2 + 1); 1

2
) ,

(∓1,±(3 − t1),±(1 − t2); 5
2
) , (∓1,±(1 − t1),±(3 − t2); 5

2
) ,

(±1,±(3 − t1),±(t2 − 1); 5
2
) , (±1,±(t1 − 1),±(3 − t2); 5

2
) ,

(±5,±(t1 + 1),±(t2 + 1);−3
2
) , (±1,±(3 − t1),±(3 − t2); 5

2
) ,

(±3,±(t1 + 1),±(3 − t2); 1
2
) , (±3,±(3 − t1),±(t2 + 1); 1

2
) .

Proof By [11, Theorem 1.2, (c2), (c3), (d)], there are two Legendrian Hopf links
K′0 ∪ K1 in (S3 , ξ− 1

2
) with (t′0 , r′0) = (1,±2), t1 ≥ 3, r1 = ±(t1 + 1), two (one if t1 = 3)

Legendrian Hopf links K′0 ∪ K1 in (S3 , ξ 3
2
) with (t′0 , r′0) = (1, 0), t1 ≥ 3, r1 = ±(t1 − 3),

and two Legendrian Hopf links K′′0 ∪ K2 in (S3 , ξ 1
2
) with (t′′0 , r′′0 ) = (0,±1), t2 ≥

3, r2 = ±(t2 − 1). By Lemma 3.1, we can obtain strongly exceptional Legendrian A3
links with t0 = 2, t1 ≥ 3, t2 ≥ 3. So, after exchanging the roles of K1 and K2, there are 16
strongly exceptional Legendrian A3 links whose rotation numbers and corresponding
d3-invariants (r0 , r1 , r2; d3) are

(±3,±(t1 + 1),±(t2 − 1); 1
2
) , (±3,±(t1 − 1),±(t2 + 1); 1

2
) ,

(±1,±(t1 + 1),±(1 − t2); 1
2
) , (±1,±(1 − t1),±(t2 + 1); 1

2
) ,

(∓1,±(3 − t1),±(1 − t2); 5
2
) , (∓1,±(1 − t1),±(3 − t2); 5

2
) ,

(±1,±(3 − t1),±(t2 − 1); 5
2
) , (±1,±(t1 − 1),±(3 − t2); 5

2
) .
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By Lemma 4.7 and Lemma 3.4, there are 2 strongly exceptional Legendrian A3
links in (S3 , ξ− 3

2
) whose rotation numbers (r0 , r1 , r2) are (±5,±(t1 + 1),±(t2 + 1)).

The decorations of their exteriors are ±(+)((−)(−))(−−).
There are 6 strongly exceptional Legendrian A3 links whose rotation num-

bers and corresponding d3-invariants (r0 , r1 , r2; d3) are (±1,±(3 − t1),±(3 − t2); 5
2 ),

(±3,±(t1 + 1),±(3 − t2); 1
2 ), and (±3,±(3 − t1),±(t2 + 1); 1

2 ). The decorations of their
exteriors are

±(+)((−)(+))((−)(+)),±(+)((−)(−))((−)(+)), and ± (+)((−)(+))((−)(−)),

respectively. These exteriors are appropriate tight since they can be embedded into an
appropriate tight contact Σ × S1 with boundary slopes 2,− 1

t1
,− 1

2 and decorations

±(+)((−)(+))(−+),±(+)((−)(−))(−+), and ± (+)((−)(+))(−−)

by adding basic slices (T2 × [0, 1],− 1
t2

,− 1
t2−1 ), ⋅ ⋅ ⋅ , (T2 × [0, 1],− 1

3 ,− 1
2 ) to the

boundary T2, respectively. ∎

(10) Suppose t0 ≤ 1.

Lemma 4.28 If t0 ≤ 1, t1 ≥ 2, and t2 ≥ 2, then there exist 8 − 4t0 strongly exceptional
Legendrian A3 links in (S3 , ξ 3

2
) whose rotation numbers are

r0 ∈ ±{t0 + 1, t0 + 3, ⋅ ⋅ ⋅ ,−t0 + 1,−t0 + 3}, r1 = ±(t1 − 1), r2 = ±(t2 − 1);

r0 ∈ ±{t0 − 1, t0 + 1, ⋅ ⋅ ⋅ ,−t0 − 1,−t0 + 1}, r1 = ±(1 − t1), r2 = ±(t2 − 1).

Proof By [11, Theorem 1.2, (d)], there are two Legendrian Hopf links K′0 ∪ K1 in
(S3 , ξ 1

2
) with (t′0 , r′0) = (0,±1), t1 ≥ 3, r1 = ±(t1 − 1). By [11, Theorem 1.2. (b1)], there

are 2(1 − t′′0 ) Legendrian Hopf links K0 ∪ K2 in (S3 , ξ 1
2
) with t′′0 ≤ 0, r′′0 ∈ ±{t′′0 +

1, t′′0 + 3, ⋅ ⋅ ⋅ ,−t′′0 − 1,−t′′0 + 1}, t2 ≥ 2, r2 = ±(t2 − 1). Using Lemma 3.1, we construct
8 − 4t0 Legendrian A3 links in (S3 , ξ3/2) with t0 ≤ 1, t1 ≥ 2, t2 ≥ 2. Their rotation
numbers are as listed. ∎

These 8 − 4t0 strongly exceptional Legendrian A3 links are stabilizations of the
Legendrian A3 links with t0 = 1, t1 ≥ 2, t2 ≥ 2.

The proof of Theorem 1.4 is completed.

4.3 t1 < 0 and t2 > 0.

Lemma 4.29 For any t0 ∈ Z, there are 6 exceptional Legendrian A3 links whose
exteriors have 0-twisting vertical Legendrian circles, and the signs of basic slices in
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L′0 , L′1 , L′2 are ±(+ − −),±(+ + −), and ±(+ − +), respectively. Their rotation numbers
are

r0 = ±(t0 + 1), r1 = ±(1 − t1), r2 = ±(t2 + 1);
r0 = ±(t0 + 1), r1 = ±(t1 + 1), r2 = ±(t2 + 1);
r0 = ±(t0 − 3), r1 = ±(1 − t1), r2 = ±(1 − t2).

The corresponding d3-invariants are independent of t0 if t1 and t2 are fixed.

Proof The first statement follows from Lemma 2.15 and Lemma 3.3. The calculation
of rotation numbers is analogous to that in the proof of Lemma 4.7. ∎

4.3.1 t1 < 0 and t2 = 1.

The boundary slopes of Σ × S1 are s0 = t0, s1 = − 1
t1

, and s2 = −1.

Proof of Theorem 1.5 The upper bound of strongly exceptional Legendrian A3 links
is given by Lemma 2.12. We will show that these upper bounds can be attained.

(1) Suppose t0 ≥ 4.

Lemma 4.30 If t0 ≥ 4, t1 < 0, and t2 = 1, then there exist 2 − 2t1 strongly exceptional
Legendrian A3 links in (S3 , ξ− 1

2
) with rotation numbers

r0 = ±(t0 + 1), r1 ∈ ∓{t1 − 1, t1 + 1, ⋅ ⋅ ⋅ ,−t1 − 1}, r2 = ±2

and 2 − 2t1 strongly exceptional Legendrian A3 links in (S3 , ξ 3
2
) with rotation numbers

r0 = ±(t0 − 3), r1 ∈ ∓{t1 − 1, t1 + 1, ⋅ ⋅ ⋅ ,−t1 − 1}, r2 = 0.

