DIREGT THEOREMS ON METHODS OF SUMMABILITY

G. G. LORENTZ

§1. Introduction

1.1. A regular Toeplitz method of summability is given by a transformation

$$
\begin{equation*}
\sigma_{m}=\sum_{n=0}^{\infty} a_{m n} s_{n}, \quad \quad m=0,1,2, \ldots \tag{1}
\end{equation*}
$$

of the sequence s_{n} into the sequence σ_{m}. According to the definition of regularity, every such method sums a convergent sequence s_{n} to the value $\lim s_{n}$. The question naturally arises, whether there are more extensive classes of sequences summable by all regular methods $1.1(1)$ or at least by all such methods subject to some simple additional conditions. Questions of this kind have been treated by the author (Lorentz [2], [5]) and, from another point of view, by R. P. Agnew [2] [3] ; in this paper we wish to discuss the problem systematically.
We first define classes of sequences considered in the sequel. The characteristic function $\omega(n)$ of a (finite or infinite) sequence $n_{1}<n_{2}<\ldots$ of positive integers is defined for all $n \geqq 0$ as the number of n_{ν} satisfying the inequality $n_{\nu} \leqq n$. Throughout the paper, $\Omega(n)$ denotes a non-decreasing positive function defined for $n \geqq 0$ and tending to $+\infty$ for $n \rightarrow+\infty$. For any such function, the class $\mathfrak{C}_{1}(\Omega)$ consists of all real bounded sequences s_{n} for which the set of indices $n_{1}<n_{2}<\ldots$ with non-vanishing s_{n} has a characteristic function $\omega(n) \leqq \Omega(n)$. Again, the class $\mathfrak{E}_{2}(\Omega)$ is constituted of all real sequences s_{n} such that the sums $S_{n}=s_{0}+\ldots+s_{n}$ have the property $S_{n}=O(\Omega(n))$.
$\Omega(n)$ is a summability function of the first kind or of the second kind for the method A, if all sequences of $\mathfrak{C}_{1}(\Omega)$ or $\mathfrak{C}_{2}(\Omega)$, respectively, are A-summable. Summability functions of the first kind (for brevity, we shall sometimes simply call them summability functions) have been introduced by the author (Lorentz [5]).

In § 2, we state some properties of summability functions, and give necessary and sufficient conditions for a function $\Omega(n)$ to be a summability function for a Toeplitz method A. § 3 deals with relations between summability functions and Tauberian conditions. § 4 introduces simple sufficient and simple necessary conditions used later. In § 5 we determine summability functions for several special methods; and Hausdorff methods are treated in § 6.

Received April 28, 1948.

§ 2. Summability Functions of the First and the Second Kind

2.1. First some remarks on characteristic functions. If the sequences $n_{\nu}, n_{\nu}^{\prime}$ have characteristic functions $\omega(n), \omega^{\prime}(n)$ respectively, then their sum has a characteristic function $\leqq \omega(n)+\omega^{\prime}(n)$. Further, $n_{\nu} \leqq n_{\nu}^{\prime}$ for all ν is equivalent to $\omega(n) \geqq \omega^{\prime}(n), n=0,1, \ldots$

For every sequence n_{ν} with the characteristic function $\omega(n)$ and every positive integer k, a decomposition of n_{ν} into a sum of $k+1$ subsequences exists such that one sequence is finite and the others have characteristic functions $\leqq \omega(n) / k$. Indeed, the subsequences $n_{1}, n_{2}, \ldots, n_{k-1}$ and $\left\{n_{s k+i}\right\}(s=1,2, \ldots$, $i=0,1, \ldots, k-1$) provide the required decomposition.
2.2. A summability function of the second kind for a method A is also a summability function of the first kind for A. If $\Omega(n)$ is a summability function and $\Omega^{\prime}(n) \leqq C \Omega(n)$ for all $n \geqq 0, C$ being a constant, then $\Omega^{\prime}(n)$ is also a summability function of the same kind. The proof depends upon the decomposition of the sequence n_{ν} mentioned in 2.1.

If the method A is contained in the method $B, A \subset B$, all summability functions of A are also summability functions of B.

For a summability function of the first kind $\Omega(n)$ we always may assume that $2.2(1) \quad \Omega(n+1)-\Omega(n) \leqq 1, \quad n \geqq 0$. For if $\Omega^{\prime}(n)$ is defined by $\Omega^{\prime}(x)=\Omega(0), 0 \leqq x<1$ and, inductively, by $\Omega^{\prime}(x)=\min \left[\Omega^{\prime}(n-1)+1, \Omega(n)\right], n \leqq x<n+1, n=1,2, \ldots$, then Ω^{\prime} has the property $2.2(1)$ and is or is not a summability function together with Ω.
2.3. We proceed to formulate necessary and sufficient conditions in order that a given function $\Omega(n)$ be a summability function for a Toeplitz method 1.1(1).

Theorem 1. $\Omega(n)$ is a summability function of the first kind for the method 1.1(1), if and only if

$$
\begin{equation*}
\lim _{m \rightarrow \infty} \sum_{\nu=1}^{\infty}\left|a_{m n_{\nu}}\right|=0 \tag{1}
\end{equation*}
$$

for every sequence n_{ν} with a characteristic function $\omega(n) \leqq \Omega(n)$, or if and only if 2.3(2)

$$
\lim _{m \rightarrow \infty} A(m ; \Omega)=0
$$

where, for $m=0,1, \ldots, A(m ; \Omega)$ is the least upper bound of $\sum_{v=1}^{\infty}\left|a_{m n_{\nu}}\right|$ for all sequences n_{ν} with $\omega(n) \leqq \Omega(n)$.

These conditions being fulfilled, every sequence $s_{n} \in \mathfrak{C}_{1}(\Omega)$ is A-summable to 0 .
For the proof, see Lorentz [5, theorems 9 and 10].
Theorem 2. A function $\Omega(n)$ is a summability function of the second kind for a method 1.1(1), if and only if

$$
\begin{equation*}
\lim _{m \rightarrow \infty} \sum_{n=0}^{\infty} \Omega(n)\left|a_{m n}-a_{m}, n+1\right|=0 \tag{3}
\end{equation*}
$$

If this condition is satisfied, every sequence $s_{n} \in \mathfrak{\biguplus}_{2}(\Omega)$ is A-summable to 0 .

