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We study the shape and motion of gas bubbles in a liquid flowing through a
horizontal or slightly inclined thin annulus. Experimental data show that in the
horizontal annulus, bubbles develop a unique ‘tadpole-like’ shape with a semi-circular
cap and a highly stretched tail. As the annulus is inclined, the bubble tail tends to
vanish, resulting in a significant decrease of bubble length. To model the bubble
evolution, the thin annulus is conceptualised as a ‘Hele-Shaw’ cell in a curvilinear
space. The three-dimensional flow within the cell is represented by a gap-averaged,
two-dimensional model, which achieved a close match to the experimental data.
The numerical model is further used to investigate the effects of gap thickness
and pipe diameter on the bubble behaviour. The mechanism for the semi-circular cap
formation is interpreted based on an analogous irrotational flow field around a circular
cylinder, based on which a theoretical solution to the bubble velocity is derived. The
bubble motion and cap geometry is mainly controlled by the gravitational component
perpendicular to the flow direction. The bubble elongation in the horizontal annulus
is caused by the buoyancy that moves the bubble to the top of the annulus. However,
as the annulus is inclined, the gravitational component parallel to the flow direction
becomes important, causing bubble separation at the tail and reduction in bubble
length.

Key words: bubble dynamics, multiphase flow

1. Introduction
Simultaneous flow of gas and liquid through a conduit, over a wide range of

flow rates, exhibits a ‘slug flow’ pattern, which consists of the pseudo-periodic
appearance of large bubbles (often called Taylor bubbles) separated by liquid slugs

† Email address for correspondence: q.lei12@imperial.ac.uk
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(Fabre & Liné 1992). The shape and motion of Taylor bubbles in tubes have been
extensively investigated over the past decades (Davies & Taylor 1950; White &
Beardmore 1962; Zukoski 1966; Collins 1967b; Collins et al. 1978; Reinelt 1987b;
Vanden-Broeck 1984, 1992; Viana et al. 2003; Figueroa-Espinoza & Fabre 2011;
Fabre 2016). In contrast, much less effort has been devoted to studying Taylor
bubbles in annuli, which are, however, very relevant for many industrial applications
such as energy dissipation facilities for chemical/nuclear reactors, casing-tubing annuli
for oil production and double-pipe heat exchangers for geothermal systems (Kelessidis
& Dukler 1990; Das et al. 1998; Ekberg et al. 1999).

In an annulus, flow is confined between the inner surface of an outer pipe and the
outer surface of an inner pipe. If the thickness of the gap between the two surfaces
is much smaller than the perimeter of the pipe, the annulus is then similar to a
Hele-Shaw cell. The problem of two-phase flow in a Hele-Shaw cell between two
parallel flat plates has been the focus of many previous theoretical, experimental and
numerical studies (e.g. Taylor & Saffman 1959; Collins 1965a, 1967a; Maxworthy
1986; Kopf-Sill & Homsy 1988; Roig et al. 2012; Cueto-Felgueroso & Juanes 2014).
Large bubbles in a Hele-Shaw cell (the bubble characteristic length, d, is much greater
than the gap thickness between the plates, h) behave very differently from bubbles in
an unbounded liquid due to the presence of wall confinement and wettability effects
(Thompson 1968; Eck & Siekmann 1978; Saffman & Tanveer 1989; Cueto-Felgueroso
& Juanes 2014). The bubble dynamics in a Hele-Shaw cell can be characterised by
the bubble Reynolds number Re = ρlu∞d/µl (u∞ is the bubble velocity relative to
the ambient liquid having a density ρl and a dynamic viscosity µl). In addition, the
gap Reynolds number Re(h/d)2 is often used to compare the in-plane inertial effect
and the cross-gap viscous effect (Thompson 1968; Eck & Siekmann 1978; Bush &
Eames 1998; Roig et al. 2012). When Re(h/d)2 � 1, the flow corresponds to the
classical Hele-Shaw flow regime where the inertia is negligible (Saffman & Taylor
1958; Taylor & Saffman 1959; Eck & Siekmann 1978; Maxworthy 1986; Tanveer
1986, 1987; Tanveer & Saffman 1987; Kopf-Sill & Homsy 1988; Meiburg 1989;
Saffman & Tanveer 1989; Maruvada & Park 1996; Cueto-Felgueroso & Juanes 2014).
When Re(h/d)2 is close to or larger than 1, the inertia becomes important, as has
been observed for bubbles in inclined or vertical Hele-Shaw cells (Collins 1965a,b;
Grace & Harrison 1967; Lazarek & Littman 1974; Maneri & Zuber 1974; Hills 1975;
Vanden-Broeck 1984, 1992; Couet & Strumolo 1987; Bush 1997; Kelley & Wu 1997;
Bush & Eames 1998; Huisman, Ern & Roig 2012; Roig et al. 2012; Wang et al.
2014, 2016; Filella, Ern & Roig 2015; Piedra, Ramos & Herrera 2015).

