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Quasilinear treatments are widely used for tokamaks to evaluate radio frequency (rf)
heating and current drive. Even though the core of a tokamak plasma is weakly
collisional, the solution of the linearized kinetic equation is evaluated using unperturbed
collisionless trajectories while often treating successive poloidal circuits of the passing
(and trapped) particles as uncorrelated or nearly so. In addition, the most important effect
of tokamak geometry, the mirror force, is usually mistreated or ignored when obtaining
the solution. These concerning aspects of rf treatments are clarified by considering
lower hybrid heating and current drive to illustrate that the electrons in resonance with
the applied rf are enclosed by narrow collisional boundary layers, and that tokamak
geometry makes it necessary to retain poloidal variation when solving a weakly collisional
linearized kinetic equation. Other aspects such as collisional boundary layers at the
trapped–passing boundary, cyclotron resonances, and the limitations of quasilinear theory
are also considered. The new insights lead to a fundamentally different formulation
and interpretation of the solution of the linearized Fokker–Planck equation used for rf
quasilinear theory in a tokamak, while retaining many of the features that have contributed
to its successful application to rf heating and current drive.
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1. Introduction

Some of the complications of treatments of radio frequency (rf) heating and current
drive are removed by considering the linearized electron response to an applied,
steady state rf wave with a frequency ω well below the electron cyclotron frequency
Ω (species subscripts are suppressed for notational simplicity since only electrons are
considered). The application to this lower hybrid (Bonoli 2014) and helicon (Prater et al.
2014) regime allows the linearized and quasilinear physics issues to be illustrated in a
tractable manner, but is extendable to other frequency ranges. The physics focus is on
the combined role of retaining the enhanced sensitivity to collisions of the resonant
electrons and the impact of properly treating tokamak geometry. One or both of these
phenomena are ignored or incompletely treated in full wave formulations of heating and
current drive such as AORSA (Jaeger et al. 2001, 2006, 2008), TorLH (Wright et al. 2009),
LHEAF (Meneghini, Shiraiwa & Parker 2009; Shiraiwa et al. 2010), KINETIC-J (Green
& Berry 2014), and TORIC (Brambilla & Bilato 2020) that are based on collisionless,
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homogeneous or otherwise inadequate treatments of magnetic field variation in the
linearized kinetic equation. In these descriptions the mirror force is typically ignored,
simplified or mistreated when solving the linearized kinetic equation. Moreover, any
memory of a preceding resonant wave–particle interaction is normally assumed lost from
one poloidal circuit to the next (Stix 1975, 1992; Bernstein & Baxter 1981; Kasilov, Pyatak
& Stepanov 1990; Lamalle 1993, 1997). In addition, the quasilinear operator derived in
a homogeneous magnetic field (Kennel & Engelmann 1966) is typically allowed to have
spatial variation, which then leads to an improper transit or bounce averaged quasilinear
operator (Petrov & Harvey 2016) with incorrect spatial behaviour. Often a stationary phase
(or higher order Airy) expansion that assumes successive passes through resonance are
uncorrelated (Bernstein & Baxter 1981; Kasilov et al. 1990; Lee et al. 2018) is employed
even though the fusion plasmas in the core of a tokamak are only weakly collisional.
Except in Belikov & Kolesnichenko (1994), these procedures implicitly and incorrectly
treat tokamak geometry in the linear kinetic response, and therefore in the quasilinear
operator as well, as shown by Catto & Tolman (2021a).

The enhanced role of collisions in the linearized kinetic equation is due to the formation
of narrow collisional boundary layers in velocity space surrounding and broadening
the resonant particle trajectories. Collisions are the only physical process that can be
retained that maintains the linearity of the perturbed kinetic equation, as required for
a quasilinear formulation. In addition, a realistic treatment of tokamak geometry must
account for the strong and important poloidal variation of the parallel velocity v|| that is
responsible for the presence of trapped and passing particles (Belikov & Kolesnichenko
1982, 1994; Catto & Tolman 2021a) that respond very differently to the applied rf field
and result in behaviour that is not captured by near homogenous (or quasilocal eikonal)
linearized treatments. Furthermore, the long mean free path nature of collisions means
that successive poloidal circuits for the passing and bounces for the trapped electrons are
well correlated. As a result, the linearized resonant electron response must be consistent
with a transit averaged resonance condition on the unperturbed orbits, rather than the
spatially localized one normally employed. The transit averaged resonance condition
appearing in the linear solution of the kinetic equation is then consistent with the one
appearing in the quasilinear operator derived by Catto & Tolman (2021a) in the presence of
collisions.

Certain aspects of these issues are addressed in earlier publications which consider
resonant particle collisions in a uniform plasma (Catto 2020; Catto & Tolman 2021b)
and a full gyrokinetic treatment of rf heating and current drive in a tokamak (Catto &
Tolman 2021a) as well as the evaluation of lower hybrid and helicon current drive, in
tokamak geometry (Catto 2021; Catto & Zhou 2023). Here, however, the task is to expand
on how some of these earlier results can be put to use to find a sensible non-singular
solution to the linearized electron kinetic equation that accounts for both the presence
of collisional boundary layers and tokamak geometry. Even though an exact analytic
solution is not possible in the most general case considered, it is possible to find what
is expected to be a remarkably good, non-singular analytic solution. The procedures
employed allow the coupling of poloidal modes to be treated in a streamlined fashion
and then extended further to include the collisional boundary layers associated with the
resonant electrons. In addition, insights into the collisional boundary layers that must exist
at the trapped–passing boundary are possible. The weakly collisional linearized results
remove the singular behaviour of the delta function at the transit average resonance that
enters in the quasilinear operator of Catto & Tolman (2021a). The diffusive nature of
pitch angle scattering collisions is responsible for the existence of narrow boundary layers
enclosing the electrons experiencing wave–particle resonances. The existence of these
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Reinterpreting rf heating and current drive theory 3

resonances allows collisions to enter to resolve singular behaviour in the solutions of the
linearized kinetic equation.

Tokamak geometry means that the parallel velocity v|| of an electron slows as it
moves into a higher field magnetic field region and, depending on its magnetic moment,
leads to the existence of trapped as well as passing electrons. In addition, in a weakly
collisional tokamak plasma the poloidal angle dependence of the parallel velocity and
the gyrofrequency results in the coupling of many poloidal mode numbers m for each
toroidal mode number n. This geometrical effect is essential to retain since many poloidal
modes can contribute. Using the parallel velocity as an independent variable does not
avoid these issues since then the mirror force term must be retained to capture the full
effects of tokamak geometry.