Proof. First suppose that $\Omega(n)$ is a summability function of the second kind. Let ξ_{n} be any bounded sequence; put $S_{n}=\Omega(n) \xi_{n}, n=0,1, \ldots ; S_{-1}=0$ and $s_{n}=S_{n}-S_{n-1}$. Then

$$
\sigma_{m}=\sum_{n=0}^{\infty} a_{m n} s_{n}=\sum_{n=0}^{\infty} a_{m n}\left[\Omega(n) \xi_{n}-\Omega(n-1) \xi_{n-1}\right]
$$

is convergent and has a limit for $m \rightarrow \infty$. We choose $\xi_{2 n}=\zeta_{n}, \xi_{2 n+1}=0$; σ_{m} becomes

$$
\sigma_{m}=\sum_{n=0}^{\infty} \Omega(2 n)\left(a_{m},{ }_{2 n}-a_{m}, 2 n+1\right) \zeta_{n}=\Sigma b_{m n} \zeta_{n} .
$$

This is a summability method applicable to all bounded sequences ζ_{n}. Since $b_{m n} \rightarrow 0$ for $m \rightarrow \infty, n=0,1, \ldots$, by a theorem of I. Schur [1] we have

$$
\lim _{m \rightarrow \infty} \sum_{n=0}^{\infty} \Omega(2 n)\left|a_{m},{ }_{2 n}-a_{m}, 2_{2 n+1}\right|=0
$$

Odd indices $2 n+1$ can be treated similarly; we thus obtain 2.3(3).
Conversely, if 2.3(3) holds, and if s_{n} is a sequence such that $S_{n}=O(\Omega(n))$, we have $a_{m},{ }_{n+1} \Omega(n) \rightarrow 0$ for $n \rightarrow \infty$ and every fixed $m=0,1, \ldots$ and therefore $a_{m},{ }_{n+1} S_{n} \rightarrow 0$. Letting n become infinite in the finite Abel transformation we have

$$
\sigma_{m}=\sum_{n=0}^{\infty} a_{m n} s_{n}=\sum_{n=0}^{\infty}\left(a_{m n}-a_{m},{ }_{n+1}\right) S_{n} .
$$

2.3(3) and $\lim _{n} a_{m n}=0$ imply $\sigma_{m} \rightarrow 0$. This completes the proof.
2.4. A method A is called strongly regular, if every almost convergent sequence s_{m} is A-summable; the necessary and sufficient condition is (Lorentz [5]):

$$
\begin{equation*}
\lim _{m \rightarrow \infty} \sum_{n=0}^{\infty}\left|a_{m n}-a_{m},{ }_{n+1}\right|=0 . \tag{1}
\end{equation*}
$$

From this, one easily obtains:
Theorem 3. A regular Toeplitz method A is strongly regular if and only if A possesses a summability function of the second kind.

The assertion follows at once from the criterion 2.4(1) and the following lemma:

Lemma 1. If $a_{m n} \geqq 0$ and if $\eta_{m}=\sum_{n=0}^{\infty} a_{m n} \rightarrow 0$, a function $\Omega(n)$ exists such that $\Sigma_{n} \Omega(n) a_{m n} \rightarrow 0$.

Proof. For every $m=0,1,2, \ldots$ there is clearly a function $\Omega_{m}(n)$ of the required kind for which $\Sigma_{n} \Omega_{m}(n) a_{m n} \leqq 2 \eta_{m}$. Moreover, we can choose a nondecreasing sequence of positive integers $k_{m} \rightarrow+\infty$, for which $k_{m} \eta_{m} \rightarrow 0$. Let

$$
\Omega(n)=\min _{m=0,1, \ldots}\left\{k_{m}+\Omega_{m}(n)\right\}, \quad n=0,1, \ldots
$$

This function is non-decreasing, positive, and it is easy to see that $\Omega(n) \uparrow+\infty$. Finally, $\Sigma_{n} \Omega(n) a_{m n} \leqq k_{m} \eta_{m}+2 \eta_{m} \rightarrow 0$, which proves the lemma.

The analogue to Theorem 3 for summability functions of the first kind is this (Lorentz [5]): A Toeplitz method A possesses summability functions of the first kind, if and only if, for $m \rightarrow \infty$,

$$
\begin{equation*}
\max _{n=0,1, \ldots}\left|a_{m n}\right| \rightarrow 0 \tag{2}
\end{equation*}
$$

2.5. Another consequence of the lemma is

Theorem 4. For every summability function of the second kind $\Omega(n)$ for a method A there is another such function $\Omega_{1}(n)$ with $\Omega_{1}(n) / \Omega(n) \uparrow+\infty$.

That generally not all summability functions of the second kind are of the form $\Omega(n)=o(\phi(n))$ with an appropriate $\phi(n)$ is shown by the example of Riemann's method R_{2} in 5.4.

A similar theorem is:
Theorem 5. For every summability function of the first kind $\Omega(n)$ for a method A there is another such function $\Omega_{1}(n)$ for which $\Omega_{1}(n) / \Omega(n) \uparrow+\infty$.

Proof. Using the notation of Theorem 1 we have $A(m ; \Omega) \rightarrow 0$. Moreover, by the theorem referred to above,

$$
\delta_{m}=\max _{n}\left|a_{m n}\right| \rightarrow 0
$$

We choose a non-decreasing sequence of positive integers $k_{m} \uparrow+\infty$ such that

$$
k_{m} A(m ; \Omega) \rightarrow 0, \quad k_{m} \delta_{m} \rightarrow 0
$$

Then
2.5(1)

$$
A\left(m ; k_{m} \Omega\right) \rightarrow 0
$$

For, according to 2.1, every sequence of integers n_{ν} with the characteristic function $\leqq k_{m} \Omega(n)$ is a sum of a finite sequence consisting of k_{m} elements and of k_{m} infinite sequences whose characteristic functions are $\leqq \Omega(n)$. Therefore

$$
\sum_{\nu}\left|a_{m n_{\nu}}\right| \leqq k_{m} \delta_{m}+k_{m} A(m ; \Omega)
$$

and 2.5(1) follows from the definition of $A\left(m ; k_{m} \Omega\right)$.
We may choose integers $N_{m} \uparrow+\infty$ such that

$$
\epsilon_{m}=\sum_{n>N m}\left|a_{m n}\right| \rightarrow 0
$$

Now let

$$
\Omega_{1}(n)=k_{m} \Omega(n), \quad N_{m} \leqq n<N_{m+1}, n=1,2, \ldots,
$$

then $\Omega_{1}(n) / \Omega(n) \uparrow+\infty$ and

$$
A\left(m ; \Omega_{1}\right) \leqq \epsilon_{m}+\sup _{\left\{n_{\nu}\right\}} \sum_{n_{\nu} \leqq N_{m}}\left|a_{m n_{\nu}}\right|
$$

where $\left\{n_{\nu}\right\}$ stands for all sequences whose characteristic functions are $\leqq \Omega_{1}(n)$. Since $\Omega_{1}(n) \leqq k_{m} \Omega(n)$ for $n \leqq N_{m}$,

$$
A\left(m ; \Omega_{1}\right) \leqq \epsilon_{m}+A\left(m ; k_{m} \Omega\right)
$$

This completes the proof.