In this paper, we study bubble behaviour in another type of Hele-Shaw cell, i.e.
thin annuli. We provide an insight, based on experimental observations, numerical
simulations and theoretical analysis, into simultaneous gas–liquid flow through such
systems. We focus on the regime where inertia becomes important, i.e. Re(h/d)2 is
close to or larger than unity. Laboratory experiments are conducted to measure the
bubble distribution and evolution in a horizontal or slightly inclined thin annulus (§ 2).
A gap-averaged, two-dimensional (2-D) formulation of the Navier–Stokes equations
is then derived to represent the three-dimensional (3-D) flow dynamics (§ 3). The
numerical model predictions are compared with the experimental data for different
inclinations. Further numerical simulations are then performed to elucidate the roles
of gap thickness and pipe diameter in bubble formation (§ 4). In addition, a theoretical
analysis is presented to interpret the flow mechanisms that govern bubble dynamics in
thin annuli (§ 5). Finally, a brief discussion is given and conclusions are drawn (§ 6).
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FIGURE 1. Schematic illustration of the experimental apparatus.

2. Experimental apparatus and procedure

The experimental apparatus consisted of air and water supply systems, an annulus
formed between two concentric pipes (comprising three connected subsections and
initially filled with water), and a collection tank (figure 1). The parameters of
the experimental apparatus and working fluids are as given in table 1. During the
experiments, air and dyed water were continuously pumped into a mixer before
entering the test section. Visual observation showed the two fluids were well
segregated by the time they entered the annulus. Three high-speed cameras were
mounted above the annulus subsections for visualisation and recording purposes. The
outer pipe was made of Plexiglas to facilitate visualisation, while the inner stainless
steel tubing was spray coated to create a white surface which maximised the colour
contrast between the air and dyed water. The videos were taken at a frame rate of 17
frames per second with a resolution of 1280× 720 pixels, and a colour depth of 24
bits per pixel. The data were imported into MATLAB for post-processing to extract
bubble size and velocity data.

3. Mathematical formulation and numerical model
3.1. Governing equations

As shown in figure 2(a), we define a 3-D curvilinear coordinate system (x, y, z) based
on the mid-plane of the thin annulus (i.e. the distance of this mid-plane from both
the outer and inner walls is h/2), where x is defined to be along the pipe length
(0 6 x 6 L), y is around the perimeter (−W/2 6 y 6 W/2 with y= 0 and y=±W/2
corresponding to the top and bottom of the pipe, respectively), and z is the direction
across the gap (−h/2 6 z 6 h/2 with z = h/2 and z = −h/2 defining the outer and
inner channel walls, respectively). The system is therefore equivalent to a Hele-Shaw
cell (viz. figure 2b) under a distorted gravity field (viz. figure 2c).

We use the approximation that the flow velocity in the z direction is negligible
(uz = 0) given the very high aspect ratio (i.e. h/W � 1). By eliminating the terms
involving uz, the governing equations of the incompressible two-phase, air–water
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FIGURE 2. Schematic of (a) the thin annulus and (b) the equivalent Hele-Shaw cell.
(c) An illustration showing how the direction of gravitational acceleration changes along
the equivalent Hele-Shaw cell to ensure the flow replicates that seen in the actual annulus.

Total length of the annulus L (m) 6.0
Outer diameter of the annulus Do (m) 0.140
Inner diameter of the annulus Di (m) 0.133
Mean diameter of the annulus D (m) 0.137
Mean perimeter of the annulus W (m) 0.429
Gap thickness of the annulus h (m) 0.0035
Gravitational acceleration g (m s−2) 9.8
Temperature (◦C) 21
Average absolute pressure inside the annulus (kPa) 270
Density of air ρa (kg m−3) 3.41
Dynamic viscosity of air µa (Pa s) 2× 10−5

Density of water ρw (kg m−3) 1000
Dynamic viscosity of water µw (Pa s) 1× 10−3

Surface tension σ (N m−1) 72.8× 10−3

Advancing contact angle of the outer Plexiglas surface θo,max (deg) 80
Receding contact angle of the outer Plexiglas surface θo,min (deg) 20
Advancing contact angle of the inner spray-coated surface θi,max (deg) 80
Receding contact angle of the inner spray-coated surface θi,min (deg) 10
Air-to-water inflow rate ratio qa/qw 1/4
Superficial inflow velocity vi (m s−1) 0.162
Inclination angle of the annulus with respect to horizontal β (deg) 0, 1.9, 4.6

