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Electron and scanning probe microscopies have become one of the primary techniques to investigate 

systems in the domain of physical and life sciences at the atomic to mesoscopic length scales [1-5]. 

From the perspective of computational simulations performed at different length scales, there has also 

been significant advancements with accessibility to faster, parallelizable CPU/GPU architectures. This 

means there is a heap of information from the simulations performed on a variety of materials, 

particularly investigating corresponding structures and functionalities. Hence, structural, and spectral 

data resulting from these experiments along with simulations create an enormous exploratory platform 

to utilize, design deep learning (DL), machine learning (ML) workflows for feature finding along with 

atomic manipulation. However, systematic studies combining all three avenues to go beyond comparing 

endpoint properties, performing DL/ML analyses on static data, assessing structure-property 

relationships are still in its infancy. 

 

There are multiple challenges associated with designing such across-the-board frameworks. The time 

scales of STEM observations and intrinsic molecular dynamics are strongly different, with the DFT and 

MD models capable of simulating system sizes of Å to nanometer scales for up to microseconds, but 

taking multiple CPU hours, while STEM images are typically available at the fraction of a second. At 

the same time, disparity in the latencies of calculations is significant, with the DFT or MD simulations 

often taking many hours to days and weeks of time, well above the timescale of STEM measurements. 

The differences in length and timescales of such simulations, DL/ML approaches and retrieval of data 

from microscopes are shown by Figure 1. In addition, finding features such as atoms, defects (nearly 

identical objects) from a microscopic image using DL model and extending it to recognize features from 

images retrieved under different experimental conditions leading to out-of-distribution effects, is itself a 

challenge. Defining regions of interest such as parts of the image showing defects and determining the 

origins of such defects (could be electron-beam induced) is also not trivial. Importing coordinates of 

atoms directly predicted by either a DL model or experiments to simulations require quantifying 

uncertainties at all stages of the framework. Ways to close the loop where information from the 

theoretical simulations can guide future experiments and on-the-fly analyses, are also yet to be 

investigated. 

 

In this work, we show how ensemble-based framework (Figure 2) can be constructed for robust feature 

finding, uncertainty quantification in predictions. This ensemble learning iterative training (ELIT) [6-8] 

workflow aims at rapidly adapting to changes to the imaging conditions and successfully locate features 

to make the analyses efficient. The EL section of the workflow allows for selection of artifact-free 

features and pixel-wise uncertainty maps by combining multiple networks. Switching from image-
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specific to materials-specific descriptors and training networks on the first frame of images obtained at 

the initial stages of the experiment can help to account for out-of-distribution effects and improve model 

performance. The IT part retrains the networks with already realized features, focusing its attention on 

features present in the (heavily degenerate) data and thus increasing the detection limit of the network on 

the dataset(s) of interest. This framework has been implemented on-the-fly to analyze STEM images. 

The outputs of the network models are then used to construct supercells perform density functional 

theory simulations to find optimized geometry of the structures followed by studying temperature-

dependent dynamics of system evolutions with ad-atoms and defects. The results along with associated 

uncertainties in predictions at various levels as obtained utilizing this framework may be used to 

evaluate and modify experimental conditions and regions of interest. 

We aim to further expand this approach for atomic manipulation by incorporating edge-computing. This 

includes direct transfer of image-based data from microscopes, training suitable DL models using a 

GPU-based platform followed by performing simulations using CPU-based high-performance 

computing resources. A real-time-feedback loop can then be established to better guide experiments 

while learning from theoretical models. 

 

 

Figure 1. Primary disparities of time-length scales associated with dynamic integration of data from 

STEM, SPM measurements with simulations and deep learning models. 
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Figure 2. Workflow showing four primary steps of imaging, DL framework, post-processing of outputs 

and piping those to simulations environment. 
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