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Abstract
Let T = (V , E) be a tree in which each edge is assigned a cost; let P be a set of source–sink pairs of vertices
in V in which each source–sink pair produces a profit. Given a lower bound K for the profit, the K-prize-
collecting multicut problem in trees with submodular penalties is to determine a partial multicut M ⊆ E
such that the total profit of the disconnected pairs after removing M from T is at least K, and the total
cost of edges in M plus the penalty of the set of still-connected pairs is minimized, where the penalty
is determined by a nondecreasing submodular function. Based on the primal-dual scheme, we present a
combinatorial polynomial-time algorithm by carefully increasing the penalty. In the theoretical analysis,
we prove that the approximation factor of the proposed algorithm is ( 8

3 + 4
3κ + ε), where κ is the total

curvature of the submodular function and ε is any fixed positive number. Experiments reveal that the
objective value of the solutions generated by the proposed algorithm is less than 130% compared with that
of the optimal value in most cases.

Keywords: Multicut problem in trees with submodular penalties; K prize collecting; approximation algorithm; primal-dual
scheme

1. Introduction
The multicut problem (Hu 1963) involves finding a set of edges from an undirected graph G such
that each given source–sink pair in P is disconnected in the graph after removing these edges;
this approach has a variety of applications in VLSI design (Costa et al. 2005; Zhang et al. 2012)
and computer vision (Keuper et al. 2015; Tang et al. 2017).When |P| = 1, this problem is referred
to as the famous minimum cut problem and admits a polynomial-time algorithm; when |P| = 2,
this problem can also be solved in polynomial time (Hu 1963).When |P| = 3, this problem isNP-
hard (Dahlhaus et al. 1994), and when |P| is arbitrary, this problem is NP-hard to approximate
within any constant factor assuming the unique games conjecture (Chawla et al. 2006). Garg et al.
(1996) constructed anO( log |P|)-approximation algorithm by using the LP rounding technique,
while Zhang (2022) constructed a

√|P|-approximation algorithm by using the LP rounding-
plus-greedy method.

The multicut problem in general graphs is complex. To address this problem more effectively,
researchers have shifted their focus to trees, which are special graphs. The multicut problem in

aA preliminary version of this paper appeared in the Proceedings of the 17th Annual Conference on Theory and Applications
of Models of Computation, pp. 262–271, 2022.
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trees (Garg et al. 1997) and its generalizations have been widely studied, such as the partial multi-
cut problem in trees (Golovin et al. 2006; Levin and Segev 2006), the generalized partial multicut
problem in trees (Könemann et al. 2011), the prized-collection multicut problem in trees (Levin
and Segev 2006), the multicut problem in trees with submodular penalties (Liu and Li 2022), and
the k-prize-collecting multicut problem in trees (Hou et al. 2020).

Inspired by Könemann et al. (2011) and Xu et al. (2016), in this paper, we study the K-
prize-collecting multicut problem in trees with submodular penalties (K-PCMTS), which is a
generalization of all the problems in trees mentioned above. In the K-PCMTS, we are given a
tree T = (V , E), a set P = {(s1, t1), (s2, t2), . . . , (sm, tm)} of m source–sink pairs of vertices in V ,
and a profit lower bound K. Each edge e ∈ E is associated with a cost ce, and each pair (sj, tj) ∈ P
is associated with a profit pj. For anyM ⊆ E, let c(M) be the total cost of the edges inM and RM be
the set of pairs still connected after removingM. The problem is to find a partial multicutM ⊆ E
such that the total profit of the disconnected pairs after removingM is at least K, and the objective
value, i.e., c(M)+ π(RM), is minimized, where the penalty is determined by a given nondecreas-
ing submodular function π : 2P →R≥0, which has the property of decreasing marginal returns
(Fujishige 2005; Li et al. 2015).

1.1 Related works
When K = ∑

j:(sj,tj)∈P pj, which implies that all pairs must be disconnected, the K-PCMTS is
exactly the multicut problem in trees. Garg et al. (1997) proved that this problem is NP-hard, and
they presented a 2-approximation algorithm based on a primal-dual technique. In the same paper,
they also proved that the multicut problem in trees is at least as hard to approximate as the vertex
cover problem, which cannot be approximated within 2− ε for any ε > 0 under the unique games
conjecture (Khot and Regev 2008). Thus, the approximation factor of the algorithm in Garg et al.
(1997) is the best.

When π(R)= 0 for any R⊆ P , i.e., the objective value of a partial multicutM is c(M), and the
K-PCMTS is equivalent to the generalized partial multicut problem for trees (Könemann et al.
2011), in which the problem is to find a minimum cost edge setM ⊆ E such that the total profit of
the disconnected pairs is at least K. Könemann et al. (2011) presented an (83 + ε)-approximation
algorithm for this problem, where ε > 0 is any small constant. When π(R)= 0 for any R⊆ P and
pj = 1 for any (sj, tj) ∈ P , the K-PCMTS is equivalent to the partial multicut problem in trees.
Given any small constant ε > 0, Levin and Segev (2006) and Golovin et al. (2006) independently
presented a polynomial-time ( 83 + ε)-approximation algorithm for the partial multicut in trees
based on the Lagrangian relaxation technique. By more carefully analyzing the relaxation tech-
nique, Mestre (2008) was able to provide an improved polynomial-time (2+ ε)-approximation
algorithm.

When K = 0, the K-PCMTS reduces the multicut problem in trees with submodular penalties
(Liu and Li 2022), in which the problem is to find a partial multicutM such that c(M)+ π(RM) is
minimized. Liu and Li (2022) presented a combinatorial polynomial-time 3-approximation algo-
rithm based on a primal-dual scheme for this problem. When K = 0 and the penalty function
is linear, i.e., π(R)= ∑

j:(sj,tj)∈R π({(sj, tj)}) for any R⊆ P , the K-PCMTS is equivalent to the
prized-collecting multicut problem in trees (Levin and Segev 2006); there is a polynomial-time
2-approximation algorithm for that scenario.