§3. Relations between Summability Functions and Tauberian Conditions

3.1. A condition on a sequence s_{n} is called a Tauberian condition for a method A, if every sequence s_{n}, which is A-summable and satisfies this condition, is convergent. We now show, that the knowledge of summability functions of a method enables one to draw some conclusions about its Tauberian conditions.

Theorem 6. If $\Omega(n)$ is a summability function (of the first kind) for a regular Toeplitz method A, then

$$
\begin{equation*}
u_{n}=s_{n}-s_{n-1}=o\left(\Omega(n)^{-1}\right) \tag{1}
\end{equation*}
$$

is not a Tauberian condition for this method.
This theorem gives a precise limit from below for Tauberian conditions of the form $u_{n}=o(\phi(n))$ for all summability methods treated in §§ $5-6$, except for the rather pathological method 5.3(3).

For the proof of Theorem 6 we need Lemma 2, interesting in itself. The following remarks are intended to elucidate its meaning. Both the conditions

$$
\begin{equation*}
u_{n}=O\left(n^{-a}\right), \sigma_{n}=S_{n} / n=\left(s_{0}+\ldots+s_{n}\right) / n=o\left(n^{a-1}\right) \tag{2}
\end{equation*}
$$

constitute for every $0 \leqq a \leqq 1$ a Tauberian condition for the method C_{1} (Ananda Rau [1], Karamata [1], Boas, Jr. [1]). We show that the conditions 3.1(2) may not be relaxed: for every function $\Omega(n)$ for which $\Sigma \Omega(n)^{-1}=+\infty$ there is a divergent series Σu_{n} such that $u_{n}=O\left(\Omega(n)^{-1}\right), \sigma_{n}=O(\Omega(n) / n)$. Even more is true:

Lemma 2. For every function $\Omega(n)$ for which $\Sigma \Omega(n)^{-1}=+\infty$ a bounded divergent sequence s_{n} exists such that $u_{n}=s_{n}-s_{n-1}=O\left(\Omega(n)^{-1}\right)$ and that the characteristic function of the indices n which have the property $s_{n} \neq 0$ does not exceed $\Omega(n)$.

Proof. We define two sequences of positive integers $m_{1}<n_{1}<\ldots$ $<m_{\nu}<n_{\nu}<\ldots$ such that $\Omega\left(m_{1}\right)^{-1}<1 / 9$, that the characteristic function of the sum of the intervals $m_{\nu} \leqq n \leqq n_{\nu}, \nu=1,2, \ldots$ is $\leqq \Omega(n)$ and that furthermore
3.1(3) $\quad \sum_{m_{\nu} \leqq n \leqq n_{\nu}} \Omega(n)^{-1} \geqq 1 / 3, \quad \nu=1,2, \ldots$

We proceed by induction. Let $m_{1}, n_{1}, \ldots, m_{\nu-1}, n_{\nu-1}$ be already defined. Then m_{ν} is chosen such that

$$
\sum_{\mu=1}^{\nu-1}\left(n_{\mu}-m_{\mu}+1\right) \leqq \Omega\left(m_{\nu}\right) / 2 \leqq \Omega(n) / 2, \quad n \leqq m_{\nu}
$$

Since $\Omega\left(m_{\nu}\right) \geqq 4$, the integer $N=m_{\nu}+1$ has the property that the characteristic function of the interval $m_{\nu} \leqq n \leqq N$ does not exceed $\Omega(n) / 2$ for $n \geqq m_{\nu}$. If all integers $N \geqq m_{\nu}+1$ have this property, n_{ν} is chosen arbitrarily to satisfy 3.1(3). On the other hand, if N_{0} is the first integer $>m_{\nu}+1$ lacking the
above property, we put $n_{\nu}=N_{0}-1$. Then $N_{0}-m_{\nu}+1 \geqq \Omega\left(N_{0}\right) / 2$. Hence

$$
\sum_{m_{\nu} \leqq n \leqq N_{0}} \Omega(n)^{-1} \geqq\left(N_{0}-m_{\nu}+1\right) \Omega\left(N_{0}\right)^{-1} \geqq \frac{1}{2} .
$$

In this case 3.1(3) also holds.-The sum of the intervals $m_{\nu} \leqq n \leqq n_{\nu}, \nu=1,2, \ldots$ thus defined has a characteristic function $\leqq \Omega(n)$.

We now choose integers $l_{\nu}, \nu=1,2, \ldots$ for which $m_{\nu} \leqq l_{\nu}<n_{\nu}$ and

$$
\sum_{m_{\bar{\nu}} \leqq n \leqq l_{\nu}} \Omega(n)^{-1} \geqq \frac{1}{9}, \quad \sum_{l_{\nu}<n \leqq n_{\nu}} \Omega(n)^{-1} \geqq \frac{1}{9}, \quad \nu=1,2, \ldots
$$

Then for $m_{\nu} \leqq n \leqq n_{\nu}, \nu=1,2, \ldots$ real u_{n} exist such that $\left|u_{n}\right| \leqq \Omega(n)^{-1}$, $u_{n} \geqq 0$ for $m_{\nu} \leqq n \leqq l_{\nu}, u_{n} \leqq 0$ for $l_{\nu}<n \leqq n_{\nu}$ and

$$
\sum_{m_{\nu} \leqq n \leqq l_{\nu}} u_{n}=\frac{1}{9}, \sum_{l_{\nu}<n \leqq n_{\nu}} u_{n}=-\frac{1}{9} .
$$

Let $u_{n}=0$ for all remaining n. It is easily seen that the sequence $s_{n}=\sum_{0}^{n} u_{\nu}$ has all the required properties.

Proof of Theorem 6. For a summability function $\Omega(n)$ of a regular Toeplitz method we have $\Sigma \Omega(n)^{-1}=+\infty$. For otherwise $n \Omega(n)^{-1} \rightarrow 0$, and so $n=o(\Omega(n))$ would be a summability function. Thus all bounded sequences are A-summable to 0 , which contradicts the theorem of I. Schur referred to in 2.3. Thus by Lemma 2, we obtain the assertion of Theorem 6 with the condition $u_{n}=O\left(\Omega(n)^{-1}\right)$ instead of 3.1(1). The general statement now follows from Theorem 5.