Proof There exist 4 − 4t1 strongly exceptional Legendrian representatives shown in
Figure 17. Using the trick of Lemma 4.2 and the proof of [11, Theorem 1.2, (b1), (c3)],
we can show that K0 ∪ K1 ∪ K2 is a topological A3 link. Their rotation numbers and
corresponding d3-invariants are

r0 = ±(t0 + 1), r1 ∈ ∓{t1 − 1, t1 + 1, ⋅ ⋅ ⋅ ,−t1 − 1}, r2 = ±2; d3 = − 1
2

,

r0 = ±(t0 − 3), r1 ∈ ∓{t1 − 1, t1 + 1, ⋅ ⋅ ⋅ ,−t1 − 1}, r2 = 0; d3 =
3
2

.

∎

(2) Suppose t0 = 3.

Lemma 4.31 If t0 = 3, t1 < 0, and t2 = 1, then there exist 2 − 2t1 strongly exceptional
Legendrian A3 links in (S3 , ξ− 1

2
) with rotation numbers

r0 = ±4, r1 ∈ ∓{t1 − 1, t1 + 1, ⋅ ⋅ ⋅ ,−t1 − 1}, r2 = ±2

and 2 − t1 strongly exceptional Legendrian A3 links in (S3 , ξ 3
2
) with rotation numbers

r0 = 0, r1 ∈ ∓{t1 − 1, t1 + 1, ⋅ ⋅ ⋅ ,−t1 − 1}, r2 = 0.
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Figure 17: t0 ≥ 4, t1 ≤ 0, t2 = 1. k1 + l1 = −t1 . If t0 is even, then K0 and K i , i = 1, 2, bear the same
orientations. If t0 is odd, then the opposite orientation.

Proof By [11, Theorem 1.2], there are two Legendrian Hopf links K0 ∪ K2 with
(t0 , r0) = (3,±4) and (t2 , r2) = (1,±2) in (S3 , ξ− 1

2
), and a Legendrian Hopf link with

(t0 , r0) = (3, 0) and (t2 , r2) = (1, 0) in (S3 , ξ 3
2
). Let K1 be a local Legendrian meridian

of K0; then, there are −3t1 strongly exceptional Legendrian A3 links. Their rotation
numbers and corresponding d3-invariants are

r0 = ±4, r1 ∈ {t1 + 1, t1 + 3, ⋅ ⋅ ⋅ ,−t1 − 1}, r2 = ±2; d3 = − 1
2

,

r0 = 0, r1 ∈ {t1 + 1, t1 + 3, ⋅ ⋅ ⋅ ,−t1 − 1}, r2 = 0; d3 =
3
2

.

By Lemma 4.29 and Lemma 3.4, there are 4 strongly exceptional Legendrian A3
links whose rotation numbers and corresponding d3-invariants (r0 , r1 , r2; d3) are
(±4,±(1 − t1),±2;− 1

2 ) and (0,±(t1 − 1), 0; 3
2 ). ∎

(3) Suppose t0 = 2.

Lemma 4.32 If t0 = 2, t1 < 0, and t2 = 1, then there exist 2 − 2t1 strongly exceptional
Legendrian A3 links in (S3 , ξ− 1

2
) with rotation numbers

r0 = ±3, r1 ∈ ∓{t1 − 1, t1 + 1, ⋅ ⋅ ⋅ ,−t1 − 1}, r2 = ±2

and 2 strongly exceptional Legendrian A3 links in (S3 , ξ 3
2
) with rotation numbers

r0 = ±1, r1 = ±(t1 − 1), r2 = 0.

Proof If t0 = 2, then by [11, Theorem 1.2. (c2)], there exist two Legendrian Hopf
links K0 ∪ K2 in (S3 , ξ− 1

2
) with (t0 , r0) = (2,±3) and (t2 , r2) = (1,±2). Let K1 be a

local Legendrian meridian of K0; then, by Lemma 3.2, we can realize −2t1 strongly
exceptional Legendrian A3 links in (S3 , ξ− 1

2
) whose rotation numbers are

r0 = ±3, r1 ∈ {t1 + 1, t1 + 3, ⋅ ⋅ ⋅ ,−t1 − 1}, r2 = ±2.
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By Lemma 4.29 and Lemma 3.4, there are 4 strongly exceptional Legendrian A3
links whose rotation numbers and corresponding d3-invariants (r0 , r1 , r2; d3) are
(±3,±(1 − t1),±2;− 3

2 ) and (±1,±(t1 − 1), 0; 1
2 ). ∎

(4) Suppose t0 ≤ 1.

Lemma 4.33 If t0 ≤ 1, t1 < 0, and t2 = 1, then there exist t0 t1 − 2t1 strongly exceptional
Legendrian A3 links in (S3 , ξ 1

2
) with rotation numbers

r0 ∈ {t0 − 1, t0 + 1, ⋅ ⋅ ⋅ , 1 − t0}, r1 ∈ {t1 + 1, t1 + 3, ⋅ ⋅ ⋅ ,−t1 − 1}, r2 = 0.

Proof By [11, Theorem 1.2. (b2), (e)], there are 2 − t0 strongly exceptional Legendrian
Hopf links K0 ∪ K2 in (S3 , ξ1/2) with

r0 ∈ {t0 − 1, t0 + 1, ⋅ ⋅ ⋅ , 1 − t0}, t2 = 1, r2 = 0.

Let K1 be a local Legendrian meridian of K0. Then, by Lemma 3.2, there are (2 −
t0)(−t1) = t0 t1 − 2t1 strongly exceptional Legendrian A3 links in (S3 , ξ1/2) with rota-
tion numbers are as listed. ∎

These t0 t1 − 2t1 strongly exceptional Legendrian A3 links are stabilizations of the
Legendrian A3 links with t0 = 1, t1 = −1, t2 = 1.

The proof of Theorem 1.5 is completed.

4.3.2 t1 < 0 and t2 ≥ 2.

The boundary slopes of Σ × S1 are s0 = t0, s1 = − 1
t1

, and s2 = − 1
t2

.

Proof of Theorem 1.6 The upper bound of strongly exceptional Legendrian A3 links
is given by Lemma 2.13. We will show that the upper bounds can be attained except in
the cases that t0 = 1, t1 < 0, and t2 = 3.

(1) Suppose t0 ≥ 3 and t2 = 2.

Lemma 4.34 If t0 ≥ 3, t1 < 0, and t2 = 2, then there exist 6 − 6t1 strongly exceptional
Legendrian A3 links whose rotation numbers and corresponding d3-invariants are

r0 = ±(t0 + 1), r1 ∈ ±{t1 + 1, ⋅ ⋅ ⋅ ,−t1 − 1,−t1 + 1}, r2 = ±3; d3 = − 1
2

,

r0 = ±(t0 − 1), r1 ∈ ±{t1 + 1, ⋅ ⋅ ⋅ ,−t1 − 1,−t1 + 1}, r2 = ±1; d3 =
3
2

,

r0 = ±(t0 − 3), r1 ∈ ±{t1 + 1, ⋅ ⋅ ⋅ ,−t1 − 1,−t1 + 1}, r2 = ∓1; d3 =
3
2

.

