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ABSTRACT (159 words) 

To investigate dislocation densities of deformed polycrystalline ice the modified Warren-Averbach 

and modified Williamson-Hall plots of X-ray line broadening have been applied to artificial ice with 

and without silica particles, which model microparticles in ice sheets. This also provides us with the 

dislocation velocity during creep. Creep tests were conducted at -20ºC and 2 MPa by altering the 

strains using the artificial ice. In the primary creep regon the ice with microparticles is remarkably 

deformed, and the strain rate is suppressed because of high dislocation densities. At 10% strain the 

dislocation density shows the maximum value due to the continuous dislocation pile-ups in the 

silica-containing ice: the dislocation density in the pure ice remains almost constant within the 

maximum strain used in this study. As the strains continuously decrease, microparticles pin the grain 

boundaries, leading to small grain sizes. Such small grain sizes provide sinks for dislocation 

annihilations, resulting in decrease in the dislocation densities in the silica-containing ice. 
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INTRODUCTION 

The global mean sea level has risen faster with acceleration in recent decades. It has been reported 

that the sea-level changes occur due to ice loss particularly in the Greenland ice sheet. However, it 

has also been reported that the acceleration in mass loss between 2006 and 2015 was at an average 

rate of 278 ± 11 Gt yr
-1

 from Greenland and 155 ± 19 Gt yr
-1

 from Antarctica (IPCC, 2019: 

Summary for Policymakers). One of the reasons for mass loss is believed to be related to the ice 

sheet flows from Greenland and Antarctica. As mentioned above the ice sheet mass loss is 

particularly significant in Greenland. Such flows can occur due to basal slip on the soil surface and 

deformation of ice (Cuffey & Paterson, 2010). The latter is related to the creep phenomenon with the 

assistance of dislocation motions under applied stress and temperature. The concept of creep of ice is 

well established for natural ice sheets and experimental artificial ice, although it is known that a 

universal constitutive law for ice does not exist. For example well-known Glen’s flow law explains 

how ice plastically deforms (Glen, 1955). During creep deformation particularly in a tertiary creep 

regime dynamic recrystallisation usually takes place (Duval, 1981; Duval and others, 1983) with 

fabric development. Budd and Jacka (Budd and Jacka, 1989) summarised different creep behaviours 

between ice sheets and artificial ice due to different stress fields and crystal orientations. Although 

anisotropic ice deformation was common in the ice sheet, it was ill-considered in the flow-law model. 

Azuma investigated the deformation behaviours of anisotropic polycrystalline ice and then 

constructed a power-law creep equation with a steady-state creep rate, including the mean Schmid 

factor in the pre-exponential factor (Azuma, 1995), and then extended it to the Cartesian coordinate 

system (Azuma, 1994; Azuma and Goto-Azuma, 1996).  

One of the important factors affecting deformation behaviour in ice is the existence of 

microparticles. The reasons for the presence of such impurities in ice could be related to minerals of 

continental origins, sea salts, biological origins and so on. In an earlier study ultrafine amorphous 

silica was artificially dispersed in ice (Nayar and others, 1971). To model the base of an ice sheet 

which usually includes a layer of dirty ice several meters in thickness, sand was included in artificial 

ice (Hooke and others, 1972). These creep experiments show strengthening effects due to the 

existence of sands in ice on creep deformation. On the other hand the presence of particles in ice also 

affects dynamic recrystallisation or grain boundary migration during creep, depending on the stress 

level (Song and others, 2004, 2008), resulting in softening of the ice. This discrepancy between the 

effects of particles on hardening or softening of creep deformation of ice could be related to the 

average grain size of the ice and particles. We then tested making a fine-grained ice with a few tens 

of micrometres in diameter, containing micro particles with 300 nm in diameter and found that the 
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addition of microparticle softens the ice during creep, and the corresponding strain rate-strain curves 

do not show clear appearance of a steady state, irrespective of the microparticle additions. Thus, it is 

concluded that the recovery of dislocation pile-ups due to lattice diffusion based on a dislocation 

creep mechanism is the rate-controlling process, and the microparticles insignificantly influence the 

deformation of the fine-grained ice, except for their effect on grain boundary pinning (Saruya and 

others, 2019). The details of the creep conditions mentioned above are given in Table 1. 

 

“Table 1 near here” 

 

When considering a dislocation glide or climb during creep deformation, the creep rate 

𝜀̇ in both cases can be described by the well-known Orowan equation, 

𝜀̇ = 𝜌𝑏𝑣,                                                                          (1) 

where 𝜌 is dislocation density, 𝑏 the Burgers vector and 𝑣 the average velocity of dislocations 

(Poirier, 1976; Cuffey & Paterson, 2010). In the case of steady-state creep under a constant-stress 

condition the steady-state creep rate is expressed as 𝜀̇ ∝ 𝜎𝑚, according to Weertman (Weertman, 

1973). Here 𝑚 is a stress exponent. More details will be discussed later. Based on these equations 

we understand that the dislocation density is one of the important factors in determining the 

steady-state creep rate. 

 

“Table 2 near here” 

 

First systematic deformation experiments of water-frozen “single-crystal” ice were 

conducted by Glen (Glen, 1952). He observed that slips appear after a tensile test. Nakaya was the 

first to report plastic deformation behaviours in single crystalline ice from the Mendenhall Glacier in 

Alaska with the aid of dislocations, showing slip lines during a bending test, which were observed by 

Foucault’s method of shadow photography (Nakaya, 1956). He then found that gliding planes 

appeared after bending the single crystalline ice. He attributed this to the occurrence of slips related 

to the dislocations. In the early stage of the research the existence of dislocations was indirectly 

confirmed using an etch-pit method and electron microscopy for lake ice (Muguruma, 1961). 

However the observations of the dislocations in ice were successfully made using X-ray photographs 

(X-ray diffraction topography) as reported by Hayer and Webb (Hayer and Webb, 1965) and were 

then extensively analysed by Higashi et al. using the X-ray diffraction topography (Fukuda and 

Higashi, 1969; Higashi, 1988) based on the Lang method (Lang, 1970). Nevertheless, while the 

X-ray diffraction topography was a powerful tool to directly reveal dislocations in the single crystals, 

the measurable dislocation densities were limited to around 10
2
 cm

-2
 (10

6
 m

-2
). Instead of measuring 

dislocation densities by X-ray diffraction topography Hori et al. applied an X-ray diffraction method 
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to obtain dislocation densities in the Vostok ice core from the rocking-curve measurements with 

Cu-K radiations (Hori and others, 2004). The instrument was installed in a cold room kept at -20ºC, 

and a (101̅2) reflection in each crystal was analysed. It was found that the measured dislocation 

densities ranged from 1.9 × 10
8
 to 2.4 × 10

10
 m

-2
, and large numbers of dislocations were detected in 

the glacier ice extracted from a depth of around 3286 m. 

