
DIRECT THEOREMS ON METHODS OF SUMMABILITY 

G. G. LORENTZ 

§ 1. INTRODUCTION 

1.1. A regular Toeplitz method of summability is given by a transformation 

oo 

1.1(1) <rm= £ amnsn, m = 0, 1, 2 , . . . 
w = 0 

of the sequence sn into the sequence <rm. According to the definition of regu
larity, every such method sums a convergent sequence sn to the value lim sn. 
The question naturally arises, whether there are more extensive classes of 
sequences summable by all regular methods 1.1(1) or at least by all such 
methods subject to some simple additional conditions. Questions of this kind 
have been treated by the author (Lorentz [2], [5]) and, from another point of 
view, by R. P. Agnew [2] [3] ; in this paper we wish to discuss the problem 
systematically. 

We first define classes of sequences considered in the sequel. The character
istic function co(n) of a (finite or infinite) sequence n\< n%< . . . of positive 
integers is defined for all n ^ 0 as the number of nv satisfying the inequality 
n„S n- Throughout the paper, 0(w) denotes a non-decreasing positive function 
defined for n ^ 0 and tending to + <*> for n —» + o°. For any such function, 
the class 6i(0) consists of all real bounded sequences sn for which the set of 
indices n\< n 2 < . . . with non-vanishing sn has a characteristic function 
co(n) ̂  Q,(n). Again, the class 62(0) is constituted of all real sequences sn such 
that the sums Sn= s0+ . . . + sn have the property 5„= 0(fi(n)). 

Q(n) is a summability function of the first kind or of the second kind for the 
method A, if all sequences of fèi(O) or S2(0), respectively, are il-summable. 
Summability functions of the first kind (for brevity, we shall sometimes simply 
call them summability functions) have been introduced by the author (Lorentz 
[5]). 

In § 2, we state some properties of summability functions, and give neces
sary and sufficient conditions for a function Q,{n) to be a summability 
function for a Toeplitz method A. § 3 deals with relations between sum
mability functions and Tauberian conditions. § 4 introduces simple sufficient 
and simple necessary conditions used later. In § 5 we determine summability 
functions for several special methods; and Hausdorff methods are treated in § 6. 
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306 G. G. LORENTZ 

§ 2 . SUMMABILITY FUNCTIONS OF THE FLRST AND THE 

SECOND KIND 

2.1. First some remarks on characteristic functions. If the sequences 
nv, nv have characteristic functions co(w), <a'(n) respectively, then their sum has 
a characteristic function g œ(n) + œ'(n). Further, nvt^ nv for all v is equi
valent to o>(w)S: a/(w), w = 0, 1, . . . . 

For every sequence nv with the characteristic function o(n) and every posi
tive integer k, a decomposition of nv into a sum of k + 1 subsequences exists 
such that one sequence is finite and the others have characteristic functions 
^ <a(n)/k. Indeed, the subsequences wi, n2, . . . , n/b_iand {wsfc+4 (5 = 1 , 2 , . . . , 
i = 0, 1, . . . , fe — 1) provide the required decomposition. 

2.2. A summability function of the second kind for a method 4̂ is also a 
summability function of the first kind for A. If Q(n) is a summability function 
and 9!in) = CQ(n) for all n ^ 0, C being a constant, then G'(w) is also a sum
mability function of the same kind. The proof depends upon the decom
position of the sequence nv mentioned in 2.1. 

If the method A is contained in the method B, AQB, all summability 
functions of A are also summability functions of B. 

For a summability function of the first kind Sl{n) we always may assume that 
2.2(1) Q(n + 1) - Q(n) = 1, n ^ 0. 
For if Q'(n) is defined by 12'(x) = 0(0), 0 g x < 1 and, inductively, by 
12'(x) = min [Q'(w — 1)+ 1, Œ(w)], n g x < n + 1, w = 1, 2, . . . , then 12' has 
the property 2.2(1) and is or is not a summability function together with 12. 

2.3. We proceed to formulate necessary and sufficient conditions in order 
that a given function 12 (w) be a summability function for a Toeplitz method 
i . i ( i ) . 