The presence of trapped and passing electrons and diffusive pitch angle scattering
collisions also means that there are collisional boundary layers at the trapped–passing
boundary where these distribution functions must vanish. Otherwise, the differing
phase-space responses to the rf do not allow them to match even in a piecewise continuous
manner.

The section that follows gives a brief derivation of the electron kinetic equation for
lower hybrid and helicon waves, followed by a concise section on collisional boundary
layers without geometrical complications. Section 4 reviews the wave–particle resonance
condition for electrons in a large aspect ratio tokamak. It is followed by a treatment in
§ 5 of collisional boundary layers in tokamaks without the complication of poloidal mode
coupling. Poloidal mode coupling is then treated in tokamak geometry using a Krook
collision model in § 6. Section 7 uses the earlier results to construct a plausible (but
non-rigorous) collisional boundary layer solution that retains poloidal mode coupling. The
collisional boundary layers associated with the trapped–passing boundary are considered
in § 8. In § 9 extensions of the collisional boundary layer treatments and tokamak
geometry effects to cyclotron resonances are briefly mentioned. Section 10 discusses the
compatibility of the results found here with those of Catto & Tolman (2021a), while § 11
demonstrates how to obtain improved expressions for the perturbed density and currents.
The limitations of quasilinear theory are addressed in § 12, followed by a discussion
section.

2. Electron kinetic equation

Consider an applied low frequency rf wave of frequency ω � Ω = eB/mc in an
axisymmetric tokamak magnetic field

B = Bn = I∇ζ + ∇ζ × ∇ψ, (2.1)

with B the magnitude of the magnetic field, n the unit vector in the magnetic field direction,
ζ the toroidal angle variable, ψ the poloidal flux function, I = I(ψ) = RBt with R the
major radius and Bt the toroidal magnetic field, m and e the mass and magnitude of
the charge on an electron and c the speed of light. Then for a lowest order Maxwellian
distribution function

f0 = n(m/2T)3/2 e−mv2/2T, (2.2)

quasilinear rf treatments solve the linearized electron kinetic equation

−iωf1 + v · ∇f1 −Ωv × n · ∇vf1 − C{ f1} = −(e/T)e · vf0, (2.3)

using unperturbed particle trajectories. Here, C is the electron collision operator, e ∝ e−iωt

is the applied rf field, f1 ∝ e−iωt is the perturbed electron distribution function,Ω = eB/mc
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4 P.J. Catto

is the electron cyclotron frequency and T is the electron temperature. To simplify the
presentation the unperturbed electric field is neglected, and only a single applied frequency
ω and toroidal mode number n are considered.

The gyrokinetic variables (Catto 1978, 2019) E = v2/2 (kinetic energy), μ = v2
⊥/2B

(magnetic moment), ϕ = gyrophase and R = r −Ω−1v × n (guiding centre location) are
used to derive the electron kinetic equation, with v = v⊥ + v||n, v2

|| = v2 − 2μB, v⊥ =
v⊥(eψ cosϕ + e× sinϕ), and the orthonormal unit vectors satisfying n = eψ × e×, where
eψ = ∇ψ/|∇ψ | = ∇ψ/RBp. The poloidal magnetic field Bp is assumed positive, making
Bt > 0 for co-current operation and Bt < 0 when operation is counter-current.

To lowest order, ∂f1/∂ϕ = 0 in the lower hybrid and helicon wave limit of interest.
Gyroaveraging the next order equation holding R fixed, and Fourier decomposing by
writing

e = �mem einζ−imϑ+iS(ψ)−iωt = einζ−iωt�mem e−imϑ+iS(ψ), (2.4)

leads to (Catto 2020; Catto & Tolman 2021a)

−iωf1 + (iqnf1 + ∂f1/∂ϑ)v||n · ∇ϑ − C{ f1} = �mWm e−imϑ, (2.5)

with f1 ∝ einζ−iωt to streamline the notation and

Wm = −(e/T)[em · n J0(η)v|| + ik−1
⊥ v⊥em · k × n J1(η)]f0 e−iL, (2.6)

where k = ∇S(ψ)− m∇ϑ + n∇ζ , k|| = (qn − m)n · ∇ϑ ≈ (qn − m)/qR, η = k⊥v⊥/Ω
and the poloidal angle ϑ defined such that q = q(ψ) = |I(ψ)|/R2B · ∇ϑ . To find
the preceding, write k⊥ = k⊥(eψ cosβ + e× sinβ), L = Ω−1k · v × n = η sin(ϕ − β),
and e−iL = �p e−ip(ϕ−β)Jp(η) to obtain (2π)−1

∮
dϕ eiL = J0(η) and (2π)−1

∮
dϕ eiLv⊥ =

−ik−1
⊥ v⊥k × nJ1(η). The result is similar to that of a homogenous plasma, where it

corresponds to using eik·r = eik·R+iL prior to gyroaveraging at fixed R. Additional Bessel
functions will appear when the density and current are formed as they are evaluated in r
and v variables, requiring R = r −Ω−1v × n to be employed once again. To streamline
the notation the e−iL factor that results from this change back is displayed in Wm since
the distinction between r and R is unimportant elsewhere in the kinetic equation. As time
evolution and the departure from axisymmetry do not result in any temporal or toroidal
mode coupling, a monochromatic wave is considered.

The narrow boundary layers that must be considered are assumed to be due to pitch
angle scattering collisions of parallel streaming for a couple of reasons. First, pitch angle
scattering dominates for collisional boundary layers at a trapped–passing boundary at large
aspect ratio. Second, for lower hybrid heating (Bonoli 2014) and lower hybrid and helicon
current drive (Catto & Zhou 2023), a high-speed expansion of the electron–electron
collision operator is normally adequate and tends to make energy scatter less important.
Consequently, the replacement

C{ f1} → 2νeB0ξ

Bx3

∂

∂λ

(
λξ
∂f1

∂λ

)
, (2.7)

is normally adequate, where νe = 3
√

π(Z + 1)νee/4, νee = 4
√

2πe4n�nΛC/3m1/2T3/2,
x = v/ve, ve = (2T/m)1/2 is the electron thermal speed, and �nΛC is the Coulomb
logarithm. In addition, v2

|| = v2ξ 2 = v2 − 2μB = v2(1 − λB/B0), with B0 a flux function
at most. When lower hybrid heating and current drive due to lower hybrid and helicon
waves is evaluated, the second or energy scatter term appearing in (4.2) of Catto & Zhou
(2023) is required (unfortunately, the x3 is missing in the denominator of their first term)

https://doi.org/10.1017/S002237782400117X Published online by Cambridge University Press

https://doi.org/10.1017/S002237782400117X


Reinterpreting rf heating and current drive theory 5

since when the collision operator acts on f0, instead of f1, there are no boundary layers in
the f0 equation.