TABLE 1. Parameters of the experimental apparatus and fluids.
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Bubbles in a thin annulus 1021

flow are obtained, including the mass and momentum conservation equations given
respectively by

∇ · u= 0, (3.1)

ρ

(
∂u
∂t
+ u · ∇u

)
=−∇p+∇ ·µ[∇u+ (∇u)T] +

∂

∂z

(
µ
∂u
∂z

)
+ ρg+ σκδn, (3.2)

and an equation for the volume fraction of air given as

∂α

∂t
+ u · ∇α = 0. (3.3)

Here, u = [ux, uy] is the velocity vector, ∇ = [∂/∂x, ∂/∂y] is the 2-D gradient, t is
the time, α is the volume fraction of air, the bulk density is ρ = αρa + (1− α)ρw, p
is the pressure, the bulk dynamic viscosity is µ= αµa + (1− α)µw, the gravitational
acceleration vector is g = [g sin β, g cos β sin(2y/d)], σ is the surface tension,
κ is the interface curvature, δ is the Dirac delta function and n is the interface
outward-pointing unit normal. Surface tension force is treated as a continuous surface
force (Brackbill, Kothe & Zemach 1992). Note (3.1)–(3.3) are written in a form
following Bush (1997) that eases the derivation of gap-averaged, 2-D equations in
the following § 3.2.

3.2. Gap-averaging process

We assume the velocity profile in the annulus to be parabolic in the z-direction
(Gondret & Rabaud 1997):

u=
3
2

[
1−

(
2z
h

)2
]

ū, (3.4)

where ū is the gap-averaged velocity. This is consistent with our calculation
ρwvi(2h)/µw = 1134, which reveals the flow to be laminar (Beavers, Sparrow &
Magnuson 1970).

We derive a coupled set of gap-averaged equations by integrating equations (3.1)–
(3.3) along the z direction (Roig et al. 2012):

∇ · ū= 0, (3.5)

ρ

(
∂ū
∂t
+

6
5

ū · ∇ū
)
=−∇p+∇ ·µ[∇ū+ (∇ū)T] −

12µ
h2

ū+ ρg+ σκδn, (3.6)

∂α

∂t
+ ū ·∇α = 0. (3.7)

We acknowledge the fact that (3.5)–(3.7) may not represent fully all relevant dynamics,
e.g. 3-D effects local to the air–water interface (Oliveira & Meiburg 2011). It is,
nonetheless, of interest to determine the extent to which our approximate model can
capture as many of the phenomena observed experimentally as possible.
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FIGURE 3. Schematic of (a) the cross-gap meniscus profile governed by the local contact
angles, θo and θi, at the outer and inner walls, respectively, and (b) the moving contact
line in the x–y plane with the local advancing/receding state determined by the intersection
angle φ between the velocity vector ū and the interface normal n.

3.3. Curvature and contact angle
The shape of the air–water interface is affected by the wettability of the channel walls.
To incorporate this effect, the curvature in (3.6) may be replaced by (Thompson, Juel
& Hazel 2014)

κ = κl + κt ≈ κl +
cos θo + cos θi

h
, (3.8)

where κl is the lateral curvature (on the x–y plane) which is estimated using the
diffuse-interface approach based on the volume fraction field (Xie et al. 2016), κt is
the transverse curvature (across the gap) which is estimated from the meniscus profile
(figure 3a), θo is the local contact angle at the outer wall and θi is that at the inner
wall. The local contact angle along the contact line can vary significantly from the
advancing value (at the bubble tail) to the receding value (at the bubble front). The
experimental measurements by Antonini et al. (2009) showed that the angle can be
interpolated using a third-order polynomial function:

θ = 2
θmin − θmax

π3
φ3
− 3

θmin − θmax

π2
φ2
+ θmin, (3.9)

where θ corresponds to the local contact angle at either the outer or inner wall (i.e.
θo or θi, respectively), θmax and θmin denote the advancing and receding contact angles
of the corresponding surface, respectively, φ is the angle between the local velocity
vector ū and the interface normal n (figure 3b). Figure 4 shows the variation of the
local contact angle θ at the outer and inner walls with respect to φ. Contact angle
hysteresis is promoted by roughness of the channel wall surface (Dussan 1979); we
also discuss in § 6 the potential effect of roughness on the presence/absence of thin
water films on the channel walls.