Proof There are 6 − 6t1 strongly exceptional Legendrian A3 links shown in Figure 18.
Using the trick of Lemma 4.2 and the proof of [11, Theorem 1.2, (b1), (c3)], we can show
that K0 ∪ K1 ∪ K2 is a topological A3 link. Their rotation numbers and corresponding
d3-invariants are as listed. ∎
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Figure 18: t0 ≥ 3, t1 ≤ 0, t2 = 2. k1 + l1 = −t1 . If t0 is even, then K0 and K2 bear the same
orientation. If t0 is odd, then the opposite one. If t0 is odd, then K0 and K1 bear the same
orientation. If t0 is even, then the opposite one.

(2) Suppose t0 = t2 = 2.

Lemma 4.35 If t0 = t2 = 2 and t1 < 0, then there exist 6 − 4t1 strongly exceptional
Legendrian A3 links whose rotation numbers and corresponding d3-invariants are

r0 = ±3, r1 ∈ ±{t1 + 1, ⋅ ⋅ ⋅ ,−t1 − 1,−t1 + 1}, r2 = ±3; d3 = − 1
2

,

r0 = ±1, r1 = ±(1 − t1), r2 = ±1; d3 =
3
2

,

r0 = ∓1, r1 ∈ ±{t1 + 1, ⋅ ⋅ ⋅ ,−t1 − 1,−t1 + 1}, r2 = ∓1; d3 =
3
2

.

Proof If t0 = t2 = 2, then by [11, Theorem 1.2, (c2)], there are two strongly exceptional
Legendrian Hopf links K0 ∪ K2 in (S3 , ξ− 1

2
) with (t0 , r0) = (2,±3) and (t2 , r2) =

(2,±3), and two strongly exceptional Legendrian Hopf links K0 ∪ K2 in (S3 , ξ 3
2
) with

(t0 , r0) = (2,±1) and (t2 , r2) = (2,±1). Let K1 be a local Legendrian meridian of K0.
Then by Lemma 3.2, there are −4t1 strongly exceptional Legendrian A3 links. Their
rotation numbers and corresponding d3-invariants are

r0 = ±3, r1 ∈ {t1 + 1, t1 + 3, ⋅ ⋅ ⋅ ,−t1 − 1}, r2 = ±3; d3 = − 1
2

,

r0 = ±1, r1 ∈ {t1 + 1, t1 + 3, ⋅ ⋅ ⋅ ,−t1 − 1}, r2 = ±1; d3 =
3
2

.

By Lemma 4.29 and Lemma 3.4, there are 4 strongly exceptional Legendrian A3
links whose rotation numbers and corresponding d3-invariants (r0 , r1 , r2; d3) are
(±3,±(1 − t1),±3;− 1

2 ) and (∓1,±(1 − t1),∓1; 3
2 ). The decorations of their exteriors are

±(+)(− ⋅ ⋅ ⋅ −
�����������
−t1

)(−−) and ± (+)(− ⋅ ⋅ ⋅ −
�����������
−t1

)(++),

respectively.
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By [11, Theorem 1.2, (b2), (d)], there are two Legendrian Hopf links in (S3 , ξ 1
2
)

with (t′0 , r′0) = (1, 0), t1 < 0, r1 = ∓(t1 − 1), and two Legendrian Hopf links in (S3 , ξ 1
2
)

with (t′0 , r′0) = (0,±1), (t2 , r2) = (2,±1). By Lemma 3.1, we can construct 2 strongly
exceptional Legendrian A3 in (S3 , ξ 3

2
) links with t0 = t2 = 2, t1 < 0. Their rotation

numbers (r0 , r1 , r2) are (±1,±(1 − t1),±1). The decorations of their exteriors are

±(+)(− ⋅ ⋅ ⋅ −
�����������
−t1

)(+−).

∎

So there are 6 − 4t1 strongly exceptional Legendrian A3 links with t0 = 2,
t1 < 0, t2 = 2. As a corollary, the 6 − 4t1 contact structures on Σ × S1 with boundary
slopes s0 = 2, s1 = − 1

t1
, s2 = − 1

2 listed in Lemma 2.13 are all appropriate tight.
(3) Suppose t0 = 1 and t2 = 2.

Lemma 4.36 If t0 = 1, t1 < 0, and t2 = 2, there exist 6 − 2t1 strongly exceptional
Legendrian A3 links whose rotation numbers and corresponding d3-invariants are

r0 = ±2, r1 ∈ ±{t1 + 1, ⋅ ⋅ ⋅ ,−t1 − 1,−t1 + 1}, r2 = ±3; d3 = − 1
2

,

r0 = ∓2, r1 = ±(1 − t1), r2 = ∓1; d3 =
3
2

,

r0 = 0, r1 = ±(1 − t1), r2 = ±1; d3 =
3
2

.

Proof If t0 = 1 and t2 = 2, then by [11, Theorem 1.2], there are two strongly excep-
tional Legendrian Hopf links K0 ∪ K2 with (t0 , r0) = (1,±2) and (t2 , r2) = (2,±3)
in (S3 , ξ− 1

2
). Let K1 be a local Legendrian meridian of K0. Then by Lemma 3.2, we

can realize −2t1 strongly exceptional Legendrian A3 links in (S3 , ξ− 1
2
) whose rotation

numbers are

r0 = ±2, r1 ∈ {t1 + 1, t1 + 3, ⋅ ⋅ ⋅ ,−t1 − 1}, r2 = ±3.

By Lemma 4.29 and Lemma 3.4, there are 4 strongly exceptional Legendrian A3
links whose rotation numbers and corresponding d3-invariants (r0 , r1 , r2; d3) are
(±2,±(1 − t1),±3;− 1

2 ) and (∓2,±(1 − t1),∓1; 3
2 ). The decorations of their exteriors are

±(+)(− ⋅ ⋅ ⋅ −
�����������
−t1

)(−−) and ± (+)(− ⋅ ⋅ ⋅ −
�����������
−t1

)(++),

respectively.
By [11, Theorem 1.2, (d)], there are two Legendrian Hopf links in (S3 , ξ 1

2
) with

(t′0 , r′0) = (0,∓1), t1 < 0, r1 = ∓(t1 − 1), and two Legendrian Hopf links in (S3 , ξ 1
2
)

with (t′0 , r′0) = (0,±1), (t2 , r2) = (2,±1). By Lemma 3.1, we can construct 2 strongly
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exceptional Legendrian A3 links in (S3 , ξ 3
2
) with t0 = 1, t1 < 0, t2 = 2. Their rotation

numbers (r0 , r1 , r2) are (0,±(1 − t1),±1). The decorations of their exteriors are

±(+)(− ⋅ ⋅ ⋅ −
�����������
−t1

)(+−).

∎

So there are 6 − 2t1 strongly exceptional Legendrian A3 links with t0 = 1, t1 < 0,
t2 = 2. As a corollary, the 6 − 2t1 contact structures on Σ × S1 with boundary slopes
s0 = 1, s1 = − 1

t1
, s2 = − 1

2 listed in Lemma 2.13 are all appropriate tight.
(4) Suppose t0 ≥ 3 and t2 ≥ 3.