When the linearized kinetic equation is solved numerically it may be convenient to use v
and v|| variables. Then, the μn · ∇B mirror force term explicitly appears in the equation

−iωf1 +
(

iqnf1 + ∂f1
∂ϑ

)
v||n · ∇ϑ − μn · ∇B

∂f1
∂v||

− νe

2x3
∂

∂v||

[
(v2 − v2

||)
∂f1
∂v||

]
= �mWm e−imϑ .

(2.8)

In v and μ variables the mirror force is implicit in the ϑ variation of v2
|| = v2(1 − λB/B0).

3. Collisional boundary layer for resonant electrons without geometrical effects

In a cylindrical plasma immersed in a homogenous magnetic field B0, v2
|| = v2(1 − λ) =

v2ξ 2. It is then convenient to use v, v|| as velocity variables in place of v, λ as there is no
poloidal mode coupling or mirror force. The kinetic equation is then simply

−i(ω − k||v||)fm − ν̄(v)
∂

∂v||

(
v2

⊥
∂fm

∂v||

)
= Wm, (3.1)

for f1 = einζ−iωt�mfm e−imϑ+iS and where ν̄(v) = 2νe/x3. To see that a narrow collisional
boundary layer of width �v|| arises when k|| �= 0, the estimates k||v|| − ω = k||�v||
and ∂/∂v|| ∼ 1/�v|| are used to balance the resonance term with collisions,
k||�v|| ∼ ν̄v2

⊥/(�v||)2 ≡ ν̄eff, to obtain �v||/ve ∼ (ν̄v2
⊥/k||v3

e )
1/3 ∼ (ν̄/k||ve)

1/3 � 1 and
the effective collision frequency ν̄eff ∼ ν̄(k2

||v
2
⊥/ν̄

2)1/3 � ν̄. Consequently, the resonant
electrons are in a collisionally broadened boundary layer, and have a wave–particle
interaction time of τ̄int = 1/ν̄eff. Since the mean free path of an electron is ∼ve/νe ∼ 104

metres, for 1/k|| ∼ 10 metres, this gives �v||/ve ∼ 1/10, ν̄eff/ν̄ ∼ 100, and a resonant
electron mean free path of veτ̄int ∼ 100 metres.

To see this more rigorously, Catto (2020) uses the narrowness of the boundary layer in
v|| space to ignore the v|| dependence of v2

⊥ = v2 − v2
||. Then, introducing the new variable

s = (k||v|| − ω)/(k2
||v

2
⊥ν̄)

1/3, (3.2)

finds the non-singular solution

fm = Wm

(k2
||v

2
⊥ν̄)

1/3

∫ ∞

0
dt e−ist−t3/3 →

s→±∞
−Wm

i(ω − k||v||)
→ Wmπδ(ω − k||v||). (3.3)

Setting s = k||�v||/(k2
||v

2
⊥ν̄)

1/3 ∼ 1 recovers the earlier estimates and implies

−1
i(ω − k||v||)

∼ τ̄int = 1/ν̄eff ∼ πδ(ω − k||v||), (3.4)

thereby providing a physical meaning for the delta function that cannot be obtained by
considering a steady state causal Landau resonance. Notice the function

P̄ = 1

π(k2
||v

2
⊥ν̄)

1/3

∫ ∞

0
dt e−t3/3 cos(st), (3.5)

now plays the role of a delta function for s � 1.
The next section starts to incorporate tokamak geometry.
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6 P.J. Catto

4. Resonant electrons in tokamak geometry without collisions

The preceding section indicates that collisions are very weak, but become significant
for the resonant electrons in or near collisional boundary layers. As a result, it is useful to
briefly examine the collisionless resonant condition in tokamak geometry, where ω − k||v||
is replaced by its transit-averaged form (Catto & Tolman 2021a)∮

f
dτ(ω − k||v||) = ω

∮
f
dτ − 2πσ(qn − m), (4.1)

with dτ = dϑ/v||n · ∇ϑ ≈ qR dϑ/v|| > 0 and the subscript f denoting an integration over
a full 2π for the passing (σ = v||/|v||| = ±1) and a full bounce for the trapped (σ = 0).

For a small inverse aspect ratio (ε � 1) tokamak with

B = B0(1 − ε cosϑ), (4.2)

and v2
|| = v2(1 − λB/B0), letting k2 = 2ελ/[1 − (1 − ε)λ] = κ−2 leads to∮

f
dτ = 4qR

v
√

2ε

{√
(1 − ε)k2 + 2εK(k) passing (0 ≤ k < 1)

2K(κ) trapped (0 ≤ κ < 1)
, (4.3)

with K the complete elliptic integral of the first kind.
No resonance occurs for the trapped electrons. However, for the passing the collisionless

resonance condition becomes

|k|||v
ω

=
√

k2 + 2εK(k)

(π/2)
√

2ε
→
{√

k2 + 2ε/
√

2ε k2 � 2ε
�n[16/(1 − k2)]/π

√
2ε k2 → 1

, (4.4)

where 1 ≤ |k|||v/ω = |qn − m|v/ωqR < ∞, and no passing resonance occurs for k|| = 0.
For lower hybrid and helicon current drive, the freely passing (k2 � 2ε) are of most interest
(Catto & Zhou 2023).

5. Collisional boundary layer in tokamak geometry without poloidal mode coupling

The results of the preceding section are next extended to consider a collisional boundary
layer in tokamak geometry when no poloidal mode coupling occurs. In this slightly
artificial, but useful to understand, limit the perturbed passing distribution function is
periodic in poloidal angle. Using

f1 = fm einζ−iωt−imϑ+iS(ψ), (5.1)

and transit averaging, the passing electron kinetic equation (2.5) then yields

ifm

[
ω

∮
f
dτ − 2πσ(qn − m)

]
+
∮

f
dτC{ fm} = −

∮
f
dτWm, (5.2)

where ∮
f
dτC{ fm} = 2νeB0

x3

∂

∂λ

[(
λ

∮
f
dτ
ξ 2

B

)
∂fm

∂λ

]
, (5.3)

with

B0

∮
f
dτ
ξ 2

B
= 4qR

√
2εE(k)

v
√
(1 − ε)k2 + 2ε

→ 4qR
v

{
π

√
2ε/2

√
k2 + 2ε k2 � 2ε√

2ε/
√

1 + ε k2 → 1
, (5.4)

and E the complete elliptic integral of the second kind. For a resonant interaction when
qn > m (qn < m) a passing electron must have v|| > 0 (v|| < 0) since ω