The measurements of dislocation densities were significantly developed by Krivoglaz 

and Wilkens and Ungár (Krivoglaz, 1969; Wilkens, 1969, Ungár, 1998). It is well known that both 

contributions from grain sizes of the matrix of polycrystalline materials and strains are involved in 

the diffracted-peak intensities. As described by Hori and others (Hori and others, 2004), they only 

chose the (101̅2) reflections for the diffracted intensities of the ice cores. In their appendix, they 

considered the effect of the dot product of 𝒈 and 𝒃, where 𝒈 and 𝒃 are reciprocal lattice and 

Burgers vectors, respectively, in order to have contrast. Krivoglaz and Wilkens included the 

dislocation contrast factor as an effect of the strains, which will be discussed in more detail in the 

experimental methods section of this paper. This method, known as the modified Warren-Averbach 

and modified Williamson-Hall plots, can obtain more precise dislocation densities in strained 

materials, even in deformed ice. Nevertheless, such an approach has never been applied to ice. 

In order to evaluate the dislocation densities in deformed ice samples using the 

modified Warren-Averbach and modified Williamson-Hall plots of X-ray line broadening we 

developed an apparatus that to be located inside a commercial XRD instrument with Cu-K 

radiations to maintain ice at low temperatures. By using this method we succeeded in accurately 

measuring the dislocation densities in ice as a function of the creep strain at -20ºC under an applied 

stress of 2 MPa. The effect of microparticles on the dislocation densities is also discussed.  

 

EXPERIMENTAL METHODS 

Sample preparations 

Ultra-pure water (18.2 M-cm) was sprayed into liquid nitrogen in order to produce ice powders. 

Additionally SiO2 (silica) powders, simulating impurities in ice cores, with a diameter of 300 nm and 

an amorphous structure were mixed with the ice powders. Two different artificial ice samples were 

prepared; (1) pure ice powders and (2) pure ice powders mixed with microparticles containing ice. 

The latter contained 0.1 mass% silica in the ice. These powders were sieved with a mesh size of 710 

m so as to obtain a uniform powder size. The powders were loaded into a metallic die and then 

sintered at a cold room maintained at -10ºC for 1 h and pressed at 70 MPa using a hydraulic jack. 

During the sintering the inside of the die was evacuated by a rotary pump to remove air bubbles as 

much as possible (Azuma and others, 2012). The average dimensions of the sintered ice with a 

diameter of 33 mm and a height of 65 mm were cut. The obtained artificial ice had polycrystalline 

microstructures. 
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 Creep specimens were cut from a sintered sample into four pieces with equivalent volumes, and 

then each piece was turned on a lathe to shape the specimen into a cylinder with a diameter of 15 

mm ana a height of 30 mm.  

 

Uniaxial compressive tests of the bulk specimens 

Creep specimens were immersed in a container filled with silicone oil to prevent sublimation during 

the test and to suppress friction between the specimen and jig. A load was applied to the cylindrical 

creep specimen parallel to its long axis and controlled to maintain the applied stress at 2 MPa. The 

creep test machine was placed in a constant temperature bath inside a freezer maintained at -20ºC. 

The strain was measured using the digital displacement meter (Mitutoyo ID-F125) attached to the 

creep machine. 

 

Microstructural observations 

The microstructures before and after the creep tests were observed using an optical microscope 

(Olympus BX51). The samples were cut from the cylindrical specimens used for the creep tests, and 

the observation directions were fixed perpendicular to the long axis of the cylindrical specimens. 

The upper and bottom parts of the cylinder were cut about 10 mm from the edges, and a remaining 

10 mm part located near the centre of the cylinder was used. The average grain diameter was 

calculated based on the equivalent circle diameter after measuring the area of each grain using Image 

J. Additionally, subgrain boundary densities were also calculated by measuring the length of the 

subgrain boundaries using Image J within the area of a field of view. 

 

Sample holder for X-ray diffraction analyses 
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Figure 1. (a) Design of removable sample holder, (b) arrangement of X-ray generator, sample holder 

and X-ray detector in Ultima IV, (c) at the top of the dewar vessel poured liquid nitrogen and (d) a 

helical and 750-mm-long Cu tube which was immersed in liquid nitrogen. 

 

The X-ray diffraction analyses were performed using an commercial XRD machine (Rigaku Ultima 

IV) installed in a room maintained at ambient temperature. A sample holder shown in Figure 1a was 

made of a Cu plate (thermal conductivity: 400 Wm
-1

K
-1

), with blocks of thermal insulators made of 

Teflon covering the top surface, except for the space parallel to the beam line. The ice was 

maintained between the Teflon blocks, which were 8 mm thick, on the Cu plate and cooled at -20ºC. 

After fixing the ice sample to the Cu plate in a cold room kept at – 10ºC, the space was sealed using 

a Kapton tape with a width of 20 mm so that it did not disturb the X-ray emissions to the surface of 

the ice at large Bragg angles. The Cu plate was cooled using a container which was made of an 

A5052P aluminium alloy (thermal conductivity: 200 Wm
-1

K
-1

) and filled with cooling nitrogen gas 

(purity of 99.9%) flowing into a helical and 750-mm-long Cu tube kept in liquid nitrogen at -196ºC 

as shown in Figures 1c and d. The sample holder was easily removable and placed on the cooling 

container just before starting the X-ray analysis. The container can be adjusted to the central position 
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by an XYZ linier translation stage, and the optimum height was adjusted using a stereomicroscope 

(Fig. 1b). The surface of the Kapton tape was gently covered with dry air to prevent frosting due to 

moisture absorption from the air in the experimental room maintained at ambient temperature. The 

X-ray radiation used was Cu-k with a wavelength of 0.15406 nm. The tube voltage and current 

used were 40 kV and 20 mA, respectively. The step size and scan speed used were 0.01 º and 0.2 º 

min
-1

, respectively. The schematics of the developed cooling system for the X-ray measurements of 

ice samples are summarised in Figure 2. 

 

 

Figure 2. Schematic of the developed cooling system for X-ray measurements of ice samples using 

N2 gas and liquid N2. Symbols (a) to (d) correspond to Figures 1a to 1d, respectively. 
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Dislocation density measurements 

At least two independent parameters of grain size and strain in polycrystalline materials are included 

in diffracted intensities of the X-ray (Warren and Averbach, 1950). The shape of a diffracted 

intensity can be represented by a Fourier series, and it is expressed as  

𝐴𝑛(𝑙) = 𝐴𝑛
𝑃𝐴𝑛

𝐷(𝑙),                                                                   (2) 

where 𝑛 is an index ranging from −∞ to ∞ including zero, 𝑙 is the Miller index given e.g. by 

(00𝑙) and 𝐴𝑛
𝑃 and 𝐴𝑛

𝐷(𝑙) are particle size and distortion coefficients, respectively (Warren and 

Averbach, 1952). Williamson and Hall originally reported the composite broadening of diffracted 

intensities in X-ray diffraction (XRD) produced by particle size and strain effects (Williamson and 