When the penalty function is linear, the K-PCMTS is exactly the K-prize-collecting multicut
problem in trees. Based on the method in Guo et al. (2023), this problem has an O(n)-
approximation algorithm, which is the best result available to our knowledge. When the penalty
function is linear and pj = 1 for any (sj, tj) ∈ P , the K-PCMTS is exactly the k-prize-collecting
multicut problem in trees (Hou et al. 2020). Based on primal-dual and Lagrangian relaxation tech-
niques, Hou et al. (2020) presented a polynomial-time (4+ ε)-approximation algorithm, where ε
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Table 1. Results for the multicut problems in trees; κ is the total curvature of the submodular penalty function

Problem Restriction to Lower Approximation Reference

K-PCMTS bound factor

Multicut problem in trees K = ∑
j:(sj ,tj )∈P pj 2− ε 2 Garg et al. (1997)



Generalized partial π (R)= 0, ∀R⊆ P ; Unit profit 2− ε 2+ ε Mestre (2008)

multicut problem in trees π (R)= 0, ∀R⊆ P 2− ε 8
3 + ε Könemann et al. (2011);

This paper
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Prize-collecting multicut K = 0; Linear penalty 2− ε 2 Levin and Segev (2006);
This paper

problem in tree K = 0; Submodular penalty 2− ε 2+ κ This paper


k-prize-collecting Unit profit; Linear penalty 2− ε 8
3 + ε This paper

multicut problem in trees Unit profit; Submodular penalty 2− ε 8
3 + 4

3 κ + ε This paper


K-prize-collecting Linear penalty 2− ε 8
3 + ε This paper

multicut problem in trees Submodular penalty 2− ε 8
3 + 4

3 κ + ε This paper

is any fixed positive number. Let us note that the algorithm presented in this paper improved the
aforementioned two approximation factors. The k-prize-collecting restriction has been studied in
combinatorial optimization and approximation algorithms, which can be found in Pedrosa and
Rosado (2022), Liu et al. (2022), Ren et al. (2022), and Liu and Li (2023). The partial known results
for the multicut problems in trees are given in Table 1.

1.2 Our results
In this paper, we present a combinatorial polynomial-time approximation for the K-PCMTS. In
our approach, we utilize the primal algorithm for the multicut problem in trees with submodular
functions in Liu and Li (2022). One difficulty in implementing this primal-dual algorithm on the
K-PCMTS is that the output solution is not feasible, i.e., the total profit of the disconnected pairs
by the output solution is less than K. The reason is that the penalty for still-connected pairs is
less than the cost of any edge that can disconnect them. Based on this observation, by carefully
increasing the penalty of each pair, we can obtain a feasible solution for the K-PCMTS.

We show that the approximation factor of the proposed algorithm is ( 83 + 4
3κ + ε), where ε

is any fixed positive number and κ ≤ 1 is the total curvature of the nondecreasing submodular
function (defined in (4)). When π(R)= 0 for any R⊆ P , the K-PCMTS is the generalized partial
multicut problem in trees; then, our factor is 8

3 + ε, which coincides with the best-known ratio in
Könemann et al. (2011).

The remaining sections of this paper are organized as follows. In Section 2, we provide basic
definitions and a formal problem statement. In Section 3, we consider theK-PCMTS. In Section 4,
we conduct a simple simulation to evaluate the performance of the approximation algorithm.
Finally, we provide a brief conclusion.

2. Preliminaries
Let P = {(s1, t1), (s2, t2), . . . , (sm, tm)} be a given ground set and let π : 2P →R be a real-valued
function defined on all subsets of P with π(∅)= 0. We assume that π(·) is given as an evaluation
oracle, which returns the value of π(R) for any R⊆ P in polynomial time. If

π(R1)≤ π(R2), ∀R1 ⊆ R2 ⊆ P , (1)
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function π(·) is called nondecreasing. If

π(R1)+ π(R2)≥ π(R1 ∪ R2)+ π(R1 ∩ R2), ∀R1, R2 ⊆ P , (2)

the function π(·) is called submodular, which has the property of decreasing marginal return
(Fujishige 2005), i.e., for any R1 ⊆ R2 ⊂ P and (sj, tj) ∈ P \ R2, we have

π((sj, tj)|R1)≥ π((sj, tj)|R2), (3)

where π((sj, tj)|R)= π(R∪ {(sj, tj)})− π(R) for any R⊆ P \ {(sj, tj)}.
As in Conforti and Cornuéjols (1984), given a submodular function π(·), the total curvature

κ of π(·), which is the central concept in this paper, is defined as

κ = 1− min
j:(sj,tj)∈P

π((sj, tj)|P \ {(sj, tj)})
π({(sj, tj)}) . (4)

If π(·) is a nondecreasing submodular function, then for any ∀(sj, tj) ∈ P , we have that

0≤ π(P)− π(P \ {(sj, tj)})
π({(sj, tj)}) = π((sj, tj)|P \ {(sj, tj)})

π({(sj, tj)}) ≤ π({(sj, tj)}|∅)
π({(sj, tj)}) = 1,

where the first inequality follows from inequality (1) and the second inequality follows from
inequality (3). This implies that

0≤ κ ≤ 1, if π(·) is a nondecreasing submodular function.

In particular, if

π(R)=
∑

j:(sj,tj)∈R
π({(sj, tj)}), ∀R⊆ P ,

function π(·) is called linear, which implies that

κ = 1− min
j:(sj,tj)∈P

π((sj, tj)|P \ {(sj, tj)})
π({(sj, tj)}) = 1− min

j:(sj,tj)∈P

π({(sj, tj)})
π({(sj, tj)}) = 0.

We are given a tree T = (V , E) with V = {v1, v2, . . . , vn} and E= {e1, e2, . . . , en−1}, a set P =
{(s1, t1), (s2, t2), . . . , (sm, tm)} of m source–sink pairs of vertices with sj, tj ∈V , a nondecreasing
submodular penalty function π : 2P →R≥0, and a profit lower bound K. Each edge e ∈ E has a
positive cost ce, and each source–sink pair (sj, tj) ∈ P can obtain a positive profit pj if sj and tj
are disconnected by removing some edge set from T, i.e., for any M ⊆ E, a pair (sj, tj) is discon-
nected by M if M ∩ Lj = ∅, where Lj is the set of edges in the unique path from sj to tj in tree T.
Correspondingly, let DM be the set of pairs disconnected by M. The K-prize-collecting multicut
problem in trees with submodular penalties (K-PCMTS) is to find a partial multicut M ⊆ E such
that the total profit of the disconnected pairs byM is at leastK, i.e., p(DM)≥K, and c(M)+ π(RM)
is minimized, where RM = P \DM is the set of pairs still connected after removingM. We define
this setup as

c(M)=
∑
e:e∈M

ce, and p(DM)=
∑

j:(sj,tj)∈DM

pj, ∀M ⊆ E.