∮
f dτ > 0.
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Taylor expanding about the resonant pitch angle λres

τf =
∮

f
dτ = τ 0

f + (λ− λres)∂τf /∂λ|λ=λres + · · · , (5.5)

where τ 0
f = 2π|qn − m|/ω > 0, gives the Airy form

∂2fm

∂u2
+ iufm ≈ −

∮
f dτWm|

λ=λres

(ντ 0
f )

1/3
(ω∂τf /∂λ|λ=λres)

2/3
, (5.6)

with
∮

f dτWm ≈ ∮
f dτWm|λ=λres due to the narrowness of the boundary layer, and

u = (λ− λres)(ω∂τf /∂λ)
1/3/(ντ 0

f )
1/3 = (λ− λres)/w. (5.7)

In the preceding, the resonance is used to define k2
res = 2ελres/[1 − (1 − ε)λres] in (4.4) and

its narrowness is used to approximate

∮
f
dτC{ fm} ≈ 2νeB0

x3

(
λres

∮
f
dτ
ξ 2

B

∣∣∣∣
res

)
∂2fm

∂λ2
≡ ντ 0

f
∂2fm

∂λ2
, (5.8)

with ντ 0
f ≈ 2νex−3λres

∮
f dτξ 2.

Assuming k2 � 2ε, then λ ≈ k2/(k2 + 2ε) and k0 = kres give

∂τf /∂λ|λ=λres = πqR(k2
0 + 2ε)3/2/v(2ε)3/2 ∼ qR/v ∼ τ 0

f . (5.9)

Then, making use of ∂/∂λ ∼ 1/(λ− λres) leads to the boundary layer width estimate

λ− λres ∼ [ντ 0
f /(ω∂τf /∂λ|λ=λres)]

1/3 ∼ (ν/ω)1/3, (5.10)

and effective collision frequency estimate

νeff ≈ ν/(λ− λres)
2 ≈ ν[ω(∂τf /∂λ|λ=λres)/ντ

0
f ]2/3 ∼ ν(ω/ν)2/3. (5.11)

Use of (∂2/∂u2 + iu)
∫∞

0 dt eiut−t3/3 = ∫∞
0 dt(∂/∂t) eiut−t3/3 = −1 leads to the solution

f pass
m =

∮
f dτWm|

λ=λres

(ω∂τf /∂λ|λ=λres)w

∫ ∞

0
dt eiut−t3/3 →

u→±∞

i
∮

f dτWm|
λ=λres

ω
∮

f dτ − 2π|qn − m| , (5.12)

for the passing, with w = (ντ 0
f )

1/3/(ω∂τf /∂λ|λ=λres)
1/3 ∼ (ν/ω)1/3 � 1 in

u = (λ− λres)/w, as expected from u ≈ 1. In addition, f pass
m ∝ ν−1/3 for |u| � 1.
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8 P.J. Catto

FIGURE 1. A plot of the function P versus pitch angle λ to demonstrate its delta function
behaviour in the vicinity of the resonant pitch angle λres (reprinted with permission from Catto
& Tolman 2021b).

Integration over velocity space requires an integration over pitch angle (d3v ≈
2πBv3 dv dλ/B0v||). In this case

P = (πw)−1
∫ ∞

0
dt e−t3/3 cos(ut), (5.13)

is a delta function representation in pitch angle as shown in figure 1. To see this, let ς � 1
and recall any integral over velocity space will involve pitch angle, resulting in∫ λres+ςw

λres−ςw
dλP = 1

π

∫ ∞

0
dt e−t3/3

∫ ς

−ς
du cos(ut) = 2

π

∫ ∞

0
dt e−t3/3 sin(ς t)

t
= 1. (5.14)

The function that contains P as its real part will be denoted by

U(u) = (πw)−1
∫ ∞

0
dt eiut−t3/3 →

u→±∞
i/π(λ− λres). (5.15)

Notice that the imaginary part (ImU) is odd in u and dominates asymptotically, while the
P(u) = ReU(u) exhibits the delta function behaviour. Therefore

Im
∫ λres+ςw

λres−ςw
dλU = 1

π

∫ ∞

0
dt e−t3/3

∫ ς

−ς
du sin(ut) = 0, (5.16)

indicating ImU no longer plays a role once the pitch angle integral is performed
For the trapped electrons (σ = 0) in (5.2), implying no resonant boundary layers occur

and collisions are negligible. As a result, the expected trapped response is

f trap
m ≈ iω−1�mWm e−imϑ . (5.17)

However, there will be an additional collisional boundary layer about the trapped–passing
boundary since both f trap

m and f pass
m must vanish there, as they are different functions of λ.

More details will be given in the following sections.

https://doi.org/10.1017/S002237782400117X Published online by Cambridge University Press

https://doi.org/10.1017/S002237782400117X


Reinterpreting rf heating and current drive theory 9

Better solutions for the trapped and passing will be given in the subsequent sections
when poloidal mode coupling is retained for the trapped as well as the passing alphas.
And the trapped–passing boundary layer will also be addressed further in § 8.

6. Poloidal mode coupling with an effective Krook model resolution of singularities

An insightful solution of (2.5) retaining poloidal mode coupling is obtained by making
the Krook replacement C{ f1} → −νefff1 with νeff ∼ ν(ω/ν)2/3. Introducing the trajectory
time variable τ by letting dτ = dϑ/v||n · ∇ϑ > 0 with dϑ > 0 for v|| > 0, dϑ < 0 for
v|| < 0, and n · ∇ϑ > 0, then integrating from τ → −∞ where f1 = 0 to τ = 0 with
ϑ(τ = 0) = ϑ gives

f1 = e−imϑ
∫ 0

−∞
dτWm(τ ) e−(iω−νeff)τ+i(qn−m)[ϑ(τ)−ϑ]. (6.1)

To retain trapped and passing electrons f1 is written in ψ, ϑ, ζ, v, λ and σ variables.
Consequently, successive passes through resonance are strongly correlated, and poloidal
variation entering v|| by its B dependence is fully retained. Collisional boundary layer
modifications are neglected in (6.1). However, they are considered further in subsequent
sections once poloidal variation is properly evaluated in (6.2) and (6.3).