Hall, 1953), expressed by 

𝛿 =
𝜆

𝑡cos𝜃
+ 2𝜉tan𝜃,                                                              (3) 

where 𝛿 is a spectral integral line breadth, 𝜆 the X-ray wavelength, 𝑡 a mean linear dimension of 

the grain, 𝜃 the Bragg angle and 𝜉 the strain distribution. If the well-known Eq. (3) is rearranged, 

e.g., to 

𝛿cos𝜃

𝜆
=

1

𝑡
+

2𝜉sin𝜃

𝜆
,                                                              (4) 

then from the intercept and slope of the 𝛿cos𝜃 𝜆⁄ − 2sin𝜃 𝜆⁄  diagram, the particle size 𝑡 and strain 

𝜉 can readily be extracted. However, the scattering of the X-rays is significantly affected by the 

incident beam direction, dislocation direction, the Burgers vector and elastic anisotropy of the 

crystals. To improve the accuracy of the measurement the dislocation contrast factor was included in 

the theory of the broadening of the X-ray intensities by Krivoglaz and Wilkens (Krivoglaz, 1969; 

Wilkens, 1969). This was then extended to be analysed from the actual XRD patterns of cubic 

crystals (Groma and others, 1988; Ungár and others, 1998), and was applied for hexagonal crystals 

(Klimanek and Kužel, 1988; Ungár and others, 2001; Dragomir and Ungár, 2002). 

The intuitive expression of the diffracted intensity 𝐼𝑔(𝑆) including the effect of elastic strains 

can be explained by (Wilkens, 1969) 

𝐼𝑔 = ∫ 𝐴𝑔(𝑛)exp(2𝜋𝑖𝑛𝑆) 𝑑𝑛,                                                      (5) 

where 𝐴𝑔(𝑛)  is the Fourier transform of 𝐼𝑔(𝑆)  which is normalised to unity, 

𝑆 = 2(sin𝜃 − sin𝜃0) 𝜆⁄ , 𝜃 diffraction angle, 𝜃0 the Bragg angle of the undistorted lattice and 𝜆 

the X-ray wavelength. The effect of strains 𝜀𝑛 is inserted in 𝐴𝑔(𝑛) as 

𝐴𝑔(𝑛) = 〈exp(2𝜋𝑖𝑔𝑛 ∙ 𝜀𝑛)〉.                                                       (6) 

The brackets 〈 〉 indicate a mean value and 𝑔 the reciprocal lattice vector. According to the theory 

of dislocations the elastic strain energy of dislocations per unit length can be expressed as (Wilkens, 

1967; Hirth & Lothe, 1968) 
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𝑊 = 𝐶
𝜇𝑏2

4𝜋
𝜌log (

𝑅𝑒

𝑟0
),                                                            (7) 

where 𝜇 is the shear modulus. Additionally, Wilkens derived the following equation for the mean 

square of the differential strain using Eq. (7) and a rough approximation of Young’s modulus 

𝐸 = 2𝜇 by considering Poisson’s ratio as 0.325 (Petrenko & Whitworth, 1999), 

〈𝜀0
2〉 =

𝑏2

4𝜋
𝜌𝐶log (

𝑅𝑒

𝑟0
),                                                          (8) 

here 𝐶 is the dislocation contrast factor, 𝑅𝑒 and 𝑟0 are the outer and inner cutoff radii of the 

dislocation, respectively. Thus we realise from Eqs. (5), (6) and (8) that the intensity profiles of XRD 

patterns can be broadened due to the presence of strains related to the dislocations whose effect is 

included in the parameter of 𝐶.  

The obtained X-ray profiles were fitted using the Lorentz function. The modified 

Warren-Averbach (WA) and modified Williamson-Hall (WH) plots were then used to evaluate the 

dislocation densities as a function of the creep strain. Here we assign 𝐾 = 2sin𝜃 𝜆⁄  and ∆𝐾 =

2cos𝜃(∆𝜃) 𝜆⁄ . The full width at half-maximum (FWHM) of line profiles can be given as 

∆𝐾 =
0.9

𝐷
+ (

𝜋𝐻2𝑏2

2
)

1 2⁄

𝜌1 2⁄ 𝐾�̅�1 2⁄ + (
𝜋𝐻′𝑏2

2
) 𝑈1 2⁄ 𝐾2�̅�,                              (9) 

where 𝐷 is the volume averaged grain size, 𝐻 a constant, �̅� the average dislocation contrast 

factor, 𝐻′ a constant and 𝑈 a correlation factor (Ungár and others, 1998). The last term in Eq. (9) 

is usually small and hence it can be neglected. Eq. (9) is known as the modified WH plot. In the case 

of hexagonal materials the average dislocation contrast factors are expressed as (Dragomir and 

Ungár, 2002) 

�̅�ℎ𝑘.𝑙 = �̅�ℎ𝑘.0(1 + 𝑞1𝑥 + 𝑞2𝑥2),                                                    (10) 

where 𝑞1 and 𝑞2 are fitting parameters and 𝑥 = (2 3⁄ )(𝑐 𝑎⁄ )2: 𝑎 and 𝑐 are lattice parameters of 

the hexagonal materials, and 𝑐 is measured parallel to the 𝑐 axis. From Eqs. (9) and (10) 

(∆𝐾)2 − 𝛼

𝐾2
= 𝜅�̅�ℎ𝑘.0(1 + 𝑞1𝑥 + 𝑞2𝑥2)                                            (11) 

is derived, where 𝛼 is 0.9 𝐷⁄  and 𝜅 = (𝐻2𝑏2 2⁄ )1 2⁄ 𝜌1 2⁄ .  

 The modified WA plot is given by 

𝑙𝑛𝐴(𝐿) ≈ 𝑙𝑛𝐴𝑃(𝐿) − (
𝜋𝜌𝑏2𝐿2

2
) ln (

𝑅𝑒

𝐿
) 𝐾2�̅� + (

𝑈𝜋2𝑏4𝐿4

4
) ln (

𝑅1

𝐿
) ln (

𝑅2

𝐿
) 𝐾4�̅�2,         (12) 

where 𝐿 = 𝑛𝑎3  is the Fourier length, 𝑎3 = 𝜆 2(sin𝜃2 − sin𝜃1)⁄  is in the direction of the 

diffraction vector 𝒈 and the line profile is measured from 𝜃1 to 𝜃2 of an angular range, 𝐴𝑃(𝐿) is 

the size contribution to the Fourier coefficient for the intensity distribution and 𝑅1 and 𝑅2 are 

auxiliary constants which are not interpreted physically (Ungár and others, 1998). Eq. (12) can be 

simplified such as 
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ln𝐴(𝐿) ≈ 𝜏 − 𝜑𝐾2𝑏2�̅� + 𝜊𝐾4𝑏4�̅�2,                                                  (13) 

and the last term is omitted and then the parameter 𝜑 becomes a fitting parameter when a 

𝑙𝑛𝐴(𝐿) − 𝐾2𝑏2�̅� diagram is drawn by selecting several Bragg peaks in the line profile 

𝜑 = 𝜌
𝜋𝐿2

2
ln (

𝑅𝑒

𝐿
).                                                                 (14) 

From Eq. (14) we can create a diagram of 𝜑 𝐿2⁄ − ln𝐿, and it reveals the dislocation density from 

the slope of − 𝜋𝜌 2⁄ . The dislocation density was indeed measured as the sum of mobile and 

immobile dislocations using this technique. 