3.4. Model set-up and numerical methods
A numerical experiment was designed as shown in figure 5. The length and width of
the 2-D domain were the pipe length L and perimeter W, respectively. This domain
was originally filled with water that had an initial velocity vi along the x direction.
The inlet condition was defined by the inflow velocity vi uniformly imposed at the
left boundary, such that the air flowed into the domain through the middle part (W/5
wide), corresponding to the inflow rate condition of qa/(qa + qw) = 1/5 (table 1),
while the water was injected from the remaining portion of the left boundary. This is
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FIGURE 4. Interpolation of contact angles around a contact line at the outer or inner wall
of the annulus using a third-order polynomial fitting (Antonini et al. 2009); θ denotes the
local contact angle and φ denotes the intersection angle between the local velocity vector
and the interface normal as shown in figure 3.
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FIGURE 5. The 2-D model set-up for numerical simulation.

consistent with the experimental observation that air and water were well segregated
in the mixer before entering the annulus. A free-slip condition was used for the two
longitudinal sides of the domain, considering that the air phase is away from the
pipe bottom and the flow across the pipe bottom is negligible. A hydrostatic pressure
condition was imposed along the outlet to account for the gravity-induced pressure
gradient across the channel.

The numerical model was solved based on a mixed control-volume finite-element
method, which has been validated against a series of benchmark cases of single
rising bubbles, coalescence of two bubbles and droplet impacts (Xie et al. 2014,
2016, 2017). The computational domain was discretised into an unstructured grid
of triangular P1DG-P2 elements (linear discontinuous velocity between elements
and quadratic continuous pressure between elements) (Cotter et al. 2009). A finite
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volume discretisation of the mass conservation equation and a linear discontinuous
Galerkin discretisation of the momentum equation were used with an adaptive
implicit/explicit time stepping scheme (Xie et al. 2016). Within each time step, the
equations were iterated upon using a pressure projection method until all equations are
simultaneously balanced (Pavlidis et al. 2014; Xie et al. 2014). Interface dynamics
were captured through a compressive advection-based volume-of-fluid approach,
which used a novel and mathematically rigorous nonlinear Petrov–Galerkin method
for maintaining sharp interfaces (Pavlidis et al. 2016). Surface tension was modelled
using a diffused-interface formulation that can accurately estimate the lateral curvature
based on the volume fraction field (Xie et al. 2016). Anisotropic mesh adaptation
(Pain et al. 2001) was used to place a finer mesh around the interface during its
evolution as required to capture the dynamics (Xie et al. 2014, 2016). The criteria
for mesh refinement, based on the volume fraction field, included an interpolation
error bound of 0.1, a minimum element size of W/60 and maximum element size
of L/6 and W/20 in the x and y directions, respectively. The 2-D simulation outputs
were projected onto the original 3-D Cartesian coordinate system to facilitate visual
comparison with experimental data.

4. Results
4.1. Experimental observation and numerical simulation

Figures 6–9 show the formation of air bubbles in the water flowing through the
annulus at different inclinations. Despite the limitations of the gap-averaged 2-D
numerical model in representing some 3-D effects such as the detailed transverse
shape of the air–water interface and the cross-gap velocity/gravity component, very
similar flow behaviour in the lateral directions (i.e. x and y directions) was observed
in the laboratory experiments and numerical simulations.

In the horizontal case (figure 6), air was conveyed by long bubbles having a
tadpole-like shape with a semi-circular cap and a highly stretched tail connected
via an apparent neck. These bubbles, separated by liquid slugs, were forced to
flow at the top of the annulus due to buoyancy. The tail of a bubble was initially
connected to the inlet (figure 6a) and was stretched as the bubble advanced until
it finally disconnected from the inlet (figure 6b). The bubble then contracted as a
result of surface tension (figure 6c) and continued to move with an essentially steady
shape through the co-current flowing liquid towards the outlet (figure 6d). When the
bubble was separated from the inlet, another bubble began to form, resulting in the
appearance of a sequence of similarly shaped/sized bubbles moving along the top of
the annulus.

In the 1.9◦ inclined case (figure 7), bubbles still exhibited a tadpole-like shape
but with a much shorter tail, whilst the cap shape remained similar to that in the
horizontal case. The bubble detached quickly from the inlet after its formation
(figure 7a). Due to the constant inflow of air, another bubble formed, disconnected
and migrated following the leading one. In this way, a stream of distinct bubbles
developed as in the horizontal case. However, if the spacing between two bubbles was
sufficiently small, the trailing bubble might catch up (figure 7b) and merge with its
upstream neighbour (figure 7c). The larger bubble formed might further coalesce with
another bubble upstream or downstream. Finally, the bubbles that formed relatively
stable shapes were transported to the outlet by the flowing water (figure 7d).