Lemma 4.37 If t0 ≥ 3, t1 < 0, and t2 ≥ 3, then there are 8 − 8t1 strongly exceptional
Legendrian A3 links whose rotation numbers and corresponding d3-invariants are

r0 = ±(t0 + 1), r1 ∈ ±{t1 + 1, t1 + 3, ⋅ ⋅ ⋅ ,−t1 + 1}, r2 = ±(t2 + 1); d3 = − 1
2

,

r0 = ±(t0 − 1), r1 ∈ ±{t1 + 1, t1 + 3, ⋅ ⋅ ⋅ ,−t1 + 1}, r2 = ±(t2 − 1); d3 =
3
2

,

r0 = ±(t0 − 3), r1 ∈ ±{t1 + 1, t1 + 3, ⋅ ⋅ ⋅ ,−t1 + 1}, r2 = ±(1 − t2); d3 =
3
2

,

r0 = ±(t0 − 1), r1 ∈ ±{t1 + 1, t1 + 3, ⋅ ⋅ ⋅ ,−t1 + 1}, r2 = ±(3 − t2); d3 =
3
2

.

Proof If t0 ≥ 3 and t2 ≥ 3, then there are 8 − 8t1 strongly exceptional Legendrian A3
links shown in Figure 19. Using the trick of Lemma 4.2 and the proof of [11, Theorem
1.2, (b1), (c4)], we can show that K0 ∪ K1 ∪ K2 is a topological A3 link. Their rotation
numbers are as listed. ∎

(5) Suppose t0 = 2 and t2 ≥ 3.

Lemma 4.38 If t0 = 2, t1 < 0, and t2 ≥ 3, then there exist 8 − 6t1 strongly exceptional
Legendrian A3 links whose rotation numbers and corresponding d3-invariants are

r0 = ±3, r1 ∈ ±{t1 + 1, t1 + 3, ⋅ ⋅ ⋅ ,−t1 + 1}, r2 = ±(t2 + 1); d3 = − 1
2

,

r0 = ±1, r1 ∈ ±{t1 + 1, t1 + 3, ⋅ ⋅ ⋅ ,−t1 + 1}, r2 = ±(t2 − 1); d3 =
3
2

,

r0 = ∓1, r1 = ±(1 − t1), r2 = ±(1 − t2); d3 =
3
2

,

r0 = ±1, r1 ∈ ±{t1 + 1, t1 + 3, ⋅ ⋅ ⋅ ,−t1 + 1}, r2 = ±(3 − t2); d3 =
3
2

.

Proof If t0 = 2 and t2 ≥ 3, then by [11, Theorem 1.2, (c3)], there are two Legendrian
Hopf links K′0 ∪ K2 in (S3 , ξ− 1

2
)with (t′0 , r′0) = (2,±3), t2 ≥ 3, r2 = ±(t2 + 1), two Leg-

endrian Hopf links K′0 ∪ K2 in (S3 , ξ 3
2
) with (t′0 , r′0) = (2,±1), t2 ≥ 3, r2 = ±(t2 − 1),

and two Legendrian Hopf links K′0 ∪ K2 in (S3 , ξ 3
2
) with (t′0 , r′0) = (2,∓1), t2 ≥ 3, r2 =

±(t2 − 3). Let K1 be a local Legendrian meridian of K0; then by Lemma 3.2, we can
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Figure 19: t0 ≥ 3, t1 ≤ 0, t2 ≥ 3. k1 + l1 = −t1 . For t0 + t2 even, K0 and K2 bear the same
orientation, and for t0 + t2 odd, the opposite one. For t0 odd, K0 and K1 bear the same
orientation, and for t0 even, the opposite one.

realize −6t1 strongly exceptional Legendrian representatives. There are −2t1 of them
belonging to (S3 , ξ− 1

2
) with rotation numbers

r0 = ±3, r1 ∈ {t1 + 1, t1 + 3, ⋅ ⋅ ⋅ ,−t1 − 1}, r2 = ±(t2 + 1).

There are −4t1 of them belonging to (S3 , ξ 3
2
) with rotation numbers

r0 = ±1, r1 ∈ {t1 + 1, t1 + 3, ⋅ ⋅ ⋅ ,−t1 − 1}, r2 = ±(t2 − 1);

r0 = ∓1, r1 ∈ {t1 + 1, t1 + 3, ⋅ ⋅ ⋅ ,−t1 − 1}, r2 = ±(t2 − 3).

By Lemma 4.29 and Lemma 3.4, there are 4 strongly exceptional Legendrian A3
links whose rotation numbers and corresponding d3-invariants (r0 , r1 , r2; d3) are
(±3,±(1 − t1),±(t2 + 1);− 1

2 ) and (∓1,±(1 − t1),±(1 − t2); 3
2 ). The decorations of their

exteriors are

±(+)(− ⋅ ⋅ ⋅ −
�����������
−t1

)((−)(−)) and ± (+)(− ⋅ ⋅ ⋅ −
�����������
−t1

)((+)(+)),

respectively.
There are 4 strongly exceptional Legendrian A3 links whose rotation numbers

and corresponding d3-invariants (r0 , r1 , r2; d3) are (±1,±(1 − t1),±(t2 − 1); 3
2 ) and

(±1,±(1 − t1),±(3 − t2); 3
2 ). The decorations of their exteriors are

±(+)(− ⋅ ⋅ ⋅ −
�����������
−t1

)((−)(+)) and ± (+)(− ⋅ ⋅ ⋅ −
�����������
−t1

)((+)(−)),
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respectively. These exteriors are appropriate tight since they can be embedded into
an appropriate tight contact Σ × S1 with boundary slopes 2,− 1

t1
,− 1

2 and decora-
tions ±(+)(− ⋅ ⋅ ⋅ −

�����������
−t1

)(−+) by adding basic slices (T2 × [0, 1],− 1
t2

,− 1
t2−1 ), ⋅ ⋅ ⋅ , (T2 ×

[0, 1],− 1
3 ,− 1

2 ) to the boundary T2, respectively. ∎

(6) Suppose t0 = 1 and t2 ≥ 3.

Lemma 4.39 If t0 = 1, t1 < 0, and t2 ≥ 4 (resp. t2 = 3), then there exist 8 − 4t1 (resp. 8 −
3t1) strongly exceptional Legendrian A3 links whose rotation numbers and corresponding
d3-invariants are

r0 = ±2, r1 ∈ {t1 + 1, t1 + 3, ⋅ ⋅ ⋅ ,−t1 − 1} ∪ {±(1 − t1)}, r2 = ±(t2 + 1); d3 = − 1
2

,

r0 = 0, r1 ∈ {t1 + 1, t1 + 3, ⋅ ⋅ ⋅ ,−t1 − 1} ∪ {±(t1 − 1)}, r2 = ±(t2 − 3); d3 =
3
2

,

r0 = ∓2, r1 = ±(1 − t1), r2 = ±(1 − t2); d3 =
3
2

,

r0 = 0, r1 = ±(1 − t1), r2 = ±(t2 − 1); d3 =
3
2

.