The trajectory integral form (6.1) for f1 is similar to many expressions in the rf literature
(Bernstein & Baxter 1981; Belikov & Kolesnichenko 1982, 1994; Brambilla 1989, 1994,
1999; Kasilov et al. 1990; Catto & Myra 1992; Lamalle 1993, 1997; Jaeger et al. 2001,
2006, 2008; Brambilla & Bilato 2020). The KINETIC-J treatment of Green & Berry
(2014) includes a function α(t′) under its trajectory integral in their eq. (11) that plays
a role similar to a very large νeff. Taking full advantage of the periodicity of unperturbed
orbits and Wm, and defining the time for a full poloidal circuit as τf = ∮

f dϑ/v||n · ∇ϑ > 0
leads to (Bernstein & Baxter 1981; Belikov & Kolesnichenko 1982; Tolman & Catto 2021)

f1 = �m e−imϑ

∫ 0
−τf

dτWm(τ ) e−(iω−νeff)τ+i(qn−m)[ϑ(τ)−ϑ]

1 − e(iω−νeff)τf −i2πσ(qn−m)
. (6.2)

Only for a homogenous magnetic field does the phase factor i(ω − k||v||)τ in
the exponential vanish at resonance to allow f1 → i�m e−imϑWm/(ω − k||v||) in the
collisionless limit.

The transit average in the denominator (implied by the appearance of τf ) indicates
successive poloidal circuits are correlated. Each poloidal mode m may couple to other
poloidal modes. This behaviour enters through the exponential phase factor in the
preceding integral appearing in the numerator and through the denominator. Taylor
expanding the denominator by introducing the mode coupling index � = 0,±1,±2, . . .
via 1 = e−iσ2π�, allows each m to couple to neighbouring poloidal modes for each n � 1

f1 = i�m e−imϑ

∫ 0
−τf

dτWm(τ ) e−(iω−νeff )τ+i(qn−m)[ϑ(τ)−ϑ]

(ω + iνeff)τf − i2πσ(qn − m − �)
. (6.3)

This type of coupling only matters for the lower |�| since for |�| � 1 the rapidly oscillating
phase factor in the integral of the numerator reduces the contributions of higher |�|.
Solution (6.3) is valid for trapped and passing electrons. The transit average behaviour
of the denominator and drive term alters the spatial and velocity space behaviour of the
full wave solution. Inserting the attenuation factor of Lamalle (1993, 1997) decorrelates
successive poloidal transits through resonance and removes this poloidal coupling.
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7. Poloidal mode coupling and collisional boundary layers in tokamak geometry

The Krook solution (6.3) resolves singularities, but does not capture collisional
boundary layer physics of the passing electron solution (5.12) for � = 0, which gives

f pass
1 →

�=0
�m

e−imϑ
∫ 0

−τf
dτWm

∣∣∣
λ=λres

(ω∂τf /∂λ)w

∫ ∞

0
dt eiut−t3/3 = π�m

e−imϑ
∫ 0

−τf
dτWm

∣∣∣
λ=λres

(ω∂τf /∂λ)
U(u).

(7.1)

This form of the solution suggests a satisfactory modification to the Krook model to
account for the resonance shift due to the mode coupling index �, is found by letting
qn − m → qn − m − � in (5.2). Then the mode couple shifted resonance occurs at

τ �f = 2πσ(qn − m − �)/ω ≥ 2πqR/v, (7.2)

and the expansion about the resonant pitch angle λ�res becomes

τf =
∮

f
dτ = τ �f + (λ− λ�res)∂τf /∂λ|� + · · · . (7.3)

Consequently, neglecting the νeff in the numerator, since collisions are negligible for a
single poloidal transit, the linearized passing solution with mode coupling retained might
be expected to have close to the following behaviour:

f pass
1 ≈ π�m,�

e−imϑ
∫ 0

−τf
dτWm(τ ) e−iωτ+i(qn−m)[ϑ(τ)−ϑ]

∣∣∣
λ=λ�res

ω∂τf /∂λ|� U(u�), (7.4)

with U(u�) = (πw�)
−1
∫∞

0 dt e−t3/3−iu�t, w� = (ντ �f )
1/3/(ω∂τf /∂λ|λ=λ�res

)1/3, P(u�) =
ReU(u�) and u� = (λ− λ�res)/w�.

The pitch angle variation due to k allows additional � �= 0 resonances in (7.2). Defining
k�|| = (qn − m − �)/qR, the collisionless mode coupled resonances are then at

|k�|||v
ω

=
√

k2
� + 2εK(k�)

(π/2)
√

2ε
→
{

[(k2
� + 2ε)/2ε]1/2 k2

� � 2ε
�n[16/(1 − k2

�)]/π
√

2ε k2
� → 1

, (7.5)

where 1 ≤ |k�|||v/ω < ∞, making � = �(k�) with

k2
� = 2ελ�res/[1 − (1 − ε)λ�res]. (7.6)

For example, if �(k0 = 0) = 0 at |k0
|||v/ω = 1, then there can be other resonances at

�(k� �= 0) �= 0. Notice no passing resonances occur for |k�|||v/ω ≤ 1.
To clarify the notation, consider an applied rf wave driving a positive current. The rf

has to act on the v|| < 0 passing electrons, requiring τ �f = 2π(m − qn + �)/ω > 0. As
a result, for k2

� � 2ε, τ �f = 4qR(k2
� + 2ε)1/2/v

√
2ε ≥ τ 0

f . Also, v|| < 0 means dϑ < 0 to
keep dτ ∝ dϑ/v|| > 0, making ϑ(τ)− ϑ < 0. LettingΘ = ϑ(τ) to simplify the notation,
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then τ = qR
∫ Θ
ϑ

dϑ ′/v||(ϑ ′; λ�res) giving

∫ 0

−τf

dτWm(τ ) e−iωτ+i(qn−m)[ϑ(τ)−ϑ]|λ=λ�res

= −qR
∫ ϑ+2π

ϑ

dΘ
Wm(Θ)

v||(Θ; λ�res)
eiωqR

∫ ϑ
Θ

dϑ ′/v||(ϑ ′;λ�res)−i(m−qn)(ϑ−Θ)|λ=λ�res
. (7.7)

This form retains poloidal mode coupling, which occurs since v|| cannot be constant
in a tokamak so the phase factor under the integral cannot vanish as it does for
a uniform magnetic field. It uses the resonance condition to write v2

||(Θ; λ�res) =
v2[1 − λ�resB(Θ)/B0]. A v|| < 0 electron starts from ϑ + 2π and moves to ϑ in the time τf
for a passing poloidal circuit.