§4. Summability Functions of the Form $\Omega(n)=o(n)$

4.1. Before treating special methods we insert a few simple sufficient and simple necessary conditions for summability functions. In many cases they are all contained in the formula $\Omega(n)=o(n)$.

TheOrem 7. Suppose that there is a monotone majorant $\left(a_{m n}\right)$ of the matrix ($a_{m n}$) having the properties: $a_{m n} \geqq 0, a_{m n}$ is non-increasing for every fixed $m=0,1, \ldots, a_{m 0} \rightarrow 0,\left|a_{m n}\right| \leqq a_{m n}$ and finally

$$
\begin{equation*}
\sum_{n=0}^{\infty} a_{m n} \leqq M, \quad m=0,1, \ldots \tag{1}
\end{equation*}
$$

with a constant M. Then all functions $\Omega(n)=o(n)$ are summability functions for the method 1.1(1).

Proof. It will be sufficient to prove

$$
\begin{equation*}
\lim _{m \rightarrow \infty} \sum_{\nu=1}^{\infty} a_{m n_{\nu}}=0 \tag{2}
\end{equation*}
$$

for every sequence n_{ν} with a characteristic function $\omega(n)=o(n)$. Let p be an arbitrary positive integer; we may assume (by omitting, if necessary, a finite number of $\left.n_{\nu}\right)$, that $\omega(n) \leqq n / p$ holds for all $n=0,1, \ldots$. Since $n_{\nu} \geqq p \omega\left(n_{\nu}\right)$
$=\nu p$, it is possible, by induction in k, to determine integers $n_{\nu}{ }^{k}, \nu=1,2, \ldots$, $k=1,2, \ldots, p$, all of which are different, such that $n_{\nu}{ }^{k} \leqq n_{\nu}$. Then

$$
p \sum_{\mu=1}^{\nu} a_{m}, n_{\mu} \leqq \sum_{\mu \leqq \nu} a_{m}, n_{\mu}^{k} \leqq M .
$$

Hence $\Sigma_{\nu} a_{m n_{\nu}} \leqq M / p$. Since p was arbitrary, our result is established.
Summability functions other than those of the form $o(n)$ may occur in abnormal cases only, as is shown by the following theorem:

Theorem 8. If a Toeplitz method A possesses a summability function $\Omega(n) \neq o(n)$, then A is a gap method, that is to every $\epsilon>0$ and every $C>0$ there is a corresponding n^{\prime} as large as we please such that

$$
\begin{equation*}
\sum_{n^{\prime} \leqq n \leqq C n^{\prime}}\left|a_{m n}\right|<\epsilon, \tag{3}
\end{equation*}
$$

$$
m=0,1, \ldots
$$

Proof. Suppose that $\lim \Omega(n) / n>2 c>0$. Let $\epsilon>0$ and $C>0$ be chosen arbitrarily; we may assume that C / c is an integer. According to 2.3(2), an m_{0} exists such that
4.1(4) $A(m ; \Omega)<\epsilon c / C, \quad m \geqq m_{0}$.

For an n_{0} sufficiently large we have

$$
\begin{equation*}
\sum_{n=n_{0}}^{\infty}\left|a_{m n}\right|<\epsilon, \quad m \leqq m_{0} \tag{5}
\end{equation*}
$$

Let an integer n^{\prime} be chosen for which $n^{\prime} \geqq n_{0}, c n^{\prime} \geqq 1$ and $\Omega\left(n^{\prime}\right) / n^{\prime} \geqq 2 c$. Each of the closed intervals

$$
\left[n^{\prime}, n^{\prime}+c n^{\prime}\right],\left[n^{\prime}+c n^{\prime}, n^{\prime}+2 c n^{\prime}\right], \ldots,\left[n^{\prime}+\left(\frac{C}{c}-1\right) c n^{\prime}, n^{\prime}+C i^{\prime}\right]
$$

contains no more than

$$
c n^{\prime}+1 \leqq 2 c n^{\prime} \leqq \Omega\left(n^{\prime}\right)
$$

integers; characteristic functions of each interval are therefore $\leqq \Omega(n)$ for $n=0,1, \ldots \quad$ By 4.1(4),

$$
\sum_{n^{\prime} \leqq n \leqq C n^{\prime}}\left|a_{m n}\right| \leqq \frac{C}{c} A(m ; \Omega)<\epsilon, \quad m \geqq m_{0}
$$

The same inequality for $m \leqq m_{0}$ follows from 4.1(5).
The following remarks are useful for the determination of summability functions of the second kind. Let σ_{n} signify the Cesàro mean $\sigma_{n}=\left(s_{0}+\ldots+\right.$ $\left.s_{n}\right) /(n+1)$ of a sequence s_{n}. From the definition 1.1 it follows that all functions $\Omega(n)=o(\phi(n))$ are summability functions of the second kind of a method A if and only if $\sigma_{n}-s=o\left(\phi(n) n^{-1}\right)$ implies the A-summability of the sequence s_{n} to 0 . Thus, the assertion, that all functions $\Omega(n)=o(n)$ have this property for A is equivalent to $A \supset C_{1}$. Suppose, for instance, that $a_{m n} \geqq 0$ for all m, n and that for every fixed m the $a_{m n}$ are first increasing up to their maximal value for $n=n_{0}=n_{0}(m)$ and then decreasing to 0 . Then $A \supset C_{1}$ holds if and only if
4.1(6)

$$
n_{0} a_{m n_{0}} \leqq M
$$

is true with an M independent of m. For $4.1(6)$ is clearly equivalent to

$$
\begin{equation*}
\sum_{n=0}^{\infty} n\left|a_{m n}-a_{m}, n+1\right| \leqq M^{\prime} \tag{7}
\end{equation*}
$$

which is necessary and sufficient for the inclusion $A \supset C_{1}$ for any regular Toeplitz method A (Orlicz [1]).