THEOREM 1. Q(n) is a summability function of the first kind for the method 
1.1(1), if and only if 

2.3(1) lim £ | amnv \ = 0 
m-^-co v = 1 

/or eflery sequence nv with a characteristic function œ(n) :g 12 (w), or if and only if 

2.3(2) lim A{m\Q) = 0 
m-^-oo 

^feere, /or m = 0, 1, . . . , A (m; 12) is the least upper bound of £?L x \ amUv \ for 

all sequences nv with co(w) ^ 12 (w). 
These conditions being fulfilled, every sequence sneEi(12) is 4-summable to 0. 
For the proof, see Lorentz [5, theorems 9 and 10] . 
THEOREM 2. A function Q(n) is a summability function of the second kind 

for a method 1.1(1), if and only if 
CO 

2.3(3) lim £ 12(n) | amn— am, n+i | = 0. 
w->- oo n — 0 

If this condition is satisfied, every sequence sn €®2(Œ) is ^4-summable to 0. 
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ON METHODS OF SUMMABILITY 307 

Proof. First suppose that Q,(n) is a summability function of the second kind. 
Let £n be any bounded sequence; put S n = fi(w)fn, « = 0, 1, . . . ; S_i = 0 and 
sn= Sn— Sn-i> Then 

CO CO 

<Jm = E «mn^n = Z ^mn [0 (w){ n — 0( t t — l ) £ n - l ] 
« = 0 n = 0 

is convergent and has a limit for w—>°°. We choose £2n = fm ?2n+i = 0; 
crm becomes 

CO 

0"w= 2 ^ fi(2w) (am , 2 n ~ #m > 2n+ l ) f n = SÔ O T n f n . 
w= 0 

This is a summability method applicable to all bounded sequences f n . Since 
Jm„ —> 0 for m —» oo , n = 0, 1, . . . , by a theorem of I. Schur [1] we have 

CO 

lim Y, Œ(2») |am, 2n — am, 2n+i| = 0. 
ro->-co n = 0 

Odd indices 2n + I can be treated similarly; we thus obtain 2.3(3). 
Conversely, if 2.3(3) holds, and if sn is a sequence such that Sn= 0(l2(n)), 

we have am,n+iS2(w) —> 0 for w -+oo and every fixed w = 0, 1, . . . and there
fore 0. Letting n become infinite in the finite Abel transformation 
we have 

CO CO 

Gm== 2-rf ^mn^nz=z 2~i \Q"inn Q"m > n+l) ^n> 
w = 0 w = 0 

2.3(3) and limnamn = 0 imply crm—> 0. This completes the proof. 

2.4. A method 4̂ is called strongly regular, if every almost convergent 
sequence sm is ^4-summable; the necessary and sufficient condition is (Lorentz 
[5]): 

CO 

2.4(1) lim £ I amn— am, n+i | = 0. 
m-^ co n = 0 

From this, one easily obtains: 

THEOREM 3. A regular Toeplitz method A is strongly regular if and only if 
A possesses a summability function of the second kind. 

The assertion follows at once from the criterion 2.4(1) and the following 
lemma: 

LEMMA 1. If amn^ 0 and if t\m— Sn^o^mn-*0, a function Q(n) exists such 
that 2nÇl(n)amn—* 0. 

Proof. For every m = 0, 1, 2, . . . there is clearly a function Qm(n) of the 
required kind for which XnQm(n)amn Û 2ym • Moreover, we can choose a non-
decreasing sequence of positive integers km—> + °°, for which kmr)m—» 0. Let 

Q(n) = min {km+ Qm(n)} , n = 0, 1, . . . . 
m = 0, 1, . . . 

This function is non-decreasing, positive, and it is easy to see that fi(»)t+ oo. 
Finally, 2n£2(w)aOTn^ kmrjm+ 2t\m—» 0, which proves the lemma. 
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The analogue to Theorem 3 for summability functions of the first kind is 
this (Lorentz [5]) : A Toeplitz method A possesses summability functions of 
the first kind, if and only if, for m —-> <» , 

2.4(2) max | amn | -> 0. 
n = 0, 1,. . . 

2.5. Another consequence of the lemma is 

THEOREM 4. For every summability function of the second kind Q(n) for a 
method A there is another such function 12i(w) with 12i(n)/12(n) Î + °°. 