The solution (6.3) is also valid for the trapped electrons when τf is the time for a full
bounce and σ = 0. When the integration in denominator is also over a full bounce

f trap
1 = �m e−imϑ

∫ 0
−τf

dτWm(τ ) e−(iω−νeff)τ+i(qn−m)[ϑ(τ)−ϑ]

1 − e(iω−νeff)τf
. (7.8)

Recalling the trapped form of τf and using 1 = ei2π�, a collisionless resonance requires

ωτf = 8ωqR

v
√

2ε
K(κ) = 2π� ≥ 4πωqR

v
√

2ε
. (7.9)

The high frequency limit is made tractable by assuming ωτf /2π = � � 1. Then
integration by parts and the periodicity of the trapped motion over a full bounce leads
to

f trap
1 ≈ i�m e−imϑWm/ω + · · · . (7.10)

The same result is obtained by solving the high-frequency limit of (2.5).
In the low frequency limit ωτf /2π � 1 there is no resonance and the trapped response

remains small since

f trap
1 ≈ iqRe−iqnϑ

ωτf
�m

∮
dΘWm(Θ) ei(qn−m)Θ/v||(Θ) →

|qn−m|�1
0. (7.11)

Consequently, only for low (� ∼ 1) mode coupling indices can the trapped have a
significant response. To simplify the presentation in subsequent sections, f trap

1 ≈ 0 is
assumed from here on. The analysis in the next section adds further support to this
assumption.

8. The effect of the collisional boundary layer at the trapped–passing boundary

It is not possible to obtain a rigorous analytic solution retaining pitch angle scattering
collisions as well as poloidal mode coupling associated with the mode coupling index � of
(6.3). In fact, even the approximate passing solution already presented in § 7 is incomplete.
It does not account for the trapped–passing boundary where f pass

1 must vanish.
In this section, the passing solution is reconsidered for a resonance near the

trapped–passing boundary where τf ∝ K(k) ∝ −�n(1 − k2) causes the Taylor expansion
to fail since ∂τf /∂λ→ 1/[2ε(1 − k2)]. Recall from § 4 that the collisionless resonance

https://doi.org/10.1017/S002237782400117X Published online by Cambridge University Press

https://doi.org/10.1017/S002237782400117X


12 P.J. Catto

condition for the barely passing electrons (k2 → 1) in the absence of poloidal mode
coupling is

|k|||v
ω

= |qn − m|v
ωqR

≈ −�n(1 − k2)

π
√

2ε
, (8.1)

since
∮

f dτ ≈ −(2qR/v
√

2ε)�n(1 − k2). The trapped–passing boundary layer requires
very large |k||| at resonance (a large |k||| upshift) due to resonant m being very different in
trapped–passing boundary layer than in the more freely passing boundary layers.

Using 2ε dk2 ≈ dλ, the barely passing limit of the collision operator becomes∮
f
dτC ≈ 8qRνe

(2ε)3/2vx3

∂2fm

∂(k2)
2 . (8.2)

Therefore, the boundary layer limit of (5.1)–(5.4) yields

−i[(2ωqR/v
√

2ε)�n(1 − k2)+ 2πσ(qn − m)]fm + 8qRνe

(2ε)3/2vx3

∂2fm

∂(k2)
2 ≈ −

∮
f
dτWm,

(8.3)

with σ(qn − m) > 0 required for a passing resonance. Letting

γ = e�, (8.4)

with

� = π
√

2εσ (qn − m)v
ωqR

� 1, (8.5)

the preceding boundary layer equation becomes

2νe

εωx3

∂2fm

∂(k2)
2 − i�n[γ (1 − k2)]fm = −v

√
2ε

2ωqR

∮
f
dτWm. (8.6)

This form of the kinetic equation allows two types of collisional responses. The
first response is the one already considered. It is sometimes referred to as a resonant
plateau response, indicating it will give a result independent of collision frequency upon
integration over pitch angle (as in the plateau regime of neoclassical theory). The second
response is collisionally dependent and proportional to

√
νe. To verify this behaviour

analytically, γ � 1 must be assumed. Then y = γ (1 − k2) can be expanded about y = 1
while keeping k2 ≈ 1. Keeping only �n( y) ≈ y − 1, and letting z = ( y − 1)/δ, with

δ = γ 2/3x−1(2νe/εω)
1/3 � 1, (8.7)

then
∂2fm

∂z2
− izfm = − v

√
2ε

2ωqRδ

∮
f
dτWm. (8.8)

To solve, define

fm =
(
v
√

2ε
2ωqRδ

∮
f
dτWm

)
Υ (z), (8.9)
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Reinterpreting rf heating and current drive theory 13

where Υ (z) is the desired solution to the more familiar inhomogeneous Airy equation

∂2Υ/∂z2 − izΥ = −1. (8.10)

In the absence of a trapped–passing boundary condition needing to be satisfied, the
solution is as before, namely the nearly freely passing resonant plateau (rp) solution

Υrp =
∫ ∞

0
dτ e−izτ−τ 3/3 →

|z|�1

−i
z

= −iδ
y − 1

. (8.11)

To make Υ vanish at the trapped–passing boundary z = −1/δ, as well as at |z| � 1, a
homogeneous solution is required. Proceeding as in Catto, Tolman & Parra (2023), but for
the passing rather than the trapped, gives the desired solution

Υ = Υrp(z)− Υrp(z = −1/δ)Ai(z eiπ/6)/Ai(−eiπ/6/δ) ≡ Υrp(z)+ Υ√
ν(z), (8.12)

where the Ai are Airy functions (Abramowitz & Stegun 1964). The Υ√
ν(z) contribution

arises from the need to make the passing response vanish at the trapped–passing boundary.
When Υ is integrated over pitch angle, or more conveniently z, and exponentially small

terms are ignored because δ � 1, then

Re
∫ (γ−1)/δ

−1/δ
dzΥ√

ν(z) ≈ δ3/2

21/2
, (8.13)

with δ3/2 = γ (2νe/εωx3)1/2 and x3 > 1 (due to the high-speed expansion of C), and

Re
∫ (γ−1)/δ

−1/δ
dzΥ (z) = π

(
1 + δ3/2

21/2π

)
. (8.14)

As a result, the
√
νe term from the trapped–passing boundary condition is expected to give

a small contribution in the core. The trapped are expected to give similar
√
ve. However,

at the edge of a tokamak, larger δ ∼ 1 may occur so the analysis here may need to be
extended. In the earlier sections, the

√
νe contribution has been treated as negligible by

assuming δ � 1.
The preceding sections suggest the KINETIC-J code (Green & Berry 2014) can be

improved by using (6.3) as the solution, along with the passing particle replacement

i
(ω + iνeff)τf − i2πσ(qn − m − �)

→ 1
πw�

res

∫ ∞

0
dt eiu�t−t3/3, (8.15)

to remove any undesirable singular behaviour. Here, u� = [ωτf − i2πσ(qn − m − �)]/w�
res

with w�
res ≡ w�ω∂τf /∂λ|λ=λ�res

except very near the trapped–passing boundary.