§ 5. Some Special Methods

5.1. The methods of Cesàro and Abel. All summability functions of the method C_{1} are clearly given by the formula $\Omega(n)=o(n)$. The same is true for $C_{a}(a>0)$ and the Abel method A, since all these methods are equivalent for bounded sequences. All functions $\Omega(n)=o(n)$ are also summability functions of the second kind for the methods $C_{a}(a \geqq 1)$ and A, since these methods contain C_{1}. There are no other functions, for A is not a gap method as is seen from

$$
(1-r) \sum_{\nu=n}^{2 n-1} r^{\nu}=r^{n}\left(1-r^{n}\right) \rightarrow e^{-1}-e^{-2}
$$

for $r=1-n^{-1}, n \rightarrow \infty$.
Finally, by a simple computation it may be deduced from Theorem 2 that all summability functions of the second kind for $C_{a}(0<a<1)$ are furnished by the formula $\Omega(n)=o\left(n^{a}\right)$.
5.2. The methods of Euler and Borel. The Euler method $E_{t}(0<t<1)$ is defined by the transformation
5.2(1)

$$
\begin{gathered}
\sigma_{n}=\sum_{\nu=0}^{n} p_{\nu}(t) s_{\nu}, \\
p_{\nu}(t)=p_{\nu n}(t)=\binom{n}{\nu} t^{\nu}(1-t)^{n-\nu}, 0 \leqq \nu \leqq n, p_{n+1}, n(t)=0,
\end{gathered}
$$

and the Borel method by

$$
\begin{equation*}
\sigma(x)=e^{-x} \sum_{n=0}^{\infty} \frac{x^{n}}{n!} s_{n}, \quad x \rightarrow+\infty \tag{2}
\end{equation*}
$$

For these methods a function $\Omega(n)$ is a summability function of the first or of the second kind if and only if $\Omega(n)=o(\sqrt{n})$. Since $E_{t} \subset B$, it will be sufficient to prove: (i) Every function $\Omega(n)=o(\sqrt{n})$ is a summability function of the second kind for $E_{t}(0<t<1)$; (ii) If $\Omega(n) \neq o(\sqrt{n}), \Omega(n)$ is not a summability function for B.

To prove (i) observe that the sum 2.3(3) takes for the transformation 5.2(1) the form

$$
\begin{aligned}
\Delta(n ; \Omega) & =\sum_{\nu=0}^{n} \Omega(\nu)\left|p_{\nu}(t)-p_{\nu+1}(t)\right| \leqq \Omega(n) \sum_{\nu=0}^{n}\left|p_{\nu}(t)-p_{\nu+1}(t)\right| \\
& \leqq 2 \Omega(n) \max _{0 \leqq \nu \leqq n} p_{\nu}(t) \leqq 2 C n^{-\frac{1}{2}} \Omega(n) \rightarrow 0,
\end{aligned}
$$

if $\Omega(n)=o(\sqrt{n})$. As a matter of fact the "Newtonian probability" $p_{\nu n}(t)$ for
fixed n, t and ν varying in the interval $0 \leqq \nu \leqq n$ increases first and then decreases; and the maximal value of $p_{\nu}(t)$ does not exceed $C n^{-\frac{1}{2}}$, where C depends on t only.
(ii) Let $\Omega(n) \neq o(\sqrt{n})$, then a $\delta>0$ exists for which $\Omega(n) \geqq \delta \sqrt{n}$ holds for an infinity of n. For these n and the Borel transformation 5.2(2)

$$
\begin{aligned}
A(n ; \Omega) & \geqq e^{-n} \sum_{n<\nu \leqq n+\delta \sqrt{n}} n^{\nu} / \Gamma(\nu+1) \geqq C_{1} e^{-n} \Sigma n^{\nu} \nu 0^{-\left(\nu+\frac{1}{3}\right)} e^{\nu} \\
& =C_{1} \sum_{n<\nu \leqq n+\delta \sqrt{n}} \nu^{-\frac{1}{2}}\left(1-\frac{\nu-n}{\nu}\right)^{\nu} e^{\nu-n} .
\end{aligned}
$$

$\left(C_{1}, C_{2}, \ldots\right.$ are constants). Since $\nu \log \left(1-\frac{\nu-n}{\nu}\right) \geqq-(\nu-n)+C_{2}$ for $0 \leqq \nu-n \leqq \delta \sqrt{n}$,

$$
A(n ; \Omega) \geqq C_{3} \sum_{n<\nu \leqq n+\delta \sqrt{n}} \nu^{-\frac{1}{2}} \geqq C_{4}>0 .
$$

Hence, by 2.3(2), $\Omega(n)$ is not a summability function for the method B.
5.3. Some other methods. For the Lambert method L

$$
\sigma(x)=\sum_{\nu=1}^{\infty} \frac{\nu(1-x)}{1-x^{\nu}} u_{\nu}=\sum_{\nu=1}^{\infty} a_{\nu}(x) s_{\nu}, \quad x \rightarrow 1-
$$

$$
\begin{equation*}
a_{\nu}(x)=\frac{x^{\nu}\left(\nu-x-\cdots-x^{\nu}\right)}{\left(1+\cdots+x^{\nu-1}\right)\left(1+\cdots+x^{\nu}\right)} \tag{1}
\end{equation*}
$$

(both forms are equivalent, see for instance Lorentz [3, theorem 10]) and for the method

$$
\begin{equation*}
\sigma_{n}=\sum_{\nu=0}^{n}\binom{n}{\nu} \frac{\nu!}{n^{\nu}} u_{\nu}=s_{0}+\sum_{\nu=1}^{n}\left(1-\frac{1}{n}\right) \ldots\left(1-\frac{\nu-1}{n}\right) \frac{\nu}{n} s_{\nu} \tag{2}
\end{equation*}
$$

(Rey-Pastor [1], S. Bernstein [1], Amerio [1]) all summability functions of the first and of the second kind and only these are furnished by $\Omega(n)=o(n)$. The positive part follows from $4.1(6)$ with $n_{0}=0$ for L and with $n_{0} \cong \sqrt{n}$ for the method 5.3(2); and the negative part is a consequence of Theorem 8. We leave details to the reader.

The method
5.3(3) $\quad \sigma_{m}=s_{2} m$
has no summability functions at all; but Tauberian theorems exist for this method. Thus, $u_{n}=o\left(n^{-1}\right)$ is a Tauberian condition (o may not be replaced by O).
5.4. The Riemann methods $\boldsymbol{R}_{\boldsymbol{k}}, \quad R_{k}, k=2,3, \ldots$ is related to the transformation

$$
\sigma(x)=\sum_{n=0}^{\infty}\left(\frac{\sin n x}{n x}\right)^{k} u_{n}
$$

5.4(1)

$$
=\sum_{n=0}^{\infty}\left\{\left(\frac{\sin n x}{n x}\right)^{k}-\left(\frac{\sin (n+1) x}{(n+1) x}\right)^{k}\right\} s_{n}, \quad x \rightarrow 0+.
$$

Both forms are equivalent for bounded s_{n}. We take the second as the definition.