For any M ⊆ E, we obtain the set RM of pairs still connected after removing M, and we intro-
duce binary variables xe, zR, where xe = 1 if and only if e ∈M and zR = 1 if and only if R= RM .
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The K-PCMTS can be formulated as the following integer program:

min
∑
e:e∈E

cexe +
∑

R:R⊆P

π(R)zR

s.t.
∑
e:e∈Lj

xe +
∑

R⊆P :(sj,tj)∈R
zR ≥ 1, ∀(sj, tj) ∈ P , (5)

∑
R:R∈P

∑
j:(sj,tj)∈R

pjzR ≤ p(P)−K,

xe, zR ∈ {0, 1}, ∀e ∈ E, R⊆ P ,
The first set of constraints ensures that each pair (sj, tj) inP is either disconnected by an edge in Lj
(the set of edges in the unique path from sj to tj in tree T) or penalized, and the second constraint
ensures that the total profit of the disconnected pairs is at least K.

Lemma 1. Given an instance I = (V , E;P ;K, π , c, p) for the K-PCMTS, for any R⊂ P and
(sj, tj) ∈ P \ R, we have

0≤ (1− κ) · π({(sj, tj)})≤ π((sj, tj)|P \ {(sj, tj)})≤ π((sj, tj)|R)≤ π({(sj, tj)}). (6)

Proof. For any R⊂ P and (sj, tj) ∈ P \ R, we have
π((sj, tj)|P \ {(sj, tj)})≤ π((sj, tj)|R)≤ π({(sj, tj)}|∅)= π({(sj, tj)}),

where the inequalities follow from inequality (3).
Based on the above analysis, we have 0≤ κ ≤ 1. If κ = 1, for any (sj, tj) ∈ P , we have that

π((sj, tj)|P \ {(sj, tj)})= π(P)− π(P \ {(sj, tj)})≥ 0= (1− κ) · π({(sj, tj)}),
where the inequality follows from inequality (1). Otherwise, 0≤ κ < 1; for any (sj, tj) ∈ P , based
on the definition of the total curvature in (4), it is not difficult to obtain that

π((sj, tj)|P \ {(sj, tj)})> 0, and κ ≥ 1− π((sj, tj)|P \ {(sj, tj)})
π({(sj, tj)}) .

These findings imply that
π((sj, tj)|P \ {(sj, tj)})≥ (1− κ) · π({(sj, tj)})≥ (1− κ) · π((sj, tj)|P \ {(sj, tj)})> 0,

where the second inequality follows from inequality (1).
Therefore, the lemma holds.

For convenience, let ε be a given, fixed, positive number. LetM∗ be an optimal solution to the
K-PCMTS with objective value OPT; let RM∗ be the set of the pairs still connected after removing
M∗. Inspired by the preprocessing step in Levin and Segev (2006), there are at most �1/ε� edges
in M∗ with ce ≥ ε ·OPT. Therefore, we can estimate all edges whose cost is greater than ε ·OPT
in M∗ by evaluating all O(n�1/ε�) subsets H ⊆ E with a cardinality of at most �1/ε�. We include
H in the solution, eliminate the subset of pairs separated byH, update the requirement parameter,
and contract all edges whose cost is greater than mine:e∈H ce. Thus,we assume that any edge, e ∈ E,
satisfies

ce ≤ ε ·OPT. (7)

3. The K-PCMTS
The K-PCMTS is an extension of the multicut problem in trees with submodular penalties (MTS)
and has a primal-dual 3-approximation algorithm (Liu and Li 2022) denoted as A . However,
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the output solution to A may not be a feasible solution to the K-PCMTS since the total profit of
disconnected pairs is less thanK. Extending the algorithm presented in Levin and Segev (2006), we
present an algorithm for the K-PCMTS by utilizing the primal-dual algorithm A on the instance
of the MTS with an increasing penalty.

In Subsection 3.1, we first define the instance of the MTS with the increasing penalty. Then,
we recall the primal-dual algorithm A (Liu and Li 2022), and we introduce some key lemmas. In
Subsection 3.2, we present a polynomial-time approximation algorithm for the K-PCMTS, and
we prove that the objective of its output solutionM is

OUT = c(M)+ π(RM)≤ (
8
3

+ 4
3
κ + ε) ·OPT,

where OPT denotes the optimal value for the K-PCMTS.

3.1 Instance of the MTS with increasing penalty and the primal-dual algorithm
Given an instance I = (V , E;P ;K, π , c, p) for the K-PCMTS, for any λ ≥ 0, we construct an
instance Iλ = (V , E;P ; πλ, c) of the MTS with an increasing penalty for λ, where πλ(·) is defined
as follows:

πλ(R)= π(R)+
∑

j:(sj,tj)∈R
λ · pj = π(R)+ λ · p(R), ∀R⊆ P . (8)

The MTS represents the multicut problem with a submodular penalty, in which the objective is to
find a multicut Mλ ⊆ E such that the total cost of edges in Mλ plus the penalty of the set of pairs
still connected after removingMλ is minimized, i.e.,Mλ = arg minM:M⊆E c(M)+ πλ(RM).

Since function πλ(·) is the sum of a nondecreasing submodular function π(·) and a linear
function p(·), the following lemma is easy to verify:

Lemma 2. (Fujishige 2005) πλ(·) is a nondecreasing submodular function.

Then, the MTS for Iλ can be formulated as an integer program by

min
∑
e:e∈E

cexe +
∑

R:R⊆P

πλ(R)zR

s.t.
∑
e:e∈Lj

xe +
∑

R⊆P :(sj,tj)∈R
zR ≥ 1, ∀(sj, tj) ∈ P , (9)

xe, zR ∈ {0, 1}, ∀e ∈ E, R⊆ P ,
where Lj is the set of edges in the unique path from sj to tj in tree T, xe indicates whether edge e
is selected for the multicut, and zR indicates whether R is selected to be rejected. The first set of
constraints of (9) guarantees that each pair (sj, tj) ∈ P is either disconnected by an edge in Lj or
penalized. Relaxing the integral constraints, we obtain a linear program where we need not add
constraints xe ≤ 1 and zR ≤ 1 since they are automatically satisfied in an optimal solution. The
dual of this linear program is

max
∑

j:(sj,tj)∈P

yj

s.t.
∑
j:e∈Lj

yj ≤ ce, ∀e ∈ E, (10)

∑
j:(sj,tj)∈R

yj ≤ πλ(R), ∀R⊆ P ,

yj ≥ 0, ∀(sj, tj) ∈ P .
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Then, we recall algorithm A (Liu and Li 2022) based on the primal-dual scheme designed in
Garg et al. (1997).