9. Comments on electron (and ion) cyclotron heated plasmas

The material in the preceding sections focuses on the lower hybrid and helicon wave
regimes for simplicity. However, cyclotron resonances are only slightly more involved for
the electrons. For the ions similar treatments are also valid, although finite drift departures
from flux surfaces may add complications. In this section, only a simple electron cyclotron
resonance is considered as an illustration.
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To simplify the treatment further, effects associated with the trapped–passing boundary
condition are ignored and large aspect ratio is assumed. Moreover, on axis heating is
assumed by letting ω = Ω0 = eB0/mc to write

Ω = Ω0(1 − ε cosϑ) = ω(1 − ε cosϑ). (9.1)

Then the collisionless resonance conditions for the passing and trapped electrons from∮
f
dτ(ω −Ω − k||v||) =

∮
f
dτ(εω cosϑ − k||v||) = 0, (9.2)

are

2πσ(qn − m) = εω

∮
f

dτ cosϑ = 4εωqR

v
√

2ε

{
k−2

√
(k2 + 2ε)[2E(k)− (2 − k2)K(k)] passing

2[2E(κ)− K(κ)] trapped
.

(9.3)

The passing condition for a resonance is slightly more involved than before, but once again
Taylor expansions about the resonant λ or k can be employed to find behaviour similar to
what has already been discussed.

At first glance it might appear there is not a resonance for the trapped, however,
2E(κ) = K(κ) at κ = 0.91 to give resonant plateau behaviour (Tolman & Catto 2021).
Consequently, the trapped are heated, but they are unable to drive current as v|| does not
enter. Poloidal mode coupling will occur for the trapped as well as the passing as before.

Similar behaviour will occur for ion cyclotron heated ions, with magnetic drifts included
in the resonance to retain finite drift departures off flux surfaces. The transit averaging of
the wave–particle resonances may alter some of the velocity space structure observed in
AORSA simulations (Jaeger et al. 2006, 2008).

10. Improved quasilinear operators

The general expression for the rf quasilinear operator retaining the full transit averaged
correlated resonance condition and including poloidal mode coupling was derived by
Catto & Tolman (2021a) in the resonant plateau limit and is given by their (7.11)–(7.13).
It leads to the correct entropy production as shown by their (7.14). In the lower hybrid
and helicon limit considered here, for a single applied wave frequency and toroidal mode
number, their quasilinear operator acting on a Maxwellian f0 has the form

Q{ f0} = �m,S
1
vτf

∂

∂v

(
vτf D

∂f0

∂v

)
, (10.1)

with the quasilinear diffusivity D given by

D = πe2

2m2v2τf
�� δ

(∮
f
dτΛ− 2πσ�

) ∣∣∣∣∣J0(η)em · n
∫ 0

−τf

dτv|| e−iωτ+i(qn−m)[ϑ(τ)−ϑ]

+ iJ1(η)
λ1/2

k⊥
em · k × n

∫ 0

−τf

dτv e−iωτ+i(qn−m)[ϑ(τ)−ϑ]

∣∣∣∣∣
2

, (10.2)

for v⊥ ≈ λ1/2v and η ≈ k⊥λ1/2v/Ω0. The subscripts on the sums indicate poloidal (m)
and radial (S) modes are to be summed over, and for each m, the � modes it couples to
must also be summed over. In addition,

∮
f dτΛ = ωτf − 2πσ(qn − m), and the trapped
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electron response has been assumed negligible based on the estimates of § 7. If the lowest
electron cyclotron resonance is retained then

∮
f dτΛ = ∮

f dτ(ω −Ω)− 2πσ(qn − m),
and the term inside | · · · |2 needs to be generalized as found by Catto & Tolman (2021a).

The singular behaviour of the delta function can be removed by the replacement

δ

(∮
f
dτΛ− 2π�

)
→

∫∞
0 dt e−t3/3 cos(u�t)

πw�∂(
∮

f dτΛ)/∂λ|
λ=λ�res

, (10.3)

with

P(u�) = (πw�)
−1
∫ ∞

0
dt e−t3/3 cos(u�t), (10.4)

acting as a delta function when integrated over pitch angle. Here, u� = (λ− λ�res)/w� and
w� = (ντ �f )

1/3/[∂(
∮

f dτΛ)/∂λλ=λ�res
]1/3. For each � the preceding expressions give∫

dλδ
(∮

f
dτΛ− 2π�

)
→ 1/∂

(∮
f
dτΛ

)
/∂λ|λ=λ�res

, (10.5)

as
∫

dλP(u�) → 1 when integrated over λ region about λ�res a few w� wide. The
replacement (10.3) is valid away from the trapped–passing boundary. This substitution
improves on the one suggested in Tolman & Catto (2021) by more precisely accounting for
tokamak geometry. In the vicinity of the trapped–passing boundary the resonant plateau
response Υrp has to be replaced by the full response Υrp + Υ√

ν , as discussed in § 6.

11. Improved linear response to include poloidal mode coupling

Evaluating the perturbed density and current in tokamak geometry is complicated by
the presence of the τ or Θ integral associated with the trajectory integration over the
near periodic motion in (7.4). However, some simplification is possible since the trapped
are expected to be unimportant and only ImU(u�) = P(u�) survives the λ integration over
d3v → Bv2 dv dλ dϕ/B0

√
1 − λB/B0. Moreover, since P(u�) behaves as a delta function

to lowest order the replacement P(u�) → δ(λ− λ�res) can be employed. For example, using
(7.4), the perturbed charge density and parallel current are given by

e
∫

pass
d3vv

j
||f

pass
1 ≈ πe�m,� e−imϑ

∫
pass

d3vv
j
||
δ(λ− λ�res)

ω∂τf /∂λ|�

∫ 0

−τf

dτWm(τ ) e−iωτ+i(qn−m)[ϑ(τ)−ϑ],

(11.1)

with j = 0 or 1 and where, by approximating v⊥ ≈ λ1/2v and η ≈ k⊥λ1/2v/Ω0, their
poloidal angle dependence can be ignored. In addition, the gyrophase integral can be
performed to recover another Bessel function from the e−iL factor in Wm to find

e
∫

pass
d3vv

j
||f

pass
1 ≈ −πe2

T
�m,� e−imϑ

∫
pass

d3vv
j
||f0
δ(λ− λ�res)

ω∂τf /∂λ|� J0(η){J0(η)em · n

∫ 0

−τf

dτv|| e−iωτ+i(qn−m)[ϑ(τ)−ϑ] + iJ1(η)
λ1/2

k⊥
em · k × n

∫ 0

−τf

dτv e−iωτ+i(qn−m)[ϑ(τ)−ϑ]

}
.