There appears to be three stages in the coalescence process. (i) Interacting stage
(0.0–0.4 s in figure 8). The trailing bubble with a larger velocity caught up with the
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0.1 m

(a)

(b)

(c)

(d)

FIGURE 6. (Colour online) The formation and evolution of bubbles in the horizontal
annulus (top view): (a) generation of the bubble near the inlet (in annulus subsection 1),
(b) disconnection of the bubble (in annulus subsection 1), (c) stabilisation of the
bubble after slight contraction (in annulus subsection 2) and (d) translation of the
steady bubble to the outlet (in annulus subsection 3). Each figure panel includes the
experimental observation, the simulation result and the adaptive unstructured mesh used
in the simulation.

leading bubble. As the two bubbles became closer, the trailing bubble experienced
a marked change in shape, with its cap becoming more pointed with an increased
local curvature at the front. The geometry of the leading bubble only changed slightly
with the tail becoming shorter and flatter. The changing shape of the two bubbles
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0.1 m
(a)

(b)

(c)

(d)

FIGURE 7. (Colour online) The formation and evolution of bubbles in the 1.9◦ inclined
annulus (top view): (a) generation of bubbles near the inlet (in annulus subsection 1),
(b) interaction of bubbles, with the trailing bubble catching up with the leading bubble
(in annulus subsection 2), (c) coalescence of the trailing and leading bubbles (in annulus
subsection 2) and (d) translation of steady bubbles to the outlet (in annulus subsection 3).
Each figure panel includes the experimental observation, the simulation result and the
adaptive unstructured mesh used in the simulation.

was caused by the increased pressure gradient between the two bubble interfaces as
they got closer together, during which time the liquid between the two bubbles was
gradually pushed out. (ii) Merging stage (0.5–0.6 s in figure 8). The cap of the trailing
bubble invaded the rear of the leading bubble. The liquid film between the two bubbles
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0.0 s

0.1 s

0.2 s

0.3 s

0.4 s

0.5 s

0.6 s

0.7 s

0.8 s

0.9 s

1.0 s

0.1 m

FIGURE 8. (Colour online) Simulation results showing the coalescence process for two
bubbles in the 1.9◦ inclined annulus.

was ruptured and drained as the two bubbles united. The merged bubble exhibited
a complex, tortuous shape with the cap and tail connected by a narrow neck and a
wider body. (iii) Stabilising stage (0.7–1.0 s in figure 8). The merged larger bubble
underwent deformation and adjusted itself from a complex, unsteady shape to the
stable tadpole-like form.
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0.1 m

(a)

(b)

(c)

(d)

FIGURE 9. (Colour online) The formation and evolution of bubbles in the 4.6◦ inclined
annulus (top view): (a) generation and interaction of bubbles close to the inlet (in annulus
subsection 1), (b) coalescence of the trailing, middle and leading bubbles (in annulus
subsection 1), (c) stabilisation of merged larger bubbles (in annulus subsection 2) and
(d) translation of steady bubbles to the outlet (in annulus subsection 3). Each figure panel
includes the experimental observation, the simulation result and the adaptive unstructured
mesh used in the simulation.

In the 4.6◦ inclined case (figure 9), bubbles became more compact and almost lost
the tail structure although the cap shape remained similar to that in the horizontal
case. Bubbles separated from the inlet quickly and again formed a train (figure 9a).
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FIGURE 10. (Colour online) Variation of bubble properties with the inclination angle
β: (a) normalised bubble length l/D, (b) normalised bubble cap diameter d/D and
(c) normalised bubble terminal velocity u/vi.

The bubbles could merge at an earlier stage by virtue of their smaller spacing
and simultaneous coalescence of three bubbles could occur (figure 9a,b). During
the coalescence of three bubbles, the leading bubble remained a semi-circular cap,
whereas its rear was flattened; the middle bubble was between the leading and
trailing bubbles and showed a sharpened front and a flattened rear; the trailing bubble
displayed a narrowed front invading into the back of middle bubble. As merging
occurred, the liquid films between bubbles broke and dissipated, such that a united
larger bubble was formed with a highly tortuous, unsteady shape. The coalesced larger
bubble gradually stabilised itself (figure 9c) and then migrated to the exit (figure 9d).