The derivative of the function $\phi(u)=(\sin u / u)^{k}$ has the property $\left|\phi^{\prime}(u)\right| \leqq$ $C(u+1)^{-k}, C$ depending only on k. Hence for $x>0$
$\left|\frac{d}{d u} \phi(x u)\right|=\left|\phi^{\prime}(x u)\right| x \leqq C x(x u+1)^{-k} \leqq C_{1} x s^{-k}$ for $u \geqq \frac{s \pi}{x}, s=1,2, \ldots$
We put $a_{n}(x)=(\sin n x / n x)^{k}-(\sin (n+1) x /(n+1) x)^{k}$ and

$$
a_{0}(x)=C_{1} x, \quad a_{n}(x)=C_{1} x s^{-k} \text { for } \frac{s \pi}{x} \leqq n<\frac{(s+1) \pi}{x}
$$

The functions $a_{n}(x)$ constitute a monotone majorant for $a_{n}(x)$ in the sense of Theorem 7. In particular,

$$
\sum_{n=0}^{\infty} a_{n}(x) \leqq \frac{C_{2}}{x} x\left(1+\sum_{s=1}^{\infty} s^{-k}\right)=M<+\infty .
$$

By Theorem 7 (or rather by its continuous analogue), all functions $\Omega(n)=o(n)$ are summability functions for the methods $R_{k}, k=2,3, \ldots$ There are no others by Theorem 8, since

$$
\sum_{\frac{\pi}{x} \leqq n<\frac{2 \pi}{x}}\left|a_{n}(x)\right|
$$

converges for $x \rightarrow 0+$ to the positive number max $|\phi(u)|, \pi \leqq u \leqq 2 \pi$.
Summability functions of the second kind are also given by $\Omega(n)=o(n)$, if $k=3,4, \ldots$ As to R_{2}, they are defined by

$$
\begin{equation*}
\sum_{n=1}^{\infty} \Omega(n) n^{-2}<+\infty \tag{2}
\end{equation*}
$$

For consider
5.4(3)

$$
\begin{aligned}
\Delta(x ; \Omega) & =\sum_{n=0}^{\infty} \Omega(n)\left|a_{n}(x)-a_{n+1}(x)\right| \\
& =\sum_{n=0}^{\infty} \Omega(n)|\phi(n x)-2 \phi(n x+x)+\phi(n x+2 x)|
\end{aligned}
$$

The derivative $\phi^{\prime \prime}(u)$ exists for $u \geqq 0$ and has the properties $\left|\phi^{\prime \prime}(u)\right| \leqq C_{3} u^{-k}$, $\left|\phi^{\prime \prime}(u)\right| \leqq C_{4}$. Therefore $(0<\theta<1)$

$$
\begin{array}{lr}
\left|\Delta^{2} \phi(n x)\right|=x^{2}\left|\phi^{\prime \prime}(n x+2 \theta x)\right| \leqq C_{4} x^{2}, & 0 \leqq n x \leqq 1, \\
\left.\left|\Delta^{2} \phi(n x)\right| \leqq C_{3}(n x)\right)^{-k} x^{2}, & n x \leqq 1 .
\end{array}
$$

Thus, 5.4(3) becomes

$$
\begin{aligned}
\Delta(x ; \Omega) & =\sum_{n x<1}+\sum_{n x \geqq 1} \\
& \leqq C_{4} x^{2} \sum_{n x<1} \Omega(n)+C_{3} x^{2-k} \sum_{n x \geqq 1} \Omega(n) n^{-k}
\end{aligned}
$$

Since $\Omega(n)=o(n)$ also holds in case of $5.4(2)$, the first term on the right is $=C_{4} x^{2} o\left(\Sigma_{n<x-1} n\right)=C_{4} x^{2} o\left(x^{-2}\right)=o(1)$, while the second term $=C_{3} x^{2-k}$ $o\left(\Sigma_{n \geqq x^{-1}} n^{1-k}\right)=C_{3} x^{2-k} o\left(x^{k-2}\right)=o(1)$ for $k \geqq 3$ and $=C_{3} o(1)$ for $k=2$, if $5.4(2)$ is fulfilled. It remains to show that, if $\Sigma \Omega(n) n^{-2}=+\infty, \Omega(n)$ is not a summability function of the second kind for R_{2}.

For small $x>0$, we wish to estimate $\left|\Delta^{2} \phi(n x)\right|=x^{2}\left|\phi^{\prime \prime}(u)\right|, u=n x+2 \theta x$, $0<\theta<1$ from below for $\left|n-\frac{s \pi}{x}\right| \leqq \pi / 10 x$. Since $\phi^{\prime \prime}(u)=2 u^{-2} \cos 2 u+$ $O\left(u^{-3}\right)$, if $u \rightarrow \infty,\left|\phi^{\prime \prime}(u)\right| \geqq u^{-2}$ holds for $|u-s \pi| \leqq \pi / 8$ and all sufficiently large integers s. Thus $\left|\Delta^{2} \phi(n x)\right| \geqq n^{-2}$ for $\left|n-\frac{s \pi}{x}\right| \leqq \pi / 10 x$. Since

$$
\begin{aligned}
\sum_{\left|n-\frac{s \pi}{x}\right| \leqq \frac{\pi}{10 x}} \Omega(n)\left|\Delta^{2} \phi(n x)\right| & \geqq \sum_{\left|n-\frac{s \pi}{x}\right| \leqq \frac{\pi}{10 x}} \Omega(n) n^{-2} \\
& \geqq C_{5} \frac{(s-1) \pi}{x}+\frac{\pi}{10 x} \leqq n \leqq \frac{s \pi}{x}+\frac{\pi}{10 x}
\end{aligned}
$$

and since the series Σv_{s} is divergent, $\Delta(x ; \Omega)=\sum_{n=0}^{\infty} \Omega(n)\left|\Delta^{2} \phi(n x)\right|=+\infty$, which proves our result.

§ 6. Hausdorff Methods

6.1. A Hausdorff method H_{g} is defined by the transformation

$$
\begin{equation*}
\sigma_{n}=\sum_{\nu=0}^{n} a_{n \nu} s_{\nu}=\int_{0}^{1} \sum_{\nu=0}^{n} p_{\nu n}(x) s_{\nu} d g(x) ; \tag{1}
\end{equation*}
$$

$g(x)$ is a function of bounded variation in $[0,1]$ and $p_{\nu n}(x)=p_{\nu}(x)$ is the "Newtonian probability" $\binom{n}{\nu} x^{\nu}(1-x)^{n-\nu .}$. Without loss of generality we may assume, that $g(x)$ is normalized, that is, it has the properties $g(0)=0$ and $g(x)=[g(x+)+g(x-)] / 2$ for $0<x<1$.
H_{g} is regular if and only if $g(x)$ is continuous at $x=0$ and if $g(1)=1 . \quad H_{g}$ is strongly regular if, and only if, H_{g} possesses summability functions of the first kind or, if and only if, $g(x)$ is continuous at $x=1$ (Lorentz [5]). In this section we determine the summability functions for a method H_{g} in terms of
the generating function $g(x)$. The following theorem yields summability functions for every method H_{g} with a discontinuous $g(x)$.