Proof If t0 = 1 and t2 = 3, then by [11, Theorem 1.2, (c2)], there are two strongly
exceptional Legendrian Hopf links K0 ∪ K2 in (S3 , ξ− 1

2
) with (t0 , r0) = (1,±2) and

(t2 , r2) = (3,±4), and one strongly exceptional Legendrian Hopf link K0 ∪ K2 in
(S3 , ξ 3

2
)with (t0 , r0) = (1, 0) and (t2 , r2) = (3, 0). Let K1 be a local Legendrian merid-

ian of K0. Then by Lemma 3.2, we can realize −3t1 strongly exceptional Legendrian A3
links whose rotation numbers and corresponding d3-invariants are

r0 = ±2, r1 ∈ {t1 + 1, t1 + 3, ⋅ ⋅ ⋅ ,−t1 − 1}, r2 = ±4; d3 = − 1
2

,

r0 = 0, r1 ∈ {t1 + 1, t1 + 3, ⋅ ⋅ ⋅ ,−t1 − 1}, r2 = 0; d3 =
3
2

.

If t0 = 1 and t2 ≥ 4, then by [11, Theorem 1.2, (c3)], there are two strongly exceptional
Legendrian Hopf links K0 ∪ K2 in (S3 , ξ− 1

2
) with (t0 , r0) = (1,±2), t2 ≥ 4, and r2 =

±(t2 + 1), and two strongly exceptional Legendrian Hopf links K0 ∪ K2 in (S3 , ξ 3
2
)

with (t0 , r0) = (1, 0), t2 ≥ 4 and r2 = ±(t2 − 3). Let K1 be a local Legendrian meridian
of K0. Then by Lemma 3.2, we can realize −4t1 strongly exceptional Legendrian A3
links whose rotation numbers and corresponding d3-invariants are

r0 = ±2, r1 ∈ {t1 + 1, t1 + 3, ⋅ ⋅ ⋅ ,−t1 − 1}, r2 = ±(t2 + 1); d3 = − 1
2

,

r0 = 0, r1 ∈ {t1 + 1, t1 + 3, ⋅ ⋅ ⋅ ,−t1 − 1}, r2 = ±(t2 − 3); d3 =
3
2

.

For any t2 ≥ 3, by Lemma 4.29 and Lemma 3.4, there are 4 strongly excep-
tional Legendrian A3 links whose rotation numbers and corresponding d3-invariants
(r0 , r1 , r2; d3) are (±2,±(1 − t1),±(t2 + 1);− 1

2 ) and (∓2,±(1 − t1),±(1 − t2); 3
2 ). The
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decorations of their exteriors are

±(+)(− ⋅ ⋅ ⋅ −
�����������
−t1

)((−)(−)) and ± (+)(− ⋅ ⋅ ⋅ −
�����������
−t1

)((+)(+)),

respectively.
For any t2 ≥ 3, there are 4 strongly exceptional Legendrian A3 links whose rota-

tion numbers and corresponding d3-invariants (r0 , r1 , r2; d3) are (0,±(1 − t1),±(t2 −
1); 3

2 ) and (0,±(t1 − 1),±(t2 − 3); 3
2 ). The decorations of their exteriors are

±(+)(− ⋅ ⋅ ⋅ −
�����������
−t1

)((+)(−)) and ± (+)(− ⋅ ⋅ ⋅ −
�����������
−t1

)((−)(+)),

respectively. These exteriors are appropriate tight since they can be embedded into
an appropriate tight contact Σ × S1 with boundary slopes 1,− 1

t1
,− 1

2 and decora-
tions ±(+)(− ⋅ ⋅ ⋅ −

�����������
−t1

)(+−) by adding basic slices (T2 × [0, 1],− 1
t2

,− 1
t2−1 ), ⋅ ⋅ ⋅ , (T2 ×

[0, 1],− 1
3 ,− 1

2 ) to the boundary T2, respectively. ∎
So, there are exactly 8 − 4t1 (resp. exactly 8 − 3t1) strongly exceptional Legendrian

A3 links with t0 = 1, t1 < 0, t2 ≥ 4 (resp. t2 = 3). If t0 = 1, t1 < 0, and t2 = 3, then the
decorations

(+)(+ ⋅ ⋅ ⋅ +
�����������

l

− ⋅ ⋅ ⋅ −
�����������

k

)((−)(+)) and (−)(− ⋅ ⋅ ⋅ −
�����������

k+1

+ ⋅ ⋅ ⋅ +
�����������

l−1

)((+)(−))

correspond to the same Legendrian A3 links with rotation numbers r0 = r2 = 0, r1 =
l − k − 1, where k ≥ 0, l ≥ 1, k + l = −t1.

(7) Suppose t0 ≤ 0.
Lemma 4.40 If t0 ≤ 0, t1 < 0, and t2 > 1, then there exist 2t0 t1 − 2t1 strongly excep-
tional Legendrian A3 links in (S3 , ξ 1

2
) whose rotation numbers are

r0 ∈ ±{t0 + 1, t0 + 3, ⋅ ⋅ ⋅ ,−t0 − 1,−t0 + 1},

r1 ∈ {t1 + 1, t1 + 3, ⋅ ⋅ ⋅ ,−t1 − 1}, r2 = ±(t2 − 1).

Proof By [11, Theorem 1.2. (b1)], there are 2(1 − t0) Legendrian Hopf links K0 ∪ K2
in (S3 , ξ1/2) whose rotation numbers are

r0 ∈ ±{t0 + 1, t0 + 3, ⋅ ⋅ ⋅ ,−t0 − 1,−t0 + 1}, t2 ≥ 2, r2 = ±(t2 − 1).

Let K1 be a local Legendrian meridian of K0. Then by Lemma 3.2, there are 2(1 −
t0)(−t1) = 2t0 t1 − 2t1 isotopy classes. Their rotation numbers are as listed. ∎

These 2t0 t1 − 2t1 strongly exceptional Legendrian A3 links are stabilizations of the
Legendrian A3 links with t0 = 0, t1 = −1, t2 > 1.

The proof of Theorem 1.6 is completed.

4.4 t1 = 0.

The boundary slopes of Σ × S1 are s0 = t0, s1 = ∞, and s2 = − 1
t2

. The appropriate tight
contact structures on Σ × S1 can be decomposed as L′0 ∪ L′2 ∪ Σ′ × S1.
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Lemma 4.41 For any t0 ∈ Z, there are 4 exceptional Legendrian A3 links whose signs
of basic slices in L′0 , L′2 are ±(+−) and ±(++), respectively. Their rotation numbers are

r0 = ±(t0 + 1), r1 = ±1, r2 = ±(t2 + 1); r0 = ±(t0 − 3), r1 = ±1, r2 = ±(1 − t2).

The corresponding d3-invariants are independent of t0 if t2 is fixed.

Proof The first statement follows from Lemma 2.16 and Lemma 3.3. Suppose the
signs of the basic slices in L′0 and L′2 are + and −, respectively. Then,

r0 = −( 1
t2

⊖ 0
1
) ● 0

1
− (0

1
⊖ −1

0
) ● 0

1
+ ( 1

0
⊖ t0

1
) ● 0

1
= −(t0 + 1),

r1 = (−t0

1
⊖ −1

0
) ● 1

0
= −1,

r2 = (−t0

1
⊖ −1

0
) ● 1

0
− ( 1

0
⊖ 0

1
) ● 0

1
− (0

1
⊖ −1

t2
) ● 1

0
= −(t2 + 1).