 

RESULTS AND DISCUSSION 

Creep curves 

 

Figure 3. Strain rate and strain diagrams of pure and silica-containing ice measured at – 20ºC and 2 

MPa after the creep tests. 

 

The measured strain rate and strain diagrams associated with the creep experiments are given in 

Figure 3, which show samples crept to 20% strain. Both samples show concave upward behaviours 

as a function of the strain: as the strain increases, the strain rate decreases. The initial trends of the 

strain rates are very similar to those reported earlier in our paper (Saruya and others, 2019); that is, 

the pure ice shows slightly concave downward behaviour up to ≈0.36% strain, while the 

silica-containing ice shows a rapid decrease in the strain rate until around 0.5% stain. This means 

that silica may promote creep deformation particularly in the early stages of the creep deformation in 

the primary creep region. However pure ice shows continuous decrease in the strain rate within our 

experimental conditions. As a result the silica-containing ice is much softer than the pure ice above 

0.56% strain. This result is consistent with that reported by Saruya and others (2019).  
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Microstructural observations and quantifications of grain size and subgrain boundary density 

 

Figure 4. Optical microscope images before and after creep deformations were obtained from pure 

and silica-containing ice. ‘Initial’ indicates the initial state before the creep deformations, and 1%, 

10% and 20% indicate interrupted creep strains as shown in Figure 3. 

 

 

Figure 5. (a) Average grain size and (b) subgrain boundary density as a function of strain measured 

at -20ºC and 2 MPa. 
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The creep tests were conducted up to 1, 10 and 20% strains in both the pure and silica-containing ice 

based on Figure 3. The observed microstructures are shown in Figure 4. The quantitative results 

associated with the average gran size and subgrain boundary density as a function of the strain are 

given in Figure 5. In the initial state before the creep deformations grain boundaries (GBs) indicated 

by black arrows are well distinguished. The shape of GBs is equiaxed and appears straight. 

Additionally, some spherical and weak contrasts are seen in the silica-containing ice, as indicated by 

white arrowheads. They are the silica particles, but they appear aggregated when observed with the 

optical microscope (OM). 

 Once stress is applied to the ice (1% strain), subgrain boundaries (sGBs) shown by white 

arrows appear within the grains particularly in the pure ice. They divide the crystal into several 

subgrains. Since there are no silica particles, dislocations can move easily. Large amounts of 

dislocations are generated as the 1% strain is within the primary creep regime. Thus both grain 

refinements and increases in sGB density occur in the pure ice as indicated in Figure 5. However the 

sGBs are rarely observed in the silica-containing ice at the 1% strain. The grain size also hardly 

changes, due to the pinning effect of the silica particles on the GBs (Fig. 5). The drastic changes in 

the microstructures occur in the 10% strain. In both the samples the appearances of dynamic 

recrystallisation are obvious, and average grain sizes decrease. SGB densities also increase; it is 

readily estimated that large amounts of dislocations are introduced in the samples. Both 

microstructures are very similar, as shown in Figure 4, and therefore the quantitative results in 

Figure 5 also reveal similar trends. At 20% strain apparent grain growth can be confirmed in the pure 

ice, as shown in Figure 4. This is evident even from the grain size measurement shown in Figure 5. 

Nevertheless, while the grain size continuously decreases in the silica-containing ice, the size 

increases from 10 to 20% strains in the pure ice. Surprisingly, the sGB densities in both types of ice 

are almost saturated. 

 

Dislocation densities in the crept ice 

 

Figure 6. XRD profile obtained from as-sintered pure ice. 
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An example of the XRD profile obtained from the as-sintered ice is shown in Figure 6. We assume 

that the crystal is hexagonal ice (Ih) with the space group symbol of 𝑃63 𝑚𝑚𝑐⁄  (No. 194), with 

lattice parameters of a = 0.4501 nm and c = 0.7348 nm, considering only oxygen sites of 

1 3⁄ , 2 3⁄ , 𝑧𝑂; 1 3⁄ , 2 3⁄ , 1 2⁄ − 𝑧𝑂; 2 3⁄ , 1 3⁄ , 1 2⁄ + 𝑧𝑂  and 2 3⁄ , 1 3⁄ , 1 − 𝑧𝑂 are considered 

(Hobbs, 1974; Petrenko & Whitworth, 1999). The parameter 𝑧𝑂 represents a small shift of the 

hexagonal rings in the plane normal to the c-axis. 𝑧𝑂 is reported to be 0.0622. Based on this crystal 

structure the Miller indices are assigned to all the diffracted peaks shown in Figure 6, although they 

do not usually represent the four indices for hexagonal materials. Some small deviations from the 

ideal Bragg angles for ice Ih indeed appear. We neglect them as they are trivial and measure the 

modified WH and WA plots from some independent Bragg peaks appearing at more than 20 º. 

 During the calculations we used the hypothesis that the dislocation slips almost occur 

exclusively based on the basal slip system 〈112̅0〉(0001) (Hondoh, 2000), even during the creep 

deformations under our experimental conditions. Then �̅�ℎ𝑘.0 parameter in Eq. (10) was calculated 

using a computer program called ANIZC (Borbély A and others, 2003) which provided us with the 

average dislocation contrast factor by inputting the second order elastic constants 𝐶𝑖𝑗 or elastic 

stiffness constants 𝑆𝑖𝑗. The values used for 𝐶11, 𝐶12, 𝐶13, 𝐶33 and 𝐶44 were 13.20, 6.69, 5.84, 

14.42 and 2.89 GPa, respectively, and c/a was 1.63 (Hobbs, 1974). Here, c/a indicates the ratio of the 

c lattice parameter to the a lattice parameter.  

 

Figure 7. Dislocation densities measured using modified WH and WA plots for pure and 

silica-containing ice as a function of strain. 

 The measured dislocation densities as a function of the stain are summarised in Figure 7. The 

minimum and maximum dislocation densities obtained in this study range from 10
11

 to 10
16

 m
-2

. The 

absolute values are quite high, and some reported dislocation densities for metallic alloys are on the 

order of 10
14

 m
-2

 using the modified WH and WA methods (Yin and others, 2003; Shitani and 

Murata, 2011). We must note that the dislocation density reaches 1.4×10
14

 m
-2

 even in the as-sintered 

pure ice in our case. This may indicate that dislocation densities significantly increase during the 
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pressure-sintering process. Indeed metallic alloys subjected to severe plastic deformation, such as 

cold-working, show dislocation density greater than 10
15

 m
-2

 (Seymour and others, 2017). Though 

the same process was used for the fabrication of the silica-containing ice, the density is 3.8×10
11

 m
-2

. 