That generally not all summability functions of the second kind are of the 
form 12(n) = o(<j>(n)) with an appropriate <j>{n) is shown by the example of 
Riemann's method R2 in 5.4. 

A similar theorem is: 

THEOREM 5. For every summability function of the first kind 12 (w) for a 
method A there is another such function Q,\(n) for which 12i(w)/12(w)î + °°. 

Proof. Using the notation of Theorem 1 we have A(m\Q) —» 0. Moreover, 
by the theorem referred to above, 

5m= max | amn\ —> 0. 
n 

We choose a non-decreasing sequence of positive integers km\ + <» such that 

kmA(m\ 12) —> 0, kmôm—> 0. 
Then 
2.5(1) A(m;kmti)->0. 

For, according to 2.1, every sequence of integers nv with the characteristic 
function ^ kmÇl(n) is a sum of a finite sequence consisting of km elements and 
of km infinite sequences whose characteristic functions are ^ Q(n). Therefore 

è kmàm+ kmA(m; 12) 
v 

and 2.5(1) follows from the definition of A(m\ fcm12). 
We may choose integers Nm Î + °° such that 

n>Nm 

Now let 
12i(n) = fem12(w), NmS n < Nrn+1 , » = 1, 2, . . . , 

then Qi(w)/fl(w)T+ °° and 

-4(ra; 12i) ^ em+ sup X) I a>mnv | , 

where {nv} stands for all sequences whose characteristic functions are 
g Oi(w). Since 12i(n) ̂  kmQ(n) for w ^ iVm, 

A(m;Qi) ^ e m + 4 ( r a ; fem12). 

This completes the proof. 
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§ 3. RELATIONS BETWEEN SUMMABILITY FUNCTIONS AND TAUBERIAN 

CONDITIONS 

3.1. A condition on a sequence sn is called a Tauberian condition for a 
method A, if every sequence sn, which is ^4-summable and satisfies this con
dition, is convergent. We now show, that the knowledge of summability 
functions of a method enables one to draw some conclusions about its Tauberian 
conditions. 

THEOREM 6. If Q,(n) is a summability function (of the first kind) for a regular 
Toeplitz method A, then 
3,1(1) un= sn— sn-i= o(fi{n)_1) 

is not a Tauberian condition for this method. 
This theorem gives a precise limit from below for Tauberian conditions of 

the form un — o(4>(n)) for all summability methods treated in §§ 5-6, except 
for the rather pathological method 5.3(3). 

For the proof of Theorem 6 we need Lemma 2, interesting in itself. The 
following remarks are intended to elucidate its meaning. Both the conditions 

3.1(2) un= 0{n~a), an= Sn/n = (s0+.. .+ sn)/n = o{na~l) 

constitute for every 0 ^ a ^ 1 a Tauberian condition for the method C\ 
(Ananda Rau [1], Karamata [1], Boas, Jr. [1]). We show that the conditions 
3.1(2) may not be relaxed: for every function ti(n) for which S12(n)_1= + °° 
there is a divergent series 2wn such that un— 0(£2(w)-1), <rn= 0(Q,(n)/n). Even 
more is true: 

LEMMA 2. For every function Q,{n) for which 2ft(w)-1 = + <» a bounded 
divergent sequence sn exists such that un= sn— sn-i= 0(ft(n)_1) and that the 
characteristic function of the indices n which have the property sn 9^ 0 does not 
exceed ÇL(n). 

Proof. We define two sequences of positive integers m\< n\< . . . 
< mv< nv< . . . such that fi(wi)_1< 1/9, that the characteristic function of 
the sum of the intervals mv^n ^ nv, v = 1, 2, . . . is g Î2(w) and that further
more 
3.1(3) £ « W 1 ^ 1/3, v = 1,2, . . . . 

We proceed by induction. Let mi, ni, . . . , m„_i, nv-.\ be already defined. 
Then mv is chosen such that 

v - l 

E (nM- m»+ 1) ^ 0(m,)/2 ^ Q(n)/2, n^mv. 