The statistics of the normalised length, cap diameter and terminal velocity of
stabilised bubbles in the cases of different inclinations are compared in figure 10.
Data from ten fully developed bubbles were collected in the region 2–5 m downstream
of the inlet, where the bubbles were not influenced by either inlet or outlet effects.
As expected from the discussion above, the bubble length reduces significantly as
the inclination of the annulus increases (figure 10a), due to the deterioration of tail
structure. However, the cap diameter, measured based on the curvature of the cap
front, only shows a slight increase with the inclination of the annulus (figure 10b). The
terminal velocity of the bubbles also increases slightly with inclination (figure 10c).
An excellent quantitative match with the experimental measurements was achieved
by the numerical model. The pseudo-periodic nature of the slug flow and variation
of bubble properties as observed in the experiment was also well captured in the
simulation (figure 10). Although the inlet condition was stationary, the slug flow
pattern varied constantly.

4.2. Effects of gap thickness and pipe diameter
We used the numerical model to further elucidate the effects of gap thickness and pipe
diameter on bubbles in thin annuli. First, we set the pipe diameter to be D= 0.137 m,
the air-to-water inflow rate ratio to be qa/qw= 1/4 and the superficial inflow velocity
to be vi = 0.162 m s−1. We varied the gap thickness h from 0.001 to 0.005 m, for
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FIGURE 11. (Colour online) Variation of bubble properties with the gap thickness h
while the pipe diameter D is fixed to be 0.137 m: (a) normalised bubble length l/D,
(b) normalised bubble cap diameter d/D and (c) normalised bubble terminal velocity u/vi.

which the flow remained to be laminar (Beavers et al. 1970) and cross-gap gravity
effect was not significant. As shown in figure 11(a), when h= 0.001 m (i.e. h/D=
0.0073), the bubbles in the horizontal and inclined annuli are very similar, having
a slender oval shape with a semi-circular front and a gradually narrowed rear (no
discernible neck existed). In the horizontal case, as h becomes larger, the tadpole-like
shape becomes more pronounced with a much longer tail and a more distinct neck
where the tail joins the cap. If the annulus is inclined, as h increases, the tail tends
to vanish and the bubble length decreases significantly. In contrast to the marked
variation of bubble length with h, the cap diameter and terminal velocity are much
less sensitive to h (figure 11b,c).

Next, we explored the effect of changing pipe diameter D = 0.05–0.4 m (the
pipe length L also varied with D according to a fixed ratio L/D = 43.8), keeping
h= 0.0035 m and the same inflow conditions as before. Note that, in figure 12, the
bubble length and cap diameter in each case are normalised by the corresponding pipe
diameter. As shown in figure 12(a), the ratio of bubble length to the pipe diameter
generally does not vary significantly with the change of D. However, in the horizontal
annulus with D = 0.4 m (i.e. h/D = 0.0087), the bubble has a very long, extremely
stretched, wavy tail, which does not disconnect from the inlet; the bubble length,
therefore, corresponds to the whole pipe length. With the decrease of D (i.e. increase
of h/D), the cap diameter relative to the pipe diameter increases while the bubble
velocity decreases (figure 12b,c).

5. Flow mechanisms
We use the numerical model to investigate the pressure and velocity fields around

the bubbles, which determine the bubble motion, shape and dynamics, and can
thus provide clues for interpreting the mechanisms that control these behaviours.
Figure 13(a) shows the typical steady bubbles for three different inclinations, and
figures 13(b) and 13(c) give their pressure and velocity fields, respectively. To
facilitate comparison, the absolute pressure at the foremost point of each bubble is

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
8.

69
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2018.696


Bubbles in a thin annulus 1031

l/D

(a)
(b)

(c)

u/
√ i

101

100

10-2

10-2

10-1

10-1

10-2 10-1

ı = 0°

ı = 1.9°

ı = 4.6°

h/D h/D

d/D

0.6

0.8

1.1

1.4

2

3

4

5

FIGURE 12. (Colour online) Variation of bubble properties with the pipe diameter D
while the gap thickness h is fixed to be 0.0035 m: (a) normalised bubble length l/D,
(b) normalised bubble cap diameter d/D and (c) normalised bubble terminal velocity u/vi.

chosen as the reference pressure in each case, so that the pressure contour gives the
differential pressure between the absolute pressure and the reference pressure. It can
be seen that inside the bubble, the pressure is generally constant due to the very
low air density. The pressure in the liquid behind the bubble is higher than that in
front of the bubble, driving the bubble to flow towards the outlet. The velocity of air
inside the bubble is significantly higher than that of the surrounding liquid.