The computation of other cases are similar. ∎

Lemma 4.42 Suppose t0 ≤ 2, t1 = 0, and t2 ≥ 2. Then, there are 4 strongly exceptional
Legendrian A3 links in (S3 , ξ 3

2
) whose rotation numbers are

r0 = ±(t0 − 1), r1 = ±1, r2 = ±(t2 − 1); r0 = ±(t0 − 3), r1 = ±1, r2 = ±(1 − t2).

Proof By [11, Theorem 1.2, (d)], there are two Legendrian Hopf links K′0 ∪ K1 in
(S3 , ξ 1

2
) with t′0 ≤ 1, r′0 = ±(t′0 − 1), (t1 , r1) = (0,±1), and two Legendrian Hopf links

K′′0 ∪ K2 in (S3 , ξ 1
2
) with (t′′0 , r′′0 ) = (0,±1), t2 ≥ 2, r2 = ±(t2 − 1). By Lemma 3.1, we

can obtain strongly exceptional Legendrian A3 links with t0 ≤ 2, t1 = 0, t2 ≥ 2. So there
are 4 strongly exceptional Legendrian A3 links in (S3 , ξ 3

2
)whose rotation numbers are

as listed. ∎

Proof of Theorem 1.7 The upper bound of strongly exceptional Legendrian A3 links
is given by Lemma 2.14. We will show that these upper bounds can be attained.

(1) Suppose t2 ≤ 0.

Lemma 4.43 If t1 = 0 and t2 ≤ 0, then there exist 2 − 2t2 strongly exceptional Legen-
drian A3 links in (S3 , ξ 1

2
) whose rotation numbers are

r0 = ±(t0 − 1), r1 = ±1, r2 ∈ ±{t2 + 1, t2 + 3, ⋅ ⋅ ⋅ ,−t2 + 1}.

Proof If t2 ≤ 0 and t0 ≤ 0, there exist 2(1 − t2) strongly exceptional Legendrian A3
links shown in Figure 20. Similar to the proof of [11, Lemma 5.1, part (iii), Figure 6],
we can show that the link K0 ∪ K1 ∪ K2 in Figure 20 is indeed a topological A3 link.
By performing the same calculations as in the proof of Theorem 1.2 (d) in [11], we
can determine that their rotation numbers are as listed. Moreover, the corresponding
d3-invariant is 1

2 .
If t2 ≤ 0 and t0 = 1 (resp. t0 ≥ 2), then there exist 2(1 − t2) strongly exceptional

Legendrian A3 links shown in Figure 9 (resp. Figure 8) with k1 = l1 = 0. Their rotation
numbers and the corresponding d3-invariants are as listed. ∎
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Figure 20: t0 ≤ 0, t1 = 0, t2 ≤ 0, k2 + l2 = −t2.

(2) Suppose t2 = 1.

Lemma 4.44 If t1 = 0 and t2 = 1, then there exist 4 strongly exceptional Legendrian A3
links whose rotation numbers and corresponding d3-invariants (r0 , r1 , r2; d3) are

(±(t0 − 3),±1, 0; 3
2
), (±(t0 + 1),±1,±2;− 1

2
).

Proof If t2 = 1 and t0 ≥ 4, then there exist 4 strongly exceptional Legendrian A3 links
shown in Figure 17 with k1 = l1 = 0. Their rotation numbers and corresponding d3-
invariants are as listed.

Suppose t2 = 1 and t0 ≤ 3. By [11, Theorem 1.2, (d), (c1)], there are two Legendrian
Hopf links K′0 ∪ K1 in (S3 , ξ 1

2
) with t′0 ≤ 1, r′0 = ±(t′0 − 1), (t1 , r1) = (0,±1), and one

Legendrian Hopf link K′′0 ∪ K2 in (S3 , ξ 1
2
) with (t′′0 , r′′0 ) = (t2 , r2) = (1, 0). By Lemma

3.1, we can obtain strongly exceptional Legendrian A3 links with t0 ≤ 3, t1 = 0, t2 = 1.
So there are 2 strongly exceptional Legendrian A3 links in (S3 , ξ 3

2
) whose rotation

numbers (r0 , r1 , r2) are (±(t0 − 3),±1, 0).
Moreover, by Lemma 4.41 and Lemma 3.4, there are other 2 Legendrian A3 links

in (S3 , ξ− 1
2
) whose rotation numbers (r0 , r1 , r2) are (±(t0 + 1),±1,±2). ∎

(3) Suppose t2 = 2.

Lemma 4.45 If t1 = 0 and t2 = 2, then there exist 6 strongly exceptional Legendrian A3
links whose rotation numbers and corresponding d3-invariants (r0 , r1 , r2; d3) are

(±(t0 + 1),±1,±3;− 1
2
) , (±(t0 − 1),±1,±1; 3

2
) , (±(t0 − 3),±1,∓1; 3

2
) .

Proof If t2 = 2 and t0 ≥ 3, then there exist 6 strongly exceptional Legendrian A3 links
shown in Figure 18 with k1 = l1 = 0. Their rotation numbers and corresponding d3-
invariants are as listed.

If t2 = 2 and t0 ≤ 2, then by Lemma 4.41 and Lemma 3.4, there exist 2 strongly
exceptional Legendrian A3 links in (S3 , ξ− 1

2
) whose rotation numbers (r0 , r1 , r2) are

(±(t0 + 1),±1,±3).
Moreover, by Lemma 4.42, there exist 4 strongly exceptional Legendrian A3 links

in (S3 , ξ 3
2
) whose rotation numbers (r0 , r1 , r2) are (±(t0 − 1),±1,±1) and (±(t0 −

3),±1,∓1). ∎
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(4) Suppose t2 ≥ 3.

Lemma 4.46 If t1 = 0 and t2 ≥ 3, then there exist 8 strongly exceptional Legendrian
A3 links whose rotation numbers and corresponding d3-invariants (r0 , r1 , r2; d3) are

(±(t0 + 1),±1,±(t2 + 1);− 1
2
) , (±(t0 − 1),±1,±(t2 − 1); 3

2
) ,

(±(t0 − 1),±1,±(3 − t2); 3
2
) , (±(t0 − 3),±1,±(1 − t2); 3

2
) .

Proof If t2 ≥ 3 and t0 ≥ 3, then there are exactly 8 strongly exceptional Legendrian
A3 links shown in Figure 19 with k1 = l1 = 0. Their rotation numbers and correspond-
ing d3-invariants are as listed.