Since Q,(mv) è 4, the integer N = mv + 1 has the property that the character
istic function of the interval mv^ n ^ N does not exceed Q(w)/2 for n ^ mv. 
If all integers N ^ mv + 1 have this property, #„ is chosen arbitrarily to satisfy 
3.1(3). On the other hand, if N0 is the first integer > mv + 1 lacking the 
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above property, we put n„= N0— 1. Then N0— mv+ 1 ^ Q(iV0)/2. Hence 

L " (w) - 1 ^ (No- m„+ l)O(^o)-1 ^ 5 . 
mv ^ « ^ No £ 

In this case 3.1(3) also holds.—The sum of the intervals ra„ = w = w„, v = 1, 2, . . . 
thus defined has a characteristic function _ 12 (n). 

We now choose integers /„, v = 1, 2, . . . for which ra„ = lv< nv and 

_£ a W 1 ^ , E « ( « r ^ i ' ^ = 1,2,... 

Then for m ^ w ^ w , , *> = 1, 2, . . . real wn exist such that | un | ^ O(w)-1, 
Wn = 0 for mv = w = /„ , wn = 0 for lv < n = nv and 

my< n ^ /„ y lv<nSnv y 

Let un= 0 for all remaining w. It is easily seen that the sequence sn= Y^uv 
has all the required properties. 

Proof of Theorem 6. For a summability function Q(n) of a regular Toeplitz 
method we have 2Q(V)-1= + oo. For otherwise wft(w)-1 —» 0, and so 
w = 0(£2(n)) would be a summability function. Thus all bounded sequences 
are .4-summable to 0, which contradicts the theorem of I. Schur referred to 
in 2.3. Thus by Lemma 2, we obtain the assertion of Theorem 6 with the 
condition un = 0(12(w)_1) instead of 3.1(1). The general statement now fol
lows from Theorem 5. 

§ 4. SUMMABILITY FUNCTIONS OF THE FORM £2(W) = o(n) 

4.1. Before treating special methods we insert a few simple sufficient and 
simple necessary conditions for summability functions. In many cases they 
are all contained in the formula ti(n) = o{n). 

THEOREM 7. Suppose that there is a monotone majorant (amn) of the matrix 
(amn) having the properties: amn ^ 0, amn is non-increasing for every fixed 
m = 0, 1, . . . , dmo—» 0, I amn | = amn and finally 

4.1(1) Eomn=Aff m = 0 , 1 , . . . 
n = 0 

with a constant M. Then all functions 12 (n) = o(n) are summability functions 
for the method 1.1(1). 

Proof. It will be sufficient to prove 

4.1(2) l im X amnv= 0 
ra-^- oo v = 1 

for every sequence nv with a characteristic function œ(n) = o(n). Let p be an 
arbitrary positive integer; we may assume (by omitting, if necessary, a finite 
number of ny), that w(n) ^ n/p holds for all n = 0, 1, . . . . Since nv^po)(nu) 
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= vp, it is possible, by induction in k, to determine integers nj6, v = 1, 2, . . . , 
k = 1, 2, . . . , p, all of which are different, such that nv

k^ nv. Then 
V 

P Y, OLm,nu Û E flm,nu ^ M . 

Hence 2„am n„^ M/p. Since £ was arbitrary, our result is established. 
Summability functions other than those of the form o(n) may occur in 

abnormal cases only, as is shown by the following theorem: 

THEOREM 8. If a Toeplitz method A possesses a summability function 
ti(n) 9^ o(n), then A is a gap method, that is to every e > 0 and every C > 0 there 
is a corresponding n' as large as we please such that 
4.1(3) Z \amn\ < €, m = 0 , 1 , . . . . 

n' ^ n Û Cn' 

Proof. Suppose that lim ti(n)/n > 2c > 0. Let e > 0 and C > 0 be chosen 
arbitrarily; we may assume that C/c is an integer. According to 2.3(2), an mo 
exists such that 
4.1(4) A(m\ 12) < ec/C, m^m0. 

For an no sufficiently large we have 
oo 

4.1(5) £ | a m n | < € , m = m0. 
n — no 

Let an integer n' be chosen for which nr
 = no, cn' ^ 1 and Q,(n')/n' ^ 2c. Each 

of the closed intervals 

[«', » ' + cw'], [» '+ cn', n'+ 2cnf],...,»'+( 1 W , »' + C ;*' 

contains no more than 
cn'+l = 2cn' = Q(w') 

integers; characteristic functions of each interval are therefore ^ £l(n) for 
w = 0, 1, By 4.1(4), 

C 
Z! I ^mn| = — i4(m; 0) < e, m^mo. 