The decrease in the dislocation densities in the silica-containing ice just after sintering could be 

explained by the behaviour of creep deformations of the silica-containing ice at 20% strain, as 

mentioned below. At least we can discuss the relative dependence of the silica addition on the 

changes of dislocation densities by comparing between pure and silica-containing ice. 

 At 1% strain dislocation densities in both types of ice rapidly increase. In the silica-containing 

ice it shows a two orders of magnitude increase compared to the initial state. Nevertheless, although 

the dislocation densities increase, the grain sizes do not alter. The sGBs rapidly increase in the pure 

ice, but they do not increase in the silica-containing ice (Fig. 5). The strain rate-strain diagrams 

shown in Figure 3 reveal a raid decrease in the strain rate in both samples, and the pure ice is harder. 

Hence, it can be concluded that the rapid decrease in the strain rate is related to work hardening, 

particularly in the pure ice in the primary creep regime. Similar conclusions are drawn in our 

previous paper (Saruya and others, 2019); the hardening behaviours of the strain rate-strain diagrams 

are related to dislocation pile-ups. However the silica-containing ice shows a rapid decrease in the 

strain rate until the 0.5% strain. Hence dispersion hardening (Ashby and Jones, 1980) may occur 

only in the initial stage of the deformation, but it does not continue in the later stage of the 

deformation. The dislocation density at 10% strain slightly decreases or remains almost consistent 

with that in the 1% strained sample in the pure ice and work hardening continues, while it exhibits 

the maximum density in the silica-containing ice. Simultaneously the grain sizes decrease and the 

sGB densities increase. This means recrystallisation occurs in addition to a sufficient increase of 

dislocations: it is confirmed in Figure 4. Some dislocations are used for the formation of sGBs (Fig. 

5) as well as strain hardening; therefore the strain rates decrease compared with those in the initial 

stage of the creep.  

 In both types of ice the stain rates continuously decrease as shown in Figure 3. This is also 

consistent with what we reported previously (Saruya and others, 2019). However, the dislocation 

densities show different behaviour. Although the measured dislocation densities are almost constant 

in the pure ice after the 1% strain, the density rapidly decreases in the silica-containing ice at 20% 

strain. The decrease is more than two orders of magnitude. Figure 5 suggests that the grain size of 

the silica-containing ice continuously decreases from 10% strain, while in pure ice it remains almost 

constant within the error bars. The sGB densities do not significantly change with or without the 

silica addition. The grain refinement must be related to the occurrence of dynamic recrystallisation, 

which consumes dislocations for the nucleation of new crystalline grains, but at the same time 

relatively large grains also remain (Fig. 4); we can see zig-zag shapes of the GBs, i.e., occurrence of 

strain-induced boundary migrations (SIBM, Faria and others, 2014). The occurrence of SIBM is also 
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confirmed in the pure ice. Again the hardening effect in the pure ice at 20% strain compared with 

that of the silica-containing ice (Fig. 3) can be explained by work hardening, the occurrences of 

which is directly confirmed in Figure 7. Thus the silica addition promotes dislocation annihilations 

near the grain boundaries of the fine grains (Gifkins, 1976) due to the pinning effect of the silica 

additions, leading to a decrease in the dislocation density at 20% strain. Hence silica-containing ice 

is softer than the pure ice (Fig. 3).  

 

Rough calculations of dislocation velocities in the crept ice 

Lastly the dislocation velocities in pure and silica-containing ice were roughly calculated based on 

Eq. (1) by considering only the basal glide during the creep deformation. The velocities were 

evaluated at the 10% strains. The dislocation velocities in the pure and silica-containing ice are 

3.10×10
-12

 and 4.17×10
-14

 m s
-1

, respectively, assuming that the measured dislocations include both 

geometrically necessary dislocations and statistically stored dislocations (Ashby, 1970). It should be 

emphasised that the dislocation velocity in the silica-containing ice is two orders of magnitude lower 

than that in the pure ice. The delay in the dislocation velocity could be related to the presence of 

nanoscale silica particles, which could also be dispersed on the basal planes. At the creep 

temperature dislocation glide and climb should occur simultaneously. It is difficult to consider 

uniform distributions of the silica in the ice crystals, but some segregations can easily be expected, 

as such uniformly dispersed particles are usually unrealistic in the case of composite materials (for 

example, T. Honma and others, 2009). This means that dislocations might be pinned at such densely 

distributed silica regions. Such regions can be seen in the 10% and 20% strained samples shown in 

Figure 3. The orders of magnitude of the dislocation velocities are smaller than those reported by 

other researchers, although they are calculated or measured (Perez and others, 1978; Higashi, 1988). 

The reported minimum velocity was around 10
-6

 to 10
-9

 m s
-1

 (Forouhi and Bloomer, 1978; 

Whitworth, 1978). using single crystals and X-ray diffraction topography methods. This indicates 

that since dislocation densities in the single crystal ice are lower, dislocation tangles in the 

polycrystalline artificial ice sufficiently reduce the velocities.  

In the case of the steady-state creep with a constant-stress condition the steady-state creep rate 

is expressed as 

𝜀̇ = 𝐵𝜎𝑚exp (−
𝑄

𝑘𝑇
),                                                               (15) 

according to Weertman (Weertman, 1973). Here 𝐵  is a constant, 𝜎  the applied stress, 𝑄 an 

activation energy, 𝑘  Boltzmann’s constant and 𝑇  the absolute temperature. Weertman then 

estimated: 

𝜌 = (
𝛽𝜎

𝜇𝑏
)

2

                                                                       (16) 

if the average internal stress generated by dislocation tangles is equivalent to dislocation densities, 
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where 𝛽 is a constant. The velocity of dislocations is given by 

𝑣 = 𝛾𝜎exp (−
𝑄

𝑘𝑇
),                                                               (17) 

where 𝛾 is a constant. Glen identified the stress exponent as 3.7 (1955), which is slightly larger than 

that reported by Weertman (1973). Based on the equations we understand that the dislocation density 

is one of the important factors in determining the steady-state creep rate. Using Eq. (17) the constant 

𝛾 for the pure and silica-containing ice can roughly be determined using activation energies reported 

by Saruya and others (2019). These are 60 and 66 kJmol
-1

 for the pure ice and 0.1% silica-containing 

ice, respectively. By replacing Boltzmann’s constant with the gas constant we obtain the 𝛾 values in 

Eq. (17) as 3.8×10
-6

 and 8.8×10
-7

 m Pa
-1

 s
-1

 for the pure and silica-containing ice, respectively. These 

results suggest that the dislocation velocities with microparticles should almost always be lower than 

those in pure ice at the stead-state creep region in our experimental conditions.  

 

CONCLUSIONS 

The cold stage and sample holder for X-ray diffraction measurements of ice were developed using a 

nitrogen gas combined with liquid nitrogen. The obtained X-ray diffraction patterns were analysed 

based on the modified Warren-Averbach (WA) and modified Williamson-Hall (WH) plots of X-ray 

line broadening; this is the first report to accomplish dislocation measurements with the modified 

WH and WA methods for ice samples. 