Suppose t2 ≥ 3 and t0 ≤ 2. By Lemma 4.41 and Lemma 3.4, there exist 2 strongly
exceptional Legendrian A3 links in (S3 , ξ− 1

2
) whose rotation numbers (r0 , r1 , r2) are

(±(t0 + 1),±1,±(t2 + 1)).
By Lemma 4.42, there exist 4 strongly exceptional Legendrian A3 links in

(S3 , ξ 3
2
)whose rotation numbers (r0 , r1 , r2) are (±(t0 − 1),±1,±(t2 − 1)) and (±(t0 −

3),±1,±(1 − t2)).
Moreover, there are 2 strongly exceptional Legendrian A3 links in (S3 , ξ 3

2
) whose

rotation numbers (r0 , r1 , r2) are (±(t0 − 1),±1,±(3 − t2)). The decorations of their
exteriors are ±(+)((−)(+)). These exteriors are appropriate tight since they can be
embedded into an appropriate tight contact Σ × S1 with boundary slopes t0 ,∞,− 1

2
and decoration ±(+)(−+) by adding basic slices (T2 × [0, 1],− 1

t2
,− 1

t2−1 ), ⋅ ⋅ ⋅ , (T2 ×
[0, 1],− 1

3 ,− 1
2 ) to the boundary T2. ∎

The proof of Theorem 1.7 is completed.

Proof of Theorem 1.8 It follows from the proof of Theorems 1.1, 1.2, 1.3, 1.4, 1.5, 1.6,
1.7. ∎

5 Stabilizations

The aim of this section is to elucidate Remark 1.10.

5.1 Stabilizations of the component K0.

For the strongly exceptional Legendrian A3 links with t1 , t2 ≠ 0 and t0 + ⌈− 1
t1
⌉ +

⌈− 1
t2
⌉ ≥ 2, their exteriors have 0-twisting vertical Legendrian circles. So by Lemma 3.5,

the component K0 can always be destabilized. For the strongly exceptional Legendrian
A3 links with t1 = 0, their exteriors obviously have 0-twisting vertical Legendrian
circles. By the same reason, the component K0 can be destabilized.

As examples, we list the mountain ranges of the component K0 in some Legendrian
A3 links with fixed t1 , t2.

(1) Strongly exceptional Legendrian A3 links in (S3 , ξ 5
2
) with r0 = ±(t0 − 5), r1 =

r2 = 0, where t0 ≥ 5, t1 = t2 = 1. See Lemmas 4.8 and 4.9. Their exteriors have decora-
tions ±(+)(+)(+). The mountain range is depicted in the upper left of Figure 21. It is
infinite on the upper side.
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Figure 21: The mountain ranges of some strongly exceptional Legendrian A3 links with fixed t1
and t2 . Each dot represents a Legendrian A3 link. A dot with a circle represents two Legendrian
A3 links. Each arrow represents a stabilization.

(2) Strongly exceptional Legendrian A3 links in (S3 , ξ 5
2
) with r0 = ±(t0 − 3), r1 =

±(t1 − 1), r2 = ±(1 − t2), where t0 , t1 , t2 ≥ 3. See Lemmas 4.25 and 4.26. Their exteriors
have decorations ±(+)((+)(−))((+)(+)). The mountain range is depicted in the
lower left of Figure 21. It is infinite on the upper side.

(3) Strongly exceptional Legendrian A3 links in (S3 , ξ 5
2
) with r0 = ±(t0 − 5), r1 =

±(1 − t1), r2 = ±(1 − t2), where t0 , t1 , t2 ≥ 3. See Lemmas 4.25 and 4.26. Their exteriors
have decorations ±(+)((+)(+))((+)(+)). The mountain range is depicted in the
upper right of Figure 21. It is infinite on the upper side.

(4) Exceptional Legendrian A3 links in (S3 , ξ 1
2
) with r0 = ±(t0 − 1), r1 =

±(1 − t1), r2 = ±(t2 + 1), where t1 , t2 ≥ 3. Their exteriors have decorations
±(+)((+)(+))((−)(−)). See Lemmas 4.7, 4.25, 4.26, and 4.27. The mountain
range of such links is depicted in the lower right of Figure 21. It is infinite on
both the upper and lower sides. The exteriors of such A3 links have decorations
±(+)((+)(+))((−)(−)). If t0 ≥ 2, then they are strongly exceptional. If t0 < 2,
then, based on Lemma 4.7 and Lemma 2.6, they are exceptional but not strongly
exceptional.

In a more general setting, with a fixed decoration and nonzero integers t1 and t2,
if L′0 and the innermost basic slices of L′1 and L′2 have the same signs (possibly after
shuffling), then the components K0 of the strongly exceptional Legendrian A3 links
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exhibit mountain ranges with shapes resembling a “V” or an “X” truncated from the
lower side, as shown in the first three subfigures in Figure 21.

For the strongly exceptional Legendrian A3 links with fixed t1 , t2 ≠ 0 and t0 +
⌈− 1

t1
⌉ + ⌈− 1

t2
⌉ ≤ 1, the mountain ranges of the component K0 can be observed through

Lemma 4.6, Lemma 4.11, Lemma 4.18, Lemma 4.28, Lemma 4.33, and Lemma 4.40.

5.2 Stabilizations of the component K2 when t1 = 0.

The strongly exceptional Legendrian A3 links with t1 = 0 are classified in Theorem
1.7. The exteriors of such Legendrian A3 links contain 0-twisting vertical Legendrian
circles. By Lemma 3.5, the component K2 is always destabilizable unless t2 = 0.

We list the mountain range of the component K2 of the strongly exceptional
Legendrian A3 links with fixed t0 and t1 = 0. The exteriors of such Legendrian A3
links can be decomposed into L′0 ∪ L′2 ∪ Σ′ × S1. Recall that if t2 ≥ 3, then L′2 consists
of 2 basic slices and is not a continued fraction block. If t2 = 2, then L′2 is a continued
fraction block consisting of 2 basic slices. If t2 = 1, then L′2 is a basic slice. If t2 = 0,
then L′2 is an empty set. If t2 ≤ −1, then L′2 is a continued fraction block consisting of
−t2 basic slices.

(1) Strongly exceptional Legendrian A3 links in (S3 , ξ 3
2
) with r0 = ±(t0 − 3), r1 =

±1, r2 = ±(1 − t2), where t1 = 0, t2 ≥ 1. See Lemmas 4.44, 4.45, and 4.46. The signs of
the basic slices in L′0 and L′2 are all the same. The mountain range is depicted in the
upper left of Figure 22.

(2) Strongly exceptional Legendrian A3 links in (S3 , ξ− 1
2
) with r0 = ±(t0 + 1), r1 =

±1, r2 = ±(t2 + 1), where t1 = 0, t2 ≥ 1. See Lemmas 4.44, 4.45, and 4.46. The sign of L′0
and the sign of each of the basic slices in L′2 are opposite. The mountain range can be
depicted in the upper left of Figure 22.

(3) Strongly exceptional Legendrian A3 links in (S3 , ξ 3
2
) with r0 = ±(t0 − 1), r1 =

±1, r2 = ±(t2 − 1) (or r2 = ±(3 − t2)), where t1 = 0, t2 ≥ 2. See Lemmas 4.45 and 4.46.
Their exteriors have decorations ±(+)((+)(−)) (or ±(+)((−)(+))) if t2 ≥ 3, and
±(+)(+−) if t2 = 2. Note that when t2 = 2, L′2 is a continued fraction block, and hence,

Figure 22: The mountain ranges of the strongly exceptional Legendrian A3 links with fixed t0
and t1 = 0.
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the two decorations (+)(+−) and (+)(−+) (or (−)(−+) and (−)(+−)) stand for the
same Legendrian A3 link. So the mountain range can be depicted in the upper right
of Figure 22.