Theorem 9. (i) A regular Hausdorff method can not be a gap method. (ii) If H_{g} is strongly regular, all functions $\Omega(n)=o(\sqrt{n})$ are summability functions for H_{g}. (iii) If $g(x)$ has a jump at a point $0<x_{0}<1$, then all summability functions of H_{g} are of the form $\Omega(n)=o(\sqrt{n})$.

To prove (i), suppose that $g(x)$ is continuous at $x=0$; let $0<a<b<1$ be two points of continuity of $g(x)$. We choose a $q, 0<q<1$, arbitrarily. If H_{g} is a gap method, then, for every $\epsilon>0$,

$$
\sum_{N \leqq \nu \leqq b N / a q}\left|a_{n \nu}\right|<\epsilon, \quad n=0,1, \ldots
$$

is true for some N as large as we please. To every sufficiently large N there corresponds an integer $n=n(N)$ such that $n q<N / a<n$. Then $a<\nu / n<b$ implies $N \leqq \nu \leqq b N / a q$. Hence

$$
\left|\int_{0}^{1} \sum_{a \leqq \frac{\nu}{n} \leqq b} p_{\nu \dot{n}}(x) d g(x)\right| \leqq \sum_{a \leqq \frac{\nu}{n} \leqq b}\left|a_{n_{\nu}}\right|<\epsilon .
$$

The sum under the integral converges to 1 , if $a<x<b$ and to 0 outside of this interval. Letting n become infinite, we obtain

$$
\left|\int_{a}^{b} d g(x)\right| \leqq \epsilon
$$

Since ϵ was arbitrary, $g(a)=g(b)$. Therefore, the normalized function $g(x)$ is $=0$ in $0 \leqq x<1$. As $g(1)=1,6.1(1)$ becomes $\sigma_{n}=s_{n}$, which contradicts the assumption that H_{g} is a gap method.
(ii) Suppose that H_{g} is strongly regular, that $\Omega(n)=o(\sqrt{n})$ and that ν_{k} is a sequence with a characteristic function $\omega(n) \leqq \Omega(n)$. We put

$$
\begin{equation*}
f_{n}(x)=\sum_{\nu_{k} \leqq n} p_{\nu_{k} n^{n}}(x) . \tag{2}
\end{equation*}
$$

Then $f_{n}(x) \rightarrow 0$ uniformly in $\delta \leqq x \leqq 1-\delta$ for any fixed $\delta>0$. For in this interval the estimate $p_{\nu n}(x) \leqq C n^{-\frac{1}{2}}$ holds with a constant C depending only on δ. Therefore $0 \leqq f_{n}(x) \leqq C n^{-\frac{1}{2}} \omega(n)=o(1)$. We are now in a position to prove that $2.3(1)$ holds, that is that $\Omega(n)$ is a summability function. If $V(x)=\operatorname{var} g(t)$ in $0 \leqq t \leqq x$,

$$
\sum_{\nu_{k} \leqq n}\left|a_{n \nu_{k}}\right| \leqq \int_{0}^{1} f_{n}(x) d V(x)=\int_{0}^{\delta}+\int_{\delta}^{1-\delta}+\int_{1-\delta}^{1}
$$

The second integral converges to zero as $n \rightarrow \infty$, and the remaining two are arbitrarily small with δ, since $0 \leqq f_{n} \leqq 1$ and $V(x)$ is continuous at $x=0$ and $x=1$.

It remains to prove (iii). Let a be the jump of $g(x)$ at $x=x_{0}$, and suppose $\Omega(n) n^{-\frac{1}{2}} \nrightarrow 0$. We can choose a $\delta>0$ such that for an infinity of n

$$
\begin{equation*}
\Omega\left(x_{0} n / 2\right) n^{-\frac{1}{2}} \geqq \delta . \tag{3}
\end{equation*}
$$

We wish to show that $A(n ; \Omega) \nrightarrow 0$ (compare 2.3(2)). If n is an integer satisfying $6.1(3)$, let ν_{k} be the finite sequence consisting of all ν with the property $\left|\nu / n-x_{0}\right|<\delta / 2 n^{\frac{1}{2}}$. We need the following result concerning the probability $p_{\nu n}$: an absolute constant C_{1} and a $C_{2}=C_{2}\left(x_{0}, \delta\right)>0$ exist such that

$$
\left\{\begin{array}{l}
\sum_{|\nu / n-x| \geqq n^{-\frac{1}{3}}} p_{\nu n}(x) \leqq C_{1} n^{-2}, \tag{4}\\
\sum_{\left|\nu / n-x_{0}\right|<\delta / 2 n^{\frac{1}{2}}} p_{\nu n}(x) \geqq C_{2}
\end{array}\right.
$$

We have

$$
\begin{aligned}
A(n ; \Omega) & =\sum_{k}\left|\int_{0}^{1} p_{\nu_{k} n}(x) d g(x)\right| \\
& \geqq|a| \sum_{k} p_{\nu_{k} n}\left(x_{0}\right)-\int_{0}^{1} \sum_{k} p_{\nu_{k} n}(x) d V(x)
\end{aligned}
$$

where $V(x)$ is the variation of the function $g^{*}(x)$, resulting from $g(x)$ by omission of the jump a. The latter integral is smaller than

$$
\operatorname{var}_{\frac{\nu}{n}-x \left\lvert\, \leqq n^{-\frac{1}{3}}\right.} g^{*}(x)+\operatorname{var}_{0 \leqq x \leqq 1} g^{*}(x) \cdot C_{1} n^{-2} \rightarrow 0, \quad n \rightarrow \infty .
$$

Thus by $6.1(3)$ and the second part of $6.1(4), A(n ; \Omega) \nrightarrow 0$, and the proof of the theorem is complete.
6.2. We now treat methods H_{g} for which the generating function $g(x)$ is absolutely continuous.

Theorem 10. If $g(x)$ is absolutely continuous, then the summability functions for the method H_{g} are furnished by the formula $\Omega(n)=o(n)$.