The same inequality for m ^ mo follows from 4.1(5). 
The following remarks are useful for the determination of summability 

functions of the second kind. Let <rn signify the Cesàro mean an = (so+- • • + 
s<n)/(n + 1) of a sequence sn . From the definition 1.1 it follows that all func
tions Q(n) = o(<j>(n)) are summability functions of the second kind of a method 
A if and only if an— s = o(<}>(n)ri~l) implies the A -summability of the sequence 
sn to 0. Thus, the assertion, that all functions Q(w) = o(n) have this property 
for A is equivalent to A DG. Suppose, for instance, that amn^ 0 for all m, n 
and that for every fixed m the a<ffm are first increasing up to their maximal 
value for n = no= n0(m) and then decreasing to 0. Then A~D C\ holds if 
and only if 
4.1(6) n0amnoè M 
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is true with an M independent of m. For 4.1(6) is clearly equivalent to 
00 

4.1(7) £ n | amn- ami »+i | ^ M' 
n= 0 

which is necessary and sufficient for the inclusion A~D C\ for any regular 
Toeplitz method A (Orlicz [1] ). 

§ 5. SOME SPECIAL METHODS 

5.1 • The methods of Cesàro and Abel. All summability functions of the 
method G are clearly given by the formula 12 (n) = o(n). The same is true for 
Ca(a > 0) and the Abel method A, since all these methods are equivalent for 
bounded sequences. All functions 12(w) = o(n) are also summability functions 
of the second kind for the methods Ca(a è 1) and A, since these methods 
contain C\. There are no other functions, for A is not a gap method as is 
seen from 

2n- 1 

(1 - r) L rv= r n ( l - rn) -> e~l- e~2 

v = n 

f or r = 1 — n""1, n —> °°. 
Finally, by a simple computation it may be deduced from Theorem 2 that 

all summability functions of the second kind for Ca(0 <a< 1) are furnished 
by the formula 12 (w) = o(na). 

5.2. The methods of Euler and Borel. The Euler method Et(0 < t < 1) 
is defined by the transformation 

it 

5.2(1) <Tn= j:p9(t)s„ 

Pv{t)= pvn(t)= ( " ) *'(! - ')n~"> 0 ^ V ^ n> Pn+l,n(t) = 0, 

and the Borel method by 

5.2(2) o-(x) = e~x £ °°- sn , x -> + « . 
« = o n! 

For these methods a function 12 (w) is a summability function of the first or 
of the second kind if and only if 12(w) = o{vn). Since EtC B, it will be suffi
cient to prove: (i) Every function 12(n) = o(Vn) is a summability function of 
the second kind for Et(0 < t < 1) ; (ii) If 12 (w) T^ O ( V W ) , 12 (n) is not a summa
bility function for 5 . 

To prove (i) observe that the sum 2.3(3) takes for the transformation 5.2(1) 
the form 

A(w; 12) = L 12W | p,(f) - pv+1(t) | ^ 0(n) £ | £,(*) - p,+i(0 I 
v = 0 y = 0 

^ 20(«) max pv{t) S 2Cn~h Q(n) -> 0, 

if 12 (n) = 0(Vw). As a matter of fact the "Newtonian probability" pvn{t) for 
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fixed n, t and v varying in the interval 0 ^ v ^ n increases first and then 
decreases; and the maximal value of pv(i) does not exceed Cn~*, where C 
depends on t only. _ 

(ii) Let Q(n)^ o(y/n), then a ô > 0 exists for which 0(«) ^ sVrc holds for 
an infinity of n. For these w and the Borel transformation 5.2(2) 

A{n\ 0) ^ e"n E n'/T(v + 1) è C i e - ^ V " (v + * V 
n<v% n-\- ô Vn 

= G E F-» ( i - ' — ) > - • 

(Ci, C2, . . . are constants). Since v log f 1 J è — (v — w)+ C2 for 

0 S v - » ^ ÔV», 

4(n ;Q) ^ C3 E "~* à C4> 0. 