Dislocation densities as a function of strains were measured based on the modified WA and WH 

plots using artificial ice with and without silica. The silica models the existence of impurities in ice 

sheets. The X-ray diffraction system was set in a room maintained at ambient temperature. The creep 

tests were conducted at –20ºC and 2 MPa. 

 In the initial ice large amounts of dislocations are stored due to the sintering process, which 

uses 70 MPa of the sintering pressure. In the primary creep region dislocation densities increase with 

the increase in the grain size, particularly in pure ice. Since the aggregates of silica act as pinning 

sites for grain growth, the grain sizes in the silica-containing ice are relatively smaller than those in 

the pure ice. The maximum dislocation densities are achieved at 10% strain, with high subgrain 

boundary densities, while at 20% strain, the density decreases. However the dislocation densities in 

the pure ice remain almost constant values. The silica dispersions act as pinning sites for the 

suppression of grain growth. Such small grain sizes may introduce sinks for dislocation 

annihilations. 

 The small grain size due to the silica dispersions increases dislocation densities because of the 

pile-up at grain boundaries at 10% strain. The dislocation velocity was roughly calculated based on 

the Orowan equation. As can easily be estimated, the silica addition retards the dislocation velocity 

compared with that in pure ice due to the grain refinement and large number of dislocations. 

https://doi.org/10.1017/jog.2025.4 Published online by Cambridge University Press

https://doi.org/10.1017/jog.2025.4


17 

 

 

ACKNOWLEDGMENTS 

We acknowledge all the members of the Arctic Challenge for Sustainability (ArCS). This research 

was supported by ArCS (program grant number JPMXD1300000000), JSPS KAKENHI (grant 

numbers JP15K13567, JP17H02957 and JP18H04140), Japan Arctic Research Network Center 

(J-ARC Net) in 2017 and NIPR through General Collaboration Project, Japan no. 27-16 and 30-13. 

We also acknowledge Dr. Morimasa Takata of Nagaoka University of Technology, 

Japan for his enthusiastic mentorship regarding the research and developments of the instruments for 

X-ray diffraction measurements and cooling systems at low temperature.  

 

AUTHOR CONTRIBUTIONS 

This study was conceptualized by Nobuhiko Azuma and Tomoyuki Homma with guidance from 

Kumiko Goto-Azuma. Tomoyuki Homma led the experimental and theoretical work, directed 

experimental plans and co-authored the paper with Kumiko Goto-Azuma and Nobuhiko Azuma. 

Tomoyuki Homma and Kazuteru Hirai developed the systems for X-ray diffraction measurements 

including the cooling systems and conducted the experimental work. Particularly Kazuteru Hirai was 

responsible for the data analysis. Kumiko Goto-Azuma and Nobuhiko Azuma were supervised, 

reviewed and edited. All authors contributed to the discussions of the results and drafting of the 

manuscript. 

 

REFERENCES 

Ashby MF (1970) The deformation of plastically non-homogeneous materials. Philosophical 

Magazine 21 (170), 399-424 (doi: 10.1080/14786437008238426). 

Ashby MF and DRH Jones (1980) Engineering materials. Pergamon Press, Oxford (ISBN: 

0-08-026138-8). 

Azuma N (1994) A flow law for anisotropic ice and its application to ice sheets. Earth and Planetary 

Science Letters 128 (128), 601-614 (doi: 10.1016/0012-821X(94)90173-2). 

Azuma N (1995) A flow law for anisotropic polycrystalline ice under uniaxial compressive 

deformation. Cold Regions Science and Technology 23 (2), 137-147 (doi: 

10.1016/0165-232X(94)00011-L). 

Azuma N and Goto-Azuma K (1996) An anisotropic flow for ice-sheet ice and its implications. 

Annals of Glaciology 23, 202-208 (doi: 10.3189/S0260305500013458). 

Azuma N, Miyakoshi T, Yokoyama S and Takata M (2012) Impeding effect of air bubbles on normal 

grain growth of ice. Journal of Structural Geology 42, 184-193 (doi: 10.1016/j.jsg.2012.05.005). 

Borbély A, Dragomir-Cernatescu J, Ribárik G and Ungár T (2003) Computer program ANIZC for 

the calculation of diffraction contrast factors of dislocations in elastically anisotropic cubic, 

https://doi.org/10.1017/jog.2025.4 Published online by Cambridge University Press

https://doi.org/10.1017/jog.2025.4


18 

 

hexagonal and trigonal crystals. Journal of Applied Crystallography 36, 160-162 (doi: 

10.1107/S0021889802021581): http://metal.elte.hu/anizc/. 

Budd WF and Jacka TH (1989) A review of ice rheology for ice sheet modelling. Cold Regions 

Science and Technology 16 (2), 107-144 (doi: 10.1016/0165-232X(89)90014-1). 

Cuffy KM and Paterson WSB (2010) The physics of glaciers, 4
th
 edn. Elsevier, London (ISBN: 

978-0-12-369461-4). 

Dragomir IC and Ungár T (2002) Contrast factors of dislocations in the hexagonal crystal system. 

Journal of Applied Crystallography 35 (5), 556-564 (doi: 10.1107/S0021889802009536). 

Duval P (1981) Creep and fabric of polycrystalline ice under shear and compression. Journal of 

Glaciology 27 (95), 129-140 (doi: 10.3189/S002214300001128X). 

Duval P, Ashby MF and Anderman I (1983) Rate-controlling processes in the creep of 

polycrystalline ice. The Journal of Physical Chemistry 87 (21), 4066-4074 (doi: 

10.1021/j100244a014). 

Faria SH, Weikusat I and Azuma N (2014) The microstructure of polar ice. Part II: State of the art. 

Journal of Structural Geology 61, 21-49 (doi: 10.1016/j.jsg.2013.11.003). 

Forouhi AR and Bloomer I (1978) A quantum mechanical approach to the velocity of dislocation in 

ice. Physical Status Solidi (b) 89 (1), 309-312 (doi: 10.1002/pssb.2220890139). 

Fukuda A and Higashi A (1969) X-ray diffraction topographic studies of dislocations in natural large 

ice single crystals. Japanese Journal of Applied Physics 8 (8), 993-999 (doi: 

10.1143/JJAP.8.993). 

Gifkens RC (1976) Grain-boundary sliding and its accommodation during creep and superplasticity. 

Metallurgical Transactions A 7A, 1225-1232 (doi: 10.1007/BF02656607). 

Glen JW (1955) The creep of polycrystalline ice. Proceedings of the Royal Society of London, Series 

A 228 (1175), 519-538 (doi: 0.1098/rspa.1955.0066). 

Groma I, Ungár T and Wilkens M (1988) Asymmetric X-ray line broadening of plastically deformed 

crystals. I. Theory. Journal of Applied Crystallography 21, 47-53 (doi: 

10.1107/S0021889887009178). 

Hayes CE and Webb WW (1965) Dislocations in ice. Science 147 (3653), 44-45 (doi: 

10.1126/science.147.3653.44). 