(4) Strongly exceptional Legendrian A3 links in (S3 , ξ 1
2
) with r0 = ±(t0 − 1), r1 =

±1, r2 ∈ ±{t2 + 1, t2 + 3, ⋅ ⋅ ⋅ ,−t2 + 1}, where t1 = 0, t2 ≤ 0. See Lemma 4.43. It is easy
to know that the mountain range can be depicted in the lower part of Figure 22.

In conclusion, the whole mountain range of the strongly exceptional Legendrian
A3 links with fixed t0 and t1 = 0 consists of two copies of the upper left subfigure, the
upper right subfigure, and the lower subfigure of Figure 22.

6 Some Computations

Here, we summarize how to compute the classical invariants of Legendrian realiza-
tions A3 = K0 ∪ K1 ∪ K2 of the connected sum of two Hopf links, and the d3-invariant
of the contact 3-sphere S3 containing the realizations. We compute the invariants
of the first surgery diagram on the top left of Figure 14. Similar arguments apply to
all remaining examples. For the example in Figure 14, the linking matrix M is the
(t0 − 1) × (t0 − 1)-matrix, which we form by ordering the surgery curves from bottom
to top where all are oriented clockwise:

M =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−2 −1 −1
−1 −2 −1
−1 −1 −2 −1

−1 −2 −1
−1 −2 −1

⋱
−1

−1 −2 −1
−1 −1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

The determinant of M is detM = (−1)t0−1.

6.1 The d3-invariant.

Let (Y , ξ) = ∂X be a contact 3-manifold given by contact (±1)-surgeries on a Leg-
endrian link L ∈ (S3 , ξst), all of which have the nonvanishing Thurston-Bennequin
invariant. We compute the d3-invariant of (Y , ξ) with c1(ξ) torsion by following the
formula from [4, Corollary 3.6]:

d3(ξ) = 1
4
(c2 − 3σ(X) − 2χ(X)) + q,

where q is the number of (+1)-surgery components in L and c ∈ H2(X) is the
cohomology class determined by c(Σ i) for each L i ∈ L, where Σ i is the Seifert surface
of L i glued with the core disk of the corresponding handle. We read σ and χ from
the surgery diagram in Figure 14. The signature σ is the signature of the linking
matrix M. The surgery diagram is topologically equivalent to (t0 − 1) unlinked −1-
framed unknots, so the signature is σ(X) = −(t0 − 1). The Euler characteristic is
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χ(X) = t0 − 1 + 1 = t0 since each surgery knot corresponds to attaching a 2-handle. We
compute c2 by following the algorithm in [4], c2 = xt Mx =< x,rot >, where rot =
(rot(L1), . . . , rot(Ln)) is the vector rotation number of the Legendrian surgery knots
L i ⊂ L and x is the solution vector of Mx = rot. For the surgery diagram on top left
of Figure 14, the vector rotation number is

rot = (2,−2, 0, . . . , 0, 1)t .

The solution vector x is

x = (−1, 3, ∗, . . . , ∗,−(t0 − 1))t for t0 even,

and

x = (−3, 1, ∗, . . . , ∗,−(t0 − 1))t for t0 odd.

This gives c2 =< x,rot >= −6 − 2 + 0 + ⋅ ⋅ ⋅ + 0 − (t0 − 1) = −7 − t0 . Observing that
q = 3 in this example, we compute

d3 =
1
4
(−7 − t0 − 3(−(t0 − 1)) − 2t0) + 3 = 1

2
.

6.2 The Thurston-Bennequin invariant and the rotation number.

We use the formulae in [15, Lemma 6.6] to compute the Thurston-Bennequin invariant
and the rotation number of a Legendrian knot L in a contact (±1)-surgery diagram of
surgery link L with the linking matrix M. The Thurston-Bennequin invariant is

tb(L) = tb(L0) +
detM0

detM
,

where tb(L0) is the Thurston-Bennequin invariant of L as a knot in (S3 , ξst) before the
contact surgeries, and M0 is the extended linking matrix which is the linking matrix of
L0 ∪Lwith the convention that l k(L0 , L0) = 0. The rotation number of L after surgery
is

rot(L) = rot(L0)− < rot, M−1lk >,

where rot(L0) is the rotation number of L before surgeries, rot is the vector rotation
number of the Legendrian surgery knots L i ⊂ L, and lk = (l k(L, L1), . . . , l k(L, Ln))
is the vector of the linking numbers.

For the surgery diagram on the top left of Figure 14, we assume that K0, K1, and
K2 are oriented clockwise. So the extended linking matrices for K0, K1 and, K2 are,
respectively,

M0 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 ⋅ ⋅ ⋅ 0 −1 −2
0
⋮ M
0
−1
−2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, M1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 −1 −3 −1 0 ⋅ ⋅ ⋅ 0
−1
−3
−1 M
0
⋮
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,
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M2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 −3 −1 −1 0 ⋅ ⋅ ⋅ 0
−3
−1
−1 M
0
⋮
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

The determinants are detM0 = (−1)t0−1(t0 + 2) and detM1 = detM2 =
5(−1)t0−1. We compute the Thurston-Bennequin invariants as follows:

tb(K0) = −2 + (−1)t0−1(t0 + 2)
(−1)t0−1 = t0 , and tb(K1) = tb(K2) = −3 + 5(−1)t0−1

(−1)t0−1 = 2.

Recall that for t0 odd, K0 and K i are given the same orientation, and for t0 even,
the opposite one, where i = 1, 2. If t0 is odd, then K i is oriented clockwise. If t0 is even,
then K i is oriented counterclockwise. We compute the rotation numbers as follows:

r0 = 1 − ⟨

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2
−2
0
⋮
0
1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, M−1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
⋮
0
−1
−2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⟩ = 1 − ⟨

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2
−2
0
⋮
0
1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(−1)t0−1

(−1)t0−1

∗
∗
∗
t0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⟩

= 1 − (2 − 2 + 0 + ⋅ ⋅ ⋅ + 0 + t0) = −(t0 − 1),

r1 = 2(−1)t0 − ⟨

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2
−2
0
⋮
0
1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, M−1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(−1)t0

3(−1)t0

(−1)t0

0
⋮
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⟩ = 2(−1)t0 − ⟨

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2
−2
0
⋮
0
1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
2(−1)t0−1

∗
∗
∗
1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⟩

= 2(−1)t0 − (0 + 4(−1)t0 + 0 + ⋅ ⋅ ⋅ + 0 + 1) = { 1 if t0 is odd,
−3 if t0 is even,

r2 = 2(−1)t0−1 − ⟨

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2
−2
0
⋮
0
1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, M−1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

3(−1)t0

(−1)t0

(−1)t0

0
⋮
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⟩ = 2(−1)t0−1 − ⟨

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2
−2
0
⋮
0
1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2(−1)t0−1

0
∗
∗
∗
1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⟩

= 2(−1)t0−1 − (4(−1)t0−1 + 0 + ⋅ ⋅ ⋅ + 0 + 1) = { −3 if t0 is odd,
1 if t0 is even.
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