Given an instance Iλ of the MTS, we consider a dual feasible solution y= (y1, y2, . . . , ym) of
(10), where entry yj is a nonnegative variable for pair (sj, tj) ∈ P . If

∑
j:e∈Lj yj = ce for any e ∈ E,

then edge e is considered tight. Similarly, if
∑

j:(sj,tj)∈R yj = πλ(R) for any R⊆ P , then the pair set
R is considered tight.

Algorithm A designates r as the root, where r is an arbitrary vertex in the tree. Then, the level
of a vertex is defined as its distance from root r, and the level of an edge e= (u, v) is determined by
the minimum level of vertices u and v. The root r is considered to be level 0. For each source–sink
pair (sj, tj) in P , we say that it is contained in subtree Tv rooted at vertex v if the corresponding
path Lj lies entirely within this subtree. Additionally, a pair (sj, tj) is considered contained in level
l if it is contained within a subtree rooted at a vertex in level l. Let lmax be the maximum level that
contains at least one pair in P . An edge e1 is an ancestor of an edge e2 if e1 lies on the path from
e2 to the root.

In the algorithm, Pdisc denotes the set of pairs that are disconnected after removing the
selected edges; Rtemp denotes the set of pairs that are tight and temporarily rejected.

Initially, we set y= 0 andMλ = RMλ = Pdisc = Rtemp = ∅. The algorithm consists of two phases
over the tree.

Phase 1. The algorithmmoves the tree from level lmax to level 0, one level at a time, adding some
edges toM. At each level l= lmax, lmax − 1, . . . , 0, for every vertex v in level l such that Tv contains
at least one pair in P \ (Pdisc ∪ Rtemp). Let Pv contain all the pairs of P \ (Pdisc ∪ Rtemp) in
subtree Tv. For each pair (sj, tj) ∈ Pv, the algorithm increases the dual variable yj as much as
possible until either an edge or a pair set becomes tight.

Case 1. If there is an edge e ∈ Lj that becomes tight, then the algorithm adds (sj, tj) to Pdisc. All
tight edges are added to the set of the frontier(v), which is the frontier of vertex v. If there are two
edges in the frontier(v) such that one edge is an ancestor of the other edge, then we need only the
ancestor in the set of frontier(v).

Case 2. If there is a subset R⊆ P that becomes tight, then the algorithm adds all the pairs in R
to temporary set Rtemp.

Phase 2. The algorithm moves down the tree one level at a time from level 0 to level lmax and
builds the final output solution to Mλ. At each level l= 0, 1, . . . , lmax, for every vertex v in level
l, such that frontier(v) = ∅, and the algorithm considers the edges in frontier(v). For each edge
e ∈ frontier(v), if no edge along the path from e to v is already included inMλ; then, the algorithm
adds e to Mλ. Finally, for each pair (sj, tj) ∈ Rtemp, if there is no edge e ∈Mλ ∩ Lj, then (sj, tj) is
added to RMλ .

Let y be the vector generated by A . The following lemmas are easy to obtain by Lemma 2 and
(Garg et al. 1997; Liu and Li 2022).

Lemma 3. (Liu and Li 2022) y is a feasible solution to the dual program (10), and A can be
implemented in O(n6 · ρ + n7), where ρ is the running time of evaluating (the oracle for) π .

Proof. In any iteration, the tight set in Case 2 can be found in O(n5 · ρ + n6) by using the combi-
natorial algorithm for the submodular minimization problem (Orlin 2009). Since at least one pair
is added to either Pdisc or Rtemp in any iteration of Phase 1, it is easy to determine that Algorithm
1 can be implemented in O(n6 · ρ + n7).

Lemma 4. πλ((sj, tj)|P \ {(sj, tj)})≤ yj ≤ πλ({(sj, tj)}), ∀(sj, tj) ∈ Rtemp

Proof. Based on Lemma 3, we have
∑

j:(sj,tj)∈R yj ≤ πλ(R) for any set R⊆ P by the second set of
constraints of (10). This implies that
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yj ≤ πλ({(sj, tj)}), ∀(sj, tj) ∈ Rtemp.

For any pair (sj, tj) ∈ Rtemp, by Case 2 of A , there exists a tight set R with (sj, tj) ∈ R, i.e.,

πλ(R)=
∑

j:(sj,tj)∈R
yj = yj +

∑
j′:(sj′ ,tj′ )∈R\{(sj,tj)}

yj′ ≤ yj + πλ(R \ {(sj, tj)}).

Rearranging the above inequality, for any pair (sj, tj) ∈ Rtemp, we have
yj ≥ πλ(R)− πλ(R \ {(sj, tj)})= πλ((sj, tj)|R \ {(sj, tj)})≥ πλ((sj, tj)|P \ {(sj, tj)}),

where the last inequality follows from Lemma 2 and inequality (3).

Lemma 5. (Liu and Li 2022) πλ(Rtemp)= ∑
j:(sj,tj)∈Rtemp yj.

Lemma 6. (Garg et al. 1997) For any (sj, tj) ∈ P with yj > 0, Mλ generated by A satisfies |Mλ ∩
Lj| ≤ 2.

Lemma 7. Let κλ be the total curvature of πλ; then, Mλ generated by A satisfies
∑

e:e∈Mλ

ce + πλ(RMλ)+ (1+ κλ) ·
∑

e:e∈RMλ

πλ({(sj, tj)}|P \ {(sj, tj)})≤ (2+ κλ) ·OPTλ,

where OPTλ denotes the optimal value for instance Iλ, of the MTS.

Proof. For any edge e ∈Mλ, e is a tight edge, i.e.,
∑

j:e∈Lj yj = ce. The objective value ofMλ is
∑

e:e∈Mλ

ce + πλ(RMλ)

=
∑

e:e∈Mλ

∑
j:e∈Lj

yj + πλ(Rtemp)− πλ(Rtemp)+ πλ(RMλ)

=
∑

j:(sj,tj)∈DMλ

yj · |Mλ ∩ Lj| +
∑

j:(sj,tj)∈Rtemp

yj − πλ(Rtemp)+ πλ(RMλ)

≤ 2 ·
∑

j:(sj,tj)∈DMλ

yj +
∑

j:(sj,tj)∈Rtemp

yj −
∑

j:(sj,tj)∈Rtemp\RMλ

πλ((sj, tj)|P \ {(sj, tj)})

≤ 2 ·
∑

j:(sj,tj)∈DMλ

yj +
∑

j:(sj,tj)∈Rtemp

yj −
∑

j:(sj,tj)∈Rtemp\RMλ

(1− κλ) · πλ({(sj, tj)})