Hence, by 2.3(2), Q(«) is not a summability function for the method B. 

5.3. Some other methods. For the Lambert method L 

( « v (1 - x) « 
„ = i 1 — x v=i 

5.3(1) 
. xv(y — x — • • • — xv) 

av(x) = ( l + . . . + ^ - 1 ) ( l + . . . + x") 

(both forms are equivalent, see for instance Lorentz [3, theorem 10]) and for 
the method 

5.3(2) ..-i(")±u.-«+i(i-i)...(i-'-=A'-i 
v = o\v/n v=i\ n/ \ n / n 

(Rey-Pastor [1], S. Bernstein [1], Amerio [1]) all summability functions of the 
first and of the second kind and only these are furnished by 0(w) = o(n). The 
positive part follows from 4.1(6) with n0= 0 for L and with w0 = V n for the 
method 5.3(2); and the negative part is a consequence of Theorem 8. We 
leave details to the reader. 

The method 
5.3(3) crm = S2m 

has no summability functions at all; but Tauberian theorems exist for this 
method. Thus, un= o(n~l) is a Tauberian condition (0 may not be re
placed by 0) . 
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5.4. The Riemann methods Rk. Rk, k = 2, 3, . . . is related to the trans
formation 

, N ™ / s i n n x V 
*(*) = E v I u" 

« = o \ nx / 

™ f/smnx\k /sin (n + l ) x V \ 

w = o IV nx / V (n + l)x / j 

5.4(1) 
00 4/m*n *7,r\fc / s i n (n -4- ~\}r.\k) 

x-^0 + . 

Both forms are equivalent for bounded sn. We take the second as the de
finition. 

The derivative of the function <j>(u) = (sin u/u)k has the property |< '̂(w)| — 
C(u + l)~k, C depending only on k. Hence for x > 0 

d , x — </>(xw) 
an 

= | 4>'{xu) | x = Cx(xu + 1) fc
 = CiX5 fc for « = — , 5 = 1 , 2 , . . . . 

X 

We put an(x) = (sin nx/nx)k — (sin (w + l)x/(w + l)x)fc and 

a0(x) = CiX, an(x) = C\xs~k for — ^ n < . 
x x 

The functions an(x) constitute a monotone majorant for an(x) in the sense of 
Theorem 7. In particular, 

E *»(*) = — x ( l + E *~fc ) = ^ < + ~ . 
w = 0 X \ 5 = 1 / 

By Theorem 7 (or rather by its continuous analogue), all functions Q(n) = o(n) 
are summability functions for the methods Rk, k = 2,3, . . . . There are no 
others by Theorem 8, since 

E I an(x) I 
- ^ n< — 
x x 

converges for x —-> 0 + to the positive number max |<^(w)|, ir = u = 2ir. 
Summability functions of the second kind are also given by Q(») = o(n), if 

k = 3, 4, . . . . As to JR2, they are defined by 

5.4(2) E Û(^K~2< + ° ° . 
w = 1 

For consider 
00 

A(x; 0) = E ^(») I an{oc) — an+i(x) | 
» = o 

00 

5.4(3) = E 0(w) | *(»*) - 20(nx + x ) + <£(«* + 2x) | . 
« = o 
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The derivative <j>"(u) exists for w ^ 0 and has the properties |tf>"(tt)| Û C%u k, 
\<t>"(u)\ ^ d. Therefore (0 < 6 < 1) 

|A2(Krex)| = x2 \<t>"(nx + 26x)\ g dx\ 0 û nx Û 1, 
|A2<£(MX)| 5£ Cz{nx)~H2, nx ^ 1. 

Thus, 5.4(3) becomes 

A(«; 0) = £ + £ 
nx< 1 w# ^ 1 

-fc ^ &x2 Z 0 (» )+ C3x
2"fc £ 0(n)rf 

«# < 1 nx^ 1 

Since Q(w) = <?(#) also holds in case of 5.4(2), the first term on the right is 
= CtfPo&rKx-m) = dx2o(x~2) = 0(1), while the second term = CzX2~~k 

o&n±x-Ml-h) = CzX2-ko(xk~2) = o(l) for k ^ 3 and = C3o(l) for k = 2, if 
5.4(2) is fulfilled. It remains to show that, if 2Q(n)n~2 = + <», £l(n) is not 
a summability function of the second kind for R2. 