Proof. That there are no summability functions which do not satisfy $\Omega(n)=o(n)$ is implied by Theorems 8 and $9(\mathrm{i})$. Suppose now that ν_{k} is any sequence of integers with a characteristic function $\omega(n)=o(n)$. If $\hat{f}_{n}(x)$ is again defined by 6.1(2),

$$
\int_{0}^{1} f_{n}(x) d x=\sum_{k} \int_{0}^{1} p_{\nu_{k}}(x) d x=\frac{1}{n+1} \omega(n) \rightarrow 0 .
$$

Therefore, for every $\epsilon>0$ and every integer n sufficiently large, the interval [0.1] may be represented as the sum $e_{n}+e_{n}^{\prime}$ of two disjoint measurable sets e_{n}, e_{n}^{\prime} for which $m e_{n}<\epsilon$ and $f_{n}(x)<\epsilon$ if $x \in e_{n}^{\prime}$. Hence

$$
\begin{aligned}
\sum_{k}\left|a_{n \nu_{k}}\right| & \leqq \sum_{k} \int_{0}^{1} p_{\nu_{k}}(x)\left|g^{\prime}(x)\right| d x=\int_{0}^{1} f_{n}(x)\left|g^{\prime}(x)\right| d x \\
& =\int_{e_{n}}+\int_{e_{n}^{\prime}} \leqq \int_{e_{n}}\left|g^{\prime}\right| d x+\epsilon \int_{0}^{1}\left|g^{\prime}\right| d x .
\end{aligned}
$$

Since both the last terms are arbitrarily small with ϵ, the proof is complete.

By combining a gap theorem of Agnew [1] with a result of the author (Lorentz [4, theorem 1]), one may deduce that

$$
\begin{equation*}
u_{n}=o\left(\frac{1}{n}\right) \tag{1}
\end{equation*}
$$

is a Tauberian condition for any Hausdorff method. Theorems 6 and 10 show now that $u_{n}=o(\phi(n))$ is not a Tauberian condition for any Hausdorff method with an absolutely continuous $g(x)$ if $\phi(n) \downarrow 0$ and $n \phi(n) \rightarrow+\infty$.

As to the summability functions of the second kind, we are able to show that all functions $\Omega(n)=o(\sqrt{n})$ are summability functions of the second kind for the method H_{g} if $g(x) \epsilon \operatorname{Lip} 1$. We do not know whether this result can be improved.

Suppose $\Omega(n)=o(\sqrt{n})$; we shall show that

$$
\Delta(n ; \Omega)=\sum_{\nu=0}^{n} \Omega(\nu)\left|\int_{0}^{1}\left\{p_{\nu}(x)-p_{\nu+1}(x)\right\} d g(x)\right| \rightarrow 0 .
$$

Since $g^{\prime}(x)$ is bounded, it will be sufficient to prove

$$
\begin{align*}
\bar{\Delta}(n) & =\Omega(n) \int_{0}^{1} \sum_{\nu=0}^{n}\left|p_{\nu}(x)-p_{\nu+1}(x)\right| d x \tag{2}\\
& =2 \Omega(n) \int_{0}^{1} \max _{0 \leqq \nu \leqq n} p_{\nu}(x) d x \rightarrow 0 .
\end{align*}
$$

For a fixed x, the above maximum is attained for a $\nu=\nu_{0}(x)$ such that $\left|\nu_{0} / n-x\right|<n^{-1}$. We use the estimate (Lorentz [1])
6.2(3) $\quad p_{\nu n}(x) \leqq[x(1-x) n]^{-\frac{1}{2}}$, if $|\nu / n-x|<x / 10,|\nu / n-x|<(1-x) / 10$.

Hence,

$$
p_{\nu_{0} n}(x) \leqq[x(1-x) n]^{-\frac{1}{2}}, \quad 10 / n \leqq x \leqq(n-10) / n
$$

Therefore

$$
\begin{aligned}
\bar{\Delta}(n) & =2 \Omega(n)\left\{\int_{10 / n}^{(n-10) / n}+\int_{0}^{10 / n}+\int_{(n-10) / n}^{1}\right\} \\
& \leqq 2 \Omega(n)\left\{\int_{0}^{1} \frac{d x}{\sqrt{x(1-x) n}}+\frac{20}{n}\right\}=o(1),
\end{aligned}
$$

which proves $6.2(2)$.

References

R. P. Agnew, [1] "Analytic extension by Hausdorff methods," Trans. Amer. Math. Soc., vol. 52 (1942), 217-237.

- [2] "Convergence fields of methods of summability," Ann. of Math., vol. (2) 46 (1945), 93-101.
\qquad [3] "A simple sufficient condition that a method of summability be stronger than convergence," Bull. Amer. Math. Soc., vol. 52 (1946), 128-132.
L. Amerio, [1] "Un metodo di sommazione per le serie di potenze," Ann. Scuola norm. sup., Pisa, Sci. fis. mat., vol. (2) 8 (1939), 167-180.
S. Bernstein, [1] "Sur la convergence de certaines suites des polynomes," J. Math. Pures Appl., vol. (9) 15 (1935), 345-358.
R. P. Boas, Jr., [1] "Tauberian theorems for ($C, 1$) summability," Duke Math. J., vol. 4 (1938), 227-230.
J. Karamata, [1] "Eine weitere Umkehrung des Cesàroschen Limitierungsverfahrens," Glas Srpske Akad., vol. 163 (80) (1935), 59-70.
G. G. Lorentz, [1] "Zur Theorie der Polynome von S. Bernstein," Rec. Math., n.s. vol. 2 (1937), 543-556.
- [2] "Beziehungen zwischen den Umkehrsätzen der Limitierungstheorie," Bericht der Math. Tagung, Tübingen, (1946), 97-99.
__ [3] "Über Limitierungsverfahren, die von einem Stieltjes-Integral abhängen," Acta Math., vol. 79 (1947), 255-272.
[4] "Tauberian theorems and Tauberian conditions," Trans. Amer. Math. Soc., vol. 63 (1948), 226-234.
-_ [5] "A contribution to the theory of divergent series," Acta.Math., vol. 80 (1948), 167190.
W. Orlicz, [1] "Zur allgemeinen Limitierungstheorie," Tôhoku Math. J., vol. 26 (1926), 233237.
K. Ananda Rau, [1] "On the convergence and summability of Dirichlet's series," Proc. London Math. Soc. IIs., vol. 34 (1932), 414-440.
J. Rey-Pastor, [1] "Un método de sumacion de series," Rend. Circ. Mat. Palermo, vol. 55 (1931), 450-455.
I. Schur, [1] "Über lineare Transformationen in der Theorie der unendlichen Reihen," J. Reine Angew. Math., vol. 151 (1921), 79-111.

University of Toronto