≤ 2 ·
∑

j:(sj,tj)∈DMλ

yj +
∑

j:(sj,tj)∈Rtemp

yj −
∑

j:(sj,tj)∈Rtemp\RMλ

(1− κλ) · yj

= 2 ·
∑

j:(sj,tj)∈DMλ

yj + κλ ·
∑

j:(sj,tj)∈Rtemp

yj + (1− κλ) ·
∑

j:(sj,tj)∈RMλ

yj

≤ 2 ·
∑

j:(sj,tj)∈DMλ

yj + κλ · (
∑

j:(sj,tj)∈DMλ

yj +
∑

j:(sj,tj)∈RMλ

yj)+ (1− κλ) ·
∑

j:(sj,tj)∈RMλ

yj

= (2+ κλ) ·
∑

j:(sj,tj)∈P

yj − (1+ κλ) ·
∑

j:(sj,tj)∈RMλ

yj

≤ (2+ κλ) ·OPTλ − (1+ κλ) ·
∑

j:(sj,tj)∈RMλ

πλ((sj, tj)|P \ {(sj, tj)}),
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where DMλ is the set of pairs disconnected by Mλ. The first and second inequalities follow from
inequality (6) and Lemma 6, the third inequality follows from Lemma 4, the fourth inequality
follows from Rtemp ⊆ P =DMλ ∪ RMλ , and the last inequality follows from Lemmas 3 and 4.

Based on Lemma 7, when πλ(·) is a linear function, i.e., κλ = 0, the approximation factor of
A is 2, which is equal to the approximation factor in Levin and Segev (2006); when πλ(·) is a
nondecreasing submodular function, we have that κλ ≤ 1, and the approximation factor of A
is no more than 3, where 3 is the approximation factor in Liu and Li (2022). Thus, Lemma 7
provides a specific relationship between the approximation factor achieved by the algorithm and
the total curvature of the penalty function. This relationship serves as a key component to derive
the approximation factor of the following algorithm for the K-PCMTS problem.

3.2 Approximation algorithm for the K-PCMTS
For any λ ≥ 0, let Mλ denote the solution generated by A for instance Iλ of the MTS with an
increasing penalty for λ. Furthermore, let pλ be the total profit of the disconnected pairs obtained
by removingMλ, i.e.,

pλ = p(DMλ),

where DMλ represents the set of pairs that become disconnected after removingMλ.
We present the algorithm for the K-PCMTS as follows:
(1) If the total profit of the disconnected pairs p0 is greater than or equal to K, then the

algorithm outputs solutionM0, and the algorithm is terminated.
(2) The algorithm conducts a binary search over the interval [0, 1

minj pj
∑

e:e∈E ce + 1] by using
algorithm A to find two values of λ, namely, λ1 and λ2, which satisfy the following conditions:

⎧⎪⎪⎨
⎪⎪⎩

λ1 > λ2;

λ1 − λ2 ≤ εcmin
p(P)

;

pλ1 ≥K > pλ2 .

Here, cmin represents the minimum cost among all edges in E, and p(P)= ∑
j:(sj,tj)∈P pj is the

total profit of the source–sink pairs in P . In particular, if there exists some λ satisfying pλ =K,
then the algorithm outputs solutionMλ and terminates.

(3) For each pair (sj, tj) ∈DMλ1
\DMλ2

, the algorithm assigns it to an arbitrary edge e ∈Mλ1 \
Mλ2 with e ∈ Lj, where Lj is the set of edges in the unique path from sj to tj in tree T. Let ϕ(e)
denote the total profit of pairs assigned to e. The algorithm sorts the edges in Mλ1 \Mλ2 with
ϕ(e)> 0 in nondecreasing order, i.e.,

ce1
ϕ(e1)

≤ ce2
ϕ(e2)

≤ · · · ≤ cek
ϕ(ek)

, (11)

where k= ∣∣{e ∈Mλ1 \Mλ2 |ϕ(e)> 0}∣∣. Let M′
λ1

= {e1, . . . , eq} be the first q edge in Mλ1 \Mλ2 ,
where q is the minimal index satisfying

∑q
i=1 ϕ(ei)≥K − pλ2 .

(4) The solution that minimizes the objective value between Mλ1 and Mλ2 ∪M′
λ1

is output,
and the algorithm terminates. We propose the detailed primal-dual algorithm, which is shown in
Algorithm 1:

Lemma 8.
∑

e∈M′
λ1
ce ≤ K−pλ2

pλ1−pλ2

∑
e:e∈Mλ1\Mλ2

ce + ε ·OPT.
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Algorithm 1: Increasing penalty algorithm
Input: An instance I = (V , E;P ;K, π , c, p) of the K-PCMTS and a number, ε.
Output: Feasible solutionM.

1 Set cmin :=mine:e∈E ce, λ1 := 1
minj pj

∑
e:e∈E ce and λ2 := 0. LetMλ1 andMλ2 be the output

solutions generated by A on instances Iλ1 and Iλ2 , respectively.
2 If pλ1 =K, then letM :=Mλ1 and go to 11; if pλ2 ≥K, then letM :=Mλ2 and go to 11.
3 while λ1 − λ2 ≤ εcmin

p(P) do
4 Set λ′ = λ1+λ2

2 and letMλ′ be the output solution generated by A on instance Iλ′ .
5 if pλ′ ≥K then
6 Set λ1 := λ′. If pλ′ =K, then letM :=Mλ′ and go to 11;
7 else if pλ′ <K then
8 Set λ2 := λ′.

9 Construct function ϕ :Mλ1 \Mλ2 → R≥0 and find edge setM′
λ1

= {e1, . . . , eq} as above.
10 SetM := arg min{∑e:e∈Mλ1

ce + π(RMλ1
),

∑
e:e∈Mλ2∪M′

λ1
ce + π(RMλ2∪M′

λ1
)}.

11 OutputM.

Proof. Since inequality (11) and q≤ k, we have
∑q−1

i=1 cei∑q−1
i=1 ϕ(ei)

≤
∑k

i′=1 cei′∑k
i′=1 ϕ(ei′ )

. Rearranging this inequal-

ity, we have
q−1∑
i=1

cei ≤
∑q−1

i=1 ϕ(ei)∑k
i′=1 ϕ(ei′)

·
k∑

i′=1
cei′ <

K − pλ2

pλ1 − pλ2
·

∑
e:e∈Mλ1\Mλ2

ce,

where the second inequality follows from
∑q−1

i=1 ϕ(ei)<
∑k

i=1 ϕ(ei)=K − pλ2 and {e1, . . . , ek} ⊆
Mλ1 \Mλ2 . Thus,

∑q
i=1 cei =

∑q−1
i=1 cei + ceq <

K−pλ2
pλ1−pλ2

∑
e:e∈Mλ1\Mλ2

ce + ε ·OPT, where the
inequality follows from inequality (7).