Higashi A ed. (1988) Lattice defects in ice crystals. Hokkaido Univ. Press, Sapporo (ISBN: 

4-8329-0221-0). 

Hirth JP and Lothe J (1968) Theory of dislocations. McGraw-Hill, New York. 

Hobbs PV (1974) Ice Physics. Oxford University Press, New York (ISBN: 978-0-19-958771-1). 

Homma T, Nagai K, Katou A, Arai K, Suganuma M and Kamado S (2009) Synthesis of 

high-strength magnesium alloy composites reinforced with Si-coated carbon nanofibers. Scripta 

Materialia 60 (6), 451-454 (doi: 10.1016/j.scriptamat.2008.11.024). 

https://doi.org/10.1017/jog.2025.4 Published online by Cambridge University Press

https://doi.org/10.1017/jog.2025.4


19 

 

Hondoh T (2000) Nature and behavior of dislocations in ice. In Hondoh T ed. Physics of Ice Core 

Records, Hokkaido University Press, Sapporo 3-24 (ISBN: 4-8329-0282-2). 

Hooke RL, Dahlin BB and Kauper MT (1972) Creep of ice containing dispersed fine sand. Journal 

of Glaciology 11 (63), 327-336 (doi: 10.3189/S0022143000022309). 

Hori A, Hondoh T, Oguro M and Lipenkov VY (2004) Ice-lattice distortion along deepest section of 

the Vostok core from X-ray diffraction measurements. Annals of Glaciology 39, 501-504 (doi: 

10.3189/172756404781814528). 

Humphreys FJ and Hathery M (2004) Recrystallization and related annealing phenomena. 2nd edn., 

Elsevier, Amsterdam (ISBN: 0-08-044164-5). 

IPCC (2019) Summary for Policymakers. In: IPCC special report on the ocean and cryosphere in a 

changing climate. H.-O. Pörtner, D.C. Roberts,V. Masson-Delmotte, P. Zhai, M. Tignor, E. 

Poloczanska, K. Mintenbeck, A. Alegríam M. Nicolai, A. Okem, J. Petzold, B. Rama, N.M. 

Weyer (eds.), Cambridge University Press, Cambridge, UK and New York, NY, USA, 3-35.. 

IPCC (2021) Climate Change 2021: the physical science basis. Contribution of Working Group 1 to 

the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge 

University Press, Cambridge. 

Klimanek P and Kužel Jr R (1988) X-ray diffraction line broadening due to dislocation in non-cubic 

materials. I. General considerations and the case of elastic isotropy applied to hexagonal crystals. 

Journal of Applied Crystallography 21, 59-66 (doi: 10.1107/S0021889887009580). 

Krivoglaz MA (1969) Theory of X-ray and thermal neutron scattering by real crystals. Plenum, New 

York (ISBN: 978-1-4899-5584-5). 

Lang AR (1959) Studies of individual dislocations in crystals by X-ray diffraction microradiography. 

Journal of Applied Physics 30, 1748-1755 (doi: 10.1063/1.1735048). 

Larour E, Ivins ER and Adhikari S (2017) Should coastal planners have concern over where land ice 

is melting? Science Advances 3 (11), e1700537 1-8 (doi: 10.1126/sciadv.1700537). 

Muguruma J (1961) Electron microscope study of etched ice surface. Journal of Electronmicroscopy 

10 (4), 246-250 (doi: 10.1093/oxfordjournals.jmicro.a049315). 

Nakaya U (1956) Properties of single crystals of ice, revealed by internal melting. Research paper 

13, U.S. Army Snow Ice and Permafrost Research Establishment, Wilmette, Illinois, 1-80 (pl. 

1-105). 

Nayar HS, Lenel FV and Ansell GS (1971) Creep of dispersions of ultrafine amorphous silica in ice. 

Journal of Applied Physics 42, 3786-3789 (doi: 10.1063/1.1659686). 

Perez J, Maï C and Vassoille R (1978) Cooperative movement of H2O molecules and dynamic 

behaviour of dislocations in ice Ih. Journal of Glaciology 21 (85), 361-374 (doi: 

10.3189/S0022143000033530). 

Petrenko VF and Whitworth RW (1999) Physics of ice. Oxford University Press, New York (ISBN: 

0-19-851894-3). 

https://doi.org/10.1017/jog.2025.4 Published online by Cambridge University Press

https://doi.org/10.1017/jog.2025.4


20 

 

Pfeffer WT, Harper JT and O'Neel S (2008) Kinematic constraints on glacier contributions to 

21
st
-century sea-level rise. Science 321 (5894), 1340-1343 (doi: 10.1126/science.11590). 

Poirier JP (1976) Plasticité a haute temperature des solides cristallins. Eyrolles, Paris. 

Rignot E, Velicogna I, van den Broeke MR, Monaghan A and Lenaerts JTM (2011) Acceleration of 

the contribution of the Greenland and Antarctic ice sheets to sea level rise. Geophysical Research 

Letters 38 (5), L05503 (doi: 10.1029/2011GL046583). 

Saruya T, Nakajima K, Takata M, Homma T, Azuma N and Goto-Azuma K (2019) Effects of 

microparticles on deformation and microstructural evolution of fine-grained ice. Journal of 

Glaciology 565 (252), 531-541 (doi: 10.1017/jog.2019.29). 

Saymour T, Frankel P, Balogh L, Ungár T, Thompson SP, Jädernäs D, Romero J, Hallstadius L, 

Daymond MR, Ribárik G, Preuss M (2017) Evolution of dislocation structure in nutron irradiated 

Zircaloy-2 studied by synchrotron x-ray diffraction peak profile analysis. Acta Materialia 126, 

102-113 (doi: 10.1016/j.actamat.2016.12.031). 

Shintani T and Murata Y (2011) Evaluation of the dislocation density and dislocation character in 

cold rolled Type 304 steel determined by profile analysis of X-ray diffraction. Acta Materialia 59 

(11), 4314-4322 (doi: 10.1016/j.actamat.2011.03.055). 

Song M, Cole DM and Baker I (2004) Initial experiments on the effects of particles at grain 

boundaries on the anelasticity and creep behavior of granular ice. Annals of Glaciology 39, 

397-401 (doi: 10.3189/172756404781814069). 

Song M, Baker I and Cole DM (2008) The effect of particles on creep rate and microstructures of 

granular ice. Journal of Glaciology 54 (186), 533-537 (doi: 10.3189/002214308785836959). 

Ungár T, Ott S, Sanders PG, Borbély A and Weertman JR (1998) Dislocation, grain size and planar 

faults in nanostructured copper determined by high resolution X-ray diffraction and a new 

procedure of peak profile analysis. Acta Materialia 46 (10), 3693-3699 (doi: 

10.1016/S1359-6454(98)00001-9). 

Ungár T, Gubicza J, Ribárik G and Borbély A (2001) Crystallite size distribution and dislocation 

structure determined by diffraction profile analysis: principles and practical application to cubic 

and hexagonal crystals. Journal of Applied Crystallography 34 (3), 298-310 (doi: 

10.1107/S0021889801003715). 