We explore the mechanisms controlling the bubble shape and motion through a
simple analysis. We define two polar coordinate systems: one based on the unrolled
2-D bubble cap geometry in the x–y plane (figure 14a), and the other based on the
transverse cross-section of the pipe in the y–z plane (figure 14b). By applying
Bernoulli’s equation to the steady flow around the bubble cap, assumed to be
irrotational with the surface tension being neglected, the following relationship is
obtained:

u2
ψ

2
= g
[

D
2
(1− cos γ ) cos β +

d
2
(1− cosψ) sin β

]
, (5.1)

where uψ is the relative velocity of the surrounding liquid to the bubble at a point
with a polar angle of ψ , and γ is the polar angle in the coordinate system of the
transverse cross-section. We assume that flow around the bubble cap is similar to that
seen around a circular cylinder to a first approximation (Collins 1967a). This flow
field can be solved using the stream function and velocity potential, with the following
relationship obtained (Wilkes 2006):

u2
ψ

u2
∞

sin2 ψ
= 4, (5.2)

where u∞ is the far-field relative velocity of the flow to the bubble. By combining
(5.1), (5.2) and the relation (d/2) sinψ = (D/2)γ (see figure 14a,b), we obtain

u2
∞
=

(
1− cos γ

γ 2

d
D

cos β +
1− cosψ

sin2 ψ
sin β

)
gd
4
. (5.3)
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FIGURE 13. (Colour online) Simulation results showing (a) typical steady bubbles in
annuli with different inclinations, and their surrounding (b) pressure and (c) velocity fields.
To facilitate comparison, the absolute pressure at the frontal point of each bubble is chosen
as the reference pressure for that case, so that the pressure contour gives the differential
pressure between the absolute pressure and the reference pressure.

In the limit of small γ and ψ , equation (5.3) becomes

u∞ ≈
1
2

√(
d
D

cos β + sin β
)

gd
2
. (5.4)

If r →∞, β = 90◦, then solution (5.4) converges to that for plane bubbles rising
through a quiescent liquid between vertical, parallel flat plates, i.e. 0.5(gd/2)1/2
(Davies & Taylor 1950; Collins 1965a).

For the simultaneous gas–liquid flow here, the bubble terminal velocity u is
calculated as (Griffith & Wallis 1961)

u= u∞ + vi ≈
1
2

√(
d
D

cos β + sin β
)

gd
2
+ vi, (5.5)
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FIGURE 14. (a) The unrolled geometry of a bubble in the x–y plane, and the views of
(b) a transversal cross-section in the y–z plane and (c) a longitudinal cross-section in the
x–z plane.

where vi is the superficial inflow velocity (table 1). We substitute the measured
diameters of bubble cap from the experimental/numerical results into (5.5) to derive
the predicted bubble terminal velocity upred. The predicted values are compared to the
actual velocity umeas measured in the experiment and simulation. It can be seen that
our simplified analysis gives a good estimation of the bubble velocity in thin annuli
for different inclination angles, pipe diameters and gap thicknesses (figure 15).

We then identify the following dimensionless groups of the annulus system:

F̂r
−1
‖
=

√
gD sin β
vi

, F̂r
−1
⊥
=

√
gD cos β
vi

, ε̂ =
h
D
, (5.6a−c)

where the two inverse Froude numbers, F̂r
−1
‖

and F̂r
−1
⊥

, are related to the effects
of gravity parallel and perpendicular to the flow direction, respectively, and ε̂

characterises the effects of confinement associated with the annulus. We also
characterise the bubble shape and motion based on the bubble aspect ratio l/d,
the bubble Reynolds number Re= ρwu∞d/µw and the gap Reynolds number Re(h/d)2.
Here, u∞ is used because the bubble behaviour is governed by the relative motion
between the two fluids.

As shown in figure 16(a), as F̂r
−1
‖

increases, the bubble shape becomes less
elongated, i.e. l/d approaches unity, since the gravitational component parallel to the
flow direction causes an increased pressure at the bubble rear, which tends to separate
the bubble and reduce the bubble length. As F̂r

−1
⊥

increases, Re increases (figure 16b),
indicating inertia becomes more dominant. This is because, for the annuli with small
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FIGURE 15. (Colour online) Comparison of the predicted terminal velocity upred from (5.5)
and the measured terminal velocity umeas from experiments and simulations for different
configurations of pipe diameter D, gap thickness h and inclination angle β. The velocity
values are normalised by the superficial inflow velocity vi.
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FIGURE 16. (Colour online) (a) Variation of the bubble aspect ratio l/d with the inverse
Froude number F̂r

−1
‖

. (b) Variation of the bubble Reynolds number Re with the inverse

Froude number F̂r
−1
⊥

. (c) Variation of the gap Reynolds number Re(h/d)2 with the
confinement ratio ε̂. Refer to figure 15 for the legend.

inclinations to the horizontal, the gravitational component perpendicular to the flow
direction mainly controls the flow field around the bubble cap, as can be expected
from (5.1). As the annulus confinement decreases (i.e. ε̂ increases), the gap Reynolds
number Re(h/d)2 increases (figure 16c), due to the reduced viscous effect across the
gap, reaching a plateau with increasing ε̂.