For small x > 0, we wish to estimate |A20(WX)| = tf2|#"(^)|> u = nx + 26x, 
ST 

0 < 6 < 1 from below for Uz ^ x/lOx. Since 0"(w) = 2u~2 cos 2# + 
I x I 

0(w"3), if w--oo, |0"(«)| ^ w~2 holds for | u — sw\ ^ 7r/8 and all sufficiently 

large integers s. Thus |A2$(?ZX)| ^ w 2 for 

D ti(n)\A2<j>(nx)\ ^ 

57T 
^ 

X 

10* 

è c. 

E 
• - I s -

x I 

( * - l ) x 

^ T/10X. Since 

12(w)w~2 

10% 

Q(w)w 2= vs 

10* : 10* 

and since the series 2vs is divergent, A(x; 12) = 23JL 0&(ft) | A2$ (nx) | = + °°, 
which proves our result. 

§ 6. HAUSDORFF METHODS 

6.1. A Hausdorff method Hg is defined by the transformation 
n 

6.1(1) <rn = X ) a n v s v •• 
v = 0 

g(x) is a function of bounded variation in [0, 1] and pun(%) = £*(#) is the 

we 

L P,n(%)s4g(x); 
0 v = 0 

"Newtonian probability" I Jx"(l — x)n *. Without loss of generality 

may assume, that g(x) is normalized, that is, it has the properties g(0) = 0 and 
g(x) = [g(x+)+ g(x - )]/2 for 0 < x < 1. 

Hg is regular if and only if g(x) is continuous at x = 0 and if g(l) = 1. i J a 

is strongly regular if, and only if, Hg possesses summability functions of the 
first kind or, if and only if, g(x) is continuous at x = 1 (Lorentz [5]). In this 
section we determine the summability functions for a method H0 in terms of 
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the generating function g(x). The following theorem yields summability 
functions for every method HQ with a discontinuous g(x). 

THEOREM 9. (i) A regular Hausdorff method can not be a gap method. 
(ii) If H0 is strongly regular, all functions Q(n) = o(V n) are summability func
tions for HQ. (iii) If g(x) has a jump at a point 0 < x 0 < 1, then all summa
bility functions of Hg are of the form Q(n) — o(vn). 

To prove (i), suppose that g(x) is continuous at x = 0; let 0 < a < b < 1 
be two points of continuity of g(x). We choose a q, 0 < q < 1, arbitrarily. 
If Hg is a gap method, then, for every e > 0, 

E \0>nv\ < €> 
N^P^ bN/aq 

n = 0, 1, . 

is true for some N as large as we please. To every sufficiently large N there 
corresponds an integer n = n(N) such that nq < N/a < n. Then a<v/n<b 
implies N ^ v ^ bN/aq. Hence 

E Pvn{x)dg(x) 

o£-^b 
^ E knv | < €. 

The sum under the integral converges to 1, if a < x < b and to 0 outside of 
this interval. Letting n become infinite, we obtain 

r& dg{x) 

Since € was arbitrary, g(a) = g(b). Therefore, the normalized function g(x) 
is = 0 in 0 ^ x < 1. As g(l) = 1, 6.1(1) becomes <rn= snj which contradicts 
the assumption that HQ is a gap method. 

(ii) Suppose that Hg is strongly regular, that Q(n) = o(vn) and that Vk is a 
sequence with a characteristic function co(n) g Œ(w). We put 

6.1(2) fn(x) = E &*»(*) 
"£ ^« 

Then fn(x) —> 0 uniformly in ô g x g 1 — ô for any fixed 5 > 0. For in this 
interval the estimate pvn(x) ^ CnT* holds with a constant C depending only 
on 8. Therefore 0 ^ / n ( x ) ^ Cn~'a)(n)= 0(1). We are now in a position to 
prove that 2.3(1) holds, that is that tl(n) is a summability function. If 
F(x) = var g(t) in 0 £ t £ x, 