Warren BE and Averbach BL (1950) The effect of cold-work distortion on X-ray patterns. Journal of 

Applied Physics 21 (6), 595-599 (doi: 10.1063/1.1699713). 

Warren BE and Averbach BL (1952) The separation of cold-work distortion and particle size 

broadening in X-ray patterns. Journal of Applied Physics 23 (4), 497-497 (doi: 

10.1063/1.1702234). 

Weertman J (1973) Creep of ice. In Whalley SJ, Jones SJ and Gold LW eds. Physics and chemistry 

of ice, R. Soc. Can., Ottawa, 320-337. 

https://doi.org/10.1017/jog.2025.4 Published online by Cambridge University Press

https://doi.org/10.1017/jog.2025.4


21 

 

Whitworth RW (1978) The core structure and the mobility of dislocations in ice. Journal of 

Glaciology 85 (85), 341-359 (doi: 10.3189/S0022143000033529). 

Wilkens M (1967) Das Spannungsfeld einer Anordnung von regellos verteilten Versetzungen. Acta 

Metallurgica, 15 (8), 1412-1415 (doi: 10.1016/0001-6160(67)90020-X). 

Wilkens M (1969) Theoretical aspects of kinematical X-ray diffraction profiles from crystals 

containing dislocation distributions. In Simmons JA, de Wit R and Bullough R eds. Conference 

proceedings of Fundamental aspects of dislocation theory, National Bureau of Standards, 

Washington, 1195-1221. 

Williamson GK and Hall WH (1953) X-ray line broadening from field aluminum and wolfram. Acta 

Metallurgica 1 (1), 22-31 (doi: 10.1016/0001-6160(53)90006-6). 

Yin F, Hanamura T, Umezawa O and Nagai K (2003) Phosphorus-induced dislocation structure 

variation in the warm-rolled ultrafine-grained low-carbon steels. Materials Science and 

Engineering A 354 (1-2), 31-39 (doi: 10.1016/S0921-5093(02)00766-9). 

https://doi.org/10.1017/jog.2025.4 Published online by Cambridge University Press

https://doi.org/10.1017/jog.2025.4


22 

 

Figure captions: 

Figure 1. (a) Design of removable sample holder, (b) arrangement of X-ray generator, sample holder 

and X-ray detector in Ultima IV, (c) at the top of the dewar vessel poured liquid nitrogen and (d) a 

helical and 750-mm-long Cu tube which was immersed in liquid nitrogen. 

Figure 2. Schematic of the developed cooling system for X-ray measurements of ice samples using 

N2 gas and liquid N2. Symbols (a) to (d) correspond to Figures 1a to 1d, respectively. 

Figure 3. Strain rate and strain diagrams of pure and silica-containing ice measured at – 20ºC and 2 

MPa after the creep tests. 

Figure 4. Optical microscope images before and after creep deformations were obtained from pure 

and silica-containing ice. ‘Initial’ indicates the initial state before the creep deformations, and 1%, 

10% and 20% indicate interrupted creep strains as shown in Figure 3. 

Figure 5. Average grain size or subgrain boundary density as a function of strain measured at -20ºC 

and 2 MPa. 

Figure 6. XRD profile obtained from as-sintered pure ice. 

 

Figure 7. Dislocation densities measured using modified WH and WA plots for pure and 

silica-containing ice as a function of strain. 

 

Table 1. Experimental conditions of creep deformation using artificial ice. 

Type Impurities 
Impurity 

content 

Impurity 

diameter 

Applied 

stress 

Test 

temperature 

Sample 

diameter 

Sample 

hight 

or 

gauge 

length 

Grain 

diameter 

of ice 

References 

MPa ºC cm cm 

Tension 

ultrafine 

amorphous 

silica 

0.5 or 1 

vol. % 
150 Å 0.5~1.8 -22~-2 1.3 5.7 

0.25~0.5 

mm 

4-8 cm 

long 

Nayar and 

others, 

1971 

Compression sand 
0.013~0.347 

vol. % 
64 mm 0.53~0.64 -9.2~-7.4 1.95 10 

300~500 

mm 

Hooke and 

others, 

1972 

Compression silt 
0.1 ~ 4 

mass % 

0.05 

mm 
1.45 -12 5.0 12.7 3~5 mm 

Song and 

others, 

2004 

Compression silt 0.43 vol. % 50 mm 0.4 ~ 1.45 -10 ~ -5 5.0 12.7 5 mm 

Song and 

others, 

2008 

Compression silica 
0.01, 0.1 

mass% 
0.3 mm 0.2~1.0 -50~-5 1.5 3 

30 ~107 

mm 

Saruya 

and others, 

2019 
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Table 2. Symbols and definitions in equations. 

 

Symbol Definition Symbol Definition 

𝜀̇ creep rate ∆𝐾 2cos𝜃(∆𝜃) 𝜆⁄  

𝜌 dislocation density ∆𝜃 measured Bragg angles of line 

profile 

𝑏 Burgers vector 𝐷 volume averaged grain size 

𝑣 average dislocation velocity 𝐻 constant 

𝐴𝑛 Fourier series �̅� average dislocation contrast 

factor 

𝑛 an index ranging from −∞ to ∞ 

including zero 
𝐻′ constant 

𝐴𝑛
𝑃 particle size coefficient of Fourier 

series 
𝑈 correlation factor 

𝐴𝑛
𝐷 distortion coefficient of Fourier series �̅�ℎ𝑘.𝑙 average dislocation contrast 

factor 

ℎ𝑘𝑙 Miller index 𝑞1, 𝑞2 fitting parameters 

𝛿 spectral integral line breadth 𝑥 (2 3⁄ )(𝑐 𝑎⁄ )2 

𝜆 X-ray wavelength 𝑎 lattice parameter of hexagonal 

material 

𝑡 mean linear dimension of grain 𝑐 lattice parameter of hexagonal 

material 

𝜃 Bragg angle 𝛼 0.9 𝐷⁄  

𝜉 strain distribution 𝜅 (𝐻2𝑏2 2⁄ )1 2⁄ 𝜌1 2⁄  

𝐼𝑔 diffracted intensity 𝐿 Fourier length 

𝐴𝑔 Fourier transform of 𝐼𝑔 𝜃1, 𝜃2 measured Bragg angles of line 

profile 

𝜃0 Bragg angle of undistorted lattice 𝑅1, 𝑅2 auxiliary constants 

𝑔 reciprocal lattice vector 𝐵 constant 

𝜀𝑛 strain 𝜎 applied stress 

𝑊 elastic strain energy of dislocations 

per unit length 
𝑚 stress exponent 

𝐶 dislocation contrast factor 𝑄 activation energy 

𝜇 shear modulus 𝑘 Boltzmann’s constant 

𝑅𝑒 outer cutoff radius of dislocation 𝑇 absolute temperature 

𝑟0 inner cutoff radius of dislocation 𝛽 constant 

𝐸 Young’s modulus 𝛾 constant 

𝐾 sin𝜃 𝜆⁄    
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