Lemma 9. For any λ ≥ 0, let Mλ be the output solution generated byA on instanceIλ; its objective
value is ∑

e:e∈Mλ

ce + π(RMλ)≤ (2+ κ) · (OPT + λ · (pλ −K)
)
.

Here, OPT represents the optimal value of the K-PCMTS for instance I ; RMλ is the set of pairs still
connected after removing Mλ; and κ represents the total curvature of π(·).

Proof. LetM∗ be an optimal solution; letOPT = ∑
e:e∈M∗ ce + π(RM∗) be the optimal value of the

K-PCMTS on instance I . Then,M∗ is also a feasible solution for instance Iλ of the MTS for any
λ ≥ 0, and

OPTλ ≤
∑

e:e∈M∗
ce + πλ(RM∗)

=
∑

e:e∈M∗
ce + π(RM∗)+ λ · p(RM∗)

= OPT + λ · p(RM∗), (12)

where OPTλ is the optimal value on instance Iλ of the MTS, and RM∗ = P \DM∗ is the set of
pairs still connected after removingM∗.
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Based on the definition of total curvature and πλ(·) in (8), we have

κλ = 1− min
j:(sj,tj)∈P

πλ((sj, tj)|P \ {(sj, tj)})
πλ({(sj, tj)})

= 1− min
j:(sj,tj)∈P

πλ(P)− πλ(P \ {(sj, tj)})
π({(sj, tj)})+ λ · pj

= 1− min
j:(sj,tj)∈P

π(P)+ λ · p(P)− π(P \ {(sj, tj)})− λ · p(P \ {(sj, tj)})
π({(sj, tj)})+ λ · pj

= 1− min
j:(sj,tj)∈P

π((sj, tj)|P \ {(sj, tj)})+ λ · pj
π({(sj, tj)})+ λ · pj

≤ 1− min
j:(sj,tj)∈P

π((sj, tj)|P \ {(sj, tj)})
π({(sj, tj)}) = κ . (13)

The objective value ofMλ is
∑

e:e∈Mλ

ce + π(RMλ)

=
∑

e:e∈Mλ

ce + πλ(RMλ)− πλ(RMλ)+ π(RMλ)

≤ (2+ κλ) ·OPTλ − (1+ κλ) ·
∑

j:(sj,tj)∈RMλ

πλ({(sj, tj)}|P \ {(sj, tj)})− πλ(RMλ)+ π(RMλ)

= (2+ κλ) ·OPTλ − (1+ κλ) ·
∑

j:(sj,tj)∈RMλ

(
πλ(P)− πλ(P \ {(sj, tj)})

) − λ · p(RMλ)

= (2+ κλ) ·OPTλ − (1+ κλ) ·
∑

j:(sj,tj)∈RMλ

(
π(P)− π(P \ {(sj, tj)})+ λ · pj

) − λ · p(RMλ)

≤ (2+ κλ) ·OPTλ − (2+ κλ) · λ · p(RMλ)
≤ (2+ κλ) ·

(
OPT + λ · p(RM∗)− λ · p(RMλ)

)

= (2+ κλ) ·
(
OPT + λ · (p(P)− p(DM∗))− λ · (p(P)− pλ)

)

≤ (2+ κ) · (OPT + λ · (pλ −K)
)
,

where the first inequality follows from Lemma 7, the second inequality follows from inequality (1),
and the third inequality follows from inequality (12). The last inequality follows from inequalities
(13) and p(DM∗)≥K sinceM∗ is a feasible solution to the K-PCMTS for instance I .

Lemma 10. Algorithm 1 can be implemented in O
(
log p(P)

∑
e:e∈E ce

εcminminj pj · (n6 · ρ + n7)
)
, where ρ is the

running time of evaluating (the oracle for) π .

Proof. In each while loop, algorithm A is used once. We can find λ1 and λ2 satisfying λ1 −
λ2 ≤ εcmin

p(P) after at most O( log
1

minj pj
∑

e:e∈E ce+1
εcmin
p(P)

)=O( log p(P)
∑

e:e∈E ce
εcminminj pj ) while loops. By Lemma 3,

Algorithm 1 can be implemented in O
(
log p(P)

∑
e:e∈E ce

εcminminj pj · (n6 · ρ + n7)
)
.

Theorem. The objective value of M generated by Algorithm 1 is
∑
e:e∈M

ce + π(RM)≤ (8
3

+ 4
3

· κ + 9 · ε) ·OPT,
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where RM = P \DM is the set of pairs still connected after removing M, and κ is the total curvature
of π(·).

Proof. If p0 ≥K, then (M0, R0) is a feasible solution to K-PCMTS for instanceI , and its objective
value is ∑

e:e∈M0

ce + π(RM0 )≤ (2+ κ) · (OPT + 0 · (p0 −K)
) = (2+ κ) ·OPT,

where the inequality follows from Lemma 9. The theorem holds.
If pλ1 =K, then (Mλ1 , Rλ1 ) is a feasible solution to the K-PCMTS for instance I , and its

objective value is
∑

e:e∈Mλ1

ce + π(RMλ1
)≤ (2+ κ) · (OPT + λ · (pλ1 −K)

) = (2+ κ) ·OPT,

where the inequality follows from Lemma 9. The theorem holds.
Then, we consider the case where pλ1 >K when the algorithm is terminated. Let α = K−pλ2

pλ1−pλ2
;

Then, we have

α ∈ (0, 1),

by pλ1 >K and pλ2 <K such that

α · (pλ1 −K)+ (1− α) · (pλ2 −K)

= (K − pλ2 ) · (pλ1 −K)
pλ1 − pλ2

+ (1− K − pλ2

pλ1 − pλ2
) · (pλ2 −K)

= (K − pλ2 ) · (pλ1 −K)
pλ1 − pλ2

+ pλ1 − pλ2 −K + pλ2

pλ1 − pλ2
· (pλ2 −K)

= (K − pλ2 ) · (pλ1 −K)
pλ1 − pλ2

+ (pλ1 −K) · (pλ2 −K)
pλ1 − pλ2

= 0.