6. Discussion and conclusions

In this paper, we presented an experimental and numerical investigation into the
shape and motion of gas bubbles in a liquid flowing through a horizontal or slightly
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inclined thin annulus. We have focused on the regime where inertia is important (the
gap Reynolds number is close to or larger than unity) and the bubble behaviour is
governed by the complex interplay of inertia, gravity, viscosity and surface tension.
Bubbles in the horizontal annulus developed a unique ‘tadpole-like’ shape featuring a
semi-circular cap and a highly stretched tail. As the annulus was inclined with respect
to the horizontal, the length of the bubble decreased. We developed a gap-averaged,
2-D numerical model to represent the 3-D flow dynamics, which achieved a close
match to the experimental data for different small inclinations. The numerical model
was used to further elucidate the effects of gap thickness and pipe diameter on
the bubble evolution in thin annuli. We found that the bubble velocity is strongly
correlated to the cap structure, but is independent of the bubble length, as has also
been reported for bubbles in tubes (Davies & Taylor 1950; Zukoski 1966; Fabre &
Liné 1992; Viana et al. 2003) and between parallel flat plates (Grace & Harrison
1967; Maneri & Zuber 1974; Hills 1975; Couet & Strumolo 1987). We reported that
the elongated bubble shape in horizontal annuli is due to the buoyancy which causes
the bubbles to spread along the top of the annulus. The gravitational component
along the flow direction, which increases as the annulus is inclined, impinges the
liquid slug and causes a reduction of the bubble tail. The gravitational component
perpendicular to the flow direction controls the bubble motion and the cap structure.
These mechanisms produce the unique tadpole-like shape with a sharp tail tip because
of the cross-sectional curvature of the annulus channel, in contrast to the bubble shape
with a tongue-like rear seen in flows between parallel flat plates (Maneri & Zuber
1974; Couet & Strumolo 1987).

It is remarkable that the 2-D numerical model well captured the bubble evolution
and interaction behaviour as observed in the experimental annulus. It is still
worth mentioning that some complex 3-D effects were not fully represented in
the gap-averaged formulation, such as the detailed transverse shape of the bubble
cap and tail within the gap as well as the influence of the cross-gap velocity/gravity
component (Oliveira & Meiburg 2011), which require direct three-dimensional but
computationally very expensive numerical simulations. Such limitations of the 2-D
model may explain the discrepancy of the bubble geometry, e.g. in the region near
the bubble neck (figure 6), between our experimental and numerical results. The
gap-averaged 2-D model assumed an absence of liquid films between the bubble and
channel walls. We examined different mathematical formulations that account for the
presence of liquid films (Pitts 1980; McLean & Saffman 1981; Park & Homsy 1984;
Reinelt 1987a; Kopf-Sill & Homsy 1988), which however resulted in a poor prediction
of the experimentally observed bubble patterns (the simulated bubbles were much
smaller, probably due to an overestimation of the curvature of the air–water interface
across the gap). Saffman & Tanveer (1989) also reported that the thin film hypothesis,
compared to the contact angle assumption, gave a less consistent prediction of bubble
shapes in Hele-Shaw cells. Furthermore, we did not see any evidence of such films in
the experiments. The thickness of thin films (if present under no-gravity conditions)
is estimated to be δ/h ≈ 0.67(µwu∞/σ)2/3 (Park & Homsy 1984; Reinelt 1987a;
Klaseboer, Gupta & Manica 2014), which may however be reduced further in the top
region of the annulus under gravity-induced drainage downwards along the peripheral
direction (Tso & Sugawara 1990; Paras & Karabelas 1991). Thus, we expect that δ
may be close to the scale of the surface roughness of the Plexiglas and stainless steel
walls, i.e. around 0.01 mm (Li et al. 2018). We therefore do not expect the films to
persist in a stable way. The observed contact angle hysteresis in our study may also
be attributed to the presence of pronounced surface roughness effects (Dussan 1979).
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The phenomenon that air wets the channel wall has also been found between the air
bubble and the upper wall of a horizontal/slightly inclined tube (Fabre & Liné 1992)
or Hele-Shaw cell (Maneri & Zuber 1974). We suggest that a good approximation of
the gap-averaged 2-D model to 3-D flow holds if the cross-gap effects are minor.
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