(11.2)

Due to the presence of the delta function, only a speed integral over v and the trajectory
integral over a period need be performed, as

∫
dϕ = 2π. The speed integral could be
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performed in the usual manner to obtain a modified Bessel function form if it were not
for the exponential coupling factor. Its existence highlights the need to sum over all
the poloidally coupled modes as indicated by the � sum for each m summed. A similar
expression holds for the perpendicular flow, but with the overall J0(η) multiplier in front
of {· · · } in the j = 0 form of (11.2) replaced by iv⊥k−1

⊥ J1(η)k × n.
Once the replacement P(u�) → δ(λ− λ�res) is made, the collision frequency no longer

appears. Its absence does not mean rf quasilinear theory is collisionless. Instead, the
absence of the collision frequency is a signature of the resonant plateau behaviour of the
boundary layers associated with the wave–particle resonance. Fortunately, the details of
the boundary layers about the trapped–passing boundary seem to be relatively unimportant
as long as (8.7) is satisfied.

12. Limitations of a quasilinear treatment

It is possible to make some simple estimates of when quasilinear treatments of rf might
fail (Catto 2020; Catto & Tolman 2021a,b). To begin, notice that the quasilinear operator
will compete with the collision operator to make f0 depart from Maxwellian when

Q{ f0}/C{ f0} ∼ D/v2
eν ∼ 1. (12.1)

Recalling from (5.11) that νeff ∼ ν(ω/ν)2/3, δ(
∮

f dτΛ− 2π�) ∼ ω/νeff ∼ (ω/ν)1/3 giving

D ∼ (e|em|/m)2 δ
(∮

f
dτΛ− 2π�

)
/ω ∼ (e|em|/m)2/νeff. (12.2)

Therefore, substantial distortion is expected when

e|em|/mve ∼ ν(ω/ν)1/3. (12.3)

Quasilinear theory assumes

1 � |∇vf1|
|∇vf0| ∼ f1/wve

f0/ve
, (12.4)

where w ∼ (ν/ω)1/3 � 1 from § 5. Therefore, it requires

f1/f0 � (ν/ω)1/3. (12.5)

However, from § 7

f1 ∼ Wm

ω
δ(λ− λres) ∼ e|em| f0

mveωw
, (12.6)

requiring

e|em|/mve � ν(ω/ν)1/3, (12.7)

and, thereby, a negligible distortion of the Maxwellian according to (12.1).
These estimates suggest that quasilinear theory is failing once the unperturbed

distribution function becomes significantly distorted from Maxwellian (as it does in most
non-adjoint treatments of rf). When this happens the nonlinear term needs to be retained
in the perturbed kinetic equation to account for island formation.
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13. Discussion

The preceding sections attempt to outline a more comprehensive and, in some ways,
unconventional view of the linear solution used for rf quasilinear theory in a tokamak.
The earlier sections establish the importance of collisional boundary layers, while later
sections demonstrate that collisions cancel out of the final expressions for the perturbed
density and current to lowest order, as shown in detail in § 11, by (11.2). The disappearance
of the collision frequency is not an indication that collisions do not matter, but rather is
a signature of the resonant plateau behaviour inherent in using unperturbed trajectories to
treat wave–particle resonances in a linearized kinetic equation (Catto & Tolman 2021b).
Such behaviour occurs when a diffusive collision operator resolves the singularity that
arises from a velocity dependent wave–particle resonance. Collisions also enter explicitly
from the collisional boundary layers about the trapped–passing boundary, but these
contributions are expected to be small, and (6.3) with the replacement (8.15) is expected
to be an adequate solution

f1 = i�m,�
e−imϑ

πw�
res

∫ ∞

0
dt eiu�t−t3/3

∫ 0

−τf

dτWm(τ ) e−iωτ+i(qn−m)[ϑ(τ)−ϑ]. (13.1)

The treatment here attempts to do justice to tokamak geometry when solving the linearized
kinetic equation. The various solution techniques considered illustrate that poloidal mode
coupling (as retained by the index �) must be retained since the parallel velocity depends
sensitively on the poloidal variation of the magnetic field and is of course responsible for
the presence of trapped as well as passing particles. These details are typically neglected
in the rf treatments of the linearized physics because mirror force effects are mistreated.
The variation of the parallel velocity with poloidal angle allows each poloidal mode to
couple with many other poloidal modes. The Krook model solution, (6.3), presented in
§ 6, is shown to retain this coupling while ignoring boundary layers. Next, an approximate
extension to a diffusive collision operator is suggested in § 7, by (7.4). It seems to sensibly
treat the collisional boundary layers for the various wave–particle resonances. As only
lowest-order collisional results are needed, as shown, it provides what seems to be a
serviceable and physical representation for a delta function.

The techniques developed here are also applicable for wave frequencies comparable
to the cyclotron frequency as briefly discussed in § 9, and shown by (9.3). Notably, the
wave–particle resonances that appear in the transit average form of the linearized solution
of the kinetic equation are consistent with a proper quasilinear treatment (Catto & Tolman
2021a). The form implies that the resonance is transit averaged and not localized. The
resonant interaction time τint = 1/νeff is long compared with the time to complete many
poloidal circuits. Hence, assuming uncorrelated kicks at the local resonance is incorrect.
Any actual spatial localization likely has more to do with the spatial behaviour of the
applied rf drive term on the right side of the kinetic equation.

Finally, some simple estimates, (12.3) and (12.7), are given in § 12 to show that,
once the applied rf amplitude is strong enough for the quasilinear operator, (10.1) and
(10.2), described in § 10 to distort the unperturbed distribution function significantly
from Maxwellian, the quasilinear approach is failing because the linearized solution to
the kinetic equation is no longer valid. If these estimates are correct, then there is no
need to evolve distribution functions to treat non-Maxwellian features when performing
quasilinear heating and current drive evaluations. Said another way, once a distortion of
the unperturbed Maxwellian occurs, a linearized solution of the kinetic equation is no
longer valid.
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The unconventional procedures presented here for solving the linearized kinetic
equation, that is the basis for rf quasilinear theory, include the retention of the
collisional boundary layers enclosing and broadening wave–particle resonances (making
rf quasilinear theory collisional – rather than collisionless – as required for consistency),
the occurrence of transit averaged (rather than spatially local) resonances, the presence
of collisional boundary layers at the trapped–passing boundary, the treatment of tokamak
geometry leading to the coupling of poloidal modes via the index � in (13.1), and the
anticipated failure of rf quasilinear theory once the unperturbed distribution function
distorts from Maxwellian. Perhaps the insights outlined here to highlight these physical
effects will improve the success rf simulations have achieved, lead to an appreciation of
their explicit geometric and implicit collisional natures, and further improve simulations.
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