Thus,

α · (
∑

e:e∈Mλ1

ce + π(RMλ1
)
) + (1− α) · (

∑
e:e∈Mλ2

ce + π(RMλ2
)
)

≤ (2+ κ) · α · (OPT + λ1 · (pλ1 −K)
) + (2+ κ) · (1− α) · (OPT + λ2 · (pλ2 −K)

)

≤ (2+ κ) ·OPT + (2+ κ) · α · (λ2 + εcmin
p(P)

) · (pλ1 −K)+ (2+ κ) · (1− α) · λ2 · (pλ2 −K)

= (2+ κ) ·OPT + (2+ κ) · λ2 · (α · (pλ1 −K)+ (1− α) · (pλ2 −K)
)

+(2+ κ) · α · εcmin
p(P)

· (pλ1 −K)

= (2+ κ) ·OPT + (2+ κ) · α · εcmin
p(P)

· (pλ1 −K)

≤ (2+ κ) ·OPT + (2+ κ) · ε · cmin

≤ (2+ κ) · (1+ ε) ·OPT, (14)

where the first inequality follows from Lemma 9, the second inequality follows from λ1 − λ2 ≤
εcmin
p(P) , the third inequality follows from α ∈ (0, 1) and pλ1−K

p(P) ≤ 1 by p(P)≥ pλ1 −K, and the last
inequality follows from inequality (13).
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Case 1. If
∑

e:e∈Mλ2
ce + π(RMλ2

)≤ 2+κ
3·α ·OPT, then the objective value ofM is

∑
e:e∈M

ce + π(RM) ≤
∑

e:e∈Mλ2∪M′
λ1

ce + π(RMλ2∪M′
λ1
)

=
∑

e:e∈M′
λ1

ce +
∑

e:e∈Mλ2

ce + π(RMλ2∪M′
λ1
)

≤
∑

e:e∈M′
λ1

ce +
∑

e:e∈Mλ2

ce + π(RMλ2
)

≤ α ·
∑

e:e∈Mλ1\Mλ2

ce + ε ·OPT +
∑

e:e∈Mλ2

ce + π(RMλ2
)

≤ α · (
∑

e:e∈Mλ1

ce + π(RMλ1
)
) + (1− α) · (

∑
e:e∈Mλ2

ce + π(RMλ2
)
)

+ α · (
∑

e:e∈Mλ2

ce + π(RMλ2
)
) + ε ·OPT

≤ (2+ κ) · (1+ ε) ·OPT + 2+ κ

3
·OPT + ε ·OPT

= (8
3

+ 4
3

· κ + (3+ κ) · ε) ·OPT

≤ (8
3

+ 4
3

· κ + 4 · ε) ·OPT,
where the second inequality follows from RMa ⊆ RMλ2

and the third inequality follows from
Lemma 8: The fourth inequality follows from

∑
e:e∈Mλ1\Mλ2

ce ≤ ∑
e:e∈Mλ1

ce ≤ ∑
e:e∈Mλ1

ce +
π(RMλ1

), the fifth inequality follows from inequality (14) and from the assumption that∑
e:e∈Mλ2

ce + π(RMλ2
)≤ 2+κ

3·α ·OPT, and the last inequality follows from κ ≤ 1.
Case 2. If

∑
e:e∈Mλ2

ce + π(RMλ2
)> 2+κ

3·α ·OPT, then the objective value ofM is
∑
e:e∈M

ce + π(RM) ≤
∑

e:e∈Mλ1

ce + π(RMλ1
)

≤
(2+ κ) · (1+ ε) ·OPT − (1− α) · ( ∑

e:e∈Mλ2
ce + π(RMλ2

)
)

α

≤ (2+ κ) · (1+ ε) ·OPT − (1− α) · 2+κ
3·α ·OPT

α

= ( − 1
3

· (2+ κ) · ( 1
α
)2 + (

4
3

+ ε) · (2+ κ) · 1
α

) ·OPT

≤ (8
3

+ 4
3
κ + 9 · ε) ·OPT,

where the second inequality follows from inequality (14) and the third inequality follows from
the assumption that

∑
e:e∈Mλ2

ce + π(RMλ2
)> 2+κ

3·α ·OPT. The last inequality follows from 1
α

∈
(1,+∞), κ ∈ [0, 1] and the following fact: The function f (x)= − 1

3 · (2+ κ) · x2 + ( 43 + ε) · (2+
κ) · x satisfies f (2+ 3

2ε)≥ f (x′) for any x′ ∈ [1,+∞), i.e.,

f (
1
α
)≤ f (2+ 3

2
ε)= (2+ κ)(

4
3

+ 2 · ε + 3
4
ε2)≤ 8

3
+ 4

3
κ + 9 · ε, ∀α ∈ (0, 1).
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Figure 1. InstanceI of the K-PCMTS.

Therefore, the theorem holds.

Corollary 11. Algorithm 1 is a tight ( 83 + ε)-approximation algorithm for the K-PCMTS with
κ = 0; i.e., the penalty function is linear, which is a generalization of the k-prize-collecting mul-
ticut problem in trees. Thus, our algorithm improves upon the (4+ ε)-approximation algorithm
presented by Hou et al. (2020).

Proof. Then, we use a simple example to illustrate that the approximation factor of Algorithm 1
is tight.

We are given an instance I = (V , E;P ;K, π , c, p) of the K-PCMTS, which is
shown in Figure 1, where V = {v0, v1, v2, v3, v4, v5}, E= {e1, e2, e3, e4, e5}, and P =
{(s1, t1), (s2, t2), (s3, t3), (s4, t4)}, and the function π(·) satisfies π(R)= 0 for any R⊆ P ; i.e.,
π(·) is a linear function, and κ = 0. Pair (s1, t1) is (v4, v5), both (s2, t2) and (s3, t3) are (v2, v3), and
(s4, t4) is (v0, v1). Given a positive number, ε∗ > 0, we define

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ce1 = 1+ 3ε∗;

ce2 = 4
3
;

ce3 = 4
3
;

ce4 = 2
3

− ε∗;

ce5 = 2
3

− ε∗;

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

p1 = 2
3
;

p2 = 1
3

+ 1
3
ε∗;

p3 = 1
3

+ 1
3
ε∗;

p4 = 1+ ε∗;

K = 1+ 1
2
ε∗.