E *nvk\ 
fn(x)dV(x) = 

r i -5 

+ + 
l 

1 -5 

The second integral converges to zero as n —» oo, and the remaining two are 
arbitrarily small with ô, since 0 ^ fnû 1 and V(x) is continuous at x = 0 and 
x = 1. 
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It remains to prove (iii). Let a be the jump of g(x) at x = Xo, and suppose 
Q,(n)n~h T*> 0. We can choose a ô > 0 such that for an infinity of n 

6.1(3) Û(*o»/2)»"-* è 5. 
We wish to show that A(n; Ù) -f> 0 (compare 2.3(2)). If n is an integer 
satisfying 6.1(3), let vk be the finite sequence consisting of all v with the pro
perty | v/n — x0 | < 8/2nK We need the following result concerning the 
probability pun: an absolute constant Ci and a C2= C2O&0, 5) > 0 exist such 
that 

E ^ n W è Cin~2, 

6.1(4) 

We have 

I p / n — XQ\< S/2n 
Pvnix) ^ C2 . 

il (n; 0) = E 
k 

Pvkn(x)dg(x) 

â |a | E pVkn(x0) - E ^aW^W, 
0 fc 

where F(x) is the variation of the function g*(x), resulting from g(x) by omis
sion of the jump a. The latter integral is smaller than 

var g*(x) + var g*(x) • Cifi~2—» 0, n —> °°. 
0 ^ * ^ 1 

Thus by 6.1(3) and the second part of 6.1(4), A(n; Ù) 7 ^ 0, and the proof of 
the theorem is complete. 

6.2. We now treat methods HQ for which the generating function g(x) is 
absolutely continuous. 

THEOREM 10. If g(x) is absolutely continuous, then the summability functions 
for the method HQ are furnished by the formula Çl{n) = o{n). 

Proof. That there are no summability functions which do not satisfy 
12(w)= o(n) is implied by Theorems 8 and 9(i). Suppose now that vk is any 
sequence of integers with a characteristic function œ(n) — o(n). If fn(x) is 
again defined by 6.1(2), 

fn{x)dx = E pvAx)dx = 
1 

n + 1 
«(w) ->0. 

Therefore, for every e > 0 and every integer n sufficiently large, the interval 
[0. 1] may be represented as the sum en-\- en of two disjoint measurable sets 
eni en for which men< e and fn(x) < e if xeen. Hence 

k 
nv

k 
â E 

k JO 

+ 

Pvk{x) I g'(x) I dx = fn{x)\gf(x)\dx 

\g'\dx + € 11' I ^x. 

Since both the last terms are arbitrarily small with e, the proof is complete. 
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By combining a gap theorem of Agnew [1] with a result of the author 
(Lorentz [4, theorem 1]), one may deduce that 

6.2(1) Un=°(l) 
is a Tauberian condition for any Hausdorff method. Theorems 6 and 10 show 
now that un= o{<t>{n)) is not a Tauberian condition for any Hausdorff method 
with an absolutely continuous g(x) if <t>{n) I 0 and »$(») --» + » . 

As to the summability functions of the second kind, we are able to show 
that all functions S2(») = o(V n) are summability functions of the second kind 
for the method HQ if g(x)e Lip 1. We do not know whether this result can 
be improved. 

Suppose 0(») = <?(V n); we shall show that 

A(»;0)= £ »W 
v = 0 

{pv{oo) - ^ ,+ i (x)} dg(x) ~> 0. 

Since g'(x) is bounded, it will be sufficient to prove 

6.2(2) ~A(n) = Q(») 
i w 

E I Pv{x) - />H-I(*0 I dx 
0 i/==0 

= 2Q(w) max pp(x)dx —> 0. 
0 QSvSn 

For a fixed x, the above maximum is attained for a v = ^o(x) such that 
| vo/n — x\ < ri~l. We use the estimate (Lorentz [1]) 

6.2(3) pvn(x) Û [x(l-x)n]~*, if | v/n-x\ < */10, | v/n-x\ < ( l - x ) / 1 0 . 
Hence, 

pVQn(x) g [x(l - x)n}-\ 10/» £x £ (n - 10)/». 
Therefore 

A(») = 20(») {J 
'(n—lo)/n 

â 20(») J J 
which proves 6.2(2). 

+ 
dx 

'lO/n 

+ ' } 
(n—10)/n / 

20) 
/ = + — > = o(l), 

o V x (1 - x)» » j 
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