It is easy to determine that the optimal multicutM∗ = {e1}; its objective value is OPT = 1+ 3ε∗.
For any λ, we construct an instance Iλ of the MTS as above, i.e., the penalty πλ(j)= 0+ λ ·

pj for each (sj, tj) ∈ P . For convenience, we define v0 as the root. When λ = 0, M0 = ∅, and all
the pairs are connected. Thus, M0 is not a feasible solution. Then, Algorithm 1 finds λ1 and λ2
satisfying λ1 > λ2, λ1 − λ2 ≤ εcmin

p(P) , and pλ1 ≥K > pλ2 by using a binary search over the interval
[0, 15+3ε∗

1+ε∗ + 1].
It is not difficult to prove thatMλ is not a feasible solution if λ < 1+ 2+3ε∗

6+2ε∗ and thatMλ is a fea-
sible solution if λ > 1+ 2+3ε∗

6+2ε∗ . Since ε∗ is a given number, we can assume that Algorithm 1 obtains
λ1 = 1+ ε∗ and λ2 = 1. When λ1 = 1+ ε∗, we have πλ1 (1)= 2

3 (1+ ε∗), πλ1 (2)= πλ1 (3)= 1
3 (1+

ε∗)2 ≥ 1
3 + 2

3ε
∗, and πλ1 (4)= (1+ ε∗)2 < 1+ 3ε∗, where the last inequality follows if ε∗ < 1. By

using A , edges e2 and e3 are selected, and (s4, t4) is still connected. Thus, Mλ1 = {e2, e3} is a
feasible solution, and its objective is 8

3 . When λ2 = 1, we have πλ1 (1)= 2
3 , πλ1 (2)= πλ1 (3)=

1
3 + 1

3ε
∗, and πλ1 (4)= 1+ ε∗. By using A , edges e4 and e5 are selected, and (s2, t2), (s3, t3) and

(s4, t4) are still connected. Thus, Mλ2 is not a feasible solution because the disconnected profit is
2
3 <K. Thus, we need to construct a feasible solution by augmenting Mλ2 with a carefully cho-
sen subset, M′

λ1
⊆Mλ1 . In this process, (s2, t2) is assigned to e2, and (s3, t3) is assigned to e3.

https://doi.org/10.1017/S0960129524000124 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129524000124


Mathematical Structures in Computer Science 207

Since p1 + p2 = p1 + p3 = 1+ 1
3ε

∗ <K,M′
λ1

= {e2, e3}. Thus,Mλ2 ∪M′
λ1

= {e2, e3, e4, e5}, and its
objective is 12

3 − 2ε∗.
Therefore,M =Mλ1 = {e2, e3} and that

∑
e:e∈M ce + π(RM)

OPT
=

8
3

1+ 3ε∗ → 8
3
, when ε∗ → 0.

4. Numerical Experiments
The primary objective of this experimental study is to demonstrate the practical performance
of Algorithm 1 and to compare it to that of a baseline method. Two datasets are utilized in the
experiments. In the first experiment, we use a small-scale dataset, where the optimal solution and
cost can be obtained. We evaluate the practical performance of our algorithm, and we compare it
against those of the optimal solution and the GLH algorithm presented by Guo et al. (2023). In
the second experiment, we use a large-scale dataset, where obtaining the optimal solution is not
feasible. We evaluate the practical performance of our algorithm and compare it against that of
the GLH algorithm.

Implementation details. The machine used for the experiments is equipped with an Intel(R)
Core(TM) i9-10850H (3.60 GHz) CPU and 64 GB of main memory. The OS is Windows 11.

Datasets. Each dataset utilized in the study consists of 100 instances of the K-PCMTS. All
instances within a dataset share the same level l of the tree and the same number m of pairs. The
tree structure of each dataset is a complete binary tree with l levels. The weights associated with
each edge in the tree are randomly generated, adhering to predefined ranges. From this complete
binary tree, m pairs are randomly selected. For each pair, profit and penalty values are generated,
following an average distribution within predefined ranges.

Submodular penalty function. We use the following nondecreasing submodular function for
the experiments:

π(R)=
∑

j:(sj,tj)∈R
πj − θ · (|R|2 − |R|), ∀R⊆ P ,

where θ is a positive number.
Experimental procedures. To obtain the optimal value for the K-PCMTS, we utilize the open-

source IBM tool Cplex to solve the integer program (5). For comparison purposes, we also execute
the GLH algorithm of the K-prize-collecting set cover problem proposed by Guo et al. (2023). Let
the source–sink pair set be the ground set; let each edge be a set whose elements are the discon-
nected pairs after removing this edge. For each pair (sj, tj), let its penalty be π({(sj, tj)}). The GLH
algorithm can find a feasible solution for the K-PCMTS. In the first experiment, we compare the
objective values obtained by Algorithm 1 against both the optimal value and the objective value
obtained by the GLH algorithm. This evaluation is conducted on a small-scale dataset, considering
various parameter settings for θ . In the second experiment, we compare Algorithm 1 solely with
the GLH algorithm, utilizing a large-scale dataset. The experiments involve varying the values of
parameters l andm to assess the performance of the algorithm in various scenarios.

Numerical results. Figure 2 illustrates the objective values obtained by Algorithm 1, the optimal
value, and the GLH algorithm for various θ values on a small-scale dataset with l= 5 and m= 5.
Furthermore, Figure 3 displays the objective values of Algorithm 1 and the GLH algorithm for
varyingm values on a large-scale dataset with θ = 0.2 and l= 40. The results highlight several key
findings. First, the results validate that the practical performance of Algorithm 1 is much better
than is the theoretical performance, which the objective value of Algorithm 1 is less than 130%
compared with the optimal value in most cases. Moreover, it is evident that the gap between the
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Figure 2. Solution quality for a small-scale dataset.

Figure 3. Performances of Algorithm 1 against the linear algorithm.
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objective values generated by Algorithm 1 and by the GLH algorithm widens with increasing
values of θ andm, which agrees with our expectations.

5. Final Remarks
We consider the K-prize-collecting multicut problem in trees with submodular penalties. This
problem is a generalization of the minimum multicut problem in trees, the partial multicut
problem in trees, the generalized partial multicut problem in trees, the prize-collecting multicut
problem in trees, the multicut problem in trees with submodular penalties, and the k-prize-
collecting multicut problem in trees. These problems have been widely studied. In this paper, we
present a combinatorial polynomial-time ( 83 + 4

3κ + ε)-approximation algorithm, where ε is any
fixed positive number and κ is the total curvature of the submodular function.

Garg et al. (1997) presented a lower bound showing that there is no algorithm with an approx-
imation factor less than 2 for the multicut problem in trees. The K-prize-collecting multicut
problem in trees with submodular penalties generalizes the multicut problem in trees, and the
lower bound is at least 2. There is a large gap between our algorithm and this lower bound.

In many realistic applications, many functions are difficult to compute; we usually have only
a noisy oracle (such as multiplicative or additive noise) that returns an approximate value of the
function (Yang et al. 2019). It is obvious that the submodular function under noise is a set func-
tion and that there is no polynomial algorithm for the set function minimization problem, which
means that our algorithm cannot solve the problem under noise. It is thus of interest to design a
constant approximation algorithm for this problem under